1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/module.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 51 #include <asm-generic/sections.h> 52 #include <asm/cacheflush.h> 53 #include <asm/errno.h> 54 #include <asm/uaccess.h> 55 56 #define KPROBE_HASH_BITS 6 57 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 58 59 60 /* 61 * Some oddball architectures like 64bit powerpc have function descriptors 62 * so this must be overridable. 63 */ 64 #ifndef kprobe_lookup_name 65 #define kprobe_lookup_name(name, addr) \ 66 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 67 #endif 68 69 static int kprobes_initialized; 70 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 71 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 72 73 /* NOTE: change this value only with kprobe_mutex held */ 74 static bool kprobes_all_disarmed; 75 76 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */ 77 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 78 static struct { 79 spinlock_t lock ____cacheline_aligned_in_smp; 80 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 81 82 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 83 { 84 return &(kretprobe_table_locks[hash].lock); 85 } 86 87 /* 88 * Normally, functions that we'd want to prohibit kprobes in, are marked 89 * __kprobes. But, there are cases where such functions already belong to 90 * a different section (__sched for preempt_schedule) 91 * 92 * For such cases, we now have a blacklist 93 */ 94 static struct kprobe_blackpoint kprobe_blacklist[] = { 95 {"preempt_schedule",}, 96 {"native_get_debugreg",}, 97 {"irq_entries_start",}, 98 {"common_interrupt",}, 99 {"mcount",}, /* mcount can be called from everywhere */ 100 {NULL} /* Terminator */ 101 }; 102 103 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 104 /* 105 * kprobe->ainsn.insn points to the copy of the instruction to be 106 * single-stepped. x86_64, POWER4 and above have no-exec support and 107 * stepping on the instruction on a vmalloced/kmalloced/data page 108 * is a recipe for disaster 109 */ 110 struct kprobe_insn_page { 111 struct list_head list; 112 kprobe_opcode_t *insns; /* Page of instruction slots */ 113 int nused; 114 int ngarbage; 115 char slot_used[]; 116 }; 117 118 #define KPROBE_INSN_PAGE_SIZE(slots) \ 119 (offsetof(struct kprobe_insn_page, slot_used) + \ 120 (sizeof(char) * (slots))) 121 122 struct kprobe_insn_cache { 123 struct list_head pages; /* list of kprobe_insn_page */ 124 size_t insn_size; /* size of instruction slot */ 125 int nr_garbage; 126 }; 127 128 static int slots_per_page(struct kprobe_insn_cache *c) 129 { 130 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 131 } 132 133 enum kprobe_slot_state { 134 SLOT_CLEAN = 0, 135 SLOT_DIRTY = 1, 136 SLOT_USED = 2, 137 }; 138 139 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */ 140 static struct kprobe_insn_cache kprobe_insn_slots = { 141 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 142 .insn_size = MAX_INSN_SIZE, 143 .nr_garbage = 0, 144 }; 145 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c); 146 147 /** 148 * __get_insn_slot() - Find a slot on an executable page for an instruction. 149 * We allocate an executable page if there's no room on existing ones. 150 */ 151 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c) 152 { 153 struct kprobe_insn_page *kip; 154 155 retry: 156 list_for_each_entry(kip, &c->pages, list) { 157 if (kip->nused < slots_per_page(c)) { 158 int i; 159 for (i = 0; i < slots_per_page(c); i++) { 160 if (kip->slot_used[i] == SLOT_CLEAN) { 161 kip->slot_used[i] = SLOT_USED; 162 kip->nused++; 163 return kip->insns + (i * c->insn_size); 164 } 165 } 166 /* kip->nused is broken. Fix it. */ 167 kip->nused = slots_per_page(c); 168 WARN_ON(1); 169 } 170 } 171 172 /* If there are any garbage slots, collect it and try again. */ 173 if (c->nr_garbage && collect_garbage_slots(c) == 0) 174 goto retry; 175 176 /* All out of space. Need to allocate a new page. */ 177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 178 if (!kip) 179 return NULL; 180 181 /* 182 * Use module_alloc so this page is within +/- 2GB of where the 183 * kernel image and loaded module images reside. This is required 184 * so x86_64 can correctly handle the %rip-relative fixups. 185 */ 186 kip->insns = module_alloc(PAGE_SIZE); 187 if (!kip->insns) { 188 kfree(kip); 189 return NULL; 190 } 191 INIT_LIST_HEAD(&kip->list); 192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 193 kip->slot_used[0] = SLOT_USED; 194 kip->nused = 1; 195 kip->ngarbage = 0; 196 list_add(&kip->list, &c->pages); 197 return kip->insns; 198 } 199 200 201 kprobe_opcode_t __kprobes *get_insn_slot(void) 202 { 203 kprobe_opcode_t *ret = NULL; 204 205 mutex_lock(&kprobe_insn_mutex); 206 ret = __get_insn_slot(&kprobe_insn_slots); 207 mutex_unlock(&kprobe_insn_mutex); 208 209 return ret; 210 } 211 212 /* Return 1 if all garbages are collected, otherwise 0. */ 213 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) 214 { 215 kip->slot_used[idx] = SLOT_CLEAN; 216 kip->nused--; 217 if (kip->nused == 0) { 218 /* 219 * Page is no longer in use. Free it unless 220 * it's the last one. We keep the last one 221 * so as not to have to set it up again the 222 * next time somebody inserts a probe. 223 */ 224 if (!list_is_singular(&kip->list)) { 225 list_del(&kip->list); 226 module_free(NULL, kip->insns); 227 kfree(kip); 228 } 229 return 1; 230 } 231 return 0; 232 } 233 234 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c) 235 { 236 struct kprobe_insn_page *kip, *next; 237 238 /* Ensure no-one is interrupted on the garbages */ 239 synchronize_sched(); 240 241 list_for_each_entry_safe(kip, next, &c->pages, list) { 242 int i; 243 if (kip->ngarbage == 0) 244 continue; 245 kip->ngarbage = 0; /* we will collect all garbages */ 246 for (i = 0; i < slots_per_page(c); i++) { 247 if (kip->slot_used[i] == SLOT_DIRTY && 248 collect_one_slot(kip, i)) 249 break; 250 } 251 } 252 c->nr_garbage = 0; 253 return 0; 254 } 255 256 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c, 257 kprobe_opcode_t *slot, int dirty) 258 { 259 struct kprobe_insn_page *kip; 260 261 list_for_each_entry(kip, &c->pages, list) { 262 long idx = ((long)slot - (long)kip->insns) / c->insn_size; 263 if (idx >= 0 && idx < slots_per_page(c)) { 264 WARN_ON(kip->slot_used[idx] != SLOT_USED); 265 if (dirty) { 266 kip->slot_used[idx] = SLOT_DIRTY; 267 kip->ngarbage++; 268 if (++c->nr_garbage > slots_per_page(c)) 269 collect_garbage_slots(c); 270 } else 271 collect_one_slot(kip, idx); 272 return; 273 } 274 } 275 /* Could not free this slot. */ 276 WARN_ON(1); 277 } 278 279 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) 280 { 281 mutex_lock(&kprobe_insn_mutex); 282 __free_insn_slot(&kprobe_insn_slots, slot, dirty); 283 mutex_unlock(&kprobe_insn_mutex); 284 } 285 #ifdef CONFIG_OPTPROBES 286 /* For