xref: /linux/kernel/kprobes.c (revision 93d546399c2b7d66a54d5fbd5eee17de19246bf6)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 
47 #include <asm-generic/sections.h>
48 #include <asm/cacheflush.h>
49 #include <asm/errno.h>
50 #include <asm/uaccess.h>
51 
52 #define KPROBE_HASH_BITS 6
53 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
54 
55 
56 /*
57  * Some oddball architectures like 64bit powerpc have function descriptors
58  * so this must be overridable.
59  */
60 #ifndef kprobe_lookup_name
61 #define kprobe_lookup_name(name, addr) \
62 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
63 #endif
64 
65 static int kprobes_initialized;
66 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
67 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
68 
69 /* NOTE: change this value only with kprobe_mutex held */
70 static bool kprobe_enabled;
71 
72 DEFINE_MUTEX(kprobe_mutex);		/* Protects kprobe_table */
73 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
74 static struct {
75 	spinlock_t lock ____cacheline_aligned_in_smp;
76 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
77 
78 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
79 {
80 	return &(kretprobe_table_locks[hash].lock);
81 }
82 
83 /*
84  * Normally, functions that we'd want to prohibit kprobes in, are marked
85  * __kprobes. But, there are cases where such functions already belong to
86  * a different section (__sched for preempt_schedule)
87  *
88  * For such cases, we now have a blacklist
89  */
90 static struct kprobe_blackpoint kprobe_blacklist[] = {
91 	{"preempt_schedule",},
92 	{NULL}    /* Terminator */
93 };
94 
95 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
96 /*
97  * kprobe->ainsn.insn points to the copy of the instruction to be
98  * single-stepped. x86_64, POWER4 and above have no-exec support and
99  * stepping on the instruction on a vmalloced/kmalloced/data page
100  * is a recipe for disaster
101  */
102 #define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
103 
104 struct kprobe_insn_page {
105 	struct hlist_node hlist;
106 	kprobe_opcode_t *insns;		/* Page of instruction slots */
107 	char slot_used[INSNS_PER_PAGE];
108 	int nused;
109 	int ngarbage;
110 };
111 
112 enum kprobe_slot_state {
113 	SLOT_CLEAN = 0,
114 	SLOT_DIRTY = 1,
115 	SLOT_USED = 2,
116 };
117 
118 static struct hlist_head kprobe_insn_pages;
119 static int kprobe_garbage_slots;
120 static int collect_garbage_slots(void);
121 
122 static int __kprobes check_safety(void)
123 {
124 	int ret = 0;
125 #if defined(CONFIG_PREEMPT) && defined(CONFIG_PM)
126 	ret = freeze_processes();
127 	if (ret == 0) {
128 		struct task_struct *p, *q;
129 		do_each_thread(p, q) {
130 			if (p != current && p->state == TASK_RUNNING &&
131 			    p->pid != 0) {
132 				printk("Check failed: %s is running\n",p->comm);
133 				ret = -1;
134 				goto loop_end;
135 			}
136 		} while_each_thread(p, q);
137 	}
138 loop_end:
139 	thaw_processes();
140 #else
141 	synchronize_sched();
142 #endif
143 	return ret;
144 }
145 
146 /**
147  * get_insn_slot() - Find a slot on an executable page for an instruction.
148  * We allocate an executable page if there's no room on existing ones.
149  */
150 kprobe_opcode_t __kprobes *get_insn_slot(void)
151 {
152 	struct kprobe_insn_page *kip;
153 	struct hlist_node *pos;
154 
155  retry:
156 	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
157 		if (kip->nused < INSNS_PER_PAGE) {
158 			int i;
159 			for (i = 0; i < INSNS_PER_PAGE; i++) {
160 				if (kip->slot_used[i] == SLOT_CLEAN) {
161 					kip->slot_used[i] = SLOT_USED;
162 					kip->nused++;
163 					return kip->insns + (i * MAX_INSN_SIZE);
164 				}
165 			}
166 			/* Surprise!  No unused slots.  Fix kip->nused. */
167 			kip->nused = INSNS_PER_PAGE;
168 		}
169 	}
170 
171 	/* If there are any garbage slots, collect it and try again. */
172 	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
173 		goto retry;
174 	}
175 	/* All out of space.  Need to allocate a new page. Use slot 0. */
176 	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
177 	if (!kip)
178 		return NULL;
179 
180 	/*
181 	 * Use module_alloc so this page is within +/- 2GB of where the
182 	 * kernel image and loaded module images reside. This is required
183 	 * so x86_64 can correctly handle the %rip-relative fixups.
184 	 */
185 	kip->insns = module_alloc(PAGE_SIZE);
186 	if (!kip->insns) {
187 		kfree(kip);
188 		return NULL;
189 	}
190 	INIT_HLIST_NODE(&kip->hlist);
191 	hlist_add_head(&kip->hlist, &kprobe_insn_pages);
192 	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	return kip->insns;
197 }
198 
199 /* Return 1 if all garbages are collected, otherwise 0. */
200 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
201 {
202 	kip->slot_used[idx] = SLOT_CLEAN;
203 	kip->nused--;
204 	if (kip->nused == 0) {
205 		/*
206 		 * Page is no longer in use.  Free it unless
207 		 * it's the last one.  We keep the last one
208 		 * so as not to have to set it up again the
209 		 * next time somebody inserts a probe.
