xref: /linux/kernel/kprobes.c (revision a115bc070b1fc57ab23f3972401425927b5b465c)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 
51 #include <asm-generic/sections.h>
52 #include <asm/cacheflush.h>
53 #include <asm/errno.h>
54 #include <asm/uaccess.h>
55 
56 #define KPROBE_HASH_BITS 6
57 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
58 
59 
60 /*
61  * Some oddball architectures like 64bit powerpc have function descriptors
62  * so this must be overridable.
63  */
64 #ifndef kprobe_lookup_name
65 #define kprobe_lookup_name(name, addr) \
66 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
67 #endif
68 
69 static int kprobes_initialized;
70 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
71 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
72 
73 /* NOTE: change this value only with kprobe_mutex held */
74 static bool kprobes_all_disarmed;
75 
76 static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
77 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
78 static struct {
79 	spinlock_t lock ____cacheline_aligned_in_smp;
80 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
81 
82 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
83 {
84 	return &(kretprobe_table_locks[hash].lock);
85 }
86 
87 /*
88  * Normally, functions that we'd want to prohibit kprobes in, are marked
89  * __kprobes. But, there are cases where such functions already belong to
90  * a different section (__sched for preempt_schedule)
91  *
92  * For such cases, we now have a blacklist
93  */
94 static struct kprobe_blackpoint kprobe_blacklist[] = {
95 	{"preempt_schedule",},
96 	{"native_get_debugreg",},
97 	{"irq_entries_start",},
98 	{"common_interrupt",},
99 	{"mcount",},	/* mcount can be called from everywhere */
100 	{NULL}    /* Terminator */
101 };
102 
103 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
104 /*
105  * kprobe->ainsn.insn points to the copy of the instruction to be
106  * single-stepped. x86_64, POWER4 and above have no-exec support and
107  * stepping on the instruction on a vmalloced/kmalloced/data page
108  * is a recipe for disaster
109  */
110 struct kprobe_insn_page {
111 	struct list_head list;
112 	kprobe_opcode_t *insns;		/* Page of instruction slots */
113 	int nused;
114 	int ngarbage;
115 	char slot_used[];
116 };
117 
118 #define KPROBE_INSN_PAGE_SIZE(slots)			\
119 	(offsetof(struct kprobe_insn_page, slot_used) +	\
120 	 (sizeof(char) * (slots)))
121 
122 struct kprobe_insn_cache {
123 	struct list_head pages;	/* list of kprobe_insn_page */
124 	size_t insn_size;	/* size of instruction slot */
125 	int nr_garbage;
126 };
127 
128 static int slots_per_page(struct kprobe_insn_cache *c)
129 {
130 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
131 }
132 
133 enum kprobe_slot_state {
134 	SLOT_CLEAN = 0,
135 	SLOT_DIRTY = 1,
136 	SLOT_USED = 2,
137 };
138 
139 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
140 static struct kprobe_insn_cache kprobe_insn_slots = {
141 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
142 	.insn_size = MAX_INSN_SIZE,
143 	.nr_garbage = 0,
144 };
145 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
146 
147 /**
148  * __get_insn_slot() - Find a slot on an executable page for an instruction.
149  * We allocate an executable page if there's no room on existing ones.
150  */
151 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
152 {
153 	struct kprobe_insn_page *kip;
154 
155  retry:
156 	list_for_each_entry(kip, &c->pages, list) {
157 		if (kip->nused < slots_per_page(c)) {
158 			int i;
159 			for (i = 0; i < slots_per_page(c); i++) {
160 				if (kip->slot_used[i] == SLOT_CLEAN) {
161 					kip->slot_used[i] = SLOT_USED;
162 					kip->nused++;
163 					return kip->insns + (i * c->insn_size);
164 				}
165 			}
166 			/* kip->nused is broken. Fix it. */
167 			kip->nused = slots_per_page(c);
168 			WARN_ON(1);
169 		}
170 	}
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 		goto retry;
175 
176 	/* All out of space.  Need to allocate a new page. */
177 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 	if (!kip)
179 		return NULL;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = module_alloc(PAGE_SIZE);
187 	if (!kip->insns) {
188 		kfree(kip);
189 		return NULL;
190 	}
191 	INIT_LIST_HEAD(&kip->list);
192 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	list_add(&kip->list, &c->pages);
197 	return kip->insns;
198 }
199 
200 
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
202 {
203 	kprobe_opcode_t *ret = NULL;
204 
205 	mutex_lock(&kprobe_insn_mutex);
206 	ret = __get_insn_slot(&kprobe_insn_slots);
207 	mutex_unlock(&kprobe_insn_mutex);
208 
209 	return ret;
210 }
211 
212 /* Return 1 if all garbages are collected, otherwise 0. */
213 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
214 {
215 	kip->slot_used[idx] = SLOT_CLEAN;
216 	kip->nused--;
217 	if (kip->nused == 0) {
218 		/*
219 		 * Page is no longer in use.  Free it unless
220 		 * it's the last one.  We keep the last one
221 		 * so as not to have to set it up again the
222 		 * next time somebody inserts a probe.
223 		 */
224 		if (!list_is_singular(&kip->list)) {
225 			list_del(&kip->list);
226 			module_free(NULL, kip->insns);
227 			kfree(kip);
228 		}
229 		return 1;
230 	}
231 	return 0;
232 }
233 
234 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236 	struct kprobe_insn_page *kip, *next;
237 
238 	/* Ensure no-one is interrupted on the garbages */
239 	synchronize_sched();
240 
241 	list_for_each_entry_safe(kip, next, &c->pages, list) {
242 		int i;
243 		if (kip->ngarbage == 0)
244 			continue;
245 		kip->ngarbage = 0;	/* we will collect all garbages */
246 		for (i = 0; i < slots_per_page(c); i++) {
247 			if (kip->slot_used[i] == SLOT_DIRTY &&
248 			    collect_one_slot(kip, i))
249 				break;
250 		}
251 	}
252 	c->nr_garbage = 0;
253 	return 0;
254 }
255 
256 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
257 				       kprobe_opcode_t *slot, int dirty)
258 {
259 	struct kprobe_insn_page *kip;
260 
261 	list_for_each_entry(kip, &c->pages, list) {
262 		long idx = ((long)slot - (long)kip->insns) / c->insn_size;
263 		if (idx >= 0 && idx < slots_per_page(c)) {
264 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
265 			if (dirty) {
266 				kip->slot_used[idx] = SLOT_DIRTY;
267 				kip->ngarbage++;
268 				if (++c->nr_garbage > slots_per_page(c))
269 					collect_garbage_slots(c);
270 			} else
271 				collect_one_slot(kip, idx);
272 			return;
273 		}
274 	}
275 	/* Could not free this slot. */
276 	WARN_ON(1);
277 }
278 
279 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
280 {
281 	mutex_lock(&kprobe_insn_mutex);
282 	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
283 	mutex_unlock(&kprobe_insn_mutex);
284 }
285 #ifdef CONFIG_OPTPROBES
286 /* For optimized_kprobe buffer */
287 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
288 static struct kprobe_insn_cache kprobe_optinsn_slots = {
289 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
290 	/* .insn_size is initialized later */
291 	.nr_garbage = 0,
292 };
293 /* Get a slot for optimized_kprobe buffer */
294 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
295 {
296 	kprobe_opcode_t *ret = NULL;
297 
298 	mutex_lock(&kprobe_optinsn_mutex);
299 	ret = __get_insn_slot(&kprobe_optinsn_slots);
300 	mutex_unlock(&kprobe_optinsn_mutex);
301 
302 	return ret;
303 }
304 
305 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
306 {
307 	mutex_lock(&kprobe_optinsn_mutex);
308 	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
309 	mutex_unlock(&kprobe_optinsn_mutex);
310 }
311 #endif
312 #endif
313 
314 /* We have preemption disabled.. so it is safe to use __ versions */
315 static inline void set_kprobe_instance(struct kprobe *kp)
316 {
317 	__get_cpu_var(kprobe_instance) = kp;
318 }
319 
320 static inline void reset_kprobe_instance(void)
321 {
322 	__get_cpu_var(kprobe_instance) = NULL;
323 }
324 
325 /*
326  * This routine is called either:
327  * 	- under the kprobe_mutex - during kprobe_[un]register()
328  * 				OR
329  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
330  */
331 struct kprobe __kprobes *get_kprobe(void *addr)
332 {
333 	struct hlist_head *head;
334 	struct hlist_node *node;
335 	struct kprobe *p;
336 
337 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
338 	hlist_for_each_entry_rcu(p, node, head, hlist) {
339 		if (p->addr == addr)
340 			return p;
341 	}
342 
343 	return NULL;
344 }
345 
346 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
347 
348 /* Return true if the kprobe is an aggregator */
349 static inline int kprobe_aggrprobe(struct kprobe *p)
350 {
351 	return p->pre_handler == aggr_pre_handler;
352 }
353 
354 /*
355  * Keep all fields in the kprobe consistent
356  */
357 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
358 {
359 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
360 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
361 }
362 
363 #ifdef CONFIG_OPTPROBES
364 /* NOTE: change this value only with kprobe_mutex held */
365 static bool kprobes_allow_optimization;
366 
367 /*
368  * Call all pre_handler on the list, but ignores its return value.
