xref: /linux/kernel/kprobes.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 
47 #include <asm-generic/sections.h>
48 #include <asm/cacheflush.h>
49 #include <asm/errno.h>
50 #include <asm/uaccess.h>
51 
52 #define KPROBE_HASH_BITS 6
53 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
54 
55 
56 /*
57  * Some oddball architectures like 64bit powerpc have function descriptors
58  * so this must be overridable.
59  */
60 #ifndef kprobe_lookup_name
61 #define kprobe_lookup_name(name, addr) \
62 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
63 #endif
64 
65 static int kprobes_initialized;
66 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
67 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
68 
69 /* NOTE: change this value only with kprobe_mutex held */
70 static bool kprobe_enabled;
71 
72 DEFINE_MUTEX(kprobe_mutex);		/* Protects kprobe_table */
73 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
74 static struct {
75 	spinlock_t lock ____cacheline_aligned;
76 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
77 
78 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
79 {
80 	return &(kretprobe_table_locks[hash].lock);
81 }
82 
83 /*
84  * Normally, functions that we'd want to prohibit kprobes in, are marked
85  * __kprobes. But, there are cases where such functions already belong to
86  * a different section (__sched for preempt_schedule)
87  *
88  * For such cases, we now have a blacklist
89  */
90 static struct kprobe_blackpoint kprobe_blacklist[] = {
91 	{"preempt_schedule",},
92 	{NULL}    /* Terminator */
93 };
94 
95 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
96 /*
97  * kprobe->ainsn.insn points to the copy of the instruction to be
98  * single-stepped. x86_64, POWER4 and above have no-exec support and
99  * stepping on the instruction on a vmalloced/kmalloced/data page
100  * is a recipe for disaster
101  */
102 #define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
103 
104 struct kprobe_insn_page {
105 	struct hlist_node hlist;
106 	kprobe_opcode_t *insns;		/* Page of instruction slots */
107 	char slot_used[INSNS_PER_PAGE];
108 	int nused;
109 	int ngarbage;
110 };
111 
112 enum kprobe_slot_state {
113 	SLOT_CLEAN = 0,
114 	SLOT_DIRTY = 1,
115 	SLOT_USED = 2,
116 };
117 
118 static struct hlist_head kprobe_insn_pages;
119 static int kprobe_garbage_slots;
120 static int collect_garbage_slots(void);
121 
122 static int __kprobes check_safety(void)
123 {
124 	int ret = 0;
125 #if defined(CONFIG_PREEMPT) && defined(CONFIG_PM)
126 	ret = freeze_processes();
127 	if (ret == 0) {
128 		struct task_struct *p, *q;
129 		do_each_thread(p, q) {
130 			if (p != current && p->state == TASK_RUNNING &&
131 			    p->pid != 0) {
132 				printk("Check failed: %s is running\n",p->comm);
133 				ret = -1;
134 				goto loop_end;
135 			}
136 		} while_each_thread(p, q);
137 	}
138 loop_end:
139 	thaw_processes();
140 #else
141 	synchronize_sched();
142 #endif
143 	return ret;
144 }
145 
146 /**
147  * get_insn_slot() - Find a slot on an executable page for an instruction.
148  * We allocate an executable page if there's no room on existing ones.
149  */
150 kprobe_opcode_t __kprobes *get_insn_slot(void)
151 {
152 	struct kprobe_insn_page *kip;
153 	struct hlist_node *pos;
154 
155  retry:
156 	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
157 		if (kip->nused < INSNS_PER_PAGE) {
158 			int i;
159 			for (i = 0; i < INSNS_PER_PAGE; i++) {
160 				if (kip->slot_used[i] == SLOT_CLEAN) {
161 					kip->slot_used[i] = SLOT_USED;
162 					kip->nused++;
163 					return kip->insns + (i * MAX_INSN_SIZE);
164 				}
165 			}
166 			/* Surprise!  No unused slots.  Fix kip->nused. */
167 			kip->nused = INSNS_PER_PAGE;
168 		}
169 	}
170 
171 	/* If there are any garbage slots, collect it and try again. */
172 	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
173 		goto retry;
174 	}
175 	/* All out of space.  Need to allocate a new page. Use slot 0. */
176 	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
177 	if (!kip)
178 		return NULL;
179 
180 	/*
181 	 * Use module_alloc so this page is within +/- 2GB of where the
182 	 * kernel image and loaded module images reside. This is required
183 	 * so x86_64 can correctly handle the %rip-relative fixups.
184 	 */
185 	kip->insns = module_alloc(PAGE_SIZE);
186 	if (!kip->insns) {
187 		kfree(kip);
188 		return NULL;
189 	}
190 	INIT_HLIST_NODE(&kip->hlist);
191 	hlist_add_head(&kip->hlist, &kprobe_insn_pages);
192 	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	return kip->insns;
197 }
198 
199 /* Return 1 if all garbages are collected, otherwise 0. */
200 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
201 {
202 	kip->slot_used[idx] = SLOT_CLEAN;
203 	kip->nused--;
204 	if (kip->nused == 0) {
205 		/*
206 		 * Page is no longer in use.  Free it unless
207 		 * it's the last one.  We keep the last one
208 		 * so as not to have to set it up again the
209 		 * next time somebody inserts a probe.