optimized_kprobe buffer */ 287 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */ 288 static struct kprobe_insn_cache kprobe_optinsn_slots = { 289 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 290 /* .insn_size is initialized later */ 291 .nr_garbage = 0, 292 }; 293 /* Get a slot for optimized_kprobe buffer */ 294 kprobe_opcode_t __kprobes *get_optinsn_slot(void) 295 { 296 kprobe_opcode_t *ret = NULL; 297 298 mutex_lock(&kprobe_optinsn_mutex); 299 ret = __get_insn_slot(&kprobe_optinsn_slots); 300 mutex_unlock(&kprobe_optinsn_mutex); 301 302 return ret; 303 } 304 305 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty) 306 { 307 mutex_lock(&kprobe_optinsn_mutex); 308 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty); 309 mutex_unlock(&kprobe_optinsn_mutex); 310 } 311 #endif 312 #endif 313 314 /* We have preemption disabled.. so it is safe to use __ versions */ 315 static inline void set_kprobe_instance(struct kprobe *kp) 316 { 317 __get_cpu_var(kprobe_instance) = kp; 318 } 319 320 static inline void reset_kprobe_instance(void) 321 { 322 __get_cpu_var(kprobe_instance) = NULL; 323 } 324 325 /* 326 * This routine is called either: 327 * - under the kprobe_mutex - during kprobe_[un]register() 328 * OR 329 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 330 */ 331 struct kprobe __kprobes *get_kprobe(void *addr) 332 { 333 struct hlist_head *head; 334 struct hlist_node *node; 335 struct kprobe *p; 336 337 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 338 hlist_for_each_entry_rcu(p, node, head, hlist) { 339 if (p->addr == addr) 340 return p; 341 } 342 343 return NULL; 344 } 345 346 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 347 348 /* Return true if the kprobe is an aggregator */ 349 static inline int kprobe_aggrprobe(struct kprobe *p) 350 { 351 return p->pre_handler == aggr_pre_handler; 352 } 353 354 /* 355 * Keep all fields in the kprobe consistent 356 */ 357 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p) 358 { 359 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t)); 360 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn)); 361 } 362 363 #ifdef CONFIG_OPTPROBES 364 /* NOTE: change this value only with kprobe_mutex held */ 365 static bool kprobes_allow_optimization; 366 367 /* 368 * Call all pre_handler on the list, but ignores its return value. 369 * This must be called from arch-dep optimized caller. 370 */ 371 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 372 { 373 struct kprobe *kp; 374 375 list_for_each_entry_rcu(kp, &p->list, list) { 376 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 377 set_kprobe_instance(kp); 378 kp->pre_handler(kp, regs); 379 } 380 reset_kprobe_instance(); 381 } 382 } 383 384 /* Return true(!0) if the kprobe is ready for optimization. */ 385 static inline int kprobe_optready(struct kprobe *p) 386 { 387 struct optimized_kprobe *op; 388 389 if (kprobe_aggrprobe(p)) { 390 op = container_of(p, struct optimized_kprobe, kp); 391 return arch_prepared_optinsn(&op->optinsn); 392 } 393 394 return 0; 395 } 396 397 /* 398 * Return an optimized kprobe whose optimizing code replaces 399 * instructions including addr (exclude breakpoint). 400 */ 401 struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr) 402 { 403 int i; 404 struct kprobe *p = NULL; 405 struct optimized_kprobe *op; 406 407 /* Don't check i == 0, since that is a breakpoint case. */ 408 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 409 p = get_kprobe((void *)(addr - i)); 410 411 if (p && kprobe_optready(p)) { 412 op = container_of(p, struct optimized_kprobe, kp); 413 if (arch_within_optimized_kprobe(op, addr)) 414 return p; 415 } 416 417 return NULL; 418 } 419 420 /* Optimization staging list, protected by kprobe_mutex */ 421 static LIST_HEAD(optimizing_list); 422 423 static void kprobe_optimizer(struct work_struct *work); 424 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 425 #define OPTIMIZE_DELAY 5 426 427 /* Kprobe jump optimizer */ 428 static __kprobes void kprobe_optimizer(struct work_struct *work) 429 { 430 struct optimized_kprobe *op, *tmp; 431 432 /* Lock modules while optimizing kprobes */ 433 mutex_lock(&module_mutex); 434 mutex_lock(&kprobe_mutex); 435 if (kprobes_all_disarmed || !kprobes_allow_optimization) 436 goto end; 437 438 /* 439 * Wait for quiesence period to ensure all running interrupts 440 * are done. Because optprobe may modify multiple instructions 441 * there is a chance that Nth instruction is interrupted. In that 442 * case, running interrupt can return to 2nd-Nth byte of jump 443 * instruction. This wait is for avoiding it. 444 */ 445 synchronize_sched(); 446 447 /* 448 * The optimization/unoptimization refers online_cpus via 449 * stop_machine() and cpu-hotplug modifies online_cpus. 450 * And same time, text_mutex will be held in cpu-hotplug and here. 451 * This combination can cause a deadlock (cpu-hotplug try to lock 452 * text_mutex but stop_machine can not be done because online_cpus 453 * has been changed) 454 * To avoid this deadlock, we need to call get_online_cpus() 455 * for preventing cpu-hotplug outside of text_mutex locking. 456 */ 457 get_online_cpus(); 458 mutex_lock(&text_mutex); 459 list_for_each_entry_safe(op, tmp, &optimizing_list, list) { 460 WARN_ON(kprobe_disabled(&op->kp)); 461 if (arch_optimize_kprobe(op) < 0) 462 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 463 list_del_init(&op->list); 464 } 465 mutex_unlock(&text_mutex); 466 put_online_cpus(); 467 end: 468 mutex_unlock(&kprobe_mutex); 469 mutex_unlock(&module_mutex); 470 } 471 472 /* Optimize kprobe if p is ready to be optimized */ 473 static __kprobes void optimize_kprobe(struct kprobe *p) 474 { 475 struct optimized_kprobe *op; 476 477 /* Check if the kprobe is disabled or not ready for optimization. */ 478 if (!kprobe_optready(p) || !kprobes_allow_optimization || 479 (kprobe_disabled(p) || kprobes_all_disarmed)) 480 return; 481 482 /* Both of break_handler and post_handler are not supported. */ 483 if (p->break_handler || p->post_handler) 484 return; 485 486 op = container_of(p, struct optimized_kprobe, kp); 487 488 /* Check there is no other kprobes at the optimized instructions */ 489 if (arch_check_optimized_kprobe(op) < 0) 490 return; 491 492 /* Check if it is already optimized. */ 493 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 494 return; 495 496 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 497 list_add(&op->list, &optimizing_list); 498 if (!delayed_work_pending(&optimizing_work)) 499 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 500 } 501 502 /* Unoptimize a kprobe if p is optimized */ 503 static __kprobes void unoptimize_kprobe(struct kprobe *p) 504 { 505 struct optimized_kprobe *op; 506 507 if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) { 508 op = container_of(p, struct optimized_kprobe, kp); 509 if (!list_empty(&op->list)) 