369  * This must be called from arch-dep optimized caller.
370  */
371 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
372 {
373 	struct kprobe *kp;
374 
375 	list_for_each_entry_rcu(kp, &p->list, list) {
376 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
377 			set_kprobe_instance(kp);
378 			kp->pre_handler(kp, regs);
379 		}
380 		reset_kprobe_instance();
381 	}
382 }
383 
384 /* Return true(!0) if the kprobe is ready for optimization. */
385 static inline int kprobe_optready(struct kprobe *p)
386 {
387 	struct optimized_kprobe *op;
388 
389 	if (kprobe_aggrprobe(p)) {
390 		op = container_of(p, struct optimized_kprobe, kp);
391 		return arch_prepared_optinsn(&op->optinsn);
392 	}
393 
394 	return 0;
395 }
396 
397 /*
398  * Return an optimized kprobe whose optimizing code replaces
399  * instructions including addr (exclude breakpoint).
400  */
401 struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
402 {
403 	int i;
404 	struct kprobe *p = NULL;
405 	struct optimized_kprobe *op;
406 
407 	/* Don't check i == 0, since that is a breakpoint case. */
408 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
409 		p = get_kprobe((void *)(addr - i));
410 
411 	if (p && kprobe_optready(p)) {
412 		op = container_of(p, struct optimized_kprobe, kp);
413 		if (arch_within_optimized_kprobe(op, addr))
414 			return p;
415 	}
416 
417 	return NULL;
418 }
419 
420 /* Optimization staging list, protected by kprobe_mutex */
421 static LIST_HEAD(optimizing_list);
422 
423 static void kprobe_optimizer(struct work_struct *work);
424 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
425 #define OPTIMIZE_DELAY 5
426 
427 /* Kprobe jump optimizer */
428 static __kprobes void kprobe_optimizer(struct work_struct *work)
429 {
430 	struct optimized_kprobe *op, *tmp;
431 
432 	/* Lock modules while optimizing kprobes */
433 	mutex_lock(&module_mutex);
434 	mutex_lock(&kprobe_mutex);
435 	if (kprobes_all_disarmed || !kprobes_allow_optimization)
436 		goto end;
437 
438 	/*
439 	 * Wait for quiesence period to ensure all running interrupts
440 	 * are done. Because optprobe may modify multiple instructions
441 	 * there is a chance that Nth instruction is interrupted. In that
442 	 * case, running interrupt can return to 2nd-Nth byte of jump
443 	 * instruction. This wait is for avoiding it.
444 	 */
445 	synchronize_sched();
446 
447 	/*
448 	 * The optimization/unoptimization refers online_cpus via
449 	 * stop_machine() and cpu-hotplug modifies online_cpus.
450 	 * And same time, text_mutex will be held in cpu-hotplug and here.
451 	 * This combination can cause a deadlock (cpu-hotplug try to lock
452 	 * text_mutex but stop_machine can not be done because online_cpus
453 	 * has been changed)
454 	 * To avoid this deadlock, we need to call get_online_cpus()
455 	 * for preventing cpu-hotplug outside of text_mutex locking.
456 	 */
457 	get_online_cpus();
458 	mutex_lock(&text_mutex);
459 	list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
460 		WARN_ON(kprobe_disabled(&op->kp));
461 		if (arch_optimize_kprobe(op) < 0)
462 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
463 		list_del_init(&op->list);
464 	}
465 	mutex_unlock(&text_mutex);
466 	put_online_cpus();
467 end:
468 	mutex_unlock(&kprobe_mutex);
469 	mutex_unlock(&module_mutex);
470 }
471 
472 /* Optimize kprobe if p is ready to be optimized */
473 static __kprobes void optimize_kprobe(struct kprobe *p)
474 {
475 	struct optimized_kprobe *op;
476 
477 	/* Check if the kprobe is disabled or not ready for optimization. */
478 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
479 	    (kprobe_disabled(p) || kprobes_all_disarmed))
480 		return;
481 
482 	/* Both of break_handler and post_handler are not supported. */
483 	if (p->break_handler || p->post_handler)
484 		return;
485 
486 	op = container_of(p, struct optimized_kprobe, kp);
487 
488 	/* Check there is no other kprobes at the optimized instructions */
489 	if (arch_check_optimized_kprobe(op) < 0)
490 		return;
491 
492 	/* Check if it is already optimized. */
493 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
494 		return;
495 
496 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
497 	list_add(&op->list, &optimizing_list);
498 	if (!delayed_work_pending(&optimizing_work))
499 		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
500 }
501 
502 /* Unoptimize a kprobe if p is optimized */
503 static __kprobes void unoptimize_kprobe(struct kprobe *p)
504 {
505 	struct optimized_kprobe *op;
506 
507 	if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
508 		op = container_of(p, struct optimized_kprobe, kp);
509 		if (!list_empty(&op->list))
510 			/* Dequeue from the optimization queue */
511 			list_del_init(&op->list);
512 		else
513 			/* Replace jump with break */
514 			arch_unoptimize_kprobe(op);
515 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
516 	}
517 }
518 
519 /* Remove optimized instructions */
520 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
521 {
522 	struct optimized_kprobe *op;
523 
524 	op = container_of(p, struct optimized_kprobe, kp);
525 	if (!list_empty(&op->list)) {
526 		/* Dequeue from the optimization queue */
527 		list_del_init(&op->list);
528 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
529 	}
530 	/* Don't unoptimize, because the target code will be freed. */
531 	arch_remove_optimized_kprobe(op);
532 }
533 
534 /* Try to prepare optimized instructions */
535 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
536 {
537 	struct optimized_kprobe *op;
538 
539 	op = container_of(p, struct optimized_kprobe, kp);
540 	arch_prepare_optimized_kprobe(op);
541 }
542 
543 /* Free optimized instructions and optimized_kprobe */
544 static __kprobes void free_aggr_kprobe(struct kprobe *p)
545 {
546 	struct optimized_kprobe *op;
547 
548 	op = container_of(p, struct optimized_kprobe, kp);
549 	arch_remove_optimized_kprobe(op);
550 	kfree(op);
551 }
552 
553 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
554 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
555 {
556 	struct optimized_kprobe *op;
557 
558 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
559 	if (!op)
560 		return NULL;
561 
562 	INIT_LIST_HEAD(&op->list);
563 	op->kp.addr = p->addr;
564 	arch_prepare_optimized_kprobe(op);
565 
566 	return &op->kp;
567 }
568 
569 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
570 
571 /*
572  * Prepare an optimized_kprobe and optimize it
573  * NOTE: p must be a normal registered kprobe
574  */
575 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
576 {
577 	struct kprobe *ap;
578 	struct optimized_kprobe *op;
579 
580 	ap = alloc_aggr_kprobe(p);
581 	if (!ap)
582 		return;
583 
584 	op = container_of(ap, struct optimized_kprobe, kp);
585 	if (!arch_prepared_optinsn(&op->optinsn)) {
586 		/* If failed to setup optimizing, fallback to kprobe */
587 		free_aggr_kprobe(ap);
588 		return;
589 	}
590 
591 	init_aggr_kprobe(ap, p);
592 	optimize_kprobe(ap);
593 }
594 
595 #ifdef CONFIG_SYSCTL
596 static void __kprobes optimize_all_kprobes(void)
597 {
598 	struct hlist_head *head;
599 	struct hlist_node *node;
600 	struct kprobe *p;
601 	unsigned int i;
602 
603 	/* If optimization is already allowed, just return */
604 	if (kprobes_allow_optimization)
605 		return;
606 
607 	kprobes_allow_optimization = true;
608 	mutex_lock(&text_mutex);
609 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
610 		head = &kprobe_table[i];
