1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation (includes suggestions from 9 * Rusty Russell). 10 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 11 * hlists and exceptions notifier as suggested by Andi Kleen. 12 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 13 * interface to access function arguments. 14 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 15 * exceptions notifier to be first on the priority list. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 */ 20 21 #define pr_fmt(fmt) "kprobes: " fmt 22 23 #include <linux/kprobes.h> 24 #include <linux/hash.h> 25 #include <linux/init.h> 26 #include <linux/slab.h> 27 #include <linux/stddef.h> 28 #include <linux/export.h> 29 #include <linux/moduleloader.h> 30 #include <linux/kallsyms.h> 31 #include <linux/freezer.h> 32 #include <linux/seq_file.h> 33 #include <linux/debugfs.h> 34 #include <linux/sysctl.h> 35 #include <linux/kdebug.h> 36 #include <linux/memory.h> 37 #include <linux/ftrace.h> 38 #include <linux/cpu.h> 39 #include <linux/jump_label.h> 40 #include <linux/static_call.h> 41 #include <linux/perf_event.h> 42 43 #include <asm/sections.h> 44 #include <asm/cacheflush.h> 45 #include <asm/errno.h> 46 #include <linux/uaccess.h> 47 48 #define KPROBE_HASH_BITS 6 49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 50 51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL) 52 #define kprobe_sysctls_init() do { } while (0) 53 #endif 54 55 static int kprobes_initialized; 56 /* kprobe_table can be accessed by 57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held. 58 * Or 59 * - RCU hlist traversal under disabling preempt (breakpoint handlers) 60 */ 61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 62 63 /* NOTE: change this value only with 'kprobe_mutex' held */ 64 static bool kprobes_all_disarmed; 65 66 /* This protects 'kprobe_table' and 'optimizing_list' */ 67 static DEFINE_MUTEX(kprobe_mutex); 68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance); 69 70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 71 unsigned int __unused) 72 { 73 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 74 } 75 76 /* 77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where 78 * kprobes can not probe. 79 */ 80 static LIST_HEAD(kprobe_blacklist); 81 82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 83 /* 84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be 85 * single-stepped. x86_64, POWER4 and above have no-exec support and 86 * stepping on the instruction on a vmalloced/kmalloced/data page 87 * is a recipe for disaster 88 */ 89 struct kprobe_insn_page { 90 struct list_head list; 91 kprobe_opcode_t *insns; /* Page of instruction slots */ 92 struct kprobe_insn_cache *cache; 93 int nused; 94 int ngarbage; 95 char slot_used[]; 96 }; 97 98 #define KPROBE_INSN_PAGE_SIZE(slots) \ 99 (offsetof(struct kprobe_insn_page, slot_used) + \ 100 (sizeof(char) * (slots))) 101 102 static int slots_per_page(struct kprobe_insn_cache *c) 103 { 104 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 105 } 106 107 enum kprobe_slot_state { 108 SLOT_CLEAN = 0, 109 SLOT_DIRTY = 1, 110 SLOT_USED = 2, 111 }; 112 113 void __weak *alloc_insn_page(void) 114 { 115 /* 116 * Use module_alloc() so this page is within +/- 2GB of where the 117 * kernel image and loaded module images reside. This is required 118 * for most of the architectures. 119 * (e.g. x86-64 needs this to handle the %rip-relative fixups.) 120 */ 121 return module_alloc(PAGE_SIZE); 122 } 123 124 static void free_insn_page(void *page) 125 { 126 module_memfree(page); 127 } 128 129 struct kprobe_insn_cache kprobe_insn_slots = { 130 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 131 .alloc = alloc_insn_page, 132 .free = free_insn_page, 133 .sym = KPROBE_INSN_PAGE_SYM, 134 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 135 .insn_size = MAX_INSN_SIZE, 136 .nr_garbage = 0, 137 }; 138 static int collect_garbage_slots(struct kprobe_insn_cache *c); 139 140 /** 141 * __get_insn_slot() - Find a slot on an executable page for an instruction. 142 * We allocate an executable page if there's no room on existing ones. 143 */ 144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 145 { 146 struct kprobe_insn_page *kip; 147 kprobe_opcode_t *slot = NULL; 148 149 /* Since the slot array is not protected by rcu, we need a mutex */ 150 mutex_lock(&c->mutex); 151 retry: 152 rcu_read_lock(); 153 list_for_each_entry_rcu(kip, &c->pages, list) { 154 if (kip->nused < slots_per_page(c)) { 155 int i; 156 157 for (i = 0; i < slots_per_page(c); i++) { 158 if (kip->slot_used[i] == SLOT_CLEAN) { 159 kip->slot_used[i] = SLOT_USED; 160 kip->nused++; 161 slot = kip->insns + (i * c->insn_size); 162 rcu_read_unlock(); 163 goto out; 164 } 165 } 166 /* kip->nused is broken. Fix it. */ 167 kip->nused = slots_per_page(c); 168 WARN_ON(1); 169 } 170 } 171 rcu_read_unlock(); 172 173 /* If there are any garbage slots, collect it and try again. */ 174 if (c->nr_garbage && collect_garbage_slots(c) == 0) 175 goto retry; 176 177 /* All out of space. Need to allocate a new page. */ 178 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 179 if (!kip) 180 goto out; 181 182 kip->insns = c->alloc(); 183 if (!kip->insns) { 184 kfree(kip); 185 goto out; 186 } 187 INIT_LIST_HEAD(&kip->list); 188 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 189 kip->slot_used[0] = SLOT_USED; 190 kip->nused = 1; 191 kip->ngarbage = 0; 192 kip->cache = c; 193 list_add_rcu(&kip->list, &c->pages); 194 slot = kip->insns; 195 196 /* Record the perf ksymbol register event after adding the page */ 197 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, 198 PAGE_SIZE, false, c->sym); 199 out: 200 mutex_unlock(&c->mutex); 201 return slot; 202 } 203 204 /* Return true if all garbages are collected, otherwise false. */ 205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx) 206 { 207 kip->slot_used[idx] = SLOT_CLEAN; 208 kip->nused--; 209 if (kip->nused == 0) { 210 /* 211 * Page is no longer in use. Free it unless 212 * it's the last one. We keep the last one 213 * so as not to have to set it up again the 214 * next time somebody inserts a probe. 