510 /* Dequeue from the optimization queue */ 511 list_del_init(&op->list); 512 else 513 /* Replace jump with break */ 514 arch_unoptimize_kprobe(op); 515 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 516 } 517 } 518 519 /* Remove optimized instructions */ 520 static void __kprobes kill_optimized_kprobe(struct kprobe *p) 521 { 522 struct optimized_kprobe *op; 523 524 op = container_of(p, struct optimized_kprobe, kp); 525 if (!list_empty(&op->list)) { 526 /* Dequeue from the optimization queue */ 527 list_del_init(&op->list); 528 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 529 } 530 /* Don't unoptimize, because the target code will be freed. */ 531 arch_remove_optimized_kprobe(op); 532 } 533 534 /* Try to prepare optimized instructions */ 535 static __kprobes void prepare_optimized_kprobe(struct kprobe *p) 536 { 537 struct optimized_kprobe *op; 538 539 op = container_of(p, struct optimized_kprobe, kp); 540 arch_prepare_optimized_kprobe(op); 541 } 542 543 /* Free optimized instructions and optimized_kprobe */ 544 static __kprobes void free_aggr_kprobe(struct kprobe *p) 545 { 546 struct optimized_kprobe *op; 547 548 op = container_of(p, struct optimized_kprobe, kp); 549 arch_remove_optimized_kprobe(op); 550 kfree(op); 551 } 552 553 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 554 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 555 { 556 struct optimized_kprobe *op; 557 558 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 559 if (!op) 560 return NULL; 561 562 INIT_LIST_HEAD(&op->list); 563 op->kp.addr = p->addr; 564 arch_prepare_optimized_kprobe(op); 565 566 return &op->kp; 567 } 568 569 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 570 571 /* 572 * Prepare an optimized_kprobe and optimize it 573 * NOTE: p must be a normal registered kprobe 574 */ 575 static __kprobes void try_to_optimize_kprobe(struct kprobe *p) 576 { 577 struct kprobe *ap; 578 struct optimized_kprobe *op; 579 580 ap = alloc_aggr_kprobe(p); 581 if (!ap) 582 return; 583 584 op = container_of(ap, struct optimized_kprobe, kp); 585 if (!arch_prepared_optinsn(&op->optinsn)) { 586 /* If failed to setup optimizing, fallback to kprobe */ 587 free_aggr_kprobe(ap); 588 return; 589 } 590 591 init_aggr_kprobe(ap, p); 592 optimize_kprobe(ap); 593 } 594 595 #ifdef CONFIG_SYSCTL 596 static void __kprobes optimize_all_kprobes(void) 597 { 598 struct hlist_head *head; 599 struct hlist_node *node; 600 struct kprobe *p; 601 unsigned int i; 602 603 /* If optimization is already allowed, just return */ 604 if (kprobes_allow_optimization) 605 return; 606 607 kprobes_allow_optimization = true; 608 mutex_lock(&text_mutex); 609 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 610 head = &kprobe_table[i]; 611 hlist_for_each_entry_rcu(p, node, head, hlist) 612 if (!kprobe_disabled(p)) 613 optimize_kprobe(p); 614 } 615 mutex_unlock(&text_mutex); 616 printk(KERN_INFO "Kprobes globally optimized\n"); 617 } 618 619 static void __kprobes unoptimize_all_kprobes(void) 620 { 621 struct hlist_head *head; 622 struct hlist_node *node; 623 struct kprobe *p; 624 unsigned int i; 625 626 /* If optimization is already prohibited, just return */ 627 if (!kprobes_allow_optimization) 628 return; 629 630 kprobes_allow_optimization = false; 631 printk(KERN_INFO "Kprobes globally unoptimized\n"); 632 get_online_cpus(); /* For avoiding text_mutex deadlock */ 633 mutex_lock(&text_mutex); 634 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 635 head = &kprobe_table[i]; 636 hlist_for_each_entry_rcu(p, node, head, hlist) { 637 if (!kprobe_disabled(p)) 638 unoptimize_kprobe(p); 639 } 640 } 641 642 mutex_unlock(&text_mutex); 643 put_online_cpus(); 644 /* Allow all currently running kprobes to complete */ 645 synchronize_sched(); 646 } 647 648 int sysctl_kprobes_optimization; 649 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 650 void __user *buffer, size_t *length, 651 loff_t *ppos) 652 { 653 int ret; 654 655 mutex_lock(&kprobe_mutex); 656 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 657 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 658 659 if (sysctl_kprobes_optimization) 660 optimize_all_kprobes(); 661 else 662 unoptimize_all_kprobes(); 663 mutex_unlock(&kprobe_mutex); 664 665 return ret; 666 } 667 #endif /* CONFIG_SYSCTL */ 668 669 static void __kprobes __arm_kprobe(struct kprobe *p) 670 { 671 struct kprobe *old_p; 672 673 /* Check collision with other optimized kprobes */ 674 old_p = get_optimized_kprobe((unsigned long)p->addr); 675 if (unlikely(old_p)) 676 unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */ 677 678 arch_arm_kprobe(p); 679 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 680 } 681 682 static void __kprobes __disarm_kprobe(struct kprobe *p) 683 { 684 struct kprobe *old_p; 685 686 unoptimize_kprobe(p); /* Try to unoptimize */ 687 arch_disarm_kprobe(p); 688 689 /* If another kprobe was blocked, optimize it. */ 690 old_p = get_optimized_kprobe((unsigned long)p->addr); 691 if (unlikely(old_p)) 692 optimize_kprobe(old_p); 693 } 694 695 #else /* !CONFIG_OPTPROBES */ 696 697 #define optimize_kprobe(p) do {} while (0) 698 #define unoptimize_kprobe(p) do {} while (0) 699 #define kill_optimized_kprobe(p) do {} while (0) 700 #define prepare_optimized_kprobe(p) do {} while (0) 701 #define try_to_optimize_kprobe(p) do {} while (0) 702 #define __arm_kprobe(p) arch_arm_kprobe(p) 703 #define __disarm_kprobe(p) arch_disarm_kprobe(p) 704 705 static __kprobes void free_aggr_kprobe(struct kprobe *p) 706 { 707 kfree(p); 708 } 709 710 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 711 { 712 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 713 } 714 #endif /* CONFIG_OPTPROBES */ 715 716 /* Arm a kprobe with text_mutex */ 717 static void __kprobes arm_kprobe(struct kprobe *kp) 718 { 719 /* 720 * Here, since __arm_kprobe() doesn't use stop_machine(), 721 * this doesn't cause deadlock on text_mutex. So, we don't 722 * need get_online_cpus(). 