611 		hlist_for_each_entry_rcu(p, node, head, hlist)
612 			if (!kprobe_disabled(p))
613 				optimize_kprobe(p);
614 	}
615 	mutex_unlock(&text_mutex);
616 	printk(KERN_INFO "Kprobes globally optimized\n");
617 }
618 
619 static void __kprobes unoptimize_all_kprobes(void)
620 {
621 	struct hlist_head *head;
622 	struct hlist_node *node;
623 	struct kprobe *p;
624 	unsigned int i;
625 
626 	/* If optimization is already prohibited, just return */
627 	if (!kprobes_allow_optimization)
628 		return;
629 
630 	kprobes_allow_optimization = false;
631 	printk(KERN_INFO "Kprobes globally unoptimized\n");
632 	get_online_cpus();	/* For avoiding text_mutex deadlock */
633 	mutex_lock(&text_mutex);
634 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
635 		head = &kprobe_table[i];
636 		hlist_for_each_entry_rcu(p, node, head, hlist) {
637 			if (!kprobe_disabled(p))
638 				unoptimize_kprobe(p);
639 		}
640 	}
641 
642 	mutex_unlock(&text_mutex);
643 	put_online_cpus();
644 	/* Allow all currently running kprobes to complete */
645 	synchronize_sched();
646 }
647 
648 int sysctl_kprobes_optimization;
649 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
650 				      void __user *buffer, size_t *length,
651 				      loff_t *ppos)
652 {
653 	int ret;
654 
655 	mutex_lock(&kprobe_mutex);
656 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
657 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
658 
659 	if (sysctl_kprobes_optimization)
660 		optimize_all_kprobes();
661 	else
662 		unoptimize_all_kprobes();
663 	mutex_unlock(&kprobe_mutex);
664 
665 	return ret;
666 }
667 #endif /* CONFIG_SYSCTL */
668 
669 static void __kprobes __arm_kprobe(struct kprobe *p)
670 {
671 	struct kprobe *old_p;
672 
673 	/* Check collision with other optimized kprobes */
674 	old_p = get_optimized_kprobe((unsigned long)p->addr);
675 	if (unlikely(old_p))
676 		unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
677 
678 	arch_arm_kprobe(p);
679 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
680 }
681 
682 static void __kprobes __disarm_kprobe(struct kprobe *p)
683 {
684 	struct kprobe *old_p;
685 
686 	unoptimize_kprobe(p);	/* Try to unoptimize */
687 	arch_disarm_kprobe(p);
688 
689 	/* If another kprobe was blocked, optimize it. */
690 	old_p = get_optimized_kprobe((unsigned long)p->addr);
691 	if (unlikely(old_p))
692 		optimize_kprobe(old_p);
693 }
694 
695 #else /* !CONFIG_OPTPROBES */
696 
697 #define optimize_kprobe(p)			do {} while (0)
698 #define unoptimize_kprobe(p)			do {} while (0)
699 #define kill_optimized_kprobe(p)		do {} while (0)
700 #define prepare_optimized_kprobe(p)		do {} while (0)
701 #define try_to_optimize_kprobe(p)		do {} while (0)
702 #define __arm_kprobe(p)				arch_arm_kprobe(p)
703 #define __disarm_kprobe(p)			arch_disarm_kprobe(p)
704 
705 static __kprobes void free_aggr_kprobe(struct kprobe *p)
706 {
707 	kfree(p);
708 }
709 
710 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
711 {
712 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
713 }
714 #endif /* CONFIG_OPTPROBES */
715 
716 /* Arm a kprobe with text_mutex */
717 static void __kprobes arm_kprobe(struct kprobe *kp)
718 {
719 	/*
720 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
721 	 * this doesn't cause deadlock on text_mutex. So, we don't
722 	 * need get_online_cpus().
723 	 */
724 	mutex_lock(&text_mutex);
725 	__arm_kprobe(kp);
726 	mutex_unlock(&text_mutex);
727 }
728 
729 /* Disarm a kprobe with text_mutex */
730 static void __kprobes disarm_kprobe(struct kprobe *kp)
731 {
732 	get_online_cpus();	/* For avoiding text_mutex deadlock */
733 	mutex_lock(&text_mutex);
734 	__disarm_kprobe(kp);
735 	mutex_unlock(&text_mutex);
736 	put_online_cpus();
737 }
738 
739 /*
740  * Aggregate handlers for multiple kprobes support - these handlers
741  * take care of invoking the individual kprobe handlers on p->list
742  */
743 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
744 {
745 	struct kprobe *kp;
746 
747 	list_for_each_entry_rcu(kp, &p->list, list) {
748 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
749 			set_kprobe_instance(kp);
750 			if (kp->pre_handler(kp, regs))
751 				return 1;
752 		}
753 		reset_kprobe_instance();
754 	}
755 	return 0;
756 }
757 
758 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
759 					unsigned long flags)
760 {
761 	struct kprobe *kp;
762 
763 	list_for_each_entry_rcu(kp, &p->list, list) {
764 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
765 			set_kprobe_instance(kp);
766 			kp->post_handler(kp, regs, flags);
767 			reset_kprobe_instance();
768 		}
769 	}
770 }
771 
772 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
773 					int trapnr)
774 {
775 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
776 
777 	/*
778 	 * if we faulted "during" the execution of a user specified
779 	 * probe handler, invoke just that probe's fault handler
780 	 */
781 	if (cur && cur->fault_handler) {
782 		if (cur->fault_handler(cur, regs, trapnr))
783 			return 1;
784 	}
785 	return 0;
786 }
787 
788 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
789 {
790 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
791 	int ret = 0;
792 
793 	if (cur && cur->break_handler) {
794 		if (cur->break_handler(cur, regs))
795 			ret = 1;
796 	}
797 	reset_kprobe_instance();
798 	return ret;
799 }
800 
801 /* Walks the list and increments nmissed count for multiprobe case */
802 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
803 {
804 	struct kprobe *kp;
805 	if (!kprobe_aggrprobe(p)) {
806 		p->nmissed++;
807 	} else {
808 		list_for_each_entry_rcu(kp, &p->list, list)
809 			kp->nmissed++;
810 	}
811 	return;
812 }
813 
814 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
815 				struct hlist_head *head)
816 {
817 	struct kretprobe *rp = ri->rp;
818 
819 	/* remove rp inst off the rprobe_inst_table */
820 	hlist_del(&ri->hlist);
821 	INIT_HLIST_NODE(&ri->hlist);
822 	if (likely(rp)) {
823 		spin_lock(&rp->lock);
824 		hlist_add_head(&ri->hlist, &rp->free_instances);
825 		spin_unlock(&rp->lock);
826 	} else
827 		/* Unregistering */
828 		hlist_add_head(&ri->hlist, head);
829 }
830 
831 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
832 			 struct hlist_head **head, unsigned long *flags)
833 {
834 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
835 	spinlock_t *hlist_lock;
836 
837 	*head = &kretprobe_inst_table[hash];
838 	hlist_lock = kretprobe_table_lock_ptr(hash);
839 	spin_lock_irqsave(hlist_lock, *flags);
840 }
841 
842 static void __kprobes kretprobe_table_lock(unsigned long hash,
843 	unsigned long *flags)
844 {
845 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
846 	spin_lock_irqsave(hlist_lock, *flags);
847 }
848 
849 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
850 	unsigned long *flags)
851 {
852 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
853 	spinlock_t *hlist_lock;
854 
855 	hlist_lock = kretprobe_table_lock_ptr(hash);
856 	spin_unlock_irqrestore(hlist_lock, *flags);
857 }
858 
859 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
860 {
861 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
862 	spin_unlock_irqrestore(hlist_lock, *flags);
863 }
864 
865 /*
866  * This function is called from finish_task_switch when task tk becomes dead,
867  * so that we can recycle any function-return probe instances associated
868  * with this task. These left over instances represent probed functions
869  * that have been called but will never return.
