xref: /linux/kernel/kprobes.c (revision ac6a0cf6716bb46813d0161024c66c2af66e53d1)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 #include <linux/memory.h>
47 
48 #include <asm-generic/sections.h>
49 #include <asm/cacheflush.h>
50 #include <asm/errno.h>
51 #include <asm/uaccess.h>
52 
53 #define KPROBE_HASH_BITS 6
54 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
55 
56 
57 /*
58  * Some oddball architectures like 64bit powerpc have function descriptors
59  * so this must be overridable.
60  */
61 #ifndef kprobe_lookup_name
62 #define kprobe_lookup_name(name, addr) \
63 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64 #endif
65 
66 static int kprobes_initialized;
67 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
69 
70 /* NOTE: change this value only with kprobe_mutex held */
71 static bool kprobes_all_disarmed;
72 
73 static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
74 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75 static struct {
76 	spinlock_t lock ____cacheline_aligned_in_smp;
77 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
78 
79 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
80 {
81 	return &(kretprobe_table_locks[hash].lock);
82 }
83 
84 /*
85  * Normally, functions that we'd want to prohibit kprobes in, are marked
86  * __kprobes. But, there are cases where such functions already belong to
87  * a different section (__sched for preempt_schedule)
88  *
89  * For such cases, we now have a blacklist
90  */
91 static struct kprobe_blackpoint kprobe_blacklist[] = {
92 	{"preempt_schedule",},
93 	{NULL}    /* Terminator */
94 };
95 
96 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
97 /*
98  * kprobe->ainsn.insn points to the copy of the instruction to be
99  * single-stepped. x86_64, POWER4 and above have no-exec support and
100  * stepping on the instruction on a vmalloced/kmalloced/data page
101  * is a recipe for disaster
102  */
103 #define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
104 
105 struct kprobe_insn_page {
106 	struct hlist_node hlist;
107 	kprobe_opcode_t *insns;		/* Page of instruction slots */
108 	char slot_used[INSNS_PER_PAGE];
109 	int nused;
110 	int ngarbage;
111 };
112 
113 enum kprobe_slot_state {
114 	SLOT_CLEAN = 0,
115 	SLOT_DIRTY = 1,
116 	SLOT_USED = 2,
117 };
118 
119 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_pages */
120 static struct hlist_head kprobe_insn_pages;
121 static int kprobe_garbage_slots;
122 static int collect_garbage_slots(void);
123 
124 static int __kprobes check_safety(void)
125 {
126 	int ret = 0;
127 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
128 	ret = freeze_processes();
129 	if (ret == 0) {
130 		struct task_struct *p, *q;
131 		do_each_thread(p, q) {
132 			if (p != current && p->state == TASK_RUNNING &&
133 			    p->pid != 0) {
134 				printk("Check failed: %s is running\n",p->comm);
135 				ret = -1;
136 				goto loop_end;
137 			}
138 		} while_each_thread(p, q);
139 	}
140 loop_end:
141 	thaw_processes();
142 #else
143 	synchronize_sched();
144 #endif
145 	return ret;
146 }
147 
148 /**
149  * __get_insn_slot() - Find a slot on an executable page for an instruction.
150  * We allocate an executable page if there's no room on existing ones.
151  */
152 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
153 {
154 	struct kprobe_insn_page *kip;
155 	struct hlist_node *pos;
156 
157  retry:
158 	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
159 		if (kip->nused < INSNS_PER_PAGE) {
160 			int i;
161 			for (i = 0; i < INSNS_PER_PAGE; i++) {
162 				if (kip->slot_used[i] == SLOT_CLEAN) {
163 					kip->slot_used[i] = SLOT_USED;
164 					kip->nused++;
165 					return kip->insns + (i * MAX_INSN_SIZE);
166 				}
167 			}
168 			/* Surprise!  No unused slots.  Fix kip->nused. */
169 			kip->nused = INSNS_PER_PAGE;
170 		}
171 	}
172 
173 	/* If there are any garbage slots, collect it and try again. */
174 	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
175 		goto retry;
176 	}
177 	/* All out of space.  Need to allocate a new page. Use slot 0. */
178 	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
179 	if (!kip)
180 		return NULL;
181 
182 	/*
183 	 * Use module_alloc so this page is within +/- 2GB of where the
184 	 * kernel image and loaded module images reside. This is required
185 	 * so x86_64 can correctly handle the %rip-relative fixups.
186 	 */
187 	kip->insns = module_alloc(PAGE_SIZE);
188 	if (!kip->insns) {
189 		kfree(kip);
190 		return NULL;
191 	}
192 	INIT_HLIST_NODE(&kip->hlist);
193 	hlist_add_head(&kip->hlist, &kprobe_insn_pages);
194 	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
195 	kip->slot_used[0] = SLOT_USED;
196 	kip->nused = 1;
197 	kip->ngarbage = 0;
198 	return kip->insns;
199 }
200 
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
202 {
203 	kprobe_opcode_t *ret;
204 	mutex_lock(&kprobe_insn_mutex);
205 	ret = __get_insn_slot();
206 	mutex_unlock(&kprobe_insn_mutex);
207 	return ret;
208 }
209 
210 /* Return 1 if all garbages are collected, otherwise 0. */
211 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
212 {
213 	kip->slot_used[idx] = SLOT_CLEAN;
214 	kip->nused--;
215 	if (kip->nused == 0) {
216 		/*
217 		 * Page is no longer in use.  Free it unless
218 		 * it's the last one.  We keep the last one
219 		 * so as not to have to set it up again the
220 		 * next time somebody inserts a probe.