723 */ 724 mutex_lock(&text_mutex); 725 __arm_kprobe(kp); 726 mutex_unlock(&text_mutex); 727 } 728 729 /* Disarm a kprobe with text_mutex */ 730 static void __kprobes disarm_kprobe(struct kprobe *kp) 731 { 732 get_online_cpus(); /* For avoiding text_mutex deadlock */ 733 mutex_lock(&text_mutex); 734 __disarm_kprobe(kp); 735 mutex_unlock(&text_mutex); 736 put_online_cpus(); 737 } 738 739 /* 740 * Aggregate handlers for multiple kprobes support - these handlers 741 * take care of invoking the individual kprobe handlers on p->list 742 */ 743 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 744 { 745 struct kprobe *kp; 746 747 list_for_each_entry_rcu(kp, &p->list, list) { 748 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 749 set_kprobe_instance(kp); 750 if (kp->pre_handler(kp, regs)) 751 return 1; 752 } 753 reset_kprobe_instance(); 754 } 755 return 0; 756 } 757 758 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 759 unsigned long flags) 760 { 761 struct kprobe *kp; 762 763 list_for_each_entry_rcu(kp, &p->list, list) { 764 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 765 set_kprobe_instance(kp); 766 kp->post_handler(kp, regs, flags); 767 reset_kprobe_instance(); 768 } 769 } 770 } 771 772 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 773 int trapnr) 774 { 775 struct kprobe *cur = __get_cpu_var(kprobe_instance); 776 777 /* 778 * if we faulted "during" the execution of a user specified 779 * probe handler, invoke just that probe's fault handler 780 */ 781 if (cur && cur->fault_handler) { 782 if (cur->fault_handler(cur, regs, trapnr)) 783 return 1; 784 } 785 return 0; 786 } 787 788 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 789 { 790 struct kprobe *cur = __get_cpu_var(kprobe_instance); 791 int ret = 0; 792 793 if (cur && cur->break_handler) { 794 if (cur->break_handler(cur, regs)) 795 ret = 1; 796 } 797 reset_kprobe_instance(); 798 return ret; 799 } 800 801 /* Walks the list and increments nmissed count for multiprobe case */ 802 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) 803 { 804 struct kprobe *kp; 805 if (!kprobe_aggrprobe(p)) { 806 p->nmissed++; 807 } else { 808 list_for_each_entry_rcu(kp, &p->list, list) 809 kp->nmissed++; 810 } 811 return; 812 } 813 814 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri, 815 struct hlist_head *head) 816 { 817 struct kretprobe *rp = ri->rp; 818 819 /* remove rp inst off the rprobe_inst_table */ 820 hlist_del(&ri->hlist); 821 INIT_HLIST_NODE(&ri->hlist); 822 if (likely(rp)) { 823 spin_lock(&rp->lock); 824 hlist_add_head(&ri->hlist, &rp->free_instances); 825 spin_unlock(&rp->lock); 826 } else 827 /* Unregistering */ 828 hlist_add_head(&ri->hlist, head); 829 } 830 831 void __kprobes kretprobe_hash_lock(struct task_struct *tsk, 832 struct hlist_head **head, unsigned long *flags) 833 { 834 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 835 spinlock_t *hlist_lock; 836 837 *head = &kretprobe_inst_table[hash]; 838 hlist_lock = kretprobe_table_lock_ptr(hash); 839 spin_lock_irqsave(hlist_lock, *flags); 840 } 841 842 static void __kprobes kretprobe_table_lock(unsigned long hash, 843 unsigned long *flags) 844 { 845 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 846 spin_lock_irqsave(hlist_lock, *flags); 847 } 848 849 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk, 850 unsigned long *flags) 851 { 852 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 853 spinlock_t *hlist_lock; 854 855 hlist_lock = kretprobe_table_lock_ptr(hash); 856 spin_unlock_irqrestore(hlist_lock, *flags); 857 } 858 859 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags) 860 { 861 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 862 spin_unlock_irqrestore(hlist_lock, *flags); 863 } 864 865 /* 866 * This function is called from finish_task_switch when task tk becomes dead, 867 * so that we can recycle any function-return probe instances associated 868 * with this task. These left over instances represent probed functions 869 * that have been called but will never return. 870 */ 871 void __kprobes kprobe_flush_task(struct task_struct *tk) 872 { 873 struct kretprobe_instance *ri; 874 struct hlist_head *head, empty_rp; 875 struct hlist_node *node, *tmp; 876 unsigned long hash, flags = 0; 877 878 if (unlikely(!kprobes_initialized)) 879 /* Early boot. kretprobe_table_locks not yet initialized. */ 880 return; 881 882 hash = hash_ptr(tk, KPROBE_HASH_BITS); 883 head = &kretprobe_inst_table[hash]; 884 kretprobe_table_lock(hash, &flags); 885 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 886 if (ri->task == tk) 887 recycle_rp_inst(ri, &empty_rp); 888 } 889 kretprobe_table_unlock(hash, &flags); 890 INIT_HLIST_HEAD(&empty_rp); 891 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 892 hlist_del(&ri->hlist); 893 kfree(ri); 894 } 895 } 896 897 static inline void free_rp_inst(struct kretprobe *rp) 898 { 899 struct kretprobe_instance *ri; 900 struct hlist_node *pos, *next; 901 902 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) { 903 hlist_del(&ri->hlist); 904 kfree(ri); 905 } 906 } 907 908 static void __kprobes cleanup_rp_inst(struct kretprobe *rp) 909 { 910 unsigned long flags, hash; 911 struct kretprobe_instance *ri; 912 struct hlist_node *pos, *next; 913 struct hlist_head *head; 914 915 /* No race here */ 916 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 917 kretprobe_table_lock(hash, &flags); 918 head = &kretprobe_inst_table[hash]; 919 hlist_for_each_entry_safe(ri, pos, next, head, hlist) { 920 if (ri->rp == rp) 921 ri->rp = NULL; 922 } 923 kretprobe_table_unlock(hash, &flags); 924 } 925 free_rp_inst(rp); 926 } 927 928 /* 929 * Add the new probe to ap->list. Fail if this is the 930 * second jprobe at the address - two jprobes can't coexist 931 */ 932 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) 933 { 934 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 935 936 if (p->break_handler || p->post_handler) 937 unoptimize_kprobe(ap); /* Fall back to normal kprobe */ 938 939 if (p->break_handler) { 940 if (ap->break_handler) 941 return -EEXIST; 942 list_add_tail_rcu(&p->list, &ap->list); 943 ap->break_handler = aggr_break_handler; 944 } else 945 list_add_rcu(&p->list, &ap->list); 946 if (p->post_handler && !ap->post_handler) 947 ap->post_handler = aggr_post_handler; 948 949 if (kprobe_disabled(ap) && !kprobe_disabled(p)) { 950 ap->flags &= ~KPROBE_FLAG_DISABLED; 951 if (!kprobes_all_disarmed) 952 /* Arm the breakpoint again. */ 953 __arm_kprobe(ap); 954 } 955 return 0; 956 } 957 958 /* 959 * Fill in the required fields of the "manager kprobe". Replace the 960 * earlier kprobe in the hlist with the manager kprobe 961 */ 962 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 963 { 964 /* Copy p's insn slot to ap */ 965 copy_kprobe(p, ap); 966 flush_insn_slot(ap); 967 ap->addr = p->addr; 968 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 969 ap->pre_handler = aggr_pre_handler; 970 ap->fault_handler = aggr_fault_handler; 971 /* We don't care the kprobe which has gone. */ 972 if (p->post_handler && !kprobe_gone(p)) 973 ap->post_handler = aggr_post_handler; 974 if (p->break_handler && !kprobe_gone(p)) 975 ap->break_handler = aggr_break_handler; 976 977 INIT_LIST_HEAD(&ap->list); 978 INIT_HLIST_NODE(&ap->hlist); 979 980 list_add_rcu(&p->list, &ap->list); 981 hlist_replace_rcu(&p->hlist, &ap->hlist); 982 } 983 984 /* 985 * This is the second or subsequent kprobe at the address - handle 986 * the intricacies 987 */ 988 static int __kprobes register_aggr_kprobe(struct kprobe *old_p, 989 struct kprobe *p) 990 { 991 int ret = 0; 992 struct kprobe *ap = old_p; 993 994 if (!kprobe_aggrprobe(old_p)) { 995 /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */ 996 ap = alloc_aggr_kprobe(old_p); 997 if (!ap) 998 return -ENOMEM; 999 init_aggr_kprobe(ap, old_p); 1000 } 1001 1002 if (kprobe_gone(ap)) { 1003 /* 1004 * Attempting to insert new probe at the same location that 1005 * had a probe in the module vaddr area which already 1006 * freed. So, the instruction slot has already been 1007 * released. We need a new slot for the new probe. 