210 		 */
211 		hlist_del(&kip->hlist);
212 		if (hlist_empty(&kprobe_insn_pages)) {
213 			INIT_HLIST_NODE(&kip->hlist);
214 			hlist_add_head(&kip->hlist,
215 				       &kprobe_insn_pages);
216 		} else {
217 			module_free(NULL, kip->insns);
218 			kfree(kip);
219 		}
220 		return 1;
221 	}
222 	return 0;
223 }
224 
225 static int __kprobes collect_garbage_slots(void)
226 {
227 	struct kprobe_insn_page *kip;
228 	struct hlist_node *pos, *next;
229 
230 	/* Ensure no-one is preepmted on the garbages */
231 	if (check_safety() != 0)
232 		return -EAGAIN;
233 
234 	hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
235 		int i;
236 		if (kip->ngarbage == 0)
237 			continue;
238 		kip->ngarbage = 0;	/* we will collect all garbages */
239 		for (i = 0; i < INSNS_PER_PAGE; i++) {
240 			if (kip->slot_used[i] == SLOT_DIRTY &&
241 			    collect_one_slot(kip, i))
242 				break;
243 		}
244 	}
245 	kprobe_garbage_slots = 0;
246 	return 0;
247 }
248 
249 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
250 {
251 	struct kprobe_insn_page *kip;
252 	struct hlist_node *pos;
253 
254 	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
255 		if (kip->insns <= slot &&
256 		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
257 			int i = (slot - kip->insns) / MAX_INSN_SIZE;
258 			if (dirty) {
259 				kip->slot_used[i] = SLOT_DIRTY;
260 				kip->ngarbage++;
261 			} else {
262 				collect_one_slot(kip, i);
263 			}
264 			break;
265 		}
266 	}
267 
268 	if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
269 		collect_garbage_slots();
270 }
271 #endif
272 
273 /* We have preemption disabled.. so it is safe to use __ versions */
274 static inline void set_kprobe_instance(struct kprobe *kp)
275 {
276 	__get_cpu_var(kprobe_instance) = kp;
277 }
278 
279 static inline void reset_kprobe_instance(void)
280 {
281 	__get_cpu_var(kprobe_instance) = NULL;
282 }
283 
284 /*
285  * This routine is called either:
286  * 	- under the kprobe_mutex - during kprobe_[un]register()
287  * 				OR
288  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
289  */
290 struct kprobe __kprobes *get_kprobe(void *addr)
291 {
292 	struct hlist_head *head;
293 	struct hlist_node *node;
294 	struct kprobe *p;
295 
296 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
297 	hlist_for_each_entry_rcu(p, node, head, hlist) {
298 		if (p->addr == addr)
299 			return p;
300 	}
301 	return NULL;
302 }
303 
304 /*
305  * Aggregate handlers for multiple kprobes support - these handlers
306  * take care of invoking the individual kprobe handlers on p->list
307  */
308 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
309 {
310 	struct kprobe *kp;
311 
312 	list_for_each_entry_rcu(kp, &p->list, list) {
313 		if (kp->pre_handler) {
314 			set_kprobe_instance(kp);
315 			if (kp->pre_handler(kp, regs))
316 				return 1;
317 		}
318 		reset_kprobe_instance();
319 	}
320 	return 0;
321 }
322 
323 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
324 					unsigned long flags)
325 {
326 	struct kprobe *kp;
327 
328 	list_for_each_entry_rcu(kp, &p->list, list) {
329 		if (kp->post_handler) {
330 			set_kprobe_instance(kp);
331 			kp->post_handler(kp, regs, flags);
332 			reset_kprobe_instance();
333 		}
334 	}
335 }
336 
337 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
338 					int trapnr)
339 {
340 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
341 
342 	/*
343 	 * if we faulted "during" the execution of a user specified
344 	 * probe handler, invoke just that probe's fault handler
345 	 */
346 	if (cur && cur->fault_handler) {
347 		if (cur->fault_handler(cur, regs, trapnr))
348 			return 1;
349 	}
350 	return 0;
351 }
352 
353 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
354 {
355 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
356 	int ret = 0;
357 
358 	if (cur && cur->break_handler) {
359 		if (cur->break_handler(cur, regs))
360 			ret = 1;
361 	}
362 	reset_kprobe_instance();
363 	return ret;
364 }
365 
366 /* Walks the list and increments nmissed count for multiprobe case */
367 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
368 {
369 	struct kprobe *kp;
370 	if (p->pre_handler != aggr_pre_handler) {
371 		p->nmissed++;
372 	} else {
373 		list_for_each_entry_rcu(kp, &p->list, list)
374 			kp->nmissed++;
375 	}
376 	return;
377 }
378 
379 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
380 				struct hlist_head *head)
381 {
382 	struct kretprobe *rp = ri->rp;
383 
384 	/* remove rp inst off the rprobe_inst_table */
385 	hlist_del(&ri->hlist);
386 	INIT_HLIST_NODE(&ri->hlist);
387 	if (likely(rp)) {
388 		spin_lock(&rp->lock);
389 		hlist_add_head(&ri->hlist, &rp->free_instances);
390 		spin_unlock(&rp->lock);
391 	} else
392 		/* Unregistering */
393 		hlist_add_head(&ri->hlist, head);
394 }
395 
396 void kretprobe_hash_lock(struct task_struct *tsk,
397 			 struct hlist_head **head, unsigned long *flags)
398 {
399 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
400 	spinlock_t *hlist_lock;
401 
402 	*head = &kretprobe_inst_table[hash];
403 	hlist_lock = kretprobe_table_lock_ptr(hash);
404 	spin_lock_irqsave(hlist_lock, *flags);
405 }
406 
407 static void kretprobe_table_lock(unsigned long hash, unsigned long *flags)
408 {
409 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
410 	spin_lock_irqsave(hlist_lock, *flags);
411 }
412 
413 void kretprobe_hash_unlock(struct task_struct *tsk, unsigned long *flags)
414 {
415 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
416 	spinlock_t *hlist_lock;
417 
418 	hlist_lock = kretprobe_table_lock_ptr(hash);
419 	spin_unlock_irqrestore(hlist_lock, *flags);
420 }
421 
422 void kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
423 {
424 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
425 	spin_unlock_irqrestore(hlist_lock, *flags);
426 }
427 
428 /*
429  * This function is called from finish_task_switch when task tk becomes dead,
430  * so that we can recycle any function-return probe instances associated
431  * with this task. These left over instances represent probed functions
432  * that have been called but will never return.