215 */ 216 if (!list_is_singular(&kip->list)) { 217 /* 218 * Record perf ksymbol unregister event before removing 219 * the page. 220 */ 221 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 222 (unsigned long)kip->insns, PAGE_SIZE, true, 223 kip->cache->sym); 224 list_del_rcu(&kip->list); 225 synchronize_rcu(); 226 kip->cache->free(kip->insns); 227 kfree(kip); 228 } 229 return true; 230 } 231 return false; 232 } 233 234 static int collect_garbage_slots(struct kprobe_insn_cache *c) 235 { 236 struct kprobe_insn_page *kip, *next; 237 238 /* Ensure no-one is interrupted on the garbages */ 239 synchronize_rcu(); 240 241 list_for_each_entry_safe(kip, next, &c->pages, list) { 242 int i; 243 244 if (kip->ngarbage == 0) 245 continue; 246 kip->ngarbage = 0; /* we will collect all garbages */ 247 for (i = 0; i < slots_per_page(c); i++) { 248 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 249 break; 250 } 251 } 252 c->nr_garbage = 0; 253 return 0; 254 } 255 256 void __free_insn_slot(struct kprobe_insn_cache *c, 257 kprobe_opcode_t *slot, int dirty) 258 { 259 struct kprobe_insn_page *kip; 260 long idx; 261 262 mutex_lock(&c->mutex); 263 rcu_read_lock(); 264 list_for_each_entry_rcu(kip, &c->pages, list) { 265 idx = ((long)slot - (long)kip->insns) / 266 (c->insn_size * sizeof(kprobe_opcode_t)); 267 if (idx >= 0 && idx < slots_per_page(c)) 268 goto out; 269 } 270 /* Could not find this slot. */ 271 WARN_ON(1); 272 kip = NULL; 273 out: 274 rcu_read_unlock(); 275 /* Mark and sweep: this may sleep */ 276 if (kip) { 277 /* Check double free */ 278 WARN_ON(kip->slot_used[idx] != SLOT_USED); 279 if (dirty) { 280 kip->slot_used[idx] = SLOT_DIRTY; 281 kip->ngarbage++; 282 if (++c->nr_garbage > slots_per_page(c)) 283 collect_garbage_slots(c); 284 } else { 285 collect_one_slot(kip, idx); 286 } 287 } 288 mutex_unlock(&c->mutex); 289 } 290 291 /* 292 * Check given address is on the page of kprobe instruction slots. 293 * This will be used for checking whether the address on a stack 294 * is on a text area or not. 295 */ 296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 297 { 298 struct kprobe_insn_page *kip; 299 bool ret = false; 300 301 rcu_read_lock(); 302 list_for_each_entry_rcu(kip, &c->pages, list) { 303 if (addr >= (unsigned long)kip->insns && 304 addr < (unsigned long)kip->insns + PAGE_SIZE) { 305 ret = true; 306 break; 307 } 308 } 309 rcu_read_unlock(); 310 311 return ret; 312 } 313 314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, 315 unsigned long *value, char *type, char *sym) 316 { 317 struct kprobe_insn_page *kip; 318 int ret = -ERANGE; 319 320 rcu_read_lock(); 321 list_for_each_entry_rcu(kip, &c->pages, list) { 322 if ((*symnum)--) 323 continue; 324 strscpy(sym, c->sym, KSYM_NAME_LEN); 325 *type = 't'; 326 *value = (unsigned long)kip->insns; 327 ret = 0; 328 break; 329 } 330 rcu_read_unlock(); 331 332 return ret; 333 } 334 335 #ifdef CONFIG_OPTPROBES 336 void __weak *alloc_optinsn_page(void) 337 { 338 return alloc_insn_page(); 339 } 340 341 void __weak free_optinsn_page(void *page) 342 { 343 free_insn_page(page); 344 } 345 346 /* For optimized_kprobe buffer */ 347 struct kprobe_insn_cache kprobe_optinsn_slots = { 348 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 349 .alloc = alloc_optinsn_page, 350 .free = free_optinsn_page, 351 .sym = KPROBE_OPTINSN_PAGE_SYM, 352 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 353 /* .insn_size is initialized later */ 354 .nr_garbage = 0, 355 }; 356 #endif 357 #endif 358 359 /* We have preemption disabled.. so it is safe to use __ versions */ 360 static inline void set_kprobe_instance(struct kprobe *kp) 361 { 362 __this_cpu_write(kprobe_instance, kp); 363 } 364 365 static inline void reset_kprobe_instance(void) 366 { 367 __this_cpu_write(kprobe_instance, NULL); 368 } 369 370 /* 371 * This routine is called either: 372 * - under the 'kprobe_mutex' - during kprobe_[un]register(). 373 * OR 374 * - with preemption disabled - from architecture specific code. 375 */ 376 struct kprobe *get_kprobe(void *addr) 377 { 378 struct hlist_head *head; 379 struct kprobe *p; 380 381 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 382 hlist_for_each_entry_rcu(p, head, hlist, 383 lockdep_is_held(&kprobe_mutex)) { 384 if (p->addr == addr) 385 return p; 386 } 387 388 return NULL; 389 } 390 NOKPROBE_SYMBOL(get_kprobe); 391 392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 393 394 /* Return true if 'p' is an aggregator */ 395 static inline bool kprobe_aggrprobe(struct kprobe *p) 396 { 397 return p->pre_handler == aggr_pre_handler; 398 } 399 400 /* Return true if 'p' is unused */ 401 static inline bool kprobe_unused(struct kprobe *p) 402 { 403 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 404 list_empty(&p->list); 405 } 406 407 /* Keep all fields in the kprobe consistent. */ 408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 409 { 410 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 411 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 412 } 413 414 #ifdef CONFIG_OPTPROBES 415 /* NOTE: This is protected by 'kprobe_mutex'. */ 416 static bool kprobes_allow_optimization; 417 418 /* 419 * Call all 'kprobe::pre_handler' on the list, but ignores its return value. 