1008 */ 1009 ret = arch_prepare_kprobe(ap); 1010 if (ret) 1011 /* 1012 * Even if fail to allocate new slot, don't need to 1013 * free aggr_probe. It will be used next time, or 1014 * freed by unregister_kprobe. 1015 */ 1016 return ret; 1017 1018 /* Prepare optimized instructions if possible. */ 1019 prepare_optimized_kprobe(ap); 1020 1021 /* 1022 * Clear gone flag to prevent allocating new slot again, and 1023 * set disabled flag because it is not armed yet. 1024 */ 1025 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1026 | KPROBE_FLAG_DISABLED; 1027 } 1028 1029 /* Copy ap's insn slot to p */ 1030 copy_kprobe(ap, p); 1031 return add_new_kprobe(ap, p); 1032 } 1033 1034 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/ 1035 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p) 1036 { 1037 struct kprobe *kp; 1038 1039 list_for_each_entry_rcu(kp, &p->list, list) { 1040 if (!kprobe_disabled(kp)) 1041 /* 1042 * There is an active probe on the list. 1043 * We can't disable aggr_kprobe. 1044 */ 1045 return 0; 1046 } 1047 p->flags |= KPROBE_FLAG_DISABLED; 1048 return 1; 1049 } 1050 1051 static int __kprobes in_kprobes_functions(unsigned long addr) 1052 { 1053 struct kprobe_blackpoint *kb; 1054 1055 if (addr >= (unsigned long)__kprobes_text_start && 1056 addr < (unsigned long)__kprobes_text_end) 1057 return -EINVAL; 1058 /* 1059 * If there exists a kprobe_blacklist, verify and 1060 * fail any probe registration in the prohibited area 1061 */ 1062 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1063 if (kb->start_addr) { 1064 if (addr >= kb->start_addr && 1065 addr < (kb->start_addr + kb->range)) 1066 return -EINVAL; 1067 } 1068 } 1069 return 0; 1070 } 1071 1072 /* 1073 * If we have a symbol_name argument, look it up and add the offset field 1074 * to it. This way, we can specify a relative address to a symbol. 1075 */ 1076 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) 1077 { 1078 kprobe_opcode_t *addr = p->addr; 1079 if (p->symbol_name) { 1080 if (addr) 1081 return NULL; 1082 kprobe_lookup_name(p->symbol_name, addr); 1083 } 1084 1085 if (!addr) 1086 return NULL; 1087 return (kprobe_opcode_t *)(((char *)addr) + p->offset); 1088 } 1089 1090 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1091 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p) 1092 { 1093 struct kprobe *old_p, *list_p; 1094 1095 old_p = get_kprobe(p->addr); 1096 if (unlikely(!old_p)) 1097 return NULL; 1098 1099 if (p != old_p) { 1100 list_for_each_entry_rcu(list_p, &old_p->list, list) 1101 if (list_p == p) 1102 /* kprobe p is a valid probe */ 1103 goto valid; 1104 return NULL; 1105 } 1106 valid: 1107 return old_p; 1108 } 1109 1110 /* Return error if the kprobe is being re-registered */ 1111 static inline int check_kprobe_rereg(struct kprobe *p) 1112 { 1113 int ret = 0; 1114 struct kprobe *old_p; 1115 1116 mutex_lock(&kprobe_mutex); 1117 old_p = __get_valid_kprobe(p); 1118 if (old_p) 1119 ret = -EINVAL; 1120 mutex_unlock(&kprobe_mutex); 1121 return ret; 1122 } 1123 1124 int __kprobes register_kprobe(struct kprobe *p) 1125 { 1126 int ret = 0; 1127 struct kprobe *old_p; 1128 struct module *probed_mod; 1129 kprobe_opcode_t *addr; 1130 1131 addr = kprobe_addr(p); 1132 if (!addr) 1133 return -EINVAL; 1134 p->addr = addr; 1135 1136 ret = check_kprobe_rereg(p); 1137 if (ret) 1138 return ret; 1139 1140 preempt_disable(); 1141 if (!kernel_text_address((unsigned long) p->addr) || 1142 in_kprobes_functions((unsigned long) p->addr) || 1143 ftrace_text_reserved(p->addr, p->addr)) { 1144 preempt_enable(); 1145 return -EINVAL; 1146 } 1147 1148 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1149 p->flags &= KPROBE_FLAG_DISABLED; 1150 1151 /* 1152 * Check if are we probing a module. 1153 */ 1154 probed_mod = __module_text_address((unsigned long) p->addr); 1155 if (probed_mod) { 1156 /* 1157 * We must hold a refcount of the probed module while updating 1158 * its code to prohibit unexpected unloading. 1159 */ 1160 if (unlikely(!try_module_get(probed_mod))) { 1161 preempt_enable(); 1162 return -EINVAL; 1163 } 1164 /* 1165 * If the module freed .init.text, we couldn't insert 1166 * kprobes in there. 1167 */ 1168 if (within_module_init((unsigned long)p->addr, probed_mod) && 1169 probed_mod->state != MODULE_STATE_COMING) { 1170 module_put(probed_mod); 1171 preempt_enable(); 1172 return -EINVAL; 1173 } 1174 } 1175 preempt_enable(); 1176 1177 p->nmissed = 0; 1178 INIT_LIST_HEAD(&p->list); 1179 mutex_lock(&kprobe_mutex); 1180 1181 get_online_cpus(); /* For avoiding text_mutex deadlock. */ 1182 mutex_lock(&text_mutex); 1183 1184 old_p = get_kprobe(p->addr); 1185 if (old_p) { 1186 /* Since this may unoptimize old_p, locking text_mutex. */ 1187 ret = register_aggr_kprobe(old_p, p); 1188 goto out; 1189 } 1190 1191 ret = arch_prepare_kprobe(p); 1192 if (ret) 1193 goto out; 1194 1195 INIT_HLIST_NODE(&p->hlist); 1196 hlist_add_head_rcu(&p->hlist, 1197 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1198 1199 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1200 __arm_kprobe(p); 1201 1202 /* Try to optimize kprobe */ 1203 try_to_optimize_kprobe(p); 1204 1205 out: 1206 mutex_unlock(&text_mutex); 1207 put_online_cpus(); 1208 mutex_unlock(&kprobe_mutex); 1209 1210 if (probed_mod) 1211 module_put(probed_mod); 1212 1213 return ret; 1214 } 1215 EXPORT_SYMBOL_GPL(register_kprobe); 1216 1217 /* 1218 * Unregister a kprobe without a scheduler synchronization. 1219 */ 1220 static int __kprobes __unregister_kprobe_top(struct kprobe *p) 1221 { 1222 struct kprobe *old_p, *list_p; 1223 1224 old_p = __get_valid_kprobe(p); 1225 if (old_p == NULL) 1226 return -EINVAL; 1227 1228 if (old_p == p || 1229 (kprobe_aggrprobe(old_p) && 1230 list_is_singular(&old_p->list))) { 1231 /* 1232 * Only probe on the hash list. Disarm only if kprobes are 1233 * enabled and not gone - otherwise, the breakpoint would 1234 * already have been removed. We save on flushing icache. 