433  */
434 void __kprobes kprobe_flush_task(struct task_struct *tk)
435 {
436 	struct kretprobe_instance *ri;
437 	struct hlist_head *head, empty_rp;
438 	struct hlist_node *node, *tmp;
439 	unsigned long hash, flags = 0;
440 
441 	if (unlikely(!kprobes_initialized))
442 		/* Early boot.  kretprobe_table_locks not yet initialized. */
443 		return;
444 
445 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
446 	head = &kretprobe_inst_table[hash];
447 	kretprobe_table_lock(hash, &flags);
448 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
449 		if (ri->task == tk)
450 			recycle_rp_inst(ri, &empty_rp);
451 	}
452 	kretprobe_table_unlock(hash, &flags);
453 	INIT_HLIST_HEAD(&empty_rp);
454 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
455 		hlist_del(&ri->hlist);
456 		kfree(ri);
457 	}
458 }
459 
460 static inline void free_rp_inst(struct kretprobe *rp)
461 {
462 	struct kretprobe_instance *ri;
463 	struct hlist_node *pos, *next;
464 
465 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
466 		hlist_del(&ri->hlist);
467 		kfree(ri);
468 	}
469 }
470 
471 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
472 {
473 	unsigned long flags, hash;
474 	struct kretprobe_instance *ri;
475 	struct hlist_node *pos, *next;
476 	struct hlist_head *head;
477 
478 	/* No race here */
479 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
480 		kretprobe_table_lock(hash, &flags);
481 		head = &kretprobe_inst_table[hash];
482 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
483 			if (ri->rp == rp)
484 				ri->rp = NULL;
485 		}
486 		kretprobe_table_unlock(hash, &flags);
487 	}
488 	free_rp_inst(rp);
489 }
490 
491 /*
492  * Keep all fields in the kprobe consistent
493  */
494 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
495 {
496 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
497 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
498 }
499 
500 /*
501 * Add the new probe to old_p->list. Fail if this is the
502 * second jprobe at the address - two jprobes can't coexist
503 */
504 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
505 {
506 	if (p->break_handler) {
507 		if (old_p->break_handler)
508 			return -EEXIST;
509 		list_add_tail_rcu(&p->list, &old_p->list);
510 		old_p->break_handler = aggr_break_handler;
511 	} else
512 		list_add_rcu(&p->list, &old_p->list);
513 	if (p->post_handler && !old_p->post_handler)
514 		old_p->post_handler = aggr_post_handler;
515 	return 0;
516 }
517 
518 /*
519  * Fill in the required fields of the "manager kprobe". Replace the
520  * earlier kprobe in the hlist with the manager kprobe
521  */
522 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
523 {
524 	copy_kprobe(p, ap);
525 	flush_insn_slot(ap);
526 	ap->addr = p->addr;
527 	ap->pre_handler = aggr_pre_handler;
528 	ap->fault_handler = aggr_fault_handler;
529 	if (p->post_handler)
530 		ap->post_handler = aggr_post_handler;
531 	if (p->break_handler)
532 		ap->break_handler = aggr_break_handler;
533 
534 	INIT_LIST_HEAD(&ap->list);
535 	list_add_rcu(&p->list, &ap->list);
536 
537 	hlist_replace_rcu(&p->hlist, &ap->hlist);
538 }
539 
540 /*
541  * This is the second or subsequent kprobe at the address - handle
542  * the intricacies
543  */
544 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
545 					  struct kprobe *p)
546 {
547 	int ret = 0;
548 	struct kprobe *ap;
549 
550 	if (old_p->pre_handler == aggr_pre_handler) {
551 		copy_kprobe(old_p, p);
552 		ret = add_new_kprobe(old_p, p);
553 	} else {
554 		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
555 		if (!ap)
556 			return -ENOMEM;
557 		add_aggr_kprobe(ap, old_p);
558 		copy_kprobe(ap, p);
559 		ret = add_new_kprobe(ap, p);
560 	}
561 	return ret;
562 }
563 
564 static int __kprobes in_kprobes_functions(unsigned long addr)
565 {
566 	struct kprobe_blackpoint *kb;
567 
568 	if (addr >= (unsigned long)__kprobes_text_start &&
569 	    addr < (unsigned long)__kprobes_text_end)
570 		return -EINVAL;
571 	/*
572 	 * If there exists a kprobe_blacklist, verify and
573 	 * fail any probe registration in the prohibited area
574 	 */
575 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
576 		if (kb->start_addr) {
577 			if (addr >= kb->start_addr &&
578 			    addr < (kb->start_addr + kb->range))
579 				return -EINVAL;
580 		}
581 	}
582 	return 0;
583 }
584 
585 /*
586  * If we have a symbol_name argument, look it up and add the offset field
587  * to it. This way, we can specify a relative address to a symbol.