210 		 */
211 		hlist_del(&kip->hlist);
212 		if (hlist_empty(&kprobe_insn_pages)) {
213 			INIT_HLIST_NODE(&kip->hlist);
214 			hlist_add_head(&kip->hlist,
215 				       &kprobe_insn_pages);
216 		} else {
217 			module_free(NULL, kip->insns);
218 			kfree(kip);
219 		}
220 		return 1;
221 	}
222 	return 0;
223 }
224 
225 static int __kprobes collect_garbage_slots(void)
226 {
227 	struct kprobe_insn_page *kip;
228 	struct hlist_node *pos, *next;
229 
230 	/* Ensure no-one is preepmted on the garbages */
231 	if (check_safety() != 0)
232 		return -EAGAIN;
233 
234 	hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
235 		int i;
236 		if (kip->ngarbage == 0)
237 			continue;
238 		kip->ngarbage = 0;	/* we will collect all garbages */
239 		for (i = 0; i < INSNS_PER_PAGE; i++) {
240 			if (kip->slot_used[i] == SLOT_DIRTY &&
241 			    collect_one_slot(kip, i))
242 				break;
243 		}
244 	}
245 	kprobe_garbage_slots = 0;
246 	return 0;
247 }
248 
249 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
250 {
251 	struct kprobe_insn_page *kip;
252 	struct hlist_node *pos;
253 
254 	hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
255 		if (kip->insns <= slot &&
256 		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
257 			int i = (slot - kip->insns) / MAX_INSN_SIZE;
258 			if (dirty) {
259 				kip->slot_used[i] = SLOT_DIRTY;
260 				kip->ngarbage++;
261 			} else {
262 				collect_one_slot(kip, i);
263 			}
264 			break;
265 		}
266 	}
267 
268 	if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
269 		collect_garbage_slots();
270 }
271 #endif
272 
273 /* We have preemption disabled.. so it is safe to use __ versions */
274 static inline void set_kprobe_instance(struct kprobe *kp)
275 {
276 	__get_cpu_var(kprobe_instance) = kp;
277 }
278 
279 static inline void reset_kprobe_instance(void)
280 {
281 	__get_cpu_var(kprobe_instance) = NULL;
282 }
283 
284 /*
285  * This routine is called either:
286  * 	- under the kprobe_mutex - during kprobe_[un]register()
287  * 				OR
288  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
289  */
290 struct kprobe __kprobes *get_kprobe(void *addr)
291 {
292 	struct hlist_head *head;
293 	struct hlist_node *node;
294 	struct kprobe *p;
295 
296 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
297 	hlist_for_each_entry_rcu(p, node, head, hlist) {
298 		if (p->addr == addr)
299 			return p;
300 	}
301 	return NULL;
302 }
303 
304 /*
305  * Aggregate handlers for multiple kprobes support - these handlers
306  * take care of invoking the individual kprobe handlers on p->list
307  */
308 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
309 {
310 	struct kprobe *kp;
311 
312 	list_for_each_entry_rcu(kp, &p->list, list) {
313 		if (kp->pre_handler) {
314 			set_kprobe_instance(kp);
315 			if (kp->pre_handler(kp, regs))
316 				return 1;
317 		}
318 		reset_kprobe_instance();
319 	}
320 	return 0;
321 }
322 
323 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
324 					unsigned long flags)
325 {
326 	struct kprobe *kp;
327 
328 	list_for_each_entry_rcu(kp, &p->list, list) {
329 		if (kp->post_handler) {
330 			set_kprobe_instance(kp);
331 			kp->post_handler(kp, regs, flags);
332 			reset_kprobe_instance();
333 		}
334 	}
335 }
336 
337 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
338 					int trapnr)
339 {
340 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
341 
342 	/*
343 	 * if we faulted "during" the execution of a user specified
344 	 * probe handler, invoke just that probe's fault handler
345 	 */
346 	if (cur && cur->fault_handler) {
347 		if (cur->fault_handler(cur, regs, trapnr))
348 			return 1;
349 	}
350 	return 0;
351 }
352 
353 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
354 {
355 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
356 	int ret = 0;
357 
358 	if (cur && cur->break_handler) {
359 		if (cur->break_handler(cur, regs))
360 			ret = 1;
361 	}
362 	reset_kprobe_instance();
363 	return ret;
364 }
365 
366 /* Walks the list and increments nmissed count for multiprobe case */
367 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
368 {
369 	struct kprobe *kp;
370 	if (p->pre_handler != aggr_pre_handler) {
371 		p->nmissed++;
372 	} else {
373 		list_for_each_entry_rcu(kp, &p->list, list)
374 			kp->nmissed++;
375 	}
376 	return;
377 }
378 
379 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
380 				struct hlist_head *head)
381 {
382 	struct kretprobe *rp = ri->rp;
383 
384 	/* remove rp inst off the rprobe_inst_table */
385 	hlist_del(&ri->hlist);
386 	INIT_HLIST_NODE(&ri->hlist);
387 	if (likely(rp)) {
388 		spin_lock(&rp->lock);
389 		hlist_add_head(&ri->hlist, &rp->free_instances);
390 		spin_unlock(&rp->lock);
391 	} else
392 		/* Unregistering */
393 		hlist_add_head(&ri->hlist, head);
394 }
395 
396 void kretprobe_hash_lock(struct task_struct *tsk,
397 			 struct hlist_head **head, unsigned long *flags)
398 {
399 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
400 	spinlock_t *hlist_lock;
401 
402 	*head = &kretprobe_inst_table[hash];
403 	hlist_lock = kretprobe_table_lock_ptr(hash);
404 	spin_lock_irqsave(hlist_lock, *flags);
405 }
406 
407 static void kretprobe_table_lock(unsigned long hash, unsigned long *flags)
408 {
409 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
410 	spin_lock_irqsave(hlist_lock, *flags);
411 }
412 
413 void kretprobe_hash_unlock(struct task_struct *tsk, unsigned long *flags)
414 {
415 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
416 	spinlock_t *hlist_lock;
417 
418 	hlist_lock = kretprobe_table_lock_ptr(hash);
419 	spin_unlock_irqrestore(hlist_lock, *flags);
420 }
421 
422 void kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
423 {
424 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
425 	spin_unlock_irqrestore(hlist_lock, *flags);
426 }
427 
428 /*
429  * This function is called from finish_task_switch when task tk becomes dead,
430  * so that we can recycle any function-return probe instances associated
431  * with this task. These left over instances represent probed functions
432  * that have been called but will never return.