1235 */ 1236 if (!kprobes_all_disarmed && !kprobe_disabled(old_p)) 1237 disarm_kprobe(old_p); 1238 hlist_del_rcu(&old_p->hlist); 1239 } else { 1240 if (p->break_handler && !kprobe_gone(p)) 1241 old_p->break_handler = NULL; 1242 if (p->post_handler && !kprobe_gone(p)) { 1243 list_for_each_entry_rcu(list_p, &old_p->list, list) { 1244 if ((list_p != p) && (list_p->post_handler)) 1245 goto noclean; 1246 } 1247 old_p->post_handler = NULL; 1248 } 1249 noclean: 1250 list_del_rcu(&p->list); 1251 if (!kprobe_disabled(old_p)) { 1252 try_to_disable_aggr_kprobe(old_p); 1253 if (!kprobes_all_disarmed) { 1254 if (kprobe_disabled(old_p)) 1255 disarm_kprobe(old_p); 1256 else 1257 /* Try to optimize this probe again */ 1258 optimize_kprobe(old_p); 1259 } 1260 } 1261 } 1262 return 0; 1263 } 1264 1265 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) 1266 { 1267 struct kprobe *old_p; 1268 1269 if (list_empty(&p->list)) 1270 arch_remove_kprobe(p); 1271 else if (list_is_singular(&p->list)) { 1272 /* "p" is the last child of an aggr_kprobe */ 1273 old_p = list_entry(p->list.next, struct kprobe, list); 1274 list_del(&p->list); 1275 arch_remove_kprobe(old_p); 1276 free_aggr_kprobe(old_p); 1277 } 1278 } 1279 1280 int __kprobes register_kprobes(struct kprobe **kps, int num) 1281 { 1282 int i, ret = 0; 1283 1284 if (num <= 0) 1285 return -EINVAL; 1286 for (i = 0; i < num; i++) { 1287 ret = register_kprobe(kps[i]); 1288 if (ret < 0) { 1289 if (i > 0) 1290 unregister_kprobes(kps, i); 1291 break; 1292 } 1293 } 1294 return ret; 1295 } 1296 EXPORT_SYMBOL_GPL(register_kprobes); 1297 1298 void __kprobes unregister_kprobe(struct kprobe *p) 1299 { 1300 unregister_kprobes(&p, 1); 1301 } 1302 EXPORT_SYMBOL_GPL(unregister_kprobe); 1303 1304 void __kprobes unregister_kprobes(struct kprobe **kps, int num) 1305 { 1306 int i; 1307 1308 if (num <= 0) 1309 return; 1310 mutex_lock(&kprobe_mutex); 1311 for (i = 0; i < num; i++) 1312 if (__unregister_kprobe_top(kps[i]) < 0) 1313 kps[i]->addr = NULL; 1314 mutex_unlock(&kprobe_mutex); 1315 1316 synchronize_sched(); 1317 for (i = 0; i < num; i++) 1318 if (kps[i]->addr) 1319 __unregister_kprobe_bottom(kps[i]); 1320 } 1321 EXPORT_SYMBOL_GPL(unregister_kprobes); 1322 1323 static struct notifier_block kprobe_exceptions_nb = { 1324 .notifier_call = kprobe_exceptions_notify, 1325 .priority = 0x7fffffff /* we need to be notified first */ 1326 }; 1327 1328 unsigned long __weak arch_deref_entry_point(void *entry) 1329 { 1330 return (unsigned long)entry; 1331 } 1332 1333 int __kprobes register_jprobes(struct jprobe **jps, int num) 1334 { 1335 struct jprobe *jp; 1336 int ret = 0, i; 1337 1338 if (num <= 0) 1339 return -EINVAL; 1340 for (i = 0; i < num; i++) { 1341 unsigned long addr; 1342 jp = jps[i]; 1343 addr = arch_deref_entry_point(jp->entry); 1344 1345 if (!kernel_text_address(addr)) 1346 ret = -EINVAL; 1347 else { 1348 /* Todo: Verify probepoint is a function entry point */ 1349 jp->kp.pre_handler = setjmp_pre_handler; 1350 jp->kp.break_handler = longjmp_break_handler; 1351 ret = register_kprobe(&jp->kp); 1352 } 1353 if (ret < 0) { 1354 if (i > 0) 1355 unregister_jprobes(jps, i); 1356 break; 1357 } 1358 } 1359 return ret; 1360 } 1361 EXPORT_SYMBOL_GPL(register_jprobes); 1362 1363 int __kprobes register_jprobe(struct jprobe *jp) 1364 { 1365 return register_jprobes(&jp, 1); 1366 } 1367 EXPORT_SYMBOL_GPL(register_jprobe); 1368 1369 void __kprobes unregister_jprobe(struct jprobe *jp) 1370 { 1371 unregister_jprobes(&jp, 1); 1372 } 1373 EXPORT_SYMBOL_GPL(unregister_jprobe); 1374 1375 void __kprobes unregister_jprobes(struct jprobe **jps, int num) 1376 { 1377 int i; 1378 1379 if (num <= 0) 1380 return; 1381 mutex_lock(&kprobe_mutex); 1382 for (i = 0; i < num; i++) 1383 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1384 jps[i]->kp.addr = NULL; 1385 mutex_unlock(&kprobe_mutex); 1386 1387 synchronize_sched(); 1388 for (i = 0; i < num; i++) { 1389 if (jps[i]->kp.addr) 1390 __unregister_kprobe_bottom(&jps[i]->kp); 1391 } 1392 } 1393 EXPORT_SYMBOL_GPL(unregister_jprobes); 1394 1395 #ifdef CONFIG_KRETPROBES 1396 /* 1397 * This kprobe pre_handler is registered with every kretprobe. When probe 1398 * hits it will set up the return probe. 1399 */ 1400 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1401 struct pt_regs *regs) 1402 { 1403 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1404 unsigned long hash, flags = 0; 1405 struct kretprobe_instance *ri; 1406 1407 /*TODO: consider to only swap the RA after the last pre_handler fired */ 1408 hash = hash_ptr(current, KPROBE_HASH_BITS); 1409 spin_lock_irqsave(&rp->lock, flags); 1410 if (!hlist_empty(&rp->free_instances)) { 1411 ri = hlist_entry(rp->free_instances.first, 1412 struct kretprobe_instance, hlist); 1413 hlist_del(&ri->hlist); 1414 spin_unlock_irqrestore(&rp->lock, flags); 1415 1416 ri->rp = rp; 1417 ri->task = current; 1418 1419 if (rp->entry_handler && rp->entry_handler(ri, regs)) 1420 return 0; 1421 1422 arch_prepare_kretprobe(ri, regs); 1423 1424 /* XXX(hch): why is there no hlist_move_head? */ 1425 INIT_HLIST_NODE(&ri->hlist); 1426 kretprobe_table_lock(hash, &flags); 1427 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1428 kretprobe_table_unlock(hash, &flags); 1429 } else { 1430 rp->nmissed++; 1431 spin_unlock_irqrestore(&rp->lock, flags); 1432 } 1433 return 0; 1434 } 1435 1436 int __kprobes register_kretprobe(struct kretprobe *rp) 1437 { 1438 int ret = 0; 1439 struct kretprobe_instance *inst; 1440 int i; 1441 void *addr; 1442 1443 if (kretprobe_blacklist_size) { 1444 addr = kprobe_addr(&rp->kp); 1445 if (!addr) 1446 return -EINVAL; 1447 1448 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1449 if (kretprobe_blacklist[i].addr == addr) 1450 return -EINVAL; 1451 } 1452 } 1453 1454 rp->kp.pre_handler = pre_handler_kretprobe; 1455 rp->kp.post_handler = NULL; 1456 rp->kp.fault_handler = NULL; 1457 rp->kp.break_handler = NULL; 1458 1459 /* Pre-allocate memory for max kretprobe instances */ 1460 if (rp->maxactive <= 0) { 1461 #ifdef CONFIG_PREEMPT 1462 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1463 #else 1464 rp->maxactive = num_possible_cpus(); 1465 #endif 1466 } 1467 spin_lock_init(&rp->lock); 1468 INIT_HLIST_HEAD(&rp->free_instances); 1469 for (i = 0; i < rp->maxactive; i++) { 1470 inst = kmalloc(sizeof(struct kretprobe_instance) + 1471 rp->data_size, GFP_KERNEL); 1472 if (inst == NULL) { 1473 free_rp_inst(rp); 1474 return -ENOMEM; 1475 } 1476 INIT_HLIST_NODE(&inst->hlist); 1477 hlist_add_head(&inst->hlist, &rp->free_instances); 1478 } 1479 1480 rp->nmissed = 0; 1481 /* Establish function entry probe point */ 1482 ret = register_kprobe(&rp->kp); 1483 if (ret != 0) 1484 free_rp_inst(rp); 1485 return ret; 1486 } 1487 EXPORT_SYMBOL_GPL(register_kretprobe); 1488 1489 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1490 { 1491 int ret = 0, i; 1492 1493 if (num <= 0) 1494 return -EINVAL; 1495 for (i = 0; i < num; i++) { 1496 ret = register_kretprobe(rps[i]); 1497 if (ret < 0) { 1498 if (i > 0) 1499 unregister_kretprobes(rps, i); 1500 break; 1501 } 1502 } 1503 return ret; 1504 } 1505 EXPORT_SYMBOL_GPL(register_kretprobes); 1506 1507 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1508 { 1509 unregister_kretprobes(&rp, 1); 1510 } 1511 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1512 1513 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1514 { 1515 int i; 1516 1517 if (num <= 0) 1518 return; 1519 mutex_lock(&kprobe_mutex); 1520 for (i = 0; i < num; i++) 1521 