588  */
589 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
590 {
591 	kprobe_opcode_t *addr = p->addr;
592 	if (p->symbol_name) {
593 		if (addr)
594 			return NULL;
595 		kprobe_lookup_name(p->symbol_name, addr);
596 	}
597 
598 	if (!addr)
599 		return NULL;
600 	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
601 }
602 
603 static int __kprobes __register_kprobe(struct kprobe *p,
604 	unsigned long called_from)
605 {
606 	int ret = 0;
607 	struct kprobe *old_p;
608 	struct module *probed_mod;
609 	kprobe_opcode_t *addr;
610 
611 	addr = kprobe_addr(p);
612 	if (!addr)
613 		return -EINVAL;
614 	p->addr = addr;
615 
616 	preempt_disable();
617 	if (!__kernel_text_address((unsigned long) p->addr) ||
618 	    in_kprobes_functions((unsigned long) p->addr)) {
619 		preempt_enable();
620 		return -EINVAL;
621 	}
622 
623 	p->mod_refcounted = 0;
624 
625 	/*
626 	 * Check if are we probing a module.
627 	 */
628 	probed_mod = __module_text_address((unsigned long) p->addr);
629 	if (probed_mod) {
630 		struct module *calling_mod;
631 		calling_mod = __module_text_address(called_from);
632 		/*
633 		 * We must allow modules to probe themself and in this case
634 		 * avoid incrementing the module refcount, so as to allow
635 		 * unloading of self probing modules.
636 		 */
637 		if (calling_mod && calling_mod != probed_mod) {
638 			if (unlikely(!try_module_get(probed_mod))) {
639 				preempt_enable();
640 				return -EINVAL;
641 			}
642 			p->mod_refcounted = 1;
643 		} else
644 			probed_mod = NULL;
645 	}
646 	preempt_enable();
647 
648 	p->nmissed = 0;
649 	INIT_LIST_HEAD(&p->list);
650 	mutex_lock(&kprobe_mutex);
651 	old_p = get_kprobe(p->addr);
652 	if (old_p) {
653 		ret = register_aggr_kprobe(old_p, p);
654 		goto out;
655 	}
656 
657 	ret = arch_prepare_kprobe(p);
658 	if (ret)
659 		goto out;
660 
661 	INIT_HLIST_NODE(&p->hlist);
662 	hlist_add_head_rcu(&p->hlist,
663 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
664 
665 	if (kprobe_enabled)
666 		arch_arm_kprobe(p);
667 
668 out:
669 	mutex_unlock(&kprobe_mutex);
670 
671 	if (ret && probed_mod)
672 		module_put(probed_mod);
673 	return ret;
674 }
675 
676 /*
677  * Unregister a kprobe without a scheduler synchronization.
678  */
679 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
680 {
681 	struct kprobe *old_p, *list_p;
682 
683 	old_p = get_kprobe(p->addr);
684 	if (unlikely(!old_p))
685 		return -EINVAL;
686 
687 	if (p != old_p) {
688 		list_for_each_entry_rcu(list_p, &old_p->list, list)
689 			if (list_p == p)
690 			/* kprobe p is a valid probe */
691 				goto valid_p;
692 		return -EINVAL;
693 	}
694 valid_p:
695 	if (old_p == p ||
696 	    (old_p->pre_handler == aggr_pre_handler &&
697 	     list_is_singular(&old_p->list))) {
698 		/*
699 		 * Only probe on the hash list. Disarm only if kprobes are
700 		 * enabled - otherwise, the breakpoint would already have
701 		 * been removed. We save on flushing icache.
702 		 */
703 		if (kprobe_enabled)
704 			arch_disarm_kprobe(p);
705 		hlist_del_rcu(&old_p->hlist);
706 	} else {
707 		if (p->break_handler)
708 			old_p->break_handler = NULL;
709 		if (p->post_handler) {
710 			list_for_each_entry_rcu(list_p, &old_p->list, list) {
711 				if ((list_p != p) && (list_p->post_handler))
712 					goto noclean;
713 			}
714 			old_p->post_handler = NULL;
715 		}
716 noclean:
717 		list_del_rcu(&p->list);
718 	}
719 	return 0;
720 }
721 
722 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
723 {
724 	struct module *mod;
725 	struct kprobe *old_p;
726 
727 	if (p->mod_refcounted) {
728 		/*
729 		 * Since we've already incremented refcount,
730 		 * we don't need to disable preemption.