433  */
434 void __kprobes kprobe_flush_task(struct task_struct *tk)
435 {
436 	struct kretprobe_instance *ri;
437 	struct hlist_head *head, empty_rp;
438 	struct hlist_node *node, *tmp;
439 	unsigned long hash, flags = 0;
440 
441 	if (unlikely(!kprobes_initialized))
442 		/* Early boot.  kretprobe_table_locks not yet initialized. */
443 		return;
444 
445 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
446 	head = &kretprobe_inst_table[hash];
447 	kretprobe_table_lock(hash, &flags);
448 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
449 		if (ri->task == tk)
450 			recycle_rp_inst(ri, &empty_rp);
451 	}
452 	kretprobe_table_unlock(hash, &flags);
453 	INIT_HLIST_HEAD(&empty_rp);
454 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
455 		hlist_del(&ri->hlist);
456 		kfree(ri);
457 	}
458 }
459 
460 static inline void free_rp_inst(struct kretprobe *rp)
461 {
462 	struct kretprobe_instance *ri;
463 	struct hlist_node *pos, *next;
464 
465 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
466 		hlist_del(&ri->hlist);
467 		kfree(ri);
468 	}
469 }
470 
471 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
472 {
473 	unsigned long flags, hash;
474 	struct kretprobe_instance *ri;
475 	struct hlist_node *pos, *next;
476 	struct hlist_head *head;
477 
478 	/* No race here */
479 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
480 		kretprobe_table_lock(hash, &flags);
481 		head = &kretprobe_inst_table[hash];
482 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
483 			if (ri->rp == rp)
484 				ri->rp = NULL;
485 		}
486 		kretprobe_table_unlock(hash, &flags);
487 	}
488 	free_rp_inst(rp);
489 }
490 
491 /*
492  * Keep all fields in the kprobe consistent
493  */
494 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
495 {
496 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
497 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
498 }
499 
500 /*
501 * Add the new probe to old_p->list. Fail if this is the
502 * second jprobe at the address - two jprobes can't coexist
503 */
504 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
505 {
506 	if (p->break_handler) {
507 		if (old_p->break_handler)
508 			return -EEXIST;
509 		list_add_tail_rcu(&p->list, &old_p->list);
510 		old_p->break_handler = aggr_break_handler;
511 	} else
512 		list_add_rcu(&p->list, &old_p->list);
513 	if (p->post_handler && !old_p->post_handler)
514 		old_p->post_handler = aggr_post_handler;
515 	return 0;
516 }
517 
518 /*
519  * Fill in the required fields of the "manager kprobe". Replace the
520  * earlier kprobe in the hlist with the manager kprobe
521  */
522 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
523 {
524 	copy_kprobe(p, ap);
525 	flush_insn_slot(ap);
526 	ap->addr = p->addr;
527 	ap->pre_handler = aggr_pre_handler;
528 	ap->fault_handler = aggr_fault_handler;
529 	if (p->post_handler)
530 		ap->post_handler = aggr_post_handler;
531 	if (p->break_handler)
532 		ap->break_handler = aggr_break_handler;
533 
534 	INIT_LIST_HEAD(&ap->list);
535 	list_add_rcu(&p->list, &ap->list);
536 
537 	hlist_replace_rcu(&p->hlist, &ap->hlist);
538 }
539 
540 /*
541  * This is the second or subsequent kprobe at the address - handle
542  * the intricacies
543  */
544 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
545 					  struct kprobe *p)
546 {
547 	int ret = 0;
548 	struct kprobe *ap;
549 
550 	if (old_p->pre_handler == aggr_pre_handler) {
551 		copy_kprobe(old_p, p);
552 		ret = add_new_kprobe(old_p, p);
553 	} else {
554 		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
555 		if (!ap)
556 			return -ENOMEM;
557 		add_aggr_kprobe(ap, old_p);
558 		copy_kprobe(ap, p);
559 		ret = add_new_kprobe(ap, p);
560 	}
561 	return ret;
562 }
563 
564 static int __kprobes in_kprobes_functions(unsigned long addr)
565 {
566 	struct kprobe_blackpoint *kb;
567 
568 	if (addr >= (unsigned long)__kprobes_text_start &&
569 	    addr < (unsigned long)__kprobes_text_end)
570 		return -EINVAL;
571 	/*
572 	 * If there exists a kprobe_blacklist, verify and
573 	 * fail any probe registration in the prohibited area
574 	 */
575 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
576 		if (kb->start_addr) {
577 			if (addr >= kb->start_addr &&
578 			    addr < (kb->start_addr + kb->range))
579 				return -EINVAL;
580 		}
581 	}
582 	return 0;
583 }
584 
585 /*
586  * If we have a symbol_name argument, look it up and add the offset field
587  * to it. This way, we can specify a relative address to a symbol.