420 * This must be called from arch-dep optimized caller. 421 */ 422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 423 { 424 struct kprobe *kp; 425 426 list_for_each_entry_rcu(kp, &p->list, list) { 427 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 428 set_kprobe_instance(kp); 429 kp->pre_handler(kp, regs); 430 } 431 reset_kprobe_instance(); 432 } 433 } 434 NOKPROBE_SYMBOL(opt_pre_handler); 435 436 /* Free optimized instructions and optimized_kprobe */ 437 static void free_aggr_kprobe(struct kprobe *p) 438 { 439 struct optimized_kprobe *op; 440 441 op = container_of(p, struct optimized_kprobe, kp); 442 arch_remove_optimized_kprobe(op); 443 arch_remove_kprobe(p); 444 kfree(op); 445 } 446 447 /* Return true if the kprobe is ready for optimization. */ 448 static inline int kprobe_optready(struct kprobe *p) 449 { 450 struct optimized_kprobe *op; 451 452 if (kprobe_aggrprobe(p)) { 453 op = container_of(p, struct optimized_kprobe, kp); 454 return arch_prepared_optinsn(&op->optinsn); 455 } 456 457 return 0; 458 } 459 460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */ 461 bool kprobe_disarmed(struct kprobe *p) 462 { 463 struct optimized_kprobe *op; 464 465 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 466 if (!kprobe_aggrprobe(p)) 467 return kprobe_disabled(p); 468 469 op = container_of(p, struct optimized_kprobe, kp); 470 471 return kprobe_disabled(p) && list_empty(&op->list); 472 } 473 474 /* Return true if the probe is queued on (un)optimizing lists */ 475 static bool kprobe_queued(struct kprobe *p) 476 { 477 struct optimized_kprobe *op; 478 479 if (kprobe_aggrprobe(p)) { 480 op = container_of(p, struct optimized_kprobe, kp); 481 if (!list_empty(&op->list)) 482 return true; 483 } 484 return false; 485 } 486 487 /* 488 * Return an optimized kprobe whose optimizing code replaces 489 * instructions including 'addr' (exclude breakpoint). 490 */ 491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr) 492 { 493 int i; 494 struct kprobe *p = NULL; 495 struct optimized_kprobe *op; 496 497 /* Don't check i == 0, since that is a breakpoint case. */ 498 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++) 499 p = get_kprobe(addr - i); 500 501 if (p && kprobe_optready(p)) { 502 op = container_of(p, struct optimized_kprobe, kp); 503 if (arch_within_optimized_kprobe(op, addr)) 504 return p; 505 } 506 507 return NULL; 508 } 509 510 /* Optimization staging list, protected by 'kprobe_mutex' */ 511 static LIST_HEAD(optimizing_list); 512 static LIST_HEAD(unoptimizing_list); 513 static LIST_HEAD(freeing_list); 514 515 static void kprobe_optimizer(struct work_struct *work); 516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 517 #define OPTIMIZE_DELAY 5 518 519 /* 520 * Optimize (replace a breakpoint with a jump) kprobes listed on 521 * 'optimizing_list'. 522 */ 523 static void do_optimize_kprobes(void) 524 { 525 lockdep_assert_held(&text_mutex); 526 /* 527 * The optimization/unoptimization refers 'online_cpus' via 528 * stop_machine() and cpu-hotplug modifies the 'online_cpus'. 529 * And same time, 'text_mutex' will be held in cpu-hotplug and here. 530 * This combination can cause a deadlock (cpu-hotplug tries to lock 531 * 'text_mutex' but stop_machine() can not be done because 532 * the 'online_cpus' has been changed) 533 * To avoid this deadlock, caller must have locked cpu-hotplug 534 * for preventing cpu-hotplug outside of 'text_mutex' locking. 535 */ 536 lockdep_assert_cpus_held(); 537 538 /* Optimization never be done when disarmed */ 539 if (kprobes_all_disarmed || !kprobes_allow_optimization || 540 list_empty(&optimizing_list)) 541 return; 542 543 arch_optimize_kprobes(&optimizing_list); 544 } 545 546 /* 547 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 548 * if need) kprobes listed on 'unoptimizing_list'. 549 */ 550 static void do_unoptimize_kprobes(void) 551 { 552 struct optimized_kprobe *op, *tmp; 553 554 lockdep_assert_held(&text_mutex); 555 /* See comment in do_optimize_kprobes() */ 556 lockdep_assert_cpus_held(); 557 558 if (!list_empty(&unoptimizing_list)) 559 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 560 561 /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */ 562 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 563 /* Switching from detour code to origin */ 564 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 565 /* Disarm probes if marked disabled and not gone */ 566 if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp)) 567 arch_disarm_kprobe(&op->kp); 568 if (kprobe_unused(&op->kp)) { 569 /* 570 * Remove unused probes from hash list. After waiting 571 * for synchronization, these probes are reclaimed. 572 * (reclaiming is done by do_free_cleaned_kprobes().) 573 */ 574 hlist_del_rcu(&op->kp.hlist); 575 } else 576 list_del_init(&op->list); 577 } 578 } 579 580 /* Reclaim all kprobes on the 'freeing_list' */ 581 static void do_free_cleaned_kprobes(void) 582 { 583 struct optimized_kprobe *op, *tmp; 584 585 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 586 list_del_init(&op->list); 587 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 588 /* 589 * This must not happen, but if there is a kprobe 590 * still in use, keep it on kprobes hash list. 591 */ 592 continue; 593 } 594 free_aggr_kprobe(&op->kp); 595 } 596 } 597 598 /* Start optimizer after OPTIMIZE_DELAY passed */ 599 static void kick_kprobe_optimizer(void) 600 { 601 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 602 } 603 604 /* Kprobe jump optimizer */ 605 static void kprobe_optimizer(struct work_struct *work) 606 { 607 mutex_lock(&kprobe_mutex); 608 cpus_read_lock(); 609 mutex_lock(&text_mutex); 610 611 /* 612 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 613 * kprobes before waiting for quiesence period. 