731 		 */
732 		mod = module_text_address((unsigned long)p->addr);
733 		if (mod)
734 			module_put(mod);
735 	}
736 
737 	if (list_empty(&p->list) || list_is_singular(&p->list)) {
738 		if (!list_empty(&p->list)) {
739 			/* "p" is the last child of an aggr_kprobe */
740 			old_p = list_entry(p->list.next, struct kprobe, list);
741 			list_del(&p->list);
742 			kfree(old_p);
743 		}
744 		arch_remove_kprobe(p);
745 	}
746 }
747 
748 static int __register_kprobes(struct kprobe **kps, int num,
749 	unsigned long called_from)
750 {
751 	int i, ret = 0;
752 
753 	if (num <= 0)
754 		return -EINVAL;
755 	for (i = 0; i < num; i++) {
756 		ret = __register_kprobe(kps[i], called_from);
757 		if (ret < 0) {
758 			if (i > 0)
759 				unregister_kprobes(kps, i);
760 			break;
761 		}
762 	}
763 	return ret;
764 }
765 
766 /*
767  * Registration and unregistration functions for kprobe.
768  */
769 int __kprobes register_kprobe(struct kprobe *p)
770 {
771 	return __register_kprobes(&p, 1,
772 				  (unsigned long)__builtin_return_address(0));
773 }
774 
775 void __kprobes unregister_kprobe(struct kprobe *p)
776 {
777 	unregister_kprobes(&p, 1);
778 }
779 
780 int __kprobes register_kprobes(struct kprobe **kps, int num)
781 {
782 	return __register_kprobes(kps, num,
783 				  (unsigned long)__builtin_return_address(0));
784 }
785 
786 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
787 {
788 	int i;
789 
790 	if (num <= 0)
791 		return;
792 	mutex_lock(&kprobe_mutex);
793 	for (i = 0; i < num; i++)
794 		if (__unregister_kprobe_top(kps[i]) < 0)
795 			kps[i]->addr = NULL;
796 	mutex_unlock(&kprobe_mutex);
797 
798 	synchronize_sched();
799 	for (i = 0; i < num; i++)
800 		if (kps[i]->addr)
801 			__unregister_kprobe_bottom(kps[i]);
802 }
803 
804 static struct notifier_block kprobe_exceptions_nb = {
805 	.notifier_call = kprobe_exceptions_notify,
806 	.priority = 0x7fffffff /* we need to be notified first */
807 };
808 
809 unsigned long __weak arch_deref_entry_point(void *entry)
810 {
811 	return (unsigned long)entry;
812 }
813 
814 static int __register_jprobes(struct jprobe **jps, int num,
815 	unsigned long called_from)
816 {
817 	struct jprobe *jp;
818 	int ret = 0, i;
819 
820 	if (num <= 0)
821 		return -EINVAL;
822 	for (i = 0; i < num; i++) {
823 		unsigned long addr;
824 		jp = jps[i];
825 		addr = arch_deref_entry_point(jp->entry);
826 
827 		if (!kernel_text_address(addr))
828 			ret = -EINVAL;
829 		else {
830 			/* Todo: Verify probepoint is a function entry point */
831 			jp->kp.pre_handler = setjmp_pre_handler;
832 			jp->kp.break_handler = longjmp_break_handler;
833 			ret = __register_kprobe(&jp->kp, called_from);
834 		}
835 		if (ret < 0) {
836 			if (i > 0)
837 				unregister_jprobes(jps, i);
838 			break;
839 		}
840 	}
841 	return ret;
842 }
843 
844 int __kprobes register_jprobe(struct jprobe *jp)
845 {
846 	return __register_jprobes(&jp, 1,
847 		(unsigned long)__builtin_return_address(0));
848 }
849 
850 void __kprobes unregister_jprobe(struct jprobe *jp)
851 {
852 	unregister_jprobes(&jp, 1);
853 }
854 
855 int __kprobes register_jprobes(struct jprobe **jps, int num)
856 {
857 	return __register_jprobes(jps, num,
858 		(unsigned long)__builtin_return_address(0));
859 }
860 
861 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
862 {
863 	int i;
864 
865 	if (num <= 0)
866 		return;
867 	mutex_lock(&kprobe_mutex);
868 	for (i = 0; i < num; i++)
869 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
870 			jps[i]->kp.addr = NULL;
871 	mutex_unlock(&kprobe_mutex);
872 
873 	synchronize_sched();
874 	for (i = 0; i < num; i++) {
875 		if (jps[i]->kp.addr)
876 			__unregister_kprobe_bottom(&jps[i]->kp);
877 	}
878 }
879 
880 #ifdef CONFIG_KRETPROBES
881 /*
882  * This kprobe pre_handler is registered with every kretprobe. When probe
883  * hits it will set up the return probe.