870  */
871 void __kprobes kprobe_flush_task(struct task_struct *tk)
872 {
873 	struct kretprobe_instance *ri;
874 	struct hlist_head *head, empty_rp;
875 	struct hlist_node *node, *tmp;
876 	unsigned long hash, flags = 0;
877 
878 	if (unlikely(!kprobes_initialized))
879 		/* Early boot.  kretprobe_table_locks not yet initialized. */
880 		return;
881 
882 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
883 	head = &kretprobe_inst_table[hash];
884 	kretprobe_table_lock(hash, &flags);
885 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
886 		if (ri->task == tk)
887 			recycle_rp_inst(ri, &empty_rp);
888 	}
889 	kretprobe_table_unlock(hash, &flags);
890 	INIT_HLIST_HEAD(&empty_rp);
891 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
892 		hlist_del(&ri->hlist);
893 		kfree(ri);
894 	}
895 }
896 
897 static inline void free_rp_inst(struct kretprobe *rp)
898 {
899 	struct kretprobe_instance *ri;
900 	struct hlist_node *pos, *next;
901 
902 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
903 		hlist_del(&ri->hlist);
904 		kfree(ri);
905 	}
906 }
907 
908 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
909 {
910 	unsigned long flags, hash;
911 	struct kretprobe_instance *ri;
912 	struct hlist_node *pos, *next;
913 	struct hlist_head *head;
914 
915 	/* No race here */
916 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
917 		kretprobe_table_lock(hash, &flags);
918 		head = &kretprobe_inst_table[hash];
919 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
920 			if (ri->rp == rp)
921 				ri->rp = NULL;
922 		}
923 		kretprobe_table_unlock(hash, &flags);
924 	}
925 	free_rp_inst(rp);
926 }
927 
928 /*
929 * Add the new probe to ap->list. Fail if this is the
930 * second jprobe at the address - two jprobes can't coexist
931 */
932 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
933 {
934 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
935 
936 	if (p->break_handler || p->post_handler)
937 		unoptimize_kprobe(ap);	/* Fall back to normal kprobe */
938 
939 	if (p->break_handler) {
940 		if (ap->break_handler)
941 			return -EEXIST;
942 		list_add_tail_rcu(&p->list, &ap->list);
943 		ap->break_handler = aggr_break_handler;
944 	} else
945 		list_add_rcu(&p->list, &ap->list);
946 	if (p->post_handler && !ap->post_handler)
947 		ap->post_handler = aggr_post_handler;
948 
949 	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
950 		ap->flags &= ~KPROBE_FLAG_DISABLED;
951 		if (!kprobes_all_disarmed)
952 			/* Arm the breakpoint again. */
953 			__arm_kprobe(ap);
954 	}
955 	return 0;
956 }
957 
958 /*
959  * Fill in the required fields of the "manager kprobe". Replace the
960  * earlier kprobe in the hlist with the manager kprobe
961  */
962 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
963 {
964 	/* Copy p's insn slot to ap */
965 	copy_kprobe(p, ap);
966 	flush_insn_slot(ap);
967 	ap->addr = p->addr;
968 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
969 	ap->pre_handler = aggr_pre_handler;
970 	ap->fault_handler = aggr_fault_handler;
971 	/* We don't care the kprobe which has gone. */
972 	if (p->post_handler && !kprobe_gone(p))
973 		ap->post_handler = aggr_post_handler;
974 	if (p->break_handler && !kprobe_gone(p))
975 		ap->break_handler = aggr_break_handler;
976 
977 	INIT_LIST_HEAD(&ap->list);
978 	INIT_HLIST_NODE(&ap->hlist);
979 
980 	list_add_rcu(&p->list, &ap->list);
981 	hlist_replace_rcu(&p->hlist, &ap->hlist);
982 }
983 
984 /*
985  * This is the second or subsequent kprobe at the address - handle
986  * the intricacies
987  */
988 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
989 					  struct kprobe *p)
990 {
991 	int ret = 0;
992 	struct kprobe *ap = old_p;
993 
994 	if (!kprobe_aggrprobe(old_p)) {
995 		/* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
996 		ap = alloc_aggr_kprobe(old_p);
997 		if (!ap)
998 			return -ENOMEM;
999 		init_aggr_kprobe(ap, old_p);
1000 	}
1001 
1002 	if (kprobe_gone(ap)) {
1003 		/*
1004 		 * Attempting to insert new probe at the same location that
1005 		 * had a probe in the module vaddr area which already
1006 		 * freed. So, the instruction slot has already been
1007 		 * released. We need a new slot for the new probe.
1008 		 */
1009 		ret = arch_prepare_kprobe(ap);
1010 		if (ret)
1011 			/*
1012 			 * Even if fail to allocate new slot, don't need to
1013 			 * free aggr_probe. It will be used next time, or
1014 			 * freed by unregister_kprobe.
1015 			 */
1016 			return ret;
1017 
1018 		/* Prepare optimized instructions if possible. */
1019 		prepare_optimized_kprobe(ap);
1020 
1021 		/*
1022 		 * Clear gone flag to prevent allocating new slot again, and
1023 		 * set disabled flag because it is not armed yet.
1024 		 */
1025 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1026 			    | KPROBE_FLAG_DISABLED;
1027 	}
1028 
1029 	/* Copy ap's insn slot to p */
1030 	copy_kprobe(ap, p);
1031 	return add_new_kprobe(ap, p);
1032 }
1033 
1034 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1035 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1036 {
1037 	struct kprobe *kp;
1038 
1039 	list_for_each_entry_rcu(kp, &p->list, list) {
1040 		if (!kprobe_disabled(kp))
1041 			/*
1042 			 * There is an active probe on the list.
1043 			 * We can't disable aggr_kprobe.
1044 			 */
1045 			return 0;
1046 	}
1047 	p->flags |= KPROBE_FLAG_DISABLED;
1048 	return 1;
1049 }
1050 
1051 static int __kprobes in_kprobes_functions(unsigned long addr)
1052 {
1053 	struct kprobe_blackpoint *kb;
1054 
1055 	if (addr >= (unsigned long)__kprobes_text_start &&
1056 	    addr < (unsigned long)__kprobes_text_end)
1057 		return -EINVAL;
1058 	/*
1059 	 * If there exists a kprobe_blacklist, verify and
1060 	 * fail any probe registration in the prohibited area
1061 	 */
1062 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1063 		if (kb->start_addr) {
1064 			if (addr >= kb->start_addr &&
1065 			    addr < (kb->start_addr + kb->range))
1066 				return -EINVAL;
1067 		}
1068 	}
1069 	return 0;
1070 }
1071 
1072 /*
1073  * If we have a symbol_name argument, look it up and add the offset field
1074  * to it. This way, we can specify a relative address to a symbol.