221 		 */
222 		hlist_del(&kip->hlist);
223 		if (hlist_empty(&kprobe_insn_pages)) {
224 			INIT_HLIST_NODE(&kip->hlist);
225 			hlist_add_head(&kip->hlist,
226 				       &kprobe_insn_pages);
227 		} else {
228 			module_free(NULL, kip->insns);
229 			kfree(kip);
230 		}
231 		return 1;
232 	}
233 	return 0;
234 }
235 
236 static int __kprobes collect_garbage_slots(void)
237 {
238 	struct kprobe_insn_page *kip;
239 	struct hlist_node *pos, *next;
240 
241 	/* Ensure no-one is preepmted on the garbages */
242 	if (check_safety())
243 		return -EAGAIN;
244 
245 	hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
246 		int i;
247 		if (kip->ngarbage == 0)
248 			continue;
249 		kip->ngarbage = 0;	/* we will collect all garbages */
250 		for (i = 0; i < INSNS_PER_PAGE; i++) {
251 			if (kip->slot_used[i] == SLOT_DIRTY &&
252 			    collect_one_slot(kip, i))
253 				break;
254 		}
255 	}
256 	kprobe_garbage_slots = 0;
257 	return 0;
258 }
259 
260 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
261 {
262 	struct kprobe_insn_page *kip;
263 	struct hlist_node *pos;
264 
265 	mutex_lock(&kprobe_insn_mutex);
266 	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
267 		if (kip->insns <= slot &&
268 		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
269 			int i = (slot - kip->insns) / MAX_INSN_SIZE;
270 			if (dirty) {
271 				kip->slot_used[i] = SLOT_DIRTY;
272 				kip->ngarbage++;
273 			} else {
274 				collect_one_slot(kip, i);
275 			}
276 			break;
277 		}
278 	}
279 
280 	if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
281 		collect_garbage_slots();
282 
283 	mutex_unlock(&kprobe_insn_mutex);
284 }
285 #endif
286 
287 /* We have preemption disabled.. so it is safe to use __ versions */
288 static inline void set_kprobe_instance(struct kprobe *kp)
289 {
290 	__get_cpu_var(kprobe_instance) = kp;
291 }
292 
293 static inline void reset_kprobe_instance(void)
294 {
295 	__get_cpu_var(kprobe_instance) = NULL;
296 }
297 
298 /*
299  * This routine is called either:
300  * 	- under the kprobe_mutex - during kprobe_[un]register()
301  * 				OR
302  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
303  */
304 struct kprobe __kprobes *get_kprobe(void *addr)
305 {
306 	struct hlist_head *head;
307 	struct hlist_node *node;
308 	struct kprobe *p;
309 
310 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
311 	hlist_for_each_entry_rcu(p, node, head, hlist) {
312 		if (p->addr == addr)
313 			return p;
314 	}
315 	return NULL;
316 }
317 
318 /* Arm a kprobe with text_mutex */
319 static void __kprobes arm_kprobe(struct kprobe *kp)
320 {
321 	mutex_lock(&text_mutex);
322 	arch_arm_kprobe(kp);
323 	mutex_unlock(&text_mutex);
324 }
325 
326 /* Disarm a kprobe with text_mutex */
327 static void __kprobes disarm_kprobe(struct kprobe *kp)
328 {
329 	mutex_lock(&text_mutex);
330 	arch_disarm_kprobe(kp);
331 	mutex_unlock(&text_mutex);
332 }
333 
334 /*
335  * Aggregate handlers for multiple kprobes support - these handlers
336  * take care of invoking the individual kprobe handlers on p->list
337  */
338 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
339 {
340 	struct kprobe *kp;
341 
342 	list_for_each_entry_rcu(kp, &p->list, list) {
343 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
344 			set_kprobe_instance(kp);
345 			if (kp->pre_handler(kp, regs))
346 				return 1;
347 		}
348 		reset_kprobe_instance();
349 	}
350 	return 0;
351 }
352 
353 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
354 					unsigned long flags)
355 {
356 	struct kprobe *kp;
357 
358 	list_for_each_entry_rcu(kp, &p->list, list) {
359 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
360 			set_kprobe_instance(kp);
361 			kp->post_handler(kp, regs, flags);
362 			reset_kprobe_instance();
363 		}
364 	}
365 }
366 
367 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
368 					int trapnr)
369 {
370 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
371 
372 	/*
373 	 * if we faulted "during" the execution of a user specified
374 	 * probe handler, invoke just that probe's fault handler
375 	 */
376 	if (cur && cur->fault_handler) {
377 		if (cur->fault_handler(cur, regs, trapnr))
378 			return 1;
379 	}
380 	return 0;
381 }
382 
383 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
386 	int ret = 0;
387 
388 	if (cur && cur->break_handler) {
389 		if (cur->break_handler(cur, regs))
390 			ret = 1;
391 	}
392 	reset_kprobe_instance();
393 	return ret;
394 }
395 
396 /* Walks the list and increments nmissed count for multiprobe case */
397 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
398 {
399 	struct kprobe *kp;
400 	if (p->pre_handler != aggr_pre_handler) {
401 		p->nmissed++;
402 	} else {
403 		list_for_each_entry_rcu(kp, &p->list, list)
404 			kp->nmissed++;
405 	}
406 	return;
407 }
408 
409 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
410 				struct hlist_head *head)
411 {
412 	struct kretprobe *rp = ri->rp;
413 
414 	/* remove rp inst off the rprobe_inst_table */
415 	hlist_del(&ri->hlist);
416 	INIT_HLIST_NODE(&ri->hlist);
417 	if (likely(rp)) {
418 		spin_lock(&rp->lock);
419 		hlist_add_head(&ri->hlist, &rp->free_instances);
420 		spin_unlock(&rp->lock);
421 	} else
422 		/* Unregistering */
423 		hlist_add_head(&ri->hlist, head);
424 }
425 
426 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
427 			 struct hlist_head **head, unsigned long *flags)
428 {
429 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
430 	spinlock_t *hlist_lock;
431 
432 	*head = &kretprobe_inst_table[hash];
433 	hlist_lock = kretprobe_table_lock_ptr(hash);
434 	spin_lock_irqsave(hlist_lock, *flags);
435 }
436 
437 static void __kprobes kretprobe_table_lock(unsigned long hash,
438 	unsigned long *flags)
439 {
440 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
441 	spin_lock_irqsave(hlist_lock, *flags);
442 }
443 
444 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
445 	unsigned long *flags)
446 {
447 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
448 	spinlock_t *hlist_lock;
449 
450 	hlist_lock = kretprobe_table_lock_ptr(hash);
451 	spin_unlock_irqrestore(hlist_lock, *flags);
452 }
453 
454 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
455 {
456 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
457 	spin_unlock_irqrestore(hlist_lock, *flags);
458 }
459 
460 /*
461  * This function is called from finish_task_switch when task tk becomes dead,
462  * so that we can recycle any function-return probe instances associated
463  * with this task. These left over instances represent probed functions
464  * that have been called but will never return.