588  */
589 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
590 {
591 	kprobe_opcode_t *addr = p->addr;
592 	if (p->symbol_name) {
593 		if (addr)
594 			return NULL;
595 		kprobe_lookup_name(p->symbol_name, addr);
596 	}
597 
598 	if (!addr)
599 		return NULL;
600 	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
601 }
602 
603 static int __kprobes __register_kprobe(struct kprobe *p,
604 	unsigned long called_from)
605 {
606 	int ret = 0;
607 	struct kprobe *old_p;
608 	struct module *probed_mod;
609 	kprobe_opcode_t *addr;
610 
611 	addr = kprobe_addr(p);
612 	if (!addr)
613 		return -EINVAL;
614 	p->addr = addr;
615 
616 	if (!kernel_text_address((unsigned long) p->addr) ||
617 	    in_kprobes_functions((unsigned long) p->addr))
618 		return -EINVAL;
619 
620 	p->mod_refcounted = 0;
621 
622 	/*
623 	 * Check if are we probing a module.
624 	 */
625 	probed_mod = module_text_address((unsigned long) p->addr);
626 	if (probed_mod) {
627 		struct module *calling_mod = module_text_address(called_from);
628 		/*
629 		 * We must allow modules to probe themself and in this case
630 		 * avoid incrementing the module refcount, so as to allow
631 		 * unloading of self probing modules.
632 		 */
633 		if (calling_mod && calling_mod != probed_mod) {
634 			if (unlikely(!try_module_get(probed_mod)))
635 				return -EINVAL;
636 			p->mod_refcounted = 1;
637 		} else
638 			probed_mod = NULL;
639 	}
640 
641 	p->nmissed = 0;
642 	INIT_LIST_HEAD(&p->list);
643 	mutex_lock(&kprobe_mutex);
644 	old_p = get_kprobe(p->addr);
645 	if (old_p) {
646 		ret = register_aggr_kprobe(old_p, p);
647 		goto out;
648 	}
649 
650 	ret = arch_prepare_kprobe(p);
651 	if (ret)
652 		goto out;
653 
654 	INIT_HLIST_NODE(&p->hlist);
655 	hlist_add_head_rcu(&p->hlist,
656 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
657 
658 	if (kprobe_enabled)
659 		arch_arm_kprobe(p);
660 
661 out:
662 	mutex_unlock(&kprobe_mutex);
663 
664 	if (ret && probed_mod)
665 		module_put(probed_mod);
666 	return ret;
667 }
668 
669 /*
670  * Unregister a kprobe without a scheduler synchronization.
671  */
672 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
673 {
674 	struct kprobe *old_p, *list_p;
675 
676 	old_p = get_kprobe(p->addr);
677 	if (unlikely(!old_p))
678 		return -EINVAL;
679 
680 	if (p != old_p) {
681 		list_for_each_entry_rcu(list_p, &old_p->list, list)
682 			if (list_p == p)
683 			/* kprobe p is a valid probe */
684 				goto valid_p;
685 		return -EINVAL;
686 	}
687 valid_p:
688 	if (old_p == p ||
689 	    (old_p->pre_handler == aggr_pre_handler &&
690 	     list_is_singular(&old_p->list))) {
691 		/*
692 		 * Only probe on the hash list. Disarm only if kprobes are
693 		 * enabled - otherwise, the breakpoint would already have
694 		 * been removed. We save on flushing icache.