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1522 rps[i]->kp.addr = NULL; 1523 mutex_unlock(&kprobe_mutex); 1524 1525 synchronize_sched(); 1526 for (i = 0; i < num; i++) { 1527 if (rps[i]->kp.addr) { 1528 __unregister_kprobe_bottom(&rps[i]->kp); 1529 cleanup_rp_inst(rps[i]); 1530 } 1531 } 1532 } 1533 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1534 1535 #else /* CONFIG_KRETPROBES */ 1536 int __kprobes register_kretprobe(struct kretprobe *rp) 1537 { 1538 return -ENOSYS; 1539 } 1540 EXPORT_SYMBOL_GPL(register_kretprobe); 1541 1542 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1543 { 1544 return -ENOSYS; 1545 } 1546 EXPORT_SYMBOL_GPL(register_kretprobes); 1547 1548 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1549 { 1550 } 1551 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1552 1553 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1554 { 1555 } 1556 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1557 1558 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1559 struct pt_regs *regs) 1560 { 1561 return 0; 1562 } 1563 1564 #endif /* CONFIG_KRETPROBES */ 1565 1566 /* Set the kprobe gone and remove its instruction buffer. */ 1567 static void __kprobes kill_kprobe(struct kprobe *p) 1568 { 1569 struct kprobe *kp; 1570 1571 p->flags |= KPROBE_FLAG_GONE; 1572 if (kprobe_aggrprobe(p)) { 1573 /* 1574 * If this is an aggr_kprobe, we have to list all the 1575 * chained probes and mark them GONE. 1576 */ 1577 list_for_each_entry_rcu(kp, &p->list, list) 1578 kp->flags |= KPROBE_FLAG_GONE; 1579 p->post_handler = NULL; 1580 p->break_handler = NULL; 1581 kill_optimized_kprobe(p); 1582 } 1583 /* 1584 * Here, we can remove insn_slot safely, because no thread calls 1585 * the original probed function (which will be freed soon) any more. 1586 */ 1587 arch_remove_kprobe(p); 1588 } 1589 1590 void __kprobes dump_kprobe(struct kprobe *kp) 1591 { 1592 printk(KERN_WARNING "Dumping kprobe:\n"); 1593 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 1594 kp->symbol_name, kp->addr, kp->offset); 1595 } 1596 1597 /* Module notifier call back, checking kprobes on the module */ 1598 static int __kprobes kprobes_module_callback(struct notifier_block *nb, 1599 unsigned long val, void *data) 1600 { 1601 struct module *mod = data; 1602 struct hlist_head *head; 1603 struct hlist_node *node; 1604 struct kprobe *p; 1605 unsigned int i; 1606 int checkcore = (val == MODULE_STATE_GOING); 1607 1608 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 1609 return NOTIFY_DONE; 1610 1611 /* 1612 * When MODULE_STATE_GOING was notified, both of module .text and 1613 * .init.text sections would be freed. When MODULE_STATE_LIVE was 1614 * notified, only .init.text section would be freed. We need to 1615 * disable kprobes which have been inserted in the sections. 1616 */ 1617 mutex_lock(&kprobe_mutex); 1618 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1619 head = &kprobe_table[i]; 1620 hlist_for_each_entry_rcu(p, node, head, hlist) 1621 if (within_module_init((unsigned long)p->addr, mod) || 1622 (checkcore && 1623 within_module_core((unsigned long)p->addr, mod))) { 1624 /* 1625 * The vaddr this probe is installed will soon 1626 * be vfreed buy not synced to disk. Hence, 1627 * disarming the breakpoint isn't needed. 1628 */ 1629 kill_kprobe(p); 1630 } 1631 } 1632 mutex_unlock(&kprobe_mutex); 1633 return NOTIFY_DONE; 1634 } 1635 1636 static struct notifier_block kprobe_module_nb = { 1637 .notifier_call = kprobes_module_callback, 1638 .priority = 0 1639 }; 1640 1641 static int __init init_kprobes(void) 1642 { 1643 int i, err = 0; 1644 unsigned long offset = 0, size = 0; 1645 char *modname, namebuf[128]; 1646 const char *symbol_name; 1647 void *addr; 1648 struct kprobe_blackpoint *kb; 1649 1650 /* FIXME allocate the probe table, currently defined statically */ 1651 /* initialize all list heads */ 1652 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1653 INIT_HLIST_HEAD(&kprobe_table[i]); 1654 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 1655 spin_lock_init(&(kretprobe_table_locks[i].lock)); 1656 } 1657 1658 /* 1659 * Lookup and populate the kprobe_blacklist. 1660 * 1661 * Unlike the kretprobe blacklist, we'll need to determine 1662 * the range of addresses that belong to the said functions, 1663 * since a kprobe need not necessarily be at the beginning 1664 * of a function. 1665 */ 1666 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1667 kprobe_lookup_name(kb->name, addr); 1668 if (!addr) 1669 continue; 1670 1671 kb->start_addr = (unsigned long)addr; 1672 symbol_name = kallsyms_lookup(kb->start_addr, 1673 &size, &offset, &modname, namebuf); 1674 if (!symbol_name) 1675 kb->range = 0; 1676 else 1677 kb->range = size; 1678 } 1679 1680 if (kretprobe_blacklist_size) { 1681 /* lookup the function address from its name */ 1682 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1683 kprobe_lookup_name(kretprobe_blacklist[i].name, 1684 kretprobe_blacklist[i].addr); 1685 if (!kretprobe_blacklist[i].addr) 1686 printk("kretprobe: lookup failed: %s\n", 1687 kretprobe_blacklist[i].name); 1688 } 1689 } 1690 1691 #if defined(CONFIG_OPTPROBES) 1692 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 1693 /* Init kprobe_optinsn_slots */ 1694 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 1695 #endif 1696 /* By default, kprobes can be optimized */ 1697 kprobes_allow_optimization = true; 1698 #endif 1699 1700 /* By default, kprobes are armed */ 1701 kprobes_all_disarmed = false; 1702 1703 err = arch_init_kprobes(); 1704 if (!err) 1705 err = register_die_notifier(&kprobe_exceptions_nb); 1706 if (!err) 1707 err = register_module_notifier(&kprobe_module_nb); 1708 1709 kprobes_initialized = (err == 0); 1710 1711 if (!err) 1712 init_test_probes(); 1713 return err; 1714 } 1715 1716 #ifdef CONFIG_DEBUG_FS 1717 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, 1718 const char *sym, int offset, char *modname, struct kprobe *pp) 1719 { 1720 char *kprobe_type; 1721 1722 if (p->pre_handler == pre_handler_kretprobe) 1723 kprobe_type = "r"; 1724 else if (p->pre_handler == setjmp_pre_handler) 1725 kprobe_type = "j"; 1726 else 1727 kprobe_type = "k"; 1728 1729 if (sym) 1730 seq_printf(pi, "%p %s %s+0x%x %s ", 1731 p->addr, kprobe_type, sym, offset, 1732 (modname ? modname : " ")); 1733 else 1734 seq_printf(pi, "%p %s %p ", 1735 p->addr, kprobe_type, p->addr); 1736 1737 if (!pp) 1738 pp = p; 1739 seq_printf(pi, "%s%s%s\n", 1740 (kprobe_gone(p) ? "[GONE]" : ""), 1741 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 1742 (kprobe_optimized(pp) ? "[OPTIMIZED]" : "")); 1743 } 1744 1745 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) 1746 { 1747 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 1748 } 1749 1750 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 1751 { 1752 (*pos)++; 1753 if (*pos >= KPROBE_TABLE_SIZE) 1754 return