1075  */
1076 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1077 {
1078 	kprobe_opcode_t *addr = p->addr;
1079 	if (p->symbol_name) {
1080 		if (addr)
1081 			return NULL;
1082 		kprobe_lookup_name(p->symbol_name, addr);
1083 	}
1084 
1085 	if (!addr)
1086 		return NULL;
1087 	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1088 }
1089 
1090 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1091 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1092 {
1093 	struct kprobe *old_p, *list_p;
1094 
1095 	old_p = get_kprobe(p->addr);
1096 	if (unlikely(!old_p))
1097 		return NULL;
1098 
1099 	if (p != old_p) {
1100 		list_for_each_entry_rcu(list_p, &old_p->list, list)
1101 			if (list_p == p)
1102 			/* kprobe p is a valid probe */
1103 				goto valid;
1104 		return NULL;
1105 	}
1106 valid:
1107 	return old_p;
1108 }
1109 
1110 /* Return error if the kprobe is being re-registered */
1111 static inline int check_kprobe_rereg(struct kprobe *p)
1112 {
1113 	int ret = 0;
1114 	struct kprobe *old_p;
1115 
1116 	mutex_lock(&kprobe_mutex);
1117 	old_p = __get_valid_kprobe(p);
1118 	if (old_p)
1119 		ret = -EINVAL;
1120 	mutex_unlock(&kprobe_mutex);
1121 	return ret;
1122 }
1123 
1124 int __kprobes register_kprobe(struct kprobe *p)
1125 {
1126 	int ret = 0;
1127 	struct kprobe *old_p;
1128 	struct module *probed_mod;
1129 	kprobe_opcode_t *addr;
1130 
1131 	addr = kprobe_addr(p);
1132 	if (!addr)
1133 		return -EINVAL;
1134 	p->addr = addr;
1135 
1136 	ret = check_kprobe_rereg(p);
1137 	if (ret)
1138 		return ret;
1139 
1140 	preempt_disable();
1141 	if (!kernel_text_address((unsigned long) p->addr) ||
1142 	    in_kprobes_functions((unsigned long) p->addr) ||
1143 	    ftrace_text_reserved(p->addr, p->addr)) {
1144 		preempt_enable();
1145 		return -EINVAL;
1146 	}
1147 
1148 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1149 	p->flags &= KPROBE_FLAG_DISABLED;
1150 
1151 	/*
1152 	 * Check if are we probing a module.
1153 	 */
1154 	probed_mod = __module_text_address((unsigned long) p->addr);
1155 	if (probed_mod) {
1156 		/*
1157 		 * We must hold a refcount of the probed module while updating
1158 		 * its code to prohibit unexpected unloading.
1159 		 */
1160 		if (unlikely(!try_module_get(probed_mod))) {
1161 			preempt_enable();
1162 			return -EINVAL;
1163 		}
1164 		/*
1165 		 * If the module freed .init.text, we couldn't insert
1166 		 * kprobes in there.
1167 		 */
1168 		if (within_module_init((unsigned long)p->addr, probed_mod) &&
1169 		    probed_mod->state != MODULE_STATE_COMING) {
1170 			module_put(probed_mod);
1171 			preempt_enable();
1172 			return -EINVAL;
1173 		}
1174 	}
1175 	preempt_enable();
1176 
1177 	p->nmissed = 0;
1178 	INIT_LIST_HEAD(&p->list);
1179 	mutex_lock(&kprobe_mutex);
1180 
1181 	get_online_cpus();	/* For avoiding text_mutex deadlock. */
1182 	mutex_lock(&text_mutex);
1183 
1184 	old_p = get_kprobe(p->addr);
1185 	if (old_p) {
1186 		/* Since this may unoptimize old_p, locking text_mutex. */
1187 		ret = register_aggr_kprobe(old_p, p);
1188 		goto out;
1189 	}
1190 
1191 	ret = arch_prepare_kprobe(p);
1192 	if (ret)
1193 		goto out;
1194 
1195 	INIT_HLIST_NODE(&p->hlist);
1196 	hlist_add_head_rcu(&p->hlist,
1197 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1198 
1199 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1200 		__arm_kprobe(p);
1201 
1202 	/* Try to optimize kprobe */
1203 	try_to_optimize_kprobe(p);
1204 
1205 out:
1206 	mutex_unlock(&text_mutex);
1207 	put_online_cpus();
1208 	mutex_unlock(&kprobe_mutex);
1209 
1210 	if (probed_mod)
1211 		module_put(probed_mod);
1212 
1213 	return ret;
1214 }
1215 EXPORT_SYMBOL_GPL(register_kprobe);
1216 
1217 /*
1218  * Unregister a kprobe without a scheduler synchronization.
1219  */
1220 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1221 {
1222 	struct kprobe *old_p, *list_p;
1223 
1224 	old_p = __get_valid_kprobe(p);
1225 	if (old_p == NULL)
1226 		return -EINVAL;
1227 
1228 	if (old_p == p ||
1229 	    (kprobe_aggrprobe(old_p) &&
1230 	     list_is_singular(&old_p->list))) {
1231 		/*
1232 		 * Only probe on the hash list. Disarm only if kprobes are
1233 		 * enabled and not gone - otherwise, the breakpoint would
1234 		 * already have been removed. We save on flushing icache.
1235 		 */
1236 		if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1237 			disarm_kprobe(old_p);
1238 		hlist_del_rcu(&old_p->hlist);
1239 	} else {
1240 		if (p->break_handler && !kprobe_gone(p))
1241 			old_p->break_handler = NULL;
1242 		if (p->post_handler && !kprobe_gone(p)) {
1243 			list_for_each_entry_rcu(list_p, &old_p->list, list) {
1244 				if ((list_p != p) && (list_p->post_handler))
1245 					goto noclean;
1246 			}
1247 			old_p->post_handler = NULL;
1248 		}
1249 noclean:
1250 		list_del_rcu(&p->list);
1251 		if (!kprobe_disabled(old_p)) {
1252 			try_to_disable_aggr_kprobe(old_p);
1253 			if (!kprobes_all_disarmed) {
1254 				if (kprobe_disabled(old_p))
1255 					disarm_kprobe(old_p);
1256 				else
1257 					/* Try to optimize this probe again */
1258 					optimize_kprobe(old_p);
1259 			}
1260 		}
1261 	}
1262 	return 0;
1263 }
1264 
1265 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1266 {
1267 	struct kprobe *old_p;
1268 
1269 	if (list_empty(&p->list))
1270 		arch_remove_kprobe(p);
1271 	else if (list_is_singular(&p->list)) {
1272 		/* "p" is the last child of an aggr_kprobe */
1273 		old_p = list_entry(p->list.next, struct kprobe, list);
1274 		list_del(&p->list);
1275 		arch_remove_kprobe(old_p);
1276 		free_aggr_kprobe(old_p);
1277 	}
1278 }
1279 
1280 int __kprobes register_kprobes(struct kprobe **kps, int num)
1281 {
1282 	int i, ret = 0;
1283 
1284 	if (num <= 0)
1285 		return -EINVAL;
1286 	for (i = 0; i < num; i++) {
1287 		ret = register_kprobe(kps[i]);
1288 		if (ret < 0) {
1289 			if (i > 0)
1290 				unregister_kprobes(kps, i);
1291 			break;
1292 		}
1293 	}
1294 	return ret;
1295 }
1296 EXPORT_SYMBOL_GPL(register_kprobes);
1297 
1298 void __kprobes unregister_kprobe(struct kprobe *p)
1299 {
1300 	unregister_kprobes(&p, 1);
1301 }
1302 EXPORT_SYMBOL_GPL(unregister_kprobe);
1303 
1304 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1305 {
1306 	int i;
1307 
1308 	if (num <= 0)
1309 		return;
1310 	mutex_lock(&kprobe_mutex);
1311 	for (i = 0; i < num; i++)
1312 		if (__unregister_kprobe_top(kps[i]) < 0)
1313 			kps[i]->addr = NULL;
1314 	mutex_unlock(&kprobe_mutex);
1315 
1316 	synchronize_sched();
1317 	for (i = 0; i < num; i++)
1318 		if (kps[i]->addr)
1319 			__unregister_kprobe_bottom(kps[i]);
1320 }
1321 EXPORT_SYMBOL_GPL(unregister_kprobes);
1322 
1323 static struct notifier_block kprobe_exceptions_nb = {
1324 	.notifier_call = kprobe_exceptions_notify,
1325 	.priority = 0x7fffffff /* we need to be notified first */
1326 };
1327 