695 		 */
696 		if (kprobe_enabled)
697 			arch_disarm_kprobe(p);
698 		hlist_del_rcu(&old_p->hlist);
699 	} else {
700 		if (p->break_handler)
701 			old_p->break_handler = NULL;
702 		if (p->post_handler) {
703 			list_for_each_entry_rcu(list_p, &old_p->list, list) {
704 				if ((list_p != p) && (list_p->post_handler))
705 					goto noclean;
706 			}
707 			old_p->post_handler = NULL;
708 		}
709 noclean:
710 		list_del_rcu(&p->list);
711 	}
712 	return 0;
713 }
714 
715 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
716 {
717 	struct module *mod;
718 	struct kprobe *old_p;
719 
720 	if (p->mod_refcounted) {
721 		mod = module_text_address((unsigned long)p->addr);
722 		if (mod)
723 			module_put(mod);
724 	}
725 
726 	if (list_empty(&p->list) || list_is_singular(&p->list)) {
727 		if (!list_empty(&p->list)) {
728 			/* "p" is the last child of an aggr_kprobe */
729 			old_p = list_entry(p->list.next, struct kprobe, list);
730 			list_del(&p->list);
731 			kfree(old_p);
732 		}
733 		arch_remove_kprobe(p);
734 	}
735 }
736 
737 static int __register_kprobes(struct kprobe **kps, int num,
738 	unsigned long called_from)
739 {
740 	int i, ret = 0;
741 
742 	if (num <= 0)
743 		return -EINVAL;
744 	for (i = 0; i < num; i++) {
745 		ret = __register_kprobe(kps[i], called_from);
746 		if (ret < 0) {
747 			if (i > 0)
748 				unregister_kprobes(kps, i);
749 			break;
750 		}
751 	}
752 	return ret;
753 }
754 
755 /*
756  * Registration and unregistration functions for kprobe.
757  */
758 int __kprobes register_kprobe(struct kprobe *p)
759 {
760 	return __register_kprobes(&p, 1,
761 				  (unsigned long)__builtin_return_address(0));
762 }
763 
764 void __kprobes unregister_kprobe(struct kprobe *p)
765 {
766 	unregister_kprobes(&p, 1);
767 }
768 
769 int __kprobes register_kprobes(struct kprobe **kps, int num)
770 {
771 	return __register_kprobes(kps, num,
772 				  (unsigned long)__builtin_return_address(0));
773 }
774 
775 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
776 {
777 	int i;
778 
779 	if (num <= 0)
780 		return;
781 	mutex_lock(&kprobe_mutex);
782 	for (i = 0; i < num; i++)
783 		if (__unregister_kprobe_top(kps[i]) < 0)
784 			kps[i]->addr = NULL;
785 	mutex_unlock(&kprobe_mutex);
786 
787 	synchronize_sched();
788 	for (i = 0; i < num; i++)
789 		if (kps[i]->addr)
790 			__unregister_kprobe_bottom(kps[i]);
791 }
792 
793 static struct notifier_block kprobe_exceptions_nb = {
794 	.notifier_call = kprobe_exceptions_notify,
795 	.priority = 0x7fffffff /* we need to be notified first */
796 };
797 
798 unsigned long __weak arch_deref_entry_point(void *entry)
799 {
800 	return (unsigned long)entry;
801 }
802 
803 static int __register_jprobes(struct jprobe **jps, int num,
804 	unsigned long called_from)
805 {
806 	struct jprobe *jp;
807 	int ret = 0, i;
808 
809 	if (num <= 0)
810 		return -EINVAL;
811 	for (i = 0; i < num; i++) {
812 		unsigned long addr;
813 		jp = jps[i];
814 		addr = arch_deref_entry_point(jp->entry);
815 
816 		if (!kernel_text_address(addr))
817 			ret = -EINVAL;
818 		else {
819 			/* Todo: Verify probepoint is a function entry point */
820 			jp->kp.pre_handler = setjmp_pre_handler;
821 			jp->kp.break_handler = longjmp_break_handler;
822 			ret = __register_kprobe(&jp->kp, called_from);
823 		}
824 		if (ret < 0) {
825 			if (i > 0)
826 				unregister_jprobes(jps, i);
827 			break;
828 		}
829 	}
830 	return ret;
831 }
832 
833 int __kprobes register_jprobe(struct jprobe *jp)
834 {
835 	return __register_jprobes(&jp, 1,
836 		(unsigned long)__builtin_return_address(0));
837 }
838 
839 void __kprobes unregister_jprobe(struct jprobe *jp)
840 {
841 	unregister_jprobes(&jp, 1);
842 }
843 
844 int __kprobes register_jprobes(struct jprobe **jps, int num)
845 {
846 	return __register_jprobes(jps, num,
847 		(unsigned long)__builtin_return_address(0));
848 }
849 
850 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
851 {
852 	int i;
853 
854 	if (num <= 0)
855 		return;
856 	mutex_lock(&kprobe_mutex);
857 	for (i = 0; i < num; i++)
858 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
859 			jps[i]->kp.addr = NULL;
860 	mutex_unlock(&kprobe_mutex);
861 
862 	synchronize_sched();
863 	for (i = 0; i < num; i++) {
864 		if (jps[i]->kp.addr)
865 			__unregister_kprobe_bottom(&jps[i]->kp);
866 	}
867 }
868 
869 #ifdef CONFIG_KRETPROBES
870 /*
871  * This kprobe pre_handler is registered with every kretprobe. When probe
872  * hits it will set up the return probe.