884  */
885 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
886 					   struct pt_regs *regs)
887 {
888 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
889 	unsigned long hash, flags = 0;
890 	struct kretprobe_instance *ri;
891 
892 	/*TODO: consider to only swap the RA after the last pre_handler fired */
893 	hash = hash_ptr(current, KPROBE_HASH_BITS);
894 	spin_lock_irqsave(&rp->lock, flags);
895 	if (!hlist_empty(&rp->free_instances)) {
896 		ri = hlist_entry(rp->free_instances.first,
897 				struct kretprobe_instance, hlist);
898 		hlist_del(&ri->hlist);
899 		spin_unlock_irqrestore(&rp->lock, flags);
900 
901 		ri->rp = rp;
902 		ri->task = current;
903 
904 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
905 			spin_unlock_irqrestore(&rp->lock, flags);
906 			return 0;
907 		}
908 
909 		arch_prepare_kretprobe(ri, regs);
910 
911 		/* XXX(hch): why is there no hlist_move_head? */
912 		INIT_HLIST_NODE(&ri->hlist);
913 		kretprobe_table_lock(hash, &flags);
914 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
915 		kretprobe_table_unlock(hash, &flags);
916 	} else {
917 		rp->nmissed++;
918 		spin_unlock_irqrestore(&rp->lock, flags);
919 	}
920 	return 0;
921 }
922 
923 static int __kprobes __register_kretprobe(struct kretprobe *rp,
924 					  unsigned long called_from)
925 {
926 	int ret = 0;
927 	struct kretprobe_instance *inst;
928 	int i;
929 	void *addr;
930 
931 	if (kretprobe_blacklist_size) {
932 		addr = kprobe_addr(&rp->kp);
933 		if (!addr)
934 			return -EINVAL;
935 
936 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
937 			if (kretprobe_blacklist[i].addr == addr)
938 				return -EINVAL;
939 		}
940 	}
941 
942 	rp->kp.pre_handler = pre_handler_kretprobe;
943 	rp->kp.post_handler = NULL;
944 	rp->kp.fault_handler = NULL;
945 	rp->kp.break_handler = NULL;
946 
947 	/* Pre-allocate memory for max kretprobe instances */
948 	if (rp->maxactive <= 0) {
949 #ifdef CONFIG_PREEMPT
950 		rp->maxactive = max(10, 2 * NR_CPUS);
951 #else
952 		rp->maxactive = NR_CPUS;
953 #endif
954 	}
955 	spin_lock_init(&rp->lock);
956 	INIT_HLIST_HEAD(&rp->free_instances);
957 	for (i = 0; i < rp->maxactive; i++) {
958 		inst = kmalloc(sizeof(struct kretprobe_instance) +
959 			       rp->data_size, GFP_KERNEL);
960 		if (inst == NULL) {
961 			free_rp_inst(rp);
962 			return -ENOMEM;
963 		}
964 		INIT_HLIST_NODE(&inst->hlist);
965 		hlist_add_head(&inst->hlist, &rp->free_instances);
966 	}
967 
968 	rp->nmissed = 0;
969 	/* Establish function entry probe point */
970 	ret = __register_kprobe(&rp->kp, called_from);
971 	if (ret != 0)
972 		free_rp_inst(rp);
973 	return ret;
974 }
975 
976 static int __register_kretprobes(struct kretprobe **rps, int num,
977 	unsigned long called_from)
978 {
979 	int ret = 0, i;
980 
981 	if (num <= 0)
982 		return -EINVAL;
983 	for (i = 0; i < num; i++) {
984 		ret = __register_kretprobe(rps[i], called_from);
985 		if (ret < 0) {
986 			if (i > 0)
987 				unregister_kretprobes(rps, i);
988 			break;
989 		}
990 	}
991 	return ret;
992 }
993 
994 int __kprobes register_kretprobe(struct kretprobe *rp)
995 {
996 	return __register_kretprobes(&rp, 1,
997 			(unsigned long)__builtin_return_address(0));
998 }
999 
1000 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1001 {
1002 	unregister_kretprobes(&rp, 1);
1003 }
1004 
1005 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1006 {
1007 	return __register_kretprobes(rps, num,
1008 			(unsigned long)__builtin_return_address(0));
1009 }
1010 
1011 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1012 {
1013 	int i;
1014 
1015 	if (num <= 0)
1016 		return;
1017 	mutex_lock(&kprobe_mutex);
1018 	for (i = 0; i < num; i++)
1019 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1020 			rps[i]->kp.addr = NULL;
1021 	mutex_unlock(&kprobe_mutex);
1022 
1023 	synchronize_sched();
1024 	for (i = 0; i < num; i++) {
1025 		if (rps[i]->kp.addr) {
1026 			__unregister_kprobe_bottom(&rps[i]->kp);
1027 			cleanup_rp_inst(rps[i]);
1028 		}
1029 	}
1030 }
1031 
1032 #else /* CONFIG_KRETPROBES */
1033 int __kprobes register_kretprobe(struct kretprobe *rp)
1034 {
1035 	return -ENOSYS;
1036 }
1037 
1038 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1039 {
1040 	return -ENOSYS;
1041 }
1042 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1043 {
1044 }
1045 
1046 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1047 {
1048 }
1049 
1050 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1051 					   struct pt_regs *regs)
1052 {
1053 	return 0;
1054 }
1055 
1056 #endif /* CONFIG_KRETPROBES */
1057 
1058 static int __init init_kprobes(void)
1059 {
1060 	int i, err = 0;
1061 	unsigned long offset = 0, size = 0;
1062 	char *modname, namebuf[128];
1063 	const char *symbol_name;
1064 	void *addr;
1065 	struct kprobe_blackpoint *kb;
1066 
1067 	/* FIXME allocate the probe table, currently defined statically */
1068 	/* initialize all list heads */
1069 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1070 		INIT_HLIST_HEAD(&kprobe_table[i]);
1071 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1072 		spin_lock_init(&(kretprobe_table_locks[i].lock));
1073 	}
1074 
1075 	/*
1076 	 * Lookup and populate the kprobe_blacklist.