1328 unsigned long __weak arch_deref_entry_point(void *entry)
1329 {
1330 	return (unsigned long)entry;
1331 }
1332 
1333 int __kprobes register_jprobes(struct jprobe **jps, int num)
1334 {
1335 	struct jprobe *jp;
1336 	int ret = 0, i;
1337 
1338 	if (num <= 0)
1339 		return -EINVAL;
1340 	for (i = 0; i < num; i++) {
1341 		unsigned long addr;
1342 		jp = jps[i];
1343 		addr = arch_deref_entry_point(jp->entry);
1344 
1345 		if (!kernel_text_address(addr))
1346 			ret = -EINVAL;
1347 		else {
1348 			/* Todo: Verify probepoint is a function entry point */
1349 			jp->kp.pre_handler = setjmp_pre_handler;
1350 			jp->kp.break_handler = longjmp_break_handler;
1351 			ret = register_kprobe(&jp->kp);
1352 		}
1353 		if (ret < 0) {
1354 			if (i > 0)
1355 				unregister_jprobes(jps, i);
1356 			break;
1357 		}
1358 	}
1359 	return ret;
1360 }
1361 EXPORT_SYMBOL_GPL(register_jprobes);
1362 
1363 int __kprobes register_jprobe(struct jprobe *jp)
1364 {
1365 	return register_jprobes(&jp, 1);
1366 }
1367 EXPORT_SYMBOL_GPL(register_jprobe);
1368 
1369 void __kprobes unregister_jprobe(struct jprobe *jp)
1370 {
1371 	unregister_jprobes(&jp, 1);
1372 }
1373 EXPORT_SYMBOL_GPL(unregister_jprobe);
1374 
1375 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1376 {
1377 	int i;
1378 
1379 	if (num <= 0)
1380 		return;
1381 	mutex_lock(&kprobe_mutex);
1382 	for (i = 0; i < num; i++)
1383 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1384 			jps[i]->kp.addr = NULL;
1385 	mutex_unlock(&kprobe_mutex);
1386 
1387 	synchronize_sched();
1388 	for (i = 0; i < num; i++) {
1389 		if (jps[i]->kp.addr)
1390 			__unregister_kprobe_bottom(&jps[i]->kp);
1391 	}
1392 }
1393 EXPORT_SYMBOL_GPL(unregister_jprobes);
1394 
1395 #ifdef CONFIG_KRETPROBES
1396 /*
1397  * This kprobe pre_handler is registered with every kretprobe. When probe
1398  * hits it will set up the return probe.
1399  */
1400 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1401 					   struct pt_regs *regs)
1402 {
1403 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1404 	unsigned long hash, flags = 0;
1405 	struct kretprobe_instance *ri;
1406 
1407 	/*TODO: consider to only swap the RA after the last pre_handler fired */
1408 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1409 	spin_lock_irqsave(&rp->lock, flags);
1410 	if (!hlist_empty(&rp->free_instances)) {
1411 		ri = hlist_entry(rp->free_instances.first,
1412 				struct kretprobe_instance, hlist);
1413 		hlist_del(&ri->hlist);
1414 		spin_unlock_irqrestore(&rp->lock, flags);
1415 
1416 		ri->rp = rp;
1417 		ri->task = current;
1418 
1419 		if (rp->entry_handler && rp->entry_handler(ri, regs))
1420 			return 0;
1421 
1422 		arch_prepare_kretprobe(ri, regs);
1423 
1424 		/* XXX(hch): why is there no hlist_move_head? */
1425 		INIT_HLIST_NODE(&ri->hlist);
1426 		kretprobe_table_lock(hash, &flags);
1427 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1428 		kretprobe_table_unlock(hash, &flags);
1429 	} else {
1430 		rp->nmissed++;
1431 		spin_unlock_irqrestore(&rp->lock, flags);
1432 	}
1433 	return 0;
1434 }
1435 
1436 int __kprobes register_kretprobe(struct kretprobe *rp)
1437 {
1438 	int ret = 0;
1439 	struct kretprobe_instance *inst;
1440 	int i;
1441 	void *addr;
1442 
1443 	if (kretprobe_blacklist_size) {
1444 		addr = kprobe_addr(&rp->kp);
1445 		if (!addr)
1446 			return -EINVAL;
1447 
1448 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1449 			if (kretprobe_blacklist[i].addr == addr)
1450 				return -EINVAL;
1451 		}
1452 	}
1453 
1454 	rp->kp.pre_handler = pre_handler_kretprobe;
1455 	rp->kp.post_handler = NULL;
1456 	rp->kp.fault_handler = NULL;
1457 	rp->kp.break_handler = NULL;
1458 
1459 	/* Pre-allocate memory for max kretprobe instances */
1460 	if (rp->maxactive <= 0) {
1461 #ifdef CONFIG_PREEMPT
1462 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1463 #else
1464 		rp->maxactive = num_possible_cpus();
1465 #endif
1466 	}
1467 	spin_lock_init(&rp->lock);
1468 	INIT_HLIST_HEAD(&rp->free_instances);
1469 	for (i = 0; i < rp->maxactive; i++) {
1470 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1471 			       rp->data_size, GFP_KERNEL);
1472 		if (inst == NULL) {
1473 			free_rp_inst(rp);
1474 			return -ENOMEM;
1475 		}
1476 		INIT_HLIST_NODE(&inst->hlist);
1477 		hlist_add_head(&inst->hlist, &rp->free_instances);
1478 	}
1479 
1480 	rp->nmissed = 0;
1481 	/* Establish function entry probe point */
1482 	ret = register_kprobe(&rp->kp);
1483 	if (ret != 0)
1484 		free_rp_inst(rp);
1485 	return ret;
1486 }
1487 EXPORT_SYMBOL_GPL(register_kretprobe);
1488 
1489 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1490 {
1491 	int ret = 0, i;
1492 
1493 	if (num <= 0)
1494 		return -EINVAL;
1495 	for (i = 0; i < num; i++) {
1496 		ret = register_kretprobe(rps[i]);
1497 		if (ret < 0) {
1498 			if (i > 0)
1499 				unregister_kretprobes(rps, i);
1500 			break;
1501 		}
1502 	}
1503 	return ret;
1504 }
1505 EXPORT_SYMBOL_GPL(register_kretprobes);
1506 
1507 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1508 {
1509 	unregister_kretprobes(&rp, 1);
1510 }
1511 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1512 
1513 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1514 {
1515 	int i;
1516 
1517 	if (num <= 0)
1518 		return;
1519 	mutex_lock(&kprobe_mutex);
1520 	for (i = 0; i < num; i++)
1521 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1522 			rps[i]->kp.addr = NULL;
1523 	mutex_unlock(&kprobe_mutex);
1524 
1525 	synchronize_sched();
1526 	for (i = 0; i < num; i++) {
1527 		if (rps[i]->kp.addr) {
1528 			__unregister_kprobe_bottom(&rps[i]->kp);
1529 			cleanup_rp_inst(rps[i]);
1530 		}
1531 	}
1532 }
1533 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1534 
1535 #else /* CONFIG_KRETPROBES */
1536 int __kprobes register_kretprobe(struct kretprobe *rp)
1537 {
1538 	return -ENOSYS;
1539 }
1540 EXPORT_SYMBOL_GPL(register_kretprobe);
1541 
1542 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1543 {
1544 	return -ENOSYS;
1545 }
1546 EXPORT_SYMBOL_GPL(register_kretprobes);
1547 
1548 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1549 {
1550 }
1551 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1552 
1553 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1554 {
1555 }
1556 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1557 
1558 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1559 					   struct pt_regs *regs)
1560 {
1561 	return 0;
1562 }
1563 
1564 #endif /* CONFIG_KRETPROBES */
1565 
1566 /* Set the kprobe gone and remove its instruction buffer. */
1567 static void __kprobes kill_kprobe(struct kprobe *p)
1568 {
1569 	struct kprobe *kp;
1570 
1571 	p->flags |= KPROBE_FLAG_GONE;
1572 	if (kprobe_aggrprobe(p)) {
1573 		/*
1574 		 * If this is an aggr_kprobe, we have to list all the
1575 		 * chained probes and mark them GONE.