465  */
466 void __kprobes kprobe_flush_task(struct task_struct *tk)
467 {
468 	struct kretprobe_instance *ri;
469 	struct hlist_head *head, empty_rp;
470 	struct hlist_node *node, *tmp;
471 	unsigned long hash, flags = 0;
472 
473 	if (unlikely(!kprobes_initialized))
474 		/* Early boot.  kretprobe_table_locks not yet initialized. */
475 		return;
476 
477 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
478 	head = &kretprobe_inst_table[hash];
479 	kretprobe_table_lock(hash, &flags);
480 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
481 		if (ri->task == tk)
482 			recycle_rp_inst(ri, &empty_rp);
483 	}
484 	kretprobe_table_unlock(hash, &flags);
485 	INIT_HLIST_HEAD(&empty_rp);
486 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
487 		hlist_del(&ri->hlist);
488 		kfree(ri);
489 	}
490 }
491 
492 static inline void free_rp_inst(struct kretprobe *rp)
493 {
494 	struct kretprobe_instance *ri;
495 	struct hlist_node *pos, *next;
496 
497 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
498 		hlist_del(&ri->hlist);
499 		kfree(ri);
500 	}
501 }
502 
503 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
504 {
505 	unsigned long flags, hash;
506 	struct kretprobe_instance *ri;
507 	struct hlist_node *pos, *next;
508 	struct hlist_head *head;
509 
510 	/* No race here */
511 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
512 		kretprobe_table_lock(hash, &flags);
513 		head = &kretprobe_inst_table[hash];
514 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
515 			if (ri->rp == rp)
516 				ri->rp = NULL;
517 		}
518 		kretprobe_table_unlock(hash, &flags);
519 	}
520 	free_rp_inst(rp);
521 }
522 
523 /*
524  * Keep all fields in the kprobe consistent
525  */
526 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
527 {
528 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
529 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
530 }
531 
532 /*
533 * Add the new probe to ap->list. Fail if this is the
534 * second jprobe at the address - two jprobes can't coexist
535 */
536 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
537 {
538 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
539 	if (p->break_handler) {
540 		if (ap->break_handler)
541 			return -EEXIST;
542 		list_add_tail_rcu(&p->list, &ap->list);
543 		ap->break_handler = aggr_break_handler;
544 	} else
545 		list_add_rcu(&p->list, &ap->list);
546 	if (p->post_handler && !ap->post_handler)
547 		ap->post_handler = aggr_post_handler;
548 
549 	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
550 		ap->flags &= ~KPROBE_FLAG_DISABLED;
551 		if (!kprobes_all_disarmed)
552 			/* Arm the breakpoint again. */
553 			arm_kprobe(ap);
554 	}
555 	return 0;
556 }
557 
558 /*
559  * Fill in the required fields of the "manager kprobe". Replace the
560  * earlier kprobe in the hlist with the manager kprobe
561  */
562 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
563 {
564 	copy_kprobe(p, ap);
565 	flush_insn_slot(ap);
566 	ap->addr = p->addr;
567 	ap->flags = p->flags;
568 	ap->pre_handler = aggr_pre_handler;
569 	ap->fault_handler = aggr_fault_handler;
570 	/* We don't care the kprobe which has gone. */
571 	if (p->post_handler && !kprobe_gone(p))
572 		ap->post_handler = aggr_post_handler;
573 	if (p->break_handler && !kprobe_gone(p))
574 		ap->break_handler = aggr_break_handler;
575 
576 	INIT_LIST_HEAD(&ap->list);
577 	list_add_rcu(&p->list, &ap->list);
578 
579 	hlist_replace_rcu(&p->hlist, &ap->hlist);
580 }
581 
582 /*
583  * This is the second or subsequent kprobe at the address - handle
584  * the intricacies
585  */
586 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
587 					  struct kprobe *p)
588 {
589 	int ret = 0;
590 	struct kprobe *ap = old_p;
591 
592 	if (old_p->pre_handler != aggr_pre_handler) {
593 		/* If old_p is not an aggr_probe, create new aggr_kprobe. */
594 		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
595 		if (!ap)
596 			return -ENOMEM;
597 		add_aggr_kprobe(ap, old_p);
598 	}
599 
600 	if (kprobe_gone(ap)) {
601 		/*
602 		 * Attempting to insert new probe at the same location that
603 		 * had a probe in the module vaddr area which already
604 		 * freed. So, the instruction slot has already been
605 		 * released. We need a new slot for the new probe.
606 		 */
607 		ret = arch_prepare_kprobe(ap);
608 		if (ret)
609 			/*
610 			 * Even if fail to allocate new slot, don't need to
611 			 * free aggr_probe. It will be used next time, or
612 			 * freed by unregister_kprobe.
613 			 */
614 			return ret;
615 
616 		/*
617 		 * Clear gone flag to prevent allocating new slot again, and
618 		 * set disabled flag because it is not armed yet.
619 		 */
620 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
621 			    | KPROBE_FLAG_DISABLED;
622 	}
623 
624 	copy_kprobe(ap, p);
625 	return add_new_kprobe(ap, p);
626 }
627 
628 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
629 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
630 {
631 	struct kprobe *kp;
632 
633 	list_for_each_entry_rcu(kp, &p->list, list) {
634 		if (!kprobe_disabled(kp))
635 			/*
636 			 * There is an active probe on the list.
637 			 * We can't disable aggr_kprobe.