614 */ 615 do_unoptimize_kprobes(); 616 617 /* 618 * Step 2: Wait for quiesence period to ensure all potentially 619 * preempted tasks to have normally scheduled. Because optprobe 620 * may modify multiple instructions, there is a chance that Nth 621 * instruction is preempted. In that case, such tasks can return 622 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 623 * Note that on non-preemptive kernel, this is transparently converted 624 * to synchronoze_sched() to wait for all interrupts to have completed. 625 */ 626 synchronize_rcu_tasks(); 627 628 /* Step 3: Optimize kprobes after quiesence period */ 629 do_optimize_kprobes(); 630 631 /* Step 4: Free cleaned kprobes after quiesence period */ 632 do_free_cleaned_kprobes(); 633 634 mutex_unlock(&text_mutex); 635 cpus_read_unlock(); 636 637 /* Step 5: Kick optimizer again if needed */ 638 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 639 kick_kprobe_optimizer(); 640 641 mutex_unlock(&kprobe_mutex); 642 } 643 644 /* Wait for completing optimization and unoptimization */ 645 void wait_for_kprobe_optimizer(void) 646 { 647 mutex_lock(&kprobe_mutex); 648 649 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 650 mutex_unlock(&kprobe_mutex); 651 652 /* This will also make 'optimizing_work' execute immmediately */ 653 flush_delayed_work(&optimizing_work); 654 /* 'optimizing_work' might not have been queued yet, relax */ 655 cpu_relax(); 656 657 mutex_lock(&kprobe_mutex); 658 } 659 660 mutex_unlock(&kprobe_mutex); 661 } 662 663 bool optprobe_queued_unopt(struct optimized_kprobe *op) 664 { 665 struct optimized_kprobe *_op; 666 667 list_for_each_entry(_op, &unoptimizing_list, list) { 668 if (op == _op) 669 return true; 670 } 671 672 return false; 673 } 674 675 /* Optimize kprobe if p is ready to be optimized */ 676 static void optimize_kprobe(struct kprobe *p) 677 { 678 struct optimized_kprobe *op; 679 680 /* Check if the kprobe is disabled or not ready for optimization. */ 681 if (!kprobe_optready(p) || !kprobes_allow_optimization || 682 (kprobe_disabled(p) || kprobes_all_disarmed)) 683 return; 684 685 /* kprobes with 'post_handler' can not be optimized */ 686 if (p->post_handler) 687 return; 688 689 op = container_of(p, struct optimized_kprobe, kp); 690 691 /* Check there is no other kprobes at the optimized instructions */ 692 if (arch_check_optimized_kprobe(op) < 0) 693 return; 694 695 /* Check if it is already optimized. */ 696 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 697 if (optprobe_queued_unopt(op)) { 698 /* This is under unoptimizing. Just dequeue the probe */ 699 list_del_init(&op->list); 700 } 701 return; 702 } 703 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 704 705 /* 706 * On the 'unoptimizing_list' and 'optimizing_list', 707 * 'op' must have OPTIMIZED flag 708 */ 709 if (WARN_ON_ONCE(!list_empty(&op->list))) 710 return; 711 712 list_add(&op->list, &optimizing_list); 713 kick_kprobe_optimizer(); 714 } 715 716 /* Short cut to direct unoptimizing */ 717 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 718 { 719 lockdep_assert_cpus_held(); 720 arch_unoptimize_kprobe(op); 721 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 722 } 723 724 /* Unoptimize a kprobe if p is optimized */ 725 static void unoptimize_kprobe(struct kprobe *p, bool force) 726 { 727 struct optimized_kprobe *op; 728 729 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 730 return; /* This is not an optprobe nor optimized */ 731 732 op = container_of(p, struct optimized_kprobe, kp); 733 if (!kprobe_optimized(p)) 734 return; 735 736 if (!list_empty(&op->list)) { 737 if (optprobe_queued_unopt(op)) { 738 /* Queued in unoptimizing queue */ 739 if (force) { 740 /* 741 * Forcibly unoptimize the kprobe here, and queue it 742 * in the freeing list for release afterwards. 743 */ 744 force_unoptimize_kprobe(op); 745 list_move(&op->list, &freeing_list); 746 } 747 } else { 748 /* Dequeue from the optimizing queue */ 749 list_del_init(&op->list); 750 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 751 } 752 return; 753 } 754 755 /* Optimized kprobe case */ 756 if (force) { 757 /* Forcibly update the code: this is a special case */ 758 force_unoptimize_kprobe(op); 759 } else { 760 list_add(&op->list, &unoptimizing_list); 761 kick_kprobe_optimizer(); 762 } 763 } 764 765 /* Cancel unoptimizing for reusing */ 766 static int reuse_unused_kprobe(struct kprobe *ap) 767 { 768 struct optimized_kprobe *op; 769 770 /* 771 * Unused kprobe MUST be on the way of delayed unoptimizing (means 772 * there is still a relative jump) and disabled. 773 */ 774 op = container_of(ap, struct optimized_kprobe, kp); 775 WARN_ON_ONCE(list_empty(&op->list)); 776 /* Enable the probe again */ 777 ap->flags &= ~KPROBE_FLAG_DISABLED; 778 /* Optimize it again. (remove from 'op->list') */ 779 if (!kprobe_optready(ap)) 780 return -EINVAL; 781 782 optimize_kprobe(ap); 783 return 0; 784 } 785 786 /* Remove optimized instructions */ 787 static void kill_optimized_kprobe(struct kprobe *p) 788 { 789 struct optimized_kprobe *op; 790 791 op = container_of(p, struct optimized_kprobe, kp); 792 if (!list_empty(&op->list)) 793 /* Dequeue from the (un)optimization queue */ 794 list_del_init(&op->list); 795 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 796 797 if (kprobe_unused(p)) { 798 /* 799 * Unused kprobe is on unoptimizing or freeing list. We move it 800 * to freeing_list and let the kprobe_optimizer() remove it from 801 * the kprobe hash list and free it. 802 */ 803 if (optprobe_queued_unopt(op)) 804 list_move(&op->list, &freeing_list); 805 } 806 807 /* Don't touch the code, because it