873  */
874 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
875 					   struct pt_regs *regs)
876 {
877 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
878 	unsigned long hash, flags = 0;
879 	struct kretprobe_instance *ri;
880 
881 	/*TODO: consider to only swap the RA after the last pre_handler fired */
882 	hash = hash_ptr(current, KPROBE_HASH_BITS);
883 	spin_lock_irqsave(&rp->lock, flags);
884 	if (!hlist_empty(&rp->free_instances)) {
885 		ri = hlist_entry(rp->free_instances.first,
886 				struct kretprobe_instance, hlist);
887 		hlist_del(&ri->hlist);
888 		spin_unlock_irqrestore(&rp->lock, flags);
889 
890 		ri->rp = rp;
891 		ri->task = current;
892 
893 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
894 			spin_unlock_irqrestore(&rp->lock, flags);
895 			return 0;
896 		}
897 
898 		arch_prepare_kretprobe(ri, regs);
899 
900 		/* XXX(hch): why is there no hlist_move_head? */
901 		INIT_HLIST_NODE(&ri->hlist);
902 		kretprobe_table_lock(hash, &flags);
903 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
904 		kretprobe_table_unlock(hash, &flags);
905 	} else {
906 		rp->nmissed++;
907 		spin_unlock_irqrestore(&rp->lock, flags);
908 	}
909 	return 0;
910 }
911 
912 static int __kprobes __register_kretprobe(struct kretprobe *rp,
913 					  unsigned long called_from)
914 {
915 	int ret = 0;
916 	struct kretprobe_instance *inst;
917 	int i;
918 	void *addr;
919 
920 	if (kretprobe_blacklist_size) {
921 		addr = kprobe_addr(&rp->kp);
922 		if (!addr)
923 			return -EINVAL;
924 
925 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
926 			if (kretprobe_blacklist[i].addr == addr)
927 				return -EINVAL;
928 		}
929 	}
930 
931 	rp->kp.pre_handler = pre_handler_kretprobe;
932 	rp->kp.post_handler = NULL;
933 	rp->kp.fault_handler = NULL;
934 	rp->kp.break_handler = NULL;
935 
936 	/* Pre-allocate memory for max kretprobe instances */
937 	if (rp->maxactive <= 0) {
938 #ifdef CONFIG_PREEMPT
939 		rp->maxactive = max(10, 2 * NR_CPUS);
940 #else
941 		rp->maxactive = NR_CPUS;
942 #endif
943 	}
944 	spin_lock_init(&rp->lock);
945 	INIT_HLIST_HEAD(&rp->free_instances);
946 	for (i = 0; i < rp->maxactive; i++) {
947 		inst = kmalloc(sizeof(struct kretprobe_instance) +
948 			       rp->data_size, GFP_KERNEL);
949 		if (inst == NULL) {
950 			free_rp_inst(rp);
951 			return -ENOMEM;
952 		}
953 		INIT_HLIST_NODE(&inst->hlist);
954 		hlist_add_head(&inst->hlist, &rp->free_instances);
955 	}
956 
957 	rp->nmissed = 0;
958 	/* Establish function entry probe point */
959 	ret = __register_kprobe(&rp->kp, called_from);
960 	if (ret != 0)
961 		free_rp_inst(rp);
962 	return ret;
963 }
964 
965 static int __register_kretprobes(struct kretprobe **rps, int num,
966 	unsigned long called_from)
967 {
968 	int ret = 0, i;
969 
970 	if (num <= 0)
971 		return -EINVAL;
972 	for (i = 0; i < num; i++) {
973 		ret = __register_kretprobe(rps[i], called_from);
974 		if (ret < 0) {
975 			if (i > 0)
976 				unregister_kretprobes(rps, i);
977 			break;
978 		}
979 	}
980 	return ret;
981 }
982 
983 int __kprobes register_kretprobe(struct kretprobe *rp)
984 {
985 	return __register_kretprobes(&rp, 1,
986 			(unsigned long)__builtin_return_address(0));
987 }
988 
989 void __kprobes unregister_kretprobe(struct kretprobe *rp)
990 {
991 	unregister_kretprobes(&rp, 1);
992 }
993 
994 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
995 {
996 	return __register_kretprobes(rps, num,
997 			(unsigned long)__builtin_return_address(0));
998 }
999 
1000 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1001 {
1002 	int i;
1003 
1004 	if (num <= 0)
1005 		return;
1006 	mutex_lock(&kprobe_mutex);
1007 	for (i = 0; i < num; i++)
1008 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1009 			rps[i]->kp.addr = NULL;
1010 	mutex_unlock(&kprobe_mutex);
1011 
1012 	synchronize_sched();
1013 	for (i = 0; i < num; i++) {
1014 		if (rps[i]->kp.addr) {
1015 			__unregister_kprobe_bottom(&rps[i]->kp);
1016 			cleanup_rp_inst(rps[i]);
1017 		}
1018 	}
1019 }
1020 
1021 #else /* CONFIG_KRETPROBES */
1022 int __kprobes register_kretprobe(struct kretprobe *rp)
1023 {
1024 	return -ENOSYS;
1025 }
1026 
1027 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1028 {
1029 	return -ENOSYS;
1030 }
1031 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1032 {
1033 }
1034 
1035 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1036 {
1037 }
1038 
1039 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1040 					   struct pt_regs *regs)
1041 {
1042 	return 0;
1043 }
1044 
1045 #endif /* CONFIG_KRETPROBES */
1046 
1047 static int __init init_kprobes(void)
1048 {
1049 	int i, err = 0;
1050 	unsigned long offset = 0, size = 0;
1051 	char *modname, namebuf[128];
1052 	const char *symbol_name;
1053 	void *addr;
1054 	struct kprobe_blackpoint *kb;
1055 
1056 	/* FIXME allocate the probe table, currently defined statically */
1057 	/* initialize all list heads */
1058 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1059 		INIT_HLIST_HEAD(&kprobe_table[i]);
1060 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1061 		spin_lock_init(&(kretprobe_table_locks[i].lock));
1062 	}
1063 
1064 	/*
1065 	 * Lookup and populate the kprobe_blacklist.