638 			 */
639 			return 0;
640 	}
641 	p->flags |= KPROBE_FLAG_DISABLED;
642 	return 1;
643 }
644 
645 static int __kprobes in_kprobes_functions(unsigned long addr)
646 {
647 	struct kprobe_blackpoint *kb;
648 
649 	if (addr >= (unsigned long)__kprobes_text_start &&
650 	    addr < (unsigned long)__kprobes_text_end)
651 		return -EINVAL;
652 	/*
653 	 * If there exists a kprobe_blacklist, verify and
654 	 * fail any probe registration in the prohibited area
655 	 */
656 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
657 		if (kb->start_addr) {
658 			if (addr >= kb->start_addr &&
659 			    addr < (kb->start_addr + kb->range))
660 				return -EINVAL;
661 		}
662 	}
663 	return 0;
664 }
665 
666 /*
667  * If we have a symbol_name argument, look it up and add the offset field
668  * to it. This way, we can specify a relative address to a symbol.
669  */
670 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
671 {
672 	kprobe_opcode_t *addr = p->addr;
673 	if (p->symbol_name) {
674 		if (addr)
675 			return NULL;
676 		kprobe_lookup_name(p->symbol_name, addr);
677 	}
678 
679 	if (!addr)
680 		return NULL;
681 	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
682 }
683 
684 int __kprobes register_kprobe(struct kprobe *p)
685 {
686 	int ret = 0;
687 	struct kprobe *old_p;
688 	struct module *probed_mod;
689 	kprobe_opcode_t *addr;
690 
691 	addr = kprobe_addr(p);
692 	if (!addr)
693 		return -EINVAL;
694 	p->addr = addr;
695 
696 	preempt_disable();
697 	if (!kernel_text_address((unsigned long) p->addr) ||
698 	    in_kprobes_functions((unsigned long) p->addr)) {
699 		preempt_enable();
700 		return -EINVAL;
701 	}
702 
703 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
704 	p->flags &= KPROBE_FLAG_DISABLED;
705 
706 	/*
707 	 * Check if are we probing a module.
708 	 */
709 	probed_mod = __module_text_address((unsigned long) p->addr);
710 	if (probed_mod) {
711 		/*
712 		 * We must hold a refcount of the probed module while updating
713 		 * its code to prohibit unexpected unloading.
714 		 */
715 		if (unlikely(!try_module_get(probed_mod))) {
716 			preempt_enable();
717 			return -EINVAL;
718 		}
719 		/*
720 		 * If the module freed .init.text, we couldn't insert
721 		 * kprobes in there.
722 		 */
723 		if (within_module_init((unsigned long)p->addr, probed_mod) &&
724 		    probed_mod->state != MODULE_STATE_COMING) {
725 			module_put(probed_mod);
726 			preempt_enable();
727 			return -EINVAL;
728 		}
729 	}
730 	preempt_enable();
731 
732 	p->nmissed = 0;
733 	INIT_LIST_HEAD(&p->list);
734 	mutex_lock(&kprobe_mutex);
735 	old_p = get_kprobe(p->addr);
736 	if (old_p) {
737 		ret = register_aggr_kprobe(old_p, p);
738 		goto out;
739 	}
740 
741 	mutex_lock(&text_mutex);
742 	ret = arch_prepare_kprobe(p);
743 	if (ret)
744 		goto out_unlock_text;
745 
746 	INIT_HLIST_NODE(&p->hlist);
747 	hlist_add_head_rcu(&p->hlist,
748 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
749 
750 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
751 		arch_arm_kprobe(p);
752 
753 out_unlock_text:
754 	mutex_unlock(&text_mutex);
755 out:
756 	mutex_unlock(&kprobe_mutex);
757 
758 	if (probed_mod)
759 		module_put(probed_mod);
760 
761 	return ret;
762 }
763 EXPORT_SYMBOL_GPL(register_kprobe);
764 
765 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
766 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
767 {
768 	struct kprobe *old_p, *list_p;
769 
770 	old_p = get_kprobe(p->addr);
771 	if (unlikely(!old_p))
772 		return NULL;
773 
774 	if (p != old_p) {
775 		list_for_each_entry_rcu(list_p, &old_p->list, list)
776 			if (list_p == p)
777 			/* kprobe p is a valid probe */
778 				goto valid;
779 		return NULL;
780 	}
781 valid:
782 	return old_p;
783 }
784 
785 /*
786  * Unregister a kprobe without a scheduler synchronization.
787  */
788 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
789 {
790 	struct kprobe *old_p, *list_p;
791 
792 	old_p = __get_valid_kprobe(p);
793 	if (old_p == NULL)
794 		return -EINVAL;
795 
796 	if (old_p == p ||
797 	    (old_p->pre_handler == aggr_pre_handler &&
798 	     list_is_singular(&old_p->list))) {
799 		/*
800 		 * Only probe on the hash list. Disarm only if kprobes are
801 		 * enabled and not gone - otherwise, the breakpoint would
802 		 * already have been removed. We save on flushing icache.