1077 	 *
1078 	 * Unlike the kretprobe blacklist, we'll need to determine
1079 	 * the range of addresses that belong to the said functions,
1080 	 * since a kprobe need not necessarily be at the beginning
1081 	 * of a function.
1082 	 */
1083 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1084 		kprobe_lookup_name(kb->name, addr);
1085 		if (!addr)
1086 			continue;
1087 
1088 		kb->start_addr = (unsigned long)addr;
1089 		symbol_name = kallsyms_lookup(kb->start_addr,
1090 				&size, &offset, &modname, namebuf);
1091 		if (!symbol_name)
1092 			kb->range = 0;
1093 		else
1094 			kb->range = size;
1095 	}
1096 
1097 	if (kretprobe_blacklist_size) {
1098 		/* lookup the function address from its name */
1099 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1100 			kprobe_lookup_name(kretprobe_blacklist[i].name,
1101 					   kretprobe_blacklist[i].addr);
1102 			if (!kretprobe_blacklist[i].addr)
1103 				printk("kretprobe: lookup failed: %s\n",
1104 				       kretprobe_blacklist[i].name);
1105 		}
1106 	}
1107 
1108 	/* By default, kprobes are enabled */
1109 	kprobe_enabled = true;
1110 
1111 	err = arch_init_kprobes();
1112 	if (!err)
1113 		err = register_die_notifier(&kprobe_exceptions_nb);
1114 	kprobes_initialized = (err == 0);
1115 
1116 	if (!err)
1117 		init_test_probes();
1118 	return err;
1119 }
1120 
1121 #ifdef CONFIG_DEBUG_FS
1122 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1123 		const char *sym, int offset,char *modname)
1124 {
1125 	char *kprobe_type;
1126 
1127 	if (p->pre_handler == pre_handler_kretprobe)
1128 		kprobe_type = "r";
1129 	else if (p->pre_handler == setjmp_pre_handler)
1130 		kprobe_type = "j";
1131 	else
1132 		kprobe_type = "k";
1133 	if (sym)
1134 		seq_printf(pi, "%p  %s  %s+0x%x  %s\n", p->addr, kprobe_type,
1135 			sym, offset, (modname ? modname : " "));
1136 	else
1137 		seq_printf(pi, "%p  %s  %p\n", p->addr, kprobe_type, p->addr);
1138 }
1139 
1140 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1141 {
1142 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1143 }
1144 
1145 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1146 {
1147 	(*pos)++;
1148 	if (*pos >= KPROBE_TABLE_SIZE)
1149 		return NULL;
1150 	return pos;
1151 }
1152 
1153 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1154 {
1155 	/* Nothing to do */
1156 }
1157 
1158 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1159 {
1160 	struct hlist_head *head;
1161 	struct hlist_node *node;
1162 	struct kprobe *p, *kp;
1163 	const char *sym = NULL;
1164 	unsigned int i = *(loff_t *) v;
1165 	unsigned long offset = 0;
1166 	char *modname, namebuf[128];
1167 
1168 	head = &kprobe_table[i];
1169 	preempt_disable();
1170 	hlist_for_each_entry_rcu(p, node, head, hlist) {
1171 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1172 					&offset, &modname, namebuf);
1173 		if (p->pre_handler == aggr_pre_handler) {
1174 			list_for_each_entry_rcu(kp, &p->list, list)
1175 				report_probe(pi, kp, sym, offset, modname);
1176 		} else
1177 			report_probe(pi, p, sym, offset, modname);
1178 	}
1179 	preempt_enable();
1180 	return 0;
1181 }
1182 
1183 static struct seq_operations kprobes_seq_ops = {
1184 	.start = kprobe_seq_start,
1185 	.next  = kprobe_seq_next,
1186 	.stop  = kprobe_seq_stop,
1187 	.show  = show_kprobe_addr
1188 };
1189 
1190 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1191 {
1192 	return seq_open(filp, &kprobes_seq_ops);
1193 }
1194 
1195 static struct file_operations debugfs_kprobes_operations = {
1196 	.open           = kprobes_open,
1197 	.read           = seq_read,
1198 	.llseek         = seq_lseek,
1199 	.release        = seq_release,
1200 };
1201 
1202 static void __kprobes enable_all_kprobes(void)
1203 {
1204 	struct hlist_head *head;
1205 	struct hlist_node *node;
1206 	struct kprobe *p;
1207 	unsigned int i;
1208 
1209 	mutex_lock(&kprobe_mutex);
1210 