is already freed. */ 808 arch_remove_optimized_kprobe(op); 809 } 810 811 static inline 812 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 813 { 814 if (!kprobe_ftrace(p)) 815 arch_prepare_optimized_kprobe(op, p); 816 } 817 818 /* Try to prepare optimized instructions */ 819 static void prepare_optimized_kprobe(struct kprobe *p) 820 { 821 struct optimized_kprobe *op; 822 823 op = container_of(p, struct optimized_kprobe, kp); 824 __prepare_optimized_kprobe(op, p); 825 } 826 827 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */ 828 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 829 { 830 struct optimized_kprobe *op; 831 832 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 833 if (!op) 834 return NULL; 835 836 INIT_LIST_HEAD(&op->list); 837 op->kp.addr = p->addr; 838 __prepare_optimized_kprobe(op, p); 839 840 return &op->kp; 841 } 842 843 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 844 845 /* 846 * Prepare an optimized_kprobe and optimize it. 847 * NOTE: 'p' must be a normal registered kprobe. 848 */ 849 static void try_to_optimize_kprobe(struct kprobe *p) 850 { 851 struct kprobe *ap; 852 struct optimized_kprobe *op; 853 854 /* Impossible to optimize ftrace-based kprobe. */ 855 if (kprobe_ftrace(p)) 856 return; 857 858 /* For preparing optimization, jump_label_text_reserved() is called. */ 859 cpus_read_lock(); 860 jump_label_lock(); 861 mutex_lock(&text_mutex); 862 863 ap = alloc_aggr_kprobe(p); 864 if (!ap) 865 goto out; 866 867 op = container_of(ap, struct optimized_kprobe, kp); 868 if (!arch_prepared_optinsn(&op->optinsn)) { 869 /* If failed to setup optimizing, fallback to kprobe. */ 870 arch_remove_optimized_kprobe(op); 871 kfree(op); 872 goto out; 873 } 874 875 init_aggr_kprobe(ap, p); 876 optimize_kprobe(ap); /* This just kicks optimizer thread. */ 877 878 out: 879 mutex_unlock(&text_mutex); 880 jump_label_unlock(); 881 cpus_read_unlock(); 882 } 883 884 static void optimize_all_kprobes(void) 885 { 886 struct hlist_head *head; 887 struct kprobe *p; 888 unsigned int i; 889 890 mutex_lock(&kprobe_mutex); 891 /* If optimization is already allowed, just return. */ 892 if (kprobes_allow_optimization) 893 goto out; 894 895 cpus_read_lock(); 896 kprobes_allow_optimization = true; 897 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 898 head = &kprobe_table[i]; 899 hlist_for_each_entry(p, head, hlist) 900 if (!kprobe_disabled(p)) 901 optimize_kprobe(p); 902 } 903 cpus_read_unlock(); 904 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n"); 905 out: 906 mutex_unlock(&kprobe_mutex); 907 } 908 909 #ifdef CONFIG_SYSCTL 910 static void unoptimize_all_kprobes(void) 911 { 912 struct hlist_head *head; 913 struct kprobe *p; 914 unsigned int i; 915 916 mutex_lock(&kprobe_mutex); 917 /* If optimization is already prohibited, just return. */ 918 if (!kprobes_allow_optimization) { 919 mutex_unlock(&kprobe_mutex); 920 return; 921 } 922 923 cpus_read_lock(); 924 kprobes_allow_optimization = false; 925 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 926 head = &kprobe_table[i]; 927 hlist_for_each_entry(p, head, hlist) { 928 if (!kprobe_disabled(p)) 929 unoptimize_kprobe(p, false); 930 } 931 } 932 cpus_read_unlock(); 933 mutex_unlock(&kprobe_mutex); 934 935 /* Wait for unoptimizing completion. */ 936 wait_for_kprobe_optimizer(); 937 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n"); 938 } 939 940 static DEFINE_MUTEX(kprobe_sysctl_mutex); 941 static int sysctl_kprobes_optimization; 942 static int proc_kprobes_optimization_handler(struct ctl_table *table, 943 int write, void *buffer, 944 size_t *length, loff_t *ppos) 945 { 946 int ret; 947 948 mutex_lock(&kprobe_sysctl_mutex); 949 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 950 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 951 952 if (sysctl_kprobes_optimization) 953 optimize_all_kprobes(); 954 else 955 unoptimize_all_kprobes(); 956 mutex_unlock(&kprobe_sysctl_mutex); 957 958 return ret; 959 } 960 961 static struct ctl_table kprobe_sysctls[] = { 962 { 963 .procname = "kprobes-optimization", 964 .data = &sysctl_kprobes_optimization, 965 .maxlen = sizeof(int), 966 .mode = 0644, 967 .proc_handler = proc_kprobes_optimization_handler, 968 .extra1 = SYSCTL_ZERO, 969 .extra2 = SYSCTL_ONE, 970 }, 971 {} 972 }; 973 974 static void __init kprobe_sysctls_init(void) 975 { 976 register_sysctl_init("debug", kprobe_sysctls); 977 } 978 #endif /* CONFIG_SYSCTL */ 979 980 /* Put a breakpoint for a probe. */ 981 static void __arm_kprobe(struct kprobe *p) 982 { 983 struct kprobe *_p; 984 985 lockdep_assert_held(&text_mutex); 986 987 /* Find the overlapping optimized kprobes. */ 988 _p = get_optimized_kprobe(p->addr); 989 if (unlikely(_p)) 990 /* Fallback to unoptimized kprobe */ 991 unoptimize_kprobe(_p, true); 992 993 arch_arm_kprobe(p); 994 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 995 } 996 997 /* Remove the breakpoint of a probe. */ 998 static void __disarm_kprobe(struct kprobe *p, bool reopt) 999 { 1000 struct kprobe *_p; 1001 1002 lockdep_assert_held(&text_mutex); 1003 1004 /* Try to unoptimize */ 1005 unoptimize_kprobe(p, kprobes_all_disarmed); 1006 1007 if (!kprobe_queued(p)) { 1008 arch_disarm_kprobe(p); 1009 /* If another kprobe was blocked, re-optimize it. */ 1010 _p = get_optimized_kprobe(p->addr); 1011 if (unlikely(_p) && reopt) 1012 optimize_kprobe(_p); 1013 } 1014 /* 1015 * TODO: Since unoptimization and real disarming will be done by 1016 * the worker thread, we can not check whether another probe are 1017 * unoptimized because of this probe here. It should be re-optimized 1018 * by the worker thread. 