NULL; 1755 return pos; 1756 } 1757 1758 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v) 1759 { 1760 /* Nothing to do */ 1761 } 1762 1763 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) 1764 { 1765 struct hlist_head *head; 1766 struct hlist_node *node; 1767 struct kprobe *p, *kp; 1768 const char *sym = NULL; 1769 unsigned int i = *(loff_t *) v; 1770 unsigned long offset = 0; 1771 char *modname, namebuf[128]; 1772 1773 head = &kprobe_table[i]; 1774 preempt_disable(); 1775 hlist_for_each_entry_rcu(p, node, head, hlist) { 1776 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 1777 &offset, &modname, namebuf); 1778 if (kprobe_aggrprobe(p)) { 1779 list_for_each_entry_rcu(kp, &p->list, list) 1780 report_probe(pi, kp, sym, offset, modname, p); 1781 } else 1782 report_probe(pi, p, sym, offset, modname, NULL); 1783 } 1784 preempt_enable(); 1785 return 0; 1786 } 1787 1788 static const struct seq_operations kprobes_seq_ops = { 1789 .start = kprobe_seq_start, 1790 .next = kprobe_seq_next, 1791 .stop = kprobe_seq_stop, 1792 .show = show_kprobe_addr 1793 }; 1794 1795 static int __kprobes kprobes_open(struct inode *inode, struct file *filp) 1796 { 1797 return seq_open(filp, &kprobes_seq_ops); 1798 } 1799 1800 static const struct file_operations debugfs_kprobes_operations = { 1801 .open = kprobes_open, 1802 .read = seq_read, 1803 .llseek = seq_lseek, 1804 .release = seq_release, 1805 }; 1806 1807 /* Disable one kprobe */ 1808 int __kprobes disable_kprobe(struct kprobe *kp) 1809 { 1810 int ret = 0; 1811 struct kprobe *p; 1812 1813 mutex_lock(&kprobe_mutex); 1814 1815 /* Check whether specified probe is valid. */ 1816 p = __get_valid_kprobe(kp); 1817 if (unlikely(p == NULL)) { 1818 ret = -EINVAL; 1819 goto out; 1820 } 1821 1822 /* If the probe is already disabled (or gone), just return */ 1823 if (kprobe_disabled(kp)) 1824 goto out; 1825 1826 kp->flags |= KPROBE_FLAG_DISABLED; 1827 if (p != kp) 1828 /* When kp != p, p is always enabled. */ 1829 try_to_disable_aggr_kprobe(p); 1830 1831 if (!kprobes_all_disarmed && kprobe_disabled(p)) 1832 disarm_kprobe(p); 1833 out: 1834 mutex_unlock(&kprobe_mutex); 1835 return ret; 1836 } 1837 EXPORT_SYMBOL_GPL(disable_kprobe); 1838 1839 /* Enable one kprobe */ 1840 int __kprobes enable_kprobe(struct kprobe *kp) 1841 { 1842 int ret = 0; 1843 struct kprobe *p; 1844 1845 mutex_lock(&kprobe_mutex); 1846 1847 /* Check whether specified probe is valid. */ 1848 p = __get_valid_kprobe(kp); 1849 if (unlikely(p == NULL)) { 1850 ret = -EINVAL; 1851 goto out; 1852 } 1853 1854 if (kprobe_gone(kp)) { 1855 /* This kprobe has gone, we couldn't enable it. */ 1856 ret = -EINVAL; 1857 goto out; 1858 } 1859 1860 if (p != kp) 1861 kp->flags &= ~KPROBE_FLAG_DISABLED; 1862 1863 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 1864 p->flags &= ~KPROBE_FLAG_DISABLED; 1865 arm_kprobe(p); 1866 } 1867 out: 1868 mutex_unlock(&kprobe_mutex); 1869 return ret; 1870 } 1871 EXPORT_SYMBOL_GPL(enable_kprobe); 1872 1873 static void __kprobes arm_all_kprobes(void) 1874 { 1875 struct hlist_head *head; 1876 struct hlist_node *node; 1877 struct kprobe *p; 1878 unsigned int i; 1879 1880 mutex_lock(&kprobe_mutex); 1881 1882 /* If kprobes are armed, just return */ 1883 if (!kprobes_all_disarmed) 1884 goto already_enabled; 1885 1886 /* Arming kprobes doesn't optimize kprobe itself */ 1887 mutex_lock(&text_mutex); 1888 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1889 head = &kprobe_table[i]; 1890 hlist_for_each_entry_rcu(p, node, head, hlist) 1891 if (!kprobe_disabled(p)) 1892 __arm_kprobe(p); 1893 } 1894 mutex_unlock(&text_mutex); 1895 1896 kprobes_all_disarmed = false; 1897 printk(KERN_INFO "Kprobes globally enabled\n"); 1898 1899 already_enabled: 1900 mutex_unlock(&kprobe_mutex); 1901 return; 1902 } 1903 1904 static void __kprobes disarm_all_kprobes(void) 1905 { 1906 struct hlist_head *head; 1907 struct hlist_node *node; 1908 struct kprobe *p; 1909 unsigned int i; 1910 1911 mutex_lock(&kprobe_mutex); 1912 1913 /* If kprobes are already disarmed, just return */ 1914 if (kprobes_all_disarmed) 1915 goto already_disabled; 1916 1917 kprobes_all_disarmed = true; 1918 printk(KERN_INFO "Kprobes globally disabled\n"); 1919 1920 /* 1921 * Here we call get_online_cpus() for avoiding text_mutex deadlock, 1922 * because disarming may also unoptimize kprobes. 1923 */ 1924 get_online_cpus(); 1925 mutex_lock(&text_mutex); 1926 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1927 head = &kprobe_table[i]; 1928 hlist_for_each_entry_rcu(p, node, head, hlist) { 1929 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 1930 __disarm_kprobe(p); 1931 } 1932 } 1933 1934 mutex_unlock(&text_mutex); 1935 put_online_cpus(); 1936 mutex_unlock(&kprobe_mutex); 1937 /* Allow all currently running kprobes to complete */ 1938 synchronize_sched(); 1939 return; 1940 1941 already_disabled: 1942 mutex_unlock(&kprobe_mutex); 1943 return; 1944 } 1945 1946 /* 1947 * XXX: The debugfs bool file interface doesn't allow for callbacks 1948 * when the bool state is switched. We can reuse that facility when 1949 * available 1950 */ 1951 static ssize_t read_enabled_file_bool(struct file *file, 1952 char __user *user_buf, size_t count, loff_t *ppos) 1953 { 1954 char buf[3]; 1955 1956 if (!kprobes_all_disarmed) 1957 buf[0] = '1'; 1958 else 1959 buf[0] = '0'; 1960 buf[1] = '\n'; 1961 buf[2] = 0x00; 1962 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 1963 } 1964 1965 static ssize_t write_enabled_file_bool(struct file *file, 1966 const char __user *user_buf, size_t count, loff_t *ppos) 1967 { 1968 char buf[32]; 1969 int buf_size; 1970 1971 buf_size = min(count, (sizeof(buf)-1)); 1972 if (copy_from_user(buf, user_buf, buf_size)) 1973 return -EFAULT; 1974 1975 switch (buf[0]) { 1976 case 'y': 1977 case 'Y': 1978 case '1': 1979 arm_all_kprobes(); 1980 break; 1981 case 'n': 1982 case 'N': 1983 case '0': 1984 disarm_all_kprobes(); 1985 break; 1986 } 1987 1988 return count; 1989 } 1990 1991 static const struct file_operations fops_kp = { 1992 .read = read_enabled_file_bool, 1993 .write = write_enabled_file_bool, 1994 }; 1995 1996 static int __kprobes debugfs_kprobe_init(void) 1997 { 1998 struct dentry *dir, *file; 1999 unsigned int value = 1; 2000 2001 dir = debugfs_create_dir("kprobes", NULL); 2002 if (!dir) 2003 return -ENOMEM; 2004 2005 file = debugfs_create_file("list", 0444, dir, NULL, 2006 &debugfs_kprobes_operations); 2007 if (!file) { 2008 debugfs_remove(dir); 2009 return -ENOMEM; 2010 } 2011 2012 file = debugfs_create_file("enabled", 0600, dir, 2013 &value, &fops_kp); 2014 if (!file) { 2015 debugfs_remove(dir); 2016 return -ENOMEM; 2017 } 2018 2019 return 0; 2020 } 2021 2022 late_initcall(debugfs_kprobe_init); 2023 #endif /* CONFIG_DEBUG_FS */ 2024 2025 module_init(init_kprobes); 2026 2027 /* defined in arch/.../kernel/kprobes.c */ 2028 EXPORT_SYMBOL_GPL(jprobe_return); 2029