1066 	 *
1067 	 * Unlike the kretprobe blacklist, we'll need to determine
1068 	 * the range of addresses that belong to the said functions,
1069 	 * since a kprobe need not necessarily be at the beginning
1070 	 * of a function.
1071 	 */
1072 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1073 		kprobe_lookup_name(kb->name, addr);
1074 		if (!addr)
1075 			continue;
1076 
1077 		kb->start_addr = (unsigned long)addr;
1078 		symbol_name = kallsyms_lookup(kb->start_addr,
1079 				&size, &offset, &modname, namebuf);
1080 		if (!symbol_name)
1081 			kb->range = 0;
1082 		else
1083 			kb->range = size;
1084 	}
1085 
1086 	if (kretprobe_blacklist_size) {
1087 		/* lookup the function address from its name */
1088 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1089 			kprobe_lookup_name(kretprobe_blacklist[i].name,
1090 					   kretprobe_blacklist[i].addr);
1091 			if (!kretprobe_blacklist[i].addr)
1092 				printk("kretprobe: lookup failed: %s\n",
1093 				       kretprobe_blacklist[i].name);
1094 		}
1095 	}
1096 
1097 	/* By default, kprobes are enabled */
1098 	kprobe_enabled = true;
1099 
1100 	err = arch_init_kprobes();
1101 	if (!err)
1102 		err = register_die_notifier(&kprobe_exceptions_nb);
1103 	kprobes_initialized = (err == 0);
1104 
1105 	if (!err)
1106 		init_test_probes();
1107 	return err;
1108 }
1109 
1110 #ifdef CONFIG_DEBUG_FS
1111 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1112 		const char *sym, int offset,char *modname)
1113 {
1114 	char *kprobe_type;
1115 
1116 	if (p->pre_handler == pre_handler_kretprobe)
1117 		kprobe_type = "r";
1118 	else if (p->pre_handler == setjmp_pre_handler)
1119 		kprobe_type = "j";
1120 	else
1121 		kprobe_type = "k";
1122 	if (sym)
1123 		seq_printf(pi, "%p  %s  %s+0x%x  %s\n", p->addr, kprobe_type,
1124 			sym, offset, (modname ? modname : " "));
1125 	else
1126 		seq_printf(pi, "%p  %s  %p\n", p->addr, kprobe_type, p->addr);
1127 }
1128 
1129 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1130 {
1131 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1132 }
1133 
1134 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1135 {
1136 	(*pos)++;
1137 	if (*pos >= KPROBE_TABLE_SIZE)
1138 		return NULL;
1139 	return pos;
1140 }
1141 
1142 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1143 {
1144 	/* Nothing to do */
1145 }
1146 
1147 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1148 {
1149 	struct hlist_head *head;
1150 	struct hlist_node *node;
1151 	struct kprobe *p, *kp;
1152 	const char *sym = NULL;
1153 	unsigned int i = *(loff_t *) v;
1154 	unsigned long offset = 0;
1155 	char *modname, namebuf[128];
1156 
1157 	head = &kprobe_table[i];
1158 	preempt_disable();
1159 	hlist_for_each_entry_rcu(p, node, head, hlist) {
1160 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1161 					&offset, &modname, namebuf);
1162 		if (p->pre_handler == aggr_pre_handler) {
1163 			list_for_each_entry_rcu(kp, &p->list, list)
1164 				report_probe(pi, kp, sym, offset, modname);
1165 		} else
1166 			report_probe(pi, p, sym, offset, modname);
1167 	}
1168 	preempt_enable();
1169 	return 0;
1170 }
1171 
1172 static struct seq_operations kprobes_seq_ops = {
1173 	.start = kprobe_seq_start,
1174 	.next  = kprobe_seq_next,
1175 	.stop  = kprobe_seq_stop,
1176 	.show  = show_kprobe_addr
1177 };
1178 
1179 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1180 {
1181 	return seq_open(filp, &kprobes_seq_ops);
1182 }
1183 
1184 static struct file_operations debugfs_kprobes_operations = {
1185 	.open           = kprobes_open,
1186 	.read           = seq_read,
1187 	.llseek         = seq_lseek,
1188 	.release        = seq_release,
1189 };
1190 
1191 static void __kprobes enable_all_kprobes(void)
1192 {
1193 	struct hlist_head *head;
1194 	struct hlist_node *node;
1195 	struct kprobe *p;
1196 	unsigned int i;
1197 
1198 	mutex_lock(&kprobe_mutex);
1199 