803 		 */
804 		if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
805 			disarm_kprobe(p);
806 		hlist_del_rcu(&old_p->hlist);
807 	} else {
808 		if (p->break_handler && !kprobe_gone(p))
809 			old_p->break_handler = NULL;
810 		if (p->post_handler && !kprobe_gone(p)) {
811 			list_for_each_entry_rcu(list_p, &old_p->list, list) {
812 				if ((list_p != p) && (list_p->post_handler))
813 					goto noclean;
814 			}
815 			old_p->post_handler = NULL;
816 		}
817 noclean:
818 		list_del_rcu(&p->list);
819 		if (!kprobe_disabled(old_p)) {
820 			try_to_disable_aggr_kprobe(old_p);
821 			if (!kprobes_all_disarmed && kprobe_disabled(old_p))
822 				disarm_kprobe(old_p);
823 		}
824 	}
825 	return 0;
826 }
827 
828 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
829 {
830 	struct kprobe *old_p;
831 
832 	if (list_empty(&p->list))
833 		arch_remove_kprobe(p);
834 	else if (list_is_singular(&p->list)) {
835 		/* "p" is the last child of an aggr_kprobe */
836 		old_p = list_entry(p->list.next, struct kprobe, list);
837 		list_del(&p->list);
838 		arch_remove_kprobe(old_p);
839 		kfree(old_p);
840 	}
841 }
842 
843 int __kprobes register_kprobes(struct kprobe **kps, int num)
844 {
845 	int i, ret = 0;
846 
847 	if (num <= 0)
848 		return -EINVAL;
849 	for (i = 0; i < num; i++) {
850 		ret = register_kprobe(kps[i]);
851 		if (ret < 0) {
852 			if (i > 0)
853 				unregister_kprobes(kps, i);
854 			break;
855 		}
856 	}
857 	return ret;
858 }
859 EXPORT_SYMBOL_GPL(register_kprobes);
860 
861 void __kprobes unregister_kprobe(struct kprobe *p)
862 {
863 	unregister_kprobes(&p, 1);
864 }
865 EXPORT_SYMBOL_GPL(unregister_kprobe);
866 
867 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
868 {
869 	int i;
870 
871 	if (num <= 0)
872 		return;
873 	mutex_lock(&kprobe_mutex);
874 	for (i = 0; i < num; i++)
875 		if (__unregister_kprobe_top(kps[i]) < 0)
876 			kps[i]->addr = NULL;
877 	mutex_unlock(&kprobe_mutex);
878 
879 	synchronize_sched();
880 	for (i = 0; i < num; i++)
881 		if (kps[i]->addr)
882 			__unregister_kprobe_bottom(kps[i]);
883 }
884 EXPORT_SYMBOL_GPL(unregister_kprobes);
885 
886 static struct notifier_block kprobe_exceptions_nb = {
887 	.notifier_call = kprobe_exceptions_notify,
888 	.priority = 0x7fffffff /* we need to be notified first */
889 };
890 
891 unsigned long __weak arch_deref_entry_point(void *entry)
892 {
893 	return (unsigned long)entry;
894 }
895 
896 int __kprobes register_jprobes(struct jprobe **jps, int num)
897 {
898 	struct jprobe *jp;
899 	int ret = 0, i;
900 
901 	if (num <= 0)
902 		return -EINVAL;
903 	for (i = 0; i < num; i++) {
904 		unsigned long addr;
905 		jp = jps[i];
906 		addr = arch_deref_entry_point(jp->entry);
907 
908 		if (!kernel_text_address(addr))
909 			ret = -EINVAL;
910 		else {
911 			/* Todo: Verify probepoint is a function entry point */
912 			jp->kp.pre_handler = setjmp_pre_handler;
913 			jp->kp.break_handler = longjmp_break_handler;
914 			ret = register_kprobe(&jp->kp);
915 		}
916 		if (ret < 0) {
917 			if (i > 0)
918 				unregister_jprobes(jps, i);
919 			break;
920 		}
921 	}
922 	return ret;
923 }
924 EXPORT_SYMBOL_GPL(register_jprobes);
925 
926 int __kprobes register_jprobe(struct jprobe *jp)
927 {
928 	return register_jprobes(&jp, 1);
929 }
930 EXPORT_SYMBOL_GPL(register_jprobe);
931 
932 void __kprobes unregister_jprobe(struct jprobe *jp)
933 {
934 	unregister_jprobes(&jp, 1);
935 }
936 EXPORT_SYMBOL_GPL(unregister_jprobe);
937 
938 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
939 {
940 	int i;
941 
942 	if (num <= 0)
943 		return;
944 	mutex_lock(&kprobe_mutex);
945 	for (i = 0; i < num; i++)
946 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
947 			jps[i]->kp.addr = NULL;
948 	mutex_unlock(&kprobe_mutex);
949 
950 	synchronize_sched();
951 	for (i = 0; i < num; i++) {
952 		if (jps[i]->kp.addr)
953 			__unregister_kprobe_bottom(&jps[i]->kp);
954 	}
955 }
956 EXPORT_SYMBOL_GPL(unregister_jprobes);
957 
958 #ifdef CONFIG_KRETPROBES
959 /*
960  * This kprobe pre_handler is registered with every kretprobe. When probe
961  * hits it will set up the return probe.
962  */
963 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
964 					   struct pt_regs *regs)
965 {
966 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
967 	unsigned long hash, flags = 0;
968 	struct kretprobe_instance *ri;
969 
970 	/*TODO: consider to only swap the RA after the last pre_handler fired */
971 	hash = hash_ptr(current, KPROBE_HASH_BITS);
972 	spin_lock_irqsave(&rp->lock, flags);
973 	if (!hlist_empty(&rp->free_instances)) {
974 		ri = hlist_entry(rp->free_instances.first,
975 				struct kretprobe_instance, hlist);
976 		hlist_del(&ri->hlist);
977 		spin_unlock_irqrestore(&rp->lock, flags);
978 
979 		ri->rp = rp;
980 		ri->task = current;
981 
982 		if (rp->entry_handler && rp->entry_handler(ri, regs))
983 			return 0;
984 
985 		arch_prepare_kretprobe(ri, regs);
986 
987 		/* XXX(hch): why is there no hlist_move_head? */
988 		INIT_HLIST_NODE(&ri->hlist);
989 		kretprobe_table_lock(hash, &flags);
990 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
991 		kretprobe_table_unlock(hash, &flags);
992 	} else {
993 		rp->nmissed++;
994 		spin_unlock_irqrestore(&rp->lock, flags);
995 	}
996 	return 0;
997 }
998 
999 int __kprobes register_kretprobe(struct kretprobe *rp)
1000 {
1001 	int ret = 0;
1002 	struct kretprobe_instance *inst;
1003 	int i;
1004 	void *addr;
1005 
1006 	if (kretprobe_blacklist_size) {
1007 		addr = kprobe_addr(&rp->kp);
1008 		if (!addr)
1009 			return -EINVAL;
1010 
1011 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1012 			if (kretprobe_blacklist[i].addr == addr)
1013 				return -EINVAL;
1014 		}
1015 	}
1016 
1017 	rp->kp.pre_handler = pre_handler_kretprobe;
1018 	rp->kp.post_handler = NULL;