1576 		 */
1577 		list_for_each_entry_rcu(kp, &p->list, list)
1578 			kp->flags |= KPROBE_FLAG_GONE;
1579 		p->post_handler = NULL;
1580 		p->break_handler = NULL;
1581 		kill_optimized_kprobe(p);
1582 	}
1583 	/*
1584 	 * Here, we can remove insn_slot safely, because no thread calls
1585 	 * the original probed function (which will be freed soon) any more.
1586 	 */
1587 	arch_remove_kprobe(p);
1588 }
1589 
1590 void __kprobes dump_kprobe(struct kprobe *kp)
1591 {
1592 	printk(KERN_WARNING "Dumping kprobe:\n");
1593 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1594 	       kp->symbol_name, kp->addr, kp->offset);
1595 }
1596 
1597 /* Module notifier call back, checking kprobes on the module */
1598 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1599 					     unsigned long val, void *data)
1600 {
1601 	struct module *mod = data;
1602 	struct hlist_head *head;
1603 	struct hlist_node *node;
1604 	struct kprobe *p;
1605 	unsigned int i;
1606 	int checkcore = (val == MODULE_STATE_GOING);
1607 
1608 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1609 		return NOTIFY_DONE;
1610 
1611 	/*
1612 	 * When MODULE_STATE_GOING was notified, both of module .text and
1613 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1614 	 * notified, only .init.text section would be freed. We need to
1615 	 * disable kprobes which have been inserted in the sections.
1616 	 */
1617 	mutex_lock(&kprobe_mutex);
1618 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1619 		head = &kprobe_table[i];
1620 		hlist_for_each_entry_rcu(p, node, head, hlist)
1621 			if (within_module_init((unsigned long)p->addr, mod) ||
1622 			    (checkcore &&
1623 			     within_module_core((unsigned long)p->addr, mod))) {
1624 				/*
1625 				 * The vaddr this probe is installed will soon
1626 				 * be vfreed buy not synced to disk. Hence,
1627 				 * disarming the breakpoint isn't needed.
1628 				 */
1629 				kill_kprobe(p);
1630 			}
1631 	}
1632 	mutex_unlock(&kprobe_mutex);
1633 	return NOTIFY_DONE;
1634 }
1635 
1636 static struct notifier_block kprobe_module_nb = {
1637 	.notifier_call = kprobes_module_callback,
1638 	.priority = 0
1639 };
1640 
1641 static int __init init_kprobes(void)
1642 {
1643 	int i, err = 0;
1644 	unsigned long offset = 0, size = 0;
1645 	char *modname, namebuf[128];
1646 	const char *symbol_name;
1647 	void *addr;
1648 	struct kprobe_blackpoint *kb;
1649 
1650 	/* FIXME allocate the probe table, currently defined statically */
1651 	/* initialize all list heads */
1652 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1653 		INIT_HLIST_HEAD(&kprobe_table[i]);
1654 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1655 		spin_lock_init(&(kretprobe_table_locks[i].lock));
1656 	}
1657 
1658 	/*
1659 	 * Lookup and populate the kprobe_blacklist.
1660 	 *
1661 	 * Unlike the kretprobe blacklist, we'll need to determine
1662 	 * the range of addresses that belong to the said functions,
1663 	 * since a kprobe need not necessarily be at the beginning
1664 	 * of a function.
1665 	 */
1666 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1667 		kprobe_lookup_name(kb->name, addr);
1668 		if (!addr)
1669 			continue;
1670 
1671 		kb->start_addr = (unsigned long)addr;
1672 		symbol_name = kallsyms_lookup(kb->start_addr,
1673 				&size, &offset, &modname, namebuf);
1674 		if (!symbol_name)
1675 			kb->range = 0;
1676 		else
1677 			kb->range = size;
1678 	}
1679 
1680 	if (kretprobe_blacklist_size) {
1681 		/* lookup the function address from its name */
1682 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1683 			kprobe_lookup_name(kretprobe_blacklist[i].name,
1684 					   kretprobe_blacklist[i].addr);
1685 			if (!kretprobe_blacklist[i].addr)
1686 				printk("kretprobe: lookup failed: %s\n",
1687 				       kretprobe_blacklist[i].name);
1688 		}
1689 	}
1690 
1691 #if defined(CONFIG_OPTPROBES)
1692 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1693 	/* Init kprobe_optinsn_slots */
1694 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1695 #endif
1696 	/* By default, kprobes can be optimized */
1697 	kprobes_allow_optimization = true;
1698 #endif
1699 
1700 	/* By default, kprobes are armed */
1701 	kprobes_all_disarmed = false;
1702 
1703 	err = arch_init_kprobes();
1704 	if (!err)
1705 		err = register_die_notifier(&kprobe_exceptions_nb);
1706 	if (!err)
1707 		err = register_module_notifier(&kprobe_module_nb);
1708 
1709 	kprobes_initialized = (err == 0);
1710 
1711 	if (!err)
1712 		init_test_probes();
1713 	return err;
1714 }
1715 
1716 #ifdef CONFIG_DEBUG_FS
1717 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1718 		const char *sym, int offset, char *modname, struct kprobe *pp)
1719 {
1720 	char *kprobe_type;
1721 
1722 	if (p->pre_handler == pre_handler_kretprobe)
1723 		kprobe_type = "r";
1724 	else if (p->pre_handler == setjmp_pre_handler)
1725 		kprobe_type = "j";
1726 	else
1727 		kprobe_type = "k";
1728 
1729 	if (sym)
1730 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
1731 			p->addr, kprobe_type, sym, offset,
1732 			(modname ? modname : " "));
1733 	else
1734 		seq_printf(pi, "%p  %s  %p ",
1735 			p->addr, kprobe_type, p->addr);
1736 
1737 	if (!pp)
1738 		pp = p;
1739 	seq_printf(pi, "%s%s%s\n",
1740 		(kprobe_gone(p) ? "[GONE]" : ""),
1741 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
1742 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1743 }
1744 
1745 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1746 {
1747 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1748 }
1749 
1750 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1751 {
1752 	(*pos)++;
1753 	if (*pos >= KPROBE_TABLE_SIZE)
1754 		return NULL;
1755 	return pos;
1756 }
1757 
1758 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1759 {
1760 	/* Nothing to do */
1761 }
1762 
1763 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1764 {
1765 	struct hlist_head *head;
1766 	struct hlist_node *node;
1767 	struct kprobe *p, *kp;
1768 	const char *sym = NULL;
1769 	unsigned int i = *(loff_t *) v;
1770 	unsigned long offset = 0;
1771 	char *modname, namebuf[128];
1772 
1773 	head = &kprobe_table[i];
1774 	preempt_disable();
1775 	hlist_for_each_entry_rcu(p, node, head, hlist) {
1776 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1777 					&offset, &modname, namebuf);
1778 		if (kprobe_aggrprobe(p)) {
1779 			list_for_each_entry_rcu(kp, &p->list, list)