1200 	/* If kprobes are already enabled, just return */
1201 	if (kprobe_enabled)
1202 		goto already_enabled;
1203 
1204 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1205 		head = &kprobe_table[i];
1206 		hlist_for_each_entry_rcu(p, node, head, hlist)
1207 			arch_arm_kprobe(p);
1208 	}
1209 
1210 	kprobe_enabled = true;
1211 	printk(KERN_INFO "Kprobes globally enabled\n");
1212 
1213 already_enabled:
1214 	mutex_unlock(&kprobe_mutex);
1215 	return;
1216 }
1217 
1218 static void __kprobes disable_all_kprobes(void)
1219 {
1220 	struct hlist_head *head;
1221 	struct hlist_node *node;
1222 	struct kprobe *p;
1223 	unsigned int i;
1224 
1225 	mutex_lock(&kprobe_mutex);
1226 
1227 	/* If kprobes are already disabled, just return */
1228 	if (!kprobe_enabled)
1229 		goto already_disabled;
1230 
1231 	kprobe_enabled = false;
1232 	printk(KERN_INFO "Kprobes globally disabled\n");
1233 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1234 		head = &kprobe_table[i];
1235 		hlist_for_each_entry_rcu(p, node, head, hlist) {
1236 			if (!arch_trampoline_kprobe(p))
1237 				arch_disarm_kprobe(p);
1238 		}
1239 	}
1240 
1241 	mutex_unlock(&kprobe_mutex);
1242 	/* Allow all currently running kprobes to complete */
1243 	synchronize_sched();
1244 	return;
1245 
1246 already_disabled:
1247 	mutex_unlock(&kprobe_mutex);
1248 	return;
1249 }
1250 
1251 /*
1252  * XXX: The debugfs bool file interface doesn't allow for callbacks
1253  * when the bool state is switched. We can reuse that facility when
1254  * available
1255  */
1256 static ssize_t read_enabled_file_bool(struct file *file,
1257 	       char __user *user_buf, size_t count, loff_t *ppos)
1258 {
1259 	char buf[3];
1260 
1261 	if (kprobe_enabled)
1262 		buf[0] = '1';
1263 	else
1264 		buf[0] = '0';
1265 	buf[1] = '\n';
1266 	buf[2] = 0x00;
1267 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1268 }
1269 
1270 static ssize_t write_enabled_file_bool(struct file *file,
1271 	       const char __user *user_buf, size_t count, loff_t *ppos)
1272 {
1273 	char buf[32];
1274 	int buf_size;
1275 
1276 	buf_size = min(count, (sizeof(buf)-1));
1277 	if (copy_from_user(buf, user_buf, buf_size))
1278 		return -EFAULT;
1279 
1280 	switch (buf[0]) {
1281 	case 'y':
1282 	case 'Y':
1283 	case '1':
1284 		enable_all_kprobes();
1285 		break;
1286 	case 'n':
1287 	case 'N':
1288 	case '0':
1289 		disable_all_kprobes();
1290 		break;
1291 	}
1292 
1293 	return count;
1294 }
1295 
1296 static struct file_operations fops_kp = {
1297 	.read =         read_enabled_file_bool,
1298 	.write =        write_enabled_file_bool,
1299 };
1300 
1301 static int __kprobes debugfs_kprobe_init(void)
1302 {
1303 	struct dentry *dir, *file;
1304 	unsigned int value = 1;
1305 
1306 	dir = debugfs_create_dir("kprobes", NULL);
1307 	if (!dir)
1308 		return -ENOMEM;
1309 
1310 	file = debugfs_create_file("list", 0444, dir, NULL,
1311 				&debugfs_kprobes_operations);
1312 	if (!file) {
1313 		debugfs_remove(dir);
1314 		return -ENOMEM;
1315 	}
1316 
1317 	file = debugfs_create_file("enabled", 0600, dir,
1318 					&value, &fops_kp);
1319 	if (!file) {
1320 		debugfs_remove(dir);
1321 		return -ENOMEM;
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 late_initcall(debugfs_kprobe_init);
1328 #endif /* CONFIG_DEBUG_FS */
1329 
1330 module_init(init_kprobes);
1331 
1332 EXPORT_SYMBOL_GPL(register_kprobe);
1333 EXPORT_SYMBOL_GPL(unregister_kprobe);
1334 EXPORT_SYMBOL_GPL(register_kprobes);
1335 EXPORT_SYMBOL_GPL(unregister_kprobes);
1336 EXPORT_SYMBOL_GPL(register_jprobe);
1337 EXPORT_SYMBOL_GPL(unregister_jprobe);
1338 EXPORT_SYMBOL_GPL(register_jprobes);
1339 EXPORT_SYMBOL_GPL(unregister_jprobes);
1340 EXPORT_SYMBOL_GPL(jprobe_return);
1341 EXPORT_SYMBOL_GPL(register_kretprobe);
1342 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1343 EXPORT_SYMBOL_GPL(register_kretprobes);
1344 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1345