1019 	rp->kp.fault_handler = NULL;
1020 	rp->kp.break_handler = NULL;
1021 
1022 	/* Pre-allocate memory for max kretprobe instances */
1023 	if (rp->maxactive <= 0) {
1024 #ifdef CONFIG_PREEMPT
1025 		rp->maxactive = max(10, 2 * NR_CPUS);
1026 #else
1027 		rp->maxactive = NR_CPUS;
1028 #endif
1029 	}
1030 	spin_lock_init(&rp->lock);
1031 	INIT_HLIST_HEAD(&rp->free_instances);
1032 	for (i = 0; i < rp->maxactive; i++) {
1033 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1034 			       rp->data_size, GFP_KERNEL);
1035 		if (inst == NULL) {
1036 			free_rp_inst(rp);
1037 			return -ENOMEM;
1038 		}
1039 		INIT_HLIST_NODE(&inst->hlist);
1040 		hlist_add_head(&inst->hlist, &rp->free_instances);
1041 	}
1042 
1043 	rp->nmissed = 0;
1044 	/* Establish function entry probe point */
1045 	ret = register_kprobe(&rp->kp);
1046 	if (ret != 0)
1047 		free_rp_inst(rp);
1048 	return ret;
1049 }
1050 EXPORT_SYMBOL_GPL(register_kretprobe);
1051 
1052 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1053 {
1054 	int ret = 0, i;
1055 
1056 	if (num <= 0)
1057 		return -EINVAL;
1058 	for (i = 0; i < num; i++) {
1059 		ret = register_kretprobe(rps[i]);
1060 		if (ret < 0) {
1061 			if (i > 0)
1062 				unregister_kretprobes(rps, i);
1063 			break;
1064 		}
1065 	}
1066 	return ret;
1067 }
1068 EXPORT_SYMBOL_GPL(register_kretprobes);
1069 
1070 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1071 {
1072 	unregister_kretprobes(&rp, 1);
1073 }
1074 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1075 
1076 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1077 {
1078 	int i;
1079 
1080 	if (num <= 0)
1081 		return;
1082 	mutex_lock(&kprobe_mutex);
1083 	for (i = 0; i < num; i++)
1084 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1085 			rps[i]->kp.addr = NULL;
1086 	mutex_unlock(&kprobe_mutex);
1087 
1088 	synchronize_sched();
1089 	for (i = 0; i < num; i++) {
1090 		if (rps[i]->kp.addr) {
1091 			__unregister_kprobe_bottom(&rps[i]->kp);
1092 			cleanup_rp_inst(rps[i]);
1093 		}
1094 	}
1095 }
1096 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1097 
1098 #else /* CONFIG_KRETPROBES */
1099 int __kprobes register_kretprobe(struct kretprobe *rp)
1100 {
1101 	return -ENOSYS;
1102 }
1103 EXPORT_SYMBOL_GPL(register_kretprobe);
1104 
1105 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1106 {
1107 	return -ENOSYS;
1108 }
1109 EXPORT_SYMBOL_GPL(register_kretprobes);
1110 
1111 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1112 {
1113 }
1114 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1115 
1116 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1117 {
1118 }
1119 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1120 
1121 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1122 					   struct pt_regs *regs)
1123 {
1124 	return 0;
1125 }
1126 
1127 #endif /* CONFIG_KRETPROBES */
1128 
1129 /* Set the kprobe gone and remove its instruction buffer. */
1130 static void __kprobes kill_kprobe(struct kprobe *p)
1131 {
1132 	struct kprobe *kp;
1133 
1134 	p->flags |= KPROBE_FLAG_GONE;
1135 	if (p->pre_handler == aggr_pre_handler) {
1136 		/*
1137 		 * If this is an aggr_kprobe, we have to list all the
1138 		 * chained probes and mark them GONE.
1139 		 */
1140 		list_for_each_entry_rcu(kp, &p->list, list)
1141 			kp->flags |= KPROBE_FLAG_GONE;
1142 		p->post_handler = NULL;
1143 		p->break_handler = NULL;
1144 	}
1145 	/*
1146 	 * Here, we can remove insn_slot safely, because no thread calls
1147 	 * the original probed function (which will be freed soon) any more.
1148 	 */
1149 	arch_remove_kprobe(p);
1150 }
1151 
1152 /* Module notifier call back, checking kprobes on the module */
1153 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1154 					     unsigned long val, void *data)
1155 {
1156 	struct module *mod = data;
1157 	struct hlist_head *head;
1158 	struct hlist_node *node;
1159 	struct kprobe *p;
1160 	unsigned int i;
1161 	int checkcore = (val == MODULE_STATE_GOING);
1162 
1163 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1164 		return NOTIFY_DONE;
1165 
1166 	/*
1167 	 * When MODULE_STATE_GOING was notified, both of module .text and
1168 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1169 	 * notified, only .init.text section would be freed. We need to
1170 	 * disable kprobes which have been inserted in the sections.
1171 	 */
1172 	mutex_lock(&kprobe_mutex);
1173 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1174 		head = &kprobe_table[i];
1175 		hlist_for_each_entry_rcu(p, node, head, hlist)
1176 			if (within_module_init((unsigned long)p->addr, mod) ||
1177 			    (checkcore &&
1178 			     within_module_core((unsigned long)p->addr, mod))) {
1179 				/*
1180 				 * The vaddr this probe is installed will soon
1181 				 * be vfreed buy not synced to disk. Hence,
1182 				 * disarming the breakpoint isn't needed.
1183 				 */
1184 				kill_kprobe(p);
1185 			}
1186 	}
1187 	mutex_unlock(&kprobe_mutex);
1188 	return NOTIFY_DONE;
1189 }
1190 
1191 static struct notifier_block kprobe_module_nb = {
1192 	.notifier_call = kprobes_module_callback,
1193 	.priority = 0
1194 };
1195 
1196 static int __init init_kprobes(void)
1197 {
1198 	int i, err = 0;
1199 	unsigned long offset = 0, size = 0;
1200 	char *modname, namebuf[128];
1201 	const char *symbol_name;
1202 	void *addr;
1203 	struct kprobe_blackpoint *kb;
1204 
1205 	/* FIXME allocate the probe table, currently defined statically */
1206 	/* initialize all list heads */
1207 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1208 		INIT_HLIST_HEAD(&kprobe_table[i]);
1209 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1210 		spin_lock_init(&(kretprobe_table_locks[i].lock));
1211 	}
1212 
1213 	/*
1214 	 * Lookup and populate the kprobe_blacklist.