1211 	/* If kprobes are already enabled, just return */
1212 	if (kprobe_enabled)
1213 		goto already_enabled;
1214 
1215 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1216 		head = &kprobe_table[i];
1217 		hlist_for_each_entry_rcu(p, node, head, hlist)
1218 			arch_arm_kprobe(p);
1219 	}
1220 
1221 	kprobe_enabled = true;
1222 	printk(KERN_INFO "Kprobes globally enabled\n");
1223 
1224 already_enabled:
1225 	mutex_unlock(&kprobe_mutex);
1226 	return;
1227 }
1228 
1229 static void __kprobes disable_all_kprobes(void)
1230 {
1231 	struct hlist_head *head;
1232 	struct hlist_node *node;
1233 	struct kprobe *p;
1234 	unsigned int i;
1235 
1236 	mutex_lock(&kprobe_mutex);
1237 
1238 	/* If kprobes are already disabled, just return */
1239 	if (!kprobe_enabled)
1240 		goto already_disabled;
1241 
1242 	kprobe_enabled = false;
1243 	printk(KERN_INFO "Kprobes globally disabled\n");
1244 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1245 		head = &kprobe_table[i];
1246 		hlist_for_each_entry_rcu(p, node, head, hlist) {
1247 			if (!arch_trampoline_kprobe(p))
1248 				arch_disarm_kprobe(p);
1249 		}
1250 	}
1251 
1252 	mutex_unlock(&kprobe_mutex);
1253 	/* Allow all currently running kprobes to complete */
1254 	synchronize_sched();
1255 	return;
1256 
1257 already_disabled:
1258 	mutex_unlock(&kprobe_mutex);
1259 	return;
1260 }
1261 
1262 /*
1263  * XXX: The debugfs bool file interface doesn't allow for callbacks
1264  * when the bool state is switched. We can reuse that facility when
1265  * available
1266  */
1267 static ssize_t read_enabled_file_bool(struct file *file,
1268 	       char __user *user_buf, size_t count, loff_t *ppos)
1269 {
1270 	char buf[3];
1271 
1272 	if (kprobe_enabled)
1273 		buf[0] = '1';
1274 	else
1275 		buf[0] = '0';
1276 	buf[1] = '\n';
1277 	buf[2] = 0x00;
1278 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1279 }
1280 
1281 static ssize_t write_enabled_file_bool(struct file *file,
1282 	       const char __user *user_buf, size_t count, loff_t *ppos)
1283 {
1284 	char buf[32];
1285 	int buf_size;
1286 
1287 	buf_size = min(count, (sizeof(buf)-1));
1288 	if (copy_from_user(buf, user_buf, buf_size))
1289 		return -EFAULT;
1290 
1291 	switch (buf[0]) {
1292 	case 'y':
1293 	case 'Y':
1294 	case '1':
1295 		enable_all_kprobes();
1296 		break;
1297 	case 'n':
1298 	case 'N':
1299 	case '0':
1300 		disable_all_kprobes();
1301 		break;
1302 	}
1303 
1304 	return count;
1305 }
1306 
1307 static struct file_operations fops_kp = {
1308 	.read =         read_enabled_file_bool,
1309 	.write =        write_enabled_file_bool,
1310 };
1311 
1312 static int __kprobes debugfs_kprobe_init(void)
1313 {
1314 	struct dentry *dir, *file;
1315 	unsigned int value = 1;
1316 
1317 	dir = debugfs_create_dir("kprobes", NULL);
1318 	if (!dir)
1319 		return -ENOMEM;
1320 
1321 	file = debugfs_create_file("list", 0444, dir, NULL,
1322 				&debugfs_kprobes_operations);
1323 	if (!file) {
1324 		debugfs_remove(dir);
1325 		return -ENOMEM;
1326 	}
1327 
1328 	file = debugfs_create_file("enabled", 0600, dir,
1329 					&value, &fops_kp);
1330 	if (!file) {
1331 		debugfs_remove(dir);
1332 		return -ENOMEM;
1333 	}
1334 
1335 	return 0;
1336 }
1337 
1338 late_initcall(debugfs_kprobe_init);
1339 #endif /* CONFIG_DEBUG_FS */
1340 
1341 module_init(init_kprobes);
1342 
1343 EXPORT_SYMBOL_GPL(register_kprobe);
1344 EXPORT_SYMBOL_GPL(unregister_kprobe);
1345 EXPORT_SYMBOL_GPL(register_kprobes);
1346 EXPORT_SYMBOL_GPL(unregister_kprobes);
1347 EXPORT_SYMBOL_GPL(register_jprobe);
1348 EXPORT_SYMBOL_GPL(unregister_jprobe);
1349 EXPORT_SYMBOL_GPL(register_jprobes);
1350 EXPORT_SYMBOL_GPL(unregister_jprobes);
1351 EXPORT_SYMBOL_GPL(jprobe_return);
1352 EXPORT_SYMBOL_GPL(register_kretprobe);
1353 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1354 EXPORT_SYMBOL_GPL(register_kretprobes);
1355 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1356