1019 */ 1020 } 1021 1022 #else /* !CONFIG_OPTPROBES */ 1023 1024 #define optimize_kprobe(p) do {} while (0) 1025 #define unoptimize_kprobe(p, f) do {} while (0) 1026 #define kill_optimized_kprobe(p) do {} while (0) 1027 #define prepare_optimized_kprobe(p) do {} while (0) 1028 #define try_to_optimize_kprobe(p) do {} while (0) 1029 #define __arm_kprobe(p) arch_arm_kprobe(p) 1030 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 1031 #define kprobe_disarmed(p) kprobe_disabled(p) 1032 #define wait_for_kprobe_optimizer() do {} while (0) 1033 1034 static int reuse_unused_kprobe(struct kprobe *ap) 1035 { 1036 /* 1037 * If the optimized kprobe is NOT supported, the aggr kprobe is 1038 * released at the same time that the last aggregated kprobe is 1039 * unregistered. 1040 * Thus there should be no chance to reuse unused kprobe. 1041 */ 1042 WARN_ON_ONCE(1); 1043 return -EINVAL; 1044 } 1045 1046 static void free_aggr_kprobe(struct kprobe *p) 1047 { 1048 arch_remove_kprobe(p); 1049 kfree(p); 1050 } 1051 1052 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 1053 { 1054 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 1055 } 1056 #endif /* CONFIG_OPTPROBES */ 1057 1058 #ifdef CONFIG_KPROBES_ON_FTRACE 1059 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 1060 .func = kprobe_ftrace_handler, 1061 .flags = FTRACE_OPS_FL_SAVE_REGS, 1062 }; 1063 1064 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 1065 .func = kprobe_ftrace_handler, 1066 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 1067 }; 1068 1069 static int kprobe_ipmodify_enabled; 1070 static int kprobe_ftrace_enabled; 1071 1072 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1073 int *cnt) 1074 { 1075 int ret; 1076 1077 lockdep_assert_held(&kprobe_mutex); 1078 1079 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1080 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret)) 1081 return ret; 1082 1083 if (*cnt == 0) { 1084 ret = register_ftrace_function(ops); 1085 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret)) 1086 goto err_ftrace; 1087 } 1088 1089 (*cnt)++; 1090 return ret; 1091 1092 err_ftrace: 1093 /* 1094 * At this point, sinec ops is not registered, we should be sefe from 1095 * registering empty filter. 1096 */ 1097 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1098 return ret; 1099 } 1100 1101 static int arm_kprobe_ftrace(struct kprobe *p) 1102 { 1103 bool ipmodify = (p->post_handler != NULL); 1104 1105 return __arm_kprobe_ftrace(p, 1106 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1107 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1108 } 1109 1110 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1111 int *cnt) 1112 { 1113 int ret; 1114 1115 lockdep_assert_held(&kprobe_mutex); 1116 1117 if (*cnt == 1) { 1118 ret = unregister_ftrace_function(ops); 1119 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret)) 1120 return ret; 1121 } 1122 1123 (*cnt)--; 1124 1125 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1126 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n", 1127 p->addr, ret); 1128 return ret; 1129 } 1130 1131 static int disarm_kprobe_ftrace(struct kprobe *p) 1132 { 1133 bool ipmodify = (p->post_handler != NULL); 1134 1135 return __disarm_kprobe_ftrace(p, 1136 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1137 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1138 } 1139 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1140 static inline int arm_kprobe_ftrace(struct kprobe *p) 1141 { 1142 return -ENODEV; 1143 } 1144 1145 static inline int disarm_kprobe_ftrace(struct kprobe *p) 1146 { 1147 return -ENODEV; 1148 } 1149 #endif 1150 1151 static int prepare_kprobe(struct kprobe *p) 1152 { 1153 /* Must ensure p->addr is really on ftrace */ 1154 if (kprobe_ftrace(p)) 1155 return arch_prepare_kprobe_ftrace(p); 1156 1157 return arch_prepare_kprobe(p); 1158 } 1159 1160 static int arm_kprobe(struct kprobe *kp) 1161 { 1162 if (unlikely(kprobe_ftrace(kp))) 1163 return arm_kprobe_ftrace(kp); 1164 1165 cpus_read_lock(); 1166 mutex_lock(&text_mutex); 1167 __arm_kprobe(kp); 1168 mutex_unlock(&text_mutex); 1169 cpus_read_unlock(); 1170 1171 return 0; 1172 } 1173 1174 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1175 { 1176 if (unlikely(kprobe_ftrace(kp))) 1177 return disarm_kprobe_ftrace(kp); 1178 1179 cpus_read_lock(); 1180 mutex_lock(&text_mutex); 1181 __disarm_kprobe(kp, reopt); 1182 mutex_unlock(&text_mutex); 1183 cpus_read_unlock(); 1184 1185 return 0; 1186 } 1187 1188 /* 1189 * Aggregate handlers for multiple kprobes support - these handlers 1190 * take care of invoking the individual kprobe handlers on p->list 1191 */ 1192 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1193 { 1194 struct kprobe *kp; 1195 1196 list_for_each_entry_rcu(kp, &p->list, list) { 1197 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1198 set_kprobe_instance(kp); 1199 if (kp->pre_handler(kp, regs)) 1200 return 1; 1201 } 1202 reset_kprobe_instance(); 1203 } 1204 return 0; 1205 } 1206 NOKPROBE_SYMBOL(aggr_pre_handler); 1207 1208 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1209 unsigned long flags) 1210 { 1211 struct kprobe *kp; 1212 1213 list_for_each_entry_rcu(kp, &p->list, list) { 1214 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1215 set_kprobe_instance(kp); 1216 kp->post_handler(kp, regs, flags); 1217 reset_kprobe_instance(); 1218 } 1219 } 1220 } 1221 NOKPROBE_SYMBOL(aggr_post_handler); 1222 1223 /* Walks the list and increments 'nmissed' if 'p' has child probes. */ 1224 void kprobes_inc_nmissed_count(struct kprobe *p) 1225 { 1226 struct kprobe *kp; 1227 1228 if (!kprobe_aggrprobe(p)) { 1229 p->nmissed++; 1230 } else { 1231 list_for_each_entry_rcu(kp, &p->list, list) 1232 kp->nmissed++; 1233 } 1234 } 1235 