1215 	 *
1216 	 * Unlike the kretprobe blacklist, we'll need to determine
1217 	 * the range of addresses that belong to the said functions,
1218 	 * since a kprobe need not necessarily be at the beginning
1219 	 * of a function.
1220 	 */
1221 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1222 		kprobe_lookup_name(kb->name, addr);
1223 		if (!addr)
1224 			continue;
1225 
1226 		kb->start_addr = (unsigned long)addr;
1227 		symbol_name = kallsyms_lookup(kb->start_addr,
1228 				&size, &offset, &modname, namebuf);
1229 		if (!symbol_name)
1230 			kb->range = 0;
1231 		else
1232 			kb->range = size;
1233 	}
1234 
1235 	if (kretprobe_blacklist_size) {
1236 		/* lookup the function address from its name */
1237 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1238 			kprobe_lookup_name(kretprobe_blacklist[i].name,
1239 					   kretprobe_blacklist[i].addr);
1240 			if (!kretprobe_blacklist[i].addr)
1241 				printk("kretprobe: lookup failed: %s\n",
1242 				       kretprobe_blacklist[i].name);
1243 		}
1244 	}
1245 
1246 	/* By default, kprobes are armed */
1247 	kprobes_all_disarmed = false;
1248 
1249 	err = arch_init_kprobes();
1250 	if (!err)
1251 		err = register_die_notifier(&kprobe_exceptions_nb);
1252 	if (!err)
1253 		err = register_module_notifier(&kprobe_module_nb);
1254 
1255 	kprobes_initialized = (err == 0);
1256 
1257 	if (!err)
1258 		init_test_probes();
1259 	return err;
1260 }
1261 
1262 #ifdef CONFIG_DEBUG_FS
1263 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1264 		const char *sym, int offset,char *modname)
1265 {
1266 	char *kprobe_type;
1267 
1268 	if (p->pre_handler == pre_handler_kretprobe)
1269 		kprobe_type = "r";
1270 	else if (p->pre_handler == setjmp_pre_handler)
1271 		kprobe_type = "j";
1272 	else
1273 		kprobe_type = "k";
1274 	if (sym)
1275 		seq_printf(pi, "%p  %s  %s+0x%x  %s %s%s\n",
1276 			p->addr, kprobe_type, sym, offset,
1277 			(modname ? modname : " "),
1278 			(kprobe_gone(p) ? "[GONE]" : ""),
1279 			((kprobe_disabled(p) && !kprobe_gone(p)) ?
1280 			 "[DISABLED]" : ""));
1281 	else
1282 		seq_printf(pi, "%p  %s  %p %s%s\n",
1283 			p->addr, kprobe_type, p->addr,
1284 			(kprobe_gone(p) ? "[GONE]" : ""),
1285 			((kprobe_disabled(p) && !kprobe_gone(p)) ?
1286 			 "[DISABLED]" : ""));
1287 }
1288 
1289 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1290 {
1291 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1292 }
1293 
1294 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1295 {
1296 	(*pos)++;
1297 	if (*pos >= KPROBE_TABLE_SIZE)
1298 		return NULL;
1299 	return pos;
1300 }
1301 
1302 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1303 {
1304 	/* Nothing to do */
1305 }
1306 
1307 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1308 {
1309 	struct hlist_head *head;
1310 	struct hlist_node *node;
1311 	struct kprobe *p, *kp;
1312 	const char *sym = NULL;
1313 	unsigned int i = *(loff_t *) v;
1314 	unsigned long offset = 0;
1315 	char *modname, namebuf[128];
1316 
1317 	head = &kprobe_table[i];
1318 	preempt_disable();
1319 	hlist_for_each_entry_rcu(p, node, head, hlist) {
1320 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1321 					&offset, &modname, namebuf);
1322 		if (p->pre_handler == aggr_pre_handler) {
1323 			list_for_each_entry_rcu(kp, &p->list, list)
1324 				report_probe(pi, kp, sym, offset, modname);
1325 		} else
1326 			report_probe(pi, p, sym, offset, modname);
1327 	}
1328 	preempt_enable();
1329 	return 0;
1330 }
1331 
1332 static struct seq_operations kprobes_seq_ops = {
1333 	.start = kprobe_seq_start,
1334 	.next  = kprobe_seq_next,
1335 	.stop  = kprobe_seq_stop,
1336 	.show  = show_kprobe_addr
1337 };
1338 
1339 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1340 {
1341 	return seq_open(filp, &kprobes_seq_ops);
1342 }
1343 
1344 static struct file_operations debugfs_kprobes_operations = {
1345 	.open           = kprobes_open,
1346 	.read           = seq_read,
1347 	.llseek         = seq_lseek,
1348 	.release        = seq_release,
1349 };
1350 
1351 /* Disable one kprobe */
1352 int __kprobes disable_kprobe(struct kprobe *kp)
1353 {
1354 	int ret = 0;
1355 	struct kprobe *p;
1356 
1357 	mutex_lock(&kprobe_mutex);
1358 
1359 	/* Check whether specified probe is valid. */
1360 	p = __get_valid_kprobe(kp);
1361 	if (unlikely(p == NULL)) {
1362 		ret = -EINVAL;
1363 		goto out;
1364 	}
1365 
1366 	/* If the probe is already disabled (or gone), just return */
1367 	if (kprobe_disabled(kp))
1368 		goto out;
1369 
1370 	kp->flags |= KPROBE_FLAG_DISABLED;
1371 	if (p != kp)
1372 		/* When kp != p, p is always enabled. */
1373 		try_to_disable_aggr_kprobe(p);
1374 
1375 	if (!kprobes_all_disarmed && kprobe_disabled(p))
1376 		disarm_kprobe(p);