1780 				report_probe(pi, kp, sym, offset, modname, p);
1781 		} else
1782 			report_probe(pi, p, sym, offset, modname, NULL);
1783 	}
1784 	preempt_enable();
1785 	return 0;
1786 }
1787 
1788 static const struct seq_operations kprobes_seq_ops = {
1789 	.start = kprobe_seq_start,
1790 	.next  = kprobe_seq_next,
1791 	.stop  = kprobe_seq_stop,
1792 	.show  = show_kprobe_addr
1793 };
1794 
1795 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1796 {
1797 	return seq_open(filp, &kprobes_seq_ops);
1798 }
1799 
1800 static const struct file_operations debugfs_kprobes_operations = {
1801 	.open           = kprobes_open,
1802 	.read           = seq_read,
1803 	.llseek         = seq_lseek,
1804 	.release        = seq_release,
1805 };
1806 
1807 /* Disable one kprobe */
1808 int __kprobes disable_kprobe(struct kprobe *kp)
1809 {
1810 	int ret = 0;
1811 	struct kprobe *p;
1812 
1813 	mutex_lock(&kprobe_mutex);
1814 
1815 	/* Check whether specified probe is valid. */
1816 	p = __get_valid_kprobe(kp);
1817 	if (unlikely(p == NULL)) {
1818 		ret = -EINVAL;
1819 		goto out;
1820 	}
1821 
1822 	/* If the probe is already disabled (or gone), just return */
1823 	if (kprobe_disabled(kp))
1824 		goto out;
1825 
1826 	kp->flags |= KPROBE_FLAG_DISABLED;
1827 	if (p != kp)
1828 		/* When kp != p, p is always enabled. */
1829 		try_to_disable_aggr_kprobe(p);
1830 
1831 	if (!kprobes_all_disarmed && kprobe_disabled(p))
1832 		disarm_kprobe(p);
1833 out:
1834 	mutex_unlock(&kprobe_mutex);
1835 	return ret;
1836 }
1837 EXPORT_SYMBOL_GPL(disable_kprobe);
1838 
1839 /* Enable one kprobe */
1840 int __kprobes enable_kprobe(struct kprobe *kp)
1841 {
1842 	int ret = 0;
1843 	struct kprobe *p;
1844 
1845 	mutex_lock(&kprobe_mutex);
1846 
1847 	/* Check whether specified probe is valid. */
1848 	p = __get_valid_kprobe(kp);
1849 	if (unlikely(p == NULL)) {
1850 		ret = -EINVAL;
1851 		goto out;
1852 	}
1853 
1854 	if (kprobe_gone(kp)) {
1855 		/* This kprobe has gone, we couldn't enable it. */
1856 		ret = -EINVAL;
1857 		goto out;
1858 	}
1859 
1860 	if (p != kp)
1861 		kp->flags &= ~KPROBE_FLAG_DISABLED;
1862 
1863 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1864 		p->flags &= ~KPROBE_FLAG_DISABLED;
1865 		arm_kprobe(p);
1866 	}
1867 out:
1868 	mutex_unlock(&kprobe_mutex);
1869 	return ret;
1870 }
1871 EXPORT_SYMBOL_GPL(enable_kprobe);
1872 
1873 static void __kprobes arm_all_kprobes(void)
1874 {
1875 	struct hlist_head *head;
1876 	struct hlist_node *node;
1877 	struct kprobe *p;
1878 	unsigned int i;
1879 
1880 	mutex_lock(&kprobe_mutex);
1881 
1882 	/* If kprobes are armed, just return */
1883 	if (!kprobes_all_disarmed)
1884 		goto already_enabled;
1885 
1886 	/* Arming kprobes doesn't optimize kprobe itself */
1887 	mutex_lock(&text_mutex);
1888 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1889 		head = &kprobe_table[i];
1890 		hlist_for_each_entry_rcu(p, node, head, hlist)
1891 			if (!kprobe_disabled(p))
1892 				__arm_kprobe(p);
1893 	}
1894 	mutex_unlock(&text_mutex);
1895 
1896 	kprobes_all_disarmed = false;
1897 	printk(KERN_INFO "Kprobes globally enabled\n");
1898 
1899 already_enabled:
1900 	mutex_unlock(&kprobe_mutex);
1901 	return;
1902 }
1903 
1904 static void __kprobes disarm_all_kprobes(void)
1905 {
1906 	struct hlist_head *head;
1907 	struct hlist_node *node;
1908 	struct kprobe *p;
1909 	unsigned int i;
1910 
1911 	mutex_lock(&kprobe_mutex);
1912 
1913 	/* If kprobes are already disarmed, just return */
1914 	if (kprobes_all_disarmed)
1915 		goto already_disabled;
1916 
1917 	kprobes_all_disarmed = true;
1918 	printk(KERN_INFO "Kprobes globally disabled\n");
1919 
1920 	/*
1921 	 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1922 	 * because disarming may also unoptimize kprobes.
1923 	 */
1924 	get_online_cpus();
1925 	mutex_lock(&text_mutex);
1926 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1927 		head = &kprobe_table[i];
1928 		hlist_for_each_entry_rcu(p, node, head, hlist) {
1929 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1930 				__disarm_kprobe(p);
1931 		}
1932 	}
1933 
1934 	mutex_unlock(&text_mutex);
1935 	put_online_cpus();
1936 	mutex_unlock(&kprobe_mutex);
1937 	/* Allow all currently running kprobes to complete */
1938 	synchronize_sched();
1939 	return;
1940 
1941 already_disabled:
1942 	mutex_unlock(&kprobe_mutex);
1943 	return;
1944 }
1945 
1946 /*
1947  * XXX: The debugfs bool file interface doesn't allow for callbacks
1948  * when the bool state is switched. We can reuse that facility when
1949  * available
1950  */
1951 static ssize_t read_enabled_file_bool(struct file *file,
1952 	       char __user *user_buf, size_t count, loff_t *ppos)
1953 {
1954 	char buf[3];
1955 
1956 	if (!kprobes_all_disarmed)
1957 		buf[0] = '1';
1958 	else
1959 		buf[0] = '0';
1960 	buf[1] = '\n';
1961 	buf[2] = 0x00;
1962 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1963 }
1964 
1965 static ssize_t write_enabled_file_bool(struct file *file,
1966 	       const char __user *user_buf, size_t count, loff_t *ppos)
1967 {
1968 	char buf[32];
1969 	int buf_size;
1970 
1971 	buf_size = min(count, (sizeof(buf)-1));
1972 	if (copy_from_user(buf, user_buf, buf_size))
1973 		return -EFAULT;
1974 
1975 	switch (buf[0]) {
1976 	case 'y':
1977 	case 'Y':
1978 	case '1':
1979 		arm_all_kprobes();
1980 		break;
1981 	case 'n':
1982 	case 'N':
1983 	case '0':
1984 		disarm_all_kprobes();
1985 		break;
1986 	}
1987 
1988 	return count;
1989 }
1990 
1991 static const struct file_operations fops_kp = {
1992 	.read =         read_enabled_file_bool,
1993 	.write =        write_enabled_file_bool,
1994 };
1995 
1996 static int __kprobes debugfs_kprobe_init(void)
1997 {
1998 	struct dentry *dir, *file;
1999 	unsigned int value = 1;
2000 
2001 	dir = debugfs_create_dir("kprobes", NULL);
2002 	if (!dir)
2003 		return -ENOMEM;
2004 
2005 	file = debugfs_create_file("list", 0444, dir, NULL,
2006 				&debugfs_kprobes_operations);
2007 	if (!file) {
2008 		debugfs_remove(dir);
2009 		return -ENOMEM;
2010 	}
2011 
2012 	file = debugfs_create_file("enabled", 0600, dir,
2013 					&value, &fops_kp);
2014 	if (!file) {
2015 		debugfs_remove(dir);
2016 		return -ENOMEM;
2017 	}
2018 
2019 	return 0;
2020 }
2021 
2022 late_initcall(debugfs_kprobe_init);
2023 #endif /* CONFIG_DEBUG_FS */
2024 
2025 module_init(init_kprobes);
2026 
2027 /* defined in arch/.../kernel/kprobes.c */
2028 EXPORT_SYMBOL_GPL(jprobe_return);
2029