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1236 1237 static struct kprobe kprobe_busy = { 1238 .addr = (void *) get_kprobe, 1239 }; 1240 1241 void kprobe_busy_begin(void) 1242 { 1243 struct kprobe_ctlblk *kcb; 1244 1245 preempt_disable(); 1246 __this_cpu_write(current_kprobe, &kprobe_busy); 1247 kcb = get_kprobe_ctlblk(); 1248 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1249 } 1250 1251 void kprobe_busy_end(void) 1252 { 1253 __this_cpu_write(current_kprobe, NULL); 1254 preempt_enable(); 1255 } 1256 1257 /* Add the new probe to 'ap->list'. */ 1258 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1259 { 1260 if (p->post_handler) 1261 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1262 1263 list_add_rcu(&p->list, &ap->list); 1264 if (p->post_handler && !ap->post_handler) 1265 ap->post_handler = aggr_post_handler; 1266 1267 return 0; 1268 } 1269 1270 /* 1271 * Fill in the required fields of the aggregator kprobe. Replace the 1272 * earlier kprobe in the hlist with the aggregator kprobe. 1273 */ 1274 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1275 { 1276 /* Copy the insn slot of 'p' to 'ap'. */ 1277 copy_kprobe(p, ap); 1278 flush_insn_slot(ap); 1279 ap->addr = p->addr; 1280 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1281 ap->pre_handler = aggr_pre_handler; 1282 /* We don't care the kprobe which has gone. */ 1283 if (p->post_handler && !kprobe_gone(p)) 1284 ap->post_handler = aggr_post_handler; 1285 1286 INIT_LIST_HEAD(&ap->list); 1287 INIT_HLIST_NODE(&ap->hlist); 1288 1289 list_add_rcu(&p->list, &ap->list); 1290 hlist_replace_rcu(&p->hlist, &ap->hlist); 1291 } 1292 1293 /* 1294 * This registers the second or subsequent kprobe at the same address. 1295 */ 1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1297 { 1298 int ret = 0; 1299 struct kprobe *ap = orig_p; 1300 1301 cpus_read_lock(); 1302 1303 /* For preparing optimization, jump_label_text_reserved() is called */ 1304 jump_label_lock(); 1305 mutex_lock(&text_mutex); 1306 1307 if (!kprobe_aggrprobe(orig_p)) { 1308 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */ 1309 ap = alloc_aggr_kprobe(orig_p); 1310 if (!ap) { 1311 ret = -ENOMEM; 1312 goto out; 1313 } 1314 init_aggr_kprobe(ap, orig_p); 1315 } else if (kprobe_unused(ap)) { 1316 /* This probe is going to die. Rescue it */ 1317 ret = reuse_unused_kprobe(ap); 1318 if (ret) 1319 goto out; 1320 } 1321 1322 if (kprobe_gone(ap)) { 1323 /* 1324 * Attempting to insert new probe at the same location that 1325 * had a probe in the module vaddr area which already 1326 * freed. So, the instruction slot has already been 1327 * released. We need a new slot for the new probe. 1328 */ 1329 ret = arch_prepare_kprobe(ap); 1330 if (ret) 1331 /* 1332 * Even if fail to allocate new slot, don't need to 1333 * free the 'ap'. It will be used next time, or 1334 * freed by unregister_kprobe(). 1335 */ 1336 goto out; 1337 1338 /* Prepare optimized instructions if possible. */ 1339 prepare_optimized_kprobe(ap); 1340 1341 /* 1342 * Clear gone flag to prevent allocating new slot again, and 1343 * set disabled flag because it is not armed yet. 1344 */ 1345 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1346 | KPROBE_FLAG_DISABLED; 1347 } 1348 1349 /* Copy the insn slot of 'p' to 'ap'. */ 1350 copy_kprobe(ap, p); 1351 ret = add_new_kprobe(ap, p); 1352 1353 out: 1354 mutex_unlock(&text_mutex); 1355 jump_label_unlock(); 1356 cpus_read_unlock(); 1357 1358 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1359 ap->flags &= ~KPROBE_FLAG_DISABLED; 1360 if (!kprobes_all_disarmed) { 1361 /* Arm the breakpoint again. */ 1362 ret = arm_kprobe(ap); 1363 if (ret) { 1364 ap->flags |= KPROBE_FLAG_DISABLED; 1365 list_del_rcu(&p->list); 1366 synchronize_rcu(); 1367 } 1368 } 1369 } 1370 return ret; 1371 } 1372 1373 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1374 { 1375 /* The '__kprobes' functions and entry code must not be probed. */ 1376 return addr >= (unsigned long)__kprobes_text_start && 1377 addr < (unsigned long)__kprobes_text_end; 1378 } 1379 1380 static bool __within_kprobe_blacklist(unsigned long addr) 1381 { 1382 struct kprobe_blacklist_entry *ent; 1383 1384 if (arch_within_kprobe_blacklist(addr)) 1385 return true; 1386 /* 1387 * If 'kprobe_blacklist' is defined, check the address and 1388 * reject any probe registration in the prohibited area. 1389 */ 1390 list_for_each_entry(ent, &kprobe_blacklist, list) { 1391 if (addr >= ent->start_addr && addr < ent->end_addr) 1392 return true; 1393 } 1394 return false; 1395 } 1396 1397 bool within_kprobe_blacklist(unsigned long addr) 1398 { 1399 char symname[KSYM_NAME_LEN], *p; 1400 1401 if (__within_kprobe_blacklist(addr)) 1402 return true; 1403 1404 /* Check if the address is on a suffixed-symbol */ 1405 if (!lookup_symbol_name(addr, symname)) { 1406 p = strchr(symname, '.'); 1407 if (!p) 1408 return false; 1409 *p = '\0'; 1410 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1411 if (addr) 1412 return __within_kprobe_blacklist(addr); 1413 } 1414 return false; 1415 } 1416 1417 /* 1418 * arch_adjust_kprobe_addr - adjust the address 1419 * @addr: symbol base address 1420 * @offset: offset within the symbol 1421 * @on_func_entry: was this @addr+@offset on the function entry 1422 * 1423 * Typically returns @addr + @offset, except for special cases where the 1424 * function might be prefixed by a CFI landing pad, in that case any offset 1425 * inside the landing pad is mapped to the first 'real' instruction of the 1426 * symbol. 1427 * 1428 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C 1429 * instruction at +0. 