1377 out:
1378 	mutex_unlock(&kprobe_mutex);
1379 	return ret;
1380 }
1381 EXPORT_SYMBOL_GPL(disable_kprobe);
1382 
1383 /* Enable one kprobe */
1384 int __kprobes enable_kprobe(struct kprobe *kp)
1385 {
1386 	int ret = 0;
1387 	struct kprobe *p;
1388 
1389 	mutex_lock(&kprobe_mutex);
1390 
1391 	/* Check whether specified probe is valid. */
1392 	p = __get_valid_kprobe(kp);
1393 	if (unlikely(p == NULL)) {
1394 		ret = -EINVAL;
1395 		goto out;
1396 	}
1397 
1398 	if (kprobe_gone(kp)) {
1399 		/* This kprobe has gone, we couldn't enable it. */
1400 		ret = -EINVAL;
1401 		goto out;
1402 	}
1403 
1404 	if (!kprobes_all_disarmed && kprobe_disabled(p))
1405 		arm_kprobe(p);
1406 
1407 	p->flags &= ~KPROBE_FLAG_DISABLED;
1408 	if (p != kp)
1409 		kp->flags &= ~KPROBE_FLAG_DISABLED;
1410 out:
1411 	mutex_unlock(&kprobe_mutex);
1412 	return ret;
1413 }
1414 EXPORT_SYMBOL_GPL(enable_kprobe);
1415 
1416 static void __kprobes arm_all_kprobes(void)
1417 {
1418 	struct hlist_head *head;
1419 	struct hlist_node *node;
1420 	struct kprobe *p;
1421 	unsigned int i;
1422 
1423 	mutex_lock(&kprobe_mutex);
1424 
1425 	/* If kprobes are armed, just return */
1426 	if (!kprobes_all_disarmed)
1427 		goto already_enabled;
1428 
1429 	mutex_lock(&text_mutex);
1430 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1431 		head = &kprobe_table[i];
1432 		hlist_for_each_entry_rcu(p, node, head, hlist)
1433 			if (!kprobe_disabled(p))
1434 				arch_arm_kprobe(p);
1435 	}
1436 	mutex_unlock(&text_mutex);
1437 
1438 	kprobes_all_disarmed = false;
1439 	printk(KERN_INFO "Kprobes globally enabled\n");
1440 
1441 already_enabled:
1442 	mutex_unlock(&kprobe_mutex);
1443 	return;
1444 }
1445 
1446 static void __kprobes disarm_all_kprobes(void)
1447 {
1448 	struct hlist_head *head;
1449 	struct hlist_node *node;
1450 	struct kprobe *p;
1451 	unsigned int i;
1452 
1453 	mutex_lock(&kprobe_mutex);
1454 
1455 	/* If kprobes are already disarmed, just return */
1456 	if (kprobes_all_disarmed)
1457 		goto already_disabled;
1458 
1459 	kprobes_all_disarmed = true;
1460 	printk(KERN_INFO "Kprobes globally disabled\n");
1461 	mutex_lock(&text_mutex);
1462 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1463 		head = &kprobe_table[i];
1464 		hlist_for_each_entry_rcu(p, node, head, hlist) {
1465 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1466 				arch_disarm_kprobe(p);
1467 		}
1468 	}
1469 
1470 	mutex_unlock(&text_mutex);
1471 	mutex_unlock(&kprobe_mutex);
1472 	/* Allow all currently running kprobes to complete */
1473 	synchronize_sched();
1474 	return;
1475 
1476 already_disabled:
1477 	mutex_unlock(&kprobe_mutex);
1478 	return;
1479 }
1480 
1481 /*
1482  * XXX: The debugfs bool file interface doesn't allow for callbacks
1483  * when the bool state is switched. We can reuse that facility when
1484  * available
1485  */
1486 static ssize_t read_enabled_file_bool(struct file *file,
1487 	       char __user *user_buf, size_t count, loff_t *ppos)
1488 {
1489 	char buf[3];
1490 
1491 	if (!kprobes_all_disarmed)
1492 		buf[0] = '1';
1493 	else
1494 		buf[0] = '0';
1495 	buf[1] = '\n';
1496 	buf[2] = 0x00;
1497 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1498 }
1499 
1500 static ssize_t write_enabled_file_bool(struct file *file,
1501 	       const char __user *user_buf, size_t count, loff_t *ppos)
1502 {
1503 	char buf[32];
1504 	int buf_size;
1505 
1506 	buf_size = min(count, (sizeof(buf)-1));
1507 	if (copy_from_user(buf, user_buf, buf_size))
1508 		return -EFAULT;
1509 
1510 	switch (buf[0]) {
1511 	case 'y':
1512 	case 'Y':
1513 	case '1':
1514 		arm_all_kprobes();
1515 		break;
1516 	case 'n':
1517 	case 'N':
1518 	case '0':
1519 		disarm_all_kprobes();
1520 		break;
1521 	}
1522 
1523 	return count;
1524 }
1525 
1526 static struct file_operations fops_kp = {
1527 	.read =         read_enabled_file_bool,
1528 	.write =        write_enabled_file_bool,
1529 };
1530 
1531 static int __kprobes debugfs_kprobe_init(void)
1532 {
1533 	struct dentry *dir, *file;
1534 	unsigned int value = 1;
1535 
1536 	dir = debugfs_create_dir("kprobes", NULL);
1537 	if (!dir)
1538 		return -ENOMEM;
1539 
1540 	file = debugfs_create_file("list", 0444, dir, NULL,
1541 				&debugfs_kprobes_operations);
1542 	if (!file) {
1543 		debugfs_remove(dir);
1544 		return -ENOMEM;
1545 	}
1546 
1547 	file = debugfs_create_file("enabled", 0600, dir,
1548 					&value, &fops_kp);
1549 	if (!file) {
1550 		debugfs_remove(dir);
1551 		return -ENOMEM;
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 late_initcall(debugfs_kprobe_init);
1558 #endif /* CONFIG_DEBUG_FS */
1559 
1560 module_init(init_kprobes);
1561 
1562 /* defined in arch/.../kernel/kprobes.c */
1563 EXPORT_SYMBOL_GPL(jprobe_return);
1564