1430 */ 1431 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr, 1432 unsigned long offset, 1433 bool *on_func_entry) 1434 { 1435 *on_func_entry = !offset; 1436 return (kprobe_opcode_t *)(addr + offset); 1437 } 1438 1439 /* 1440 * If 'symbol_name' is specified, look it up and add the 'offset' 1441 * to it. This way, we can specify a relative address to a symbol. 1442 * This returns encoded errors if it fails to look up symbol or invalid 1443 * combination of parameters. 1444 */ 1445 static kprobe_opcode_t * 1446 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name, 1447 unsigned long offset, bool *on_func_entry) 1448 { 1449 if ((symbol_name && addr) || (!symbol_name && !addr)) 1450 goto invalid; 1451 1452 if (symbol_name) { 1453 /* 1454 * Input: @sym + @offset 1455 * Output: @addr + @offset 1456 * 1457 * NOTE: kprobe_lookup_name() does *NOT* fold the offset 1458 * argument into it's output! 1459 */ 1460 addr = kprobe_lookup_name(symbol_name, offset); 1461 if (!addr) 1462 return ERR_PTR(-ENOENT); 1463 } 1464 1465 /* 1466 * So here we have @addr + @offset, displace it into a new 1467 * @addr' + @offset' where @addr' is the symbol start address. 1468 */ 1469 addr = (void *)addr + offset; 1470 if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset)) 1471 return ERR_PTR(-ENOENT); 1472 addr = (void *)addr - offset; 1473 1474 /* 1475 * Then ask the architecture to re-combine them, taking care of 1476 * magical function entry details while telling us if this was indeed 1477 * at the start of the function. 1478 */ 1479 addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry); 1480 if (addr) 1481 return addr; 1482 1483 invalid: 1484 return ERR_PTR(-EINVAL); 1485 } 1486 1487 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1488 { 1489 bool on_func_entry; 1490 return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); 1491 } 1492 1493 /* 1494 * Check the 'p' is valid and return the aggregator kprobe 1495 * at the same address. 1496 */ 1497 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1498 { 1499 struct kprobe *ap, *list_p; 1500 1501 lockdep_assert_held(&kprobe_mutex); 1502 1503 ap = get_kprobe(p->addr); 1504 if (unlikely(!ap)) 1505 return NULL; 1506 1507 if (p != ap) { 1508 list_for_each_entry(list_p, &ap->list, list) 1509 if (list_p == p) 1510 /* kprobe p is a valid probe */ 1511 goto valid; 1512 return NULL; 1513 } 1514 valid: 1515 return ap; 1516 } 1517 1518 /* 1519 * Warn and return error if the kprobe is being re-registered since 1520 * there must be a software bug. 1521 */ 1522 static inline int warn_kprobe_rereg(struct kprobe *p) 1523 { 1524 int ret = 0; 1525 1526 mutex_lock(&kprobe_mutex); 1527 if (WARN_ON_ONCE(__get_valid_kprobe(p))) 1528 ret = -EINVAL; 1529 mutex_unlock(&kprobe_mutex); 1530 1531 return ret; 1532 } 1533 1534 static int check_ftrace_location(struct kprobe *p) 1535 { 1536 unsigned long addr = (unsigned long)p->addr; 1537 1538 if (ftrace_location(addr) == addr) { 1539 #ifdef CONFIG_KPROBES_ON_FTRACE 1540 p->flags |= KPROBE_FLAG_FTRACE; 1541 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1542 return -EINVAL; 1543 #endif 1544 } 1545 return 0; 1546 } 1547 1548 static bool is_cfi_preamble_symbol(unsigned long addr) 1549 { 1550 char symbuf[KSYM_NAME_LEN]; 1551 1552 if (lookup_symbol_name(addr, symbuf)) 1553 return false; 1554 1555 return str_has_prefix("__cfi_", symbuf) || 1556 str_has_prefix("__pfx_", symbuf); 1557 } 1558 1559 static int check_kprobe_address_safe(struct kprobe *p, 1560 struct module **probed_mod) 1561 { 1562 int ret; 1563 1564 ret = check_ftrace_location(p); 1565 if (ret) 1566 return ret; 1567 jump_label_lock(); 1568 preempt_disable(); 1569 1570 /* Ensure it is not in reserved area nor out of text */ 1571 if (!(core_kernel_text((unsigned long) p->addr) || 1572 is_module_text_address((unsigned long) p->addr)) || 1573 in_gate_area_no_mm((unsigned long) p->addr) || 1574 within_kprobe_blacklist((unsigned long) p->addr) || 1575 jump_label_text_reserved(p->addr, p->addr) || 1576 static_call_text_reserved(p->addr, p->addr) || 1577 find_bug((unsigned long)p->addr) || 1578 is_cfi_preamble_symbol((unsigned long)p->addr)) { 1579 ret = -EINVAL; 1580 goto out; 1581 } 1582 1583 /* Check if 'p' is probing a module. */ 1584 *probed_mod = __module_text_address((unsigned long) p->addr); 1585 if (*probed_mod) { 1586 /* 1587 * We must hold a refcount of the probed module while updating 1588 * its code to prohibit unexpected unloading. 1589 */ 1590 if (unlikely(!try_module_get(*probed_mod))) { 1591 ret = -ENOENT; 1592 goto out; 1593 } 1594 1595 /* 1596 * If the module freed '.init.text', we couldn't insert 1597 * kprobes in there. 1598 */ 1599 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1600 (*probed_mod)->state != MODULE_STATE_COMING) { 1601 module_put(*probed_mod); 1602 *probed_mod = NULL; 1603 ret = -ENOENT; 1604 } 1605 } 1606 out: 1607 preempt_enable(); 1608 jump_label_unlock(); 1609 1610 return ret; 1611 } 1612 1613 int register_kprobe(struct kprobe *p) 1614 { 1615 int ret; 1616 struct kprobe *old_p; 1617 struct module *probed_mod; 1618 kprobe_opcode_t *addr; 1619 bool on_func_entry; 1620 1621 /* Adjust probe address from symbol */ 1622 addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); 1623 if (IS_ERR(addr)) 1624 return PTR_ERR(addr); 1625 p->addr = addr; 1626 1627 ret = warn_kprobe_rereg(p); 1628 if (ret) 1629 return ret; 1630 1631 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1632 p->flags &= KPROBE_FLAG_DISABLED; 1633 p->nmissed = 0; 1634 INIT_LIST_HEAD(&p->list); 1635 1636 ret = check_kprobe_address_safe(p, &probed_mod); 1637 if (ret) 1638 return ret; 1639 1640 mutex_lock(&kprobe_mutex); 1641 1642 if (on_func_entry) 1643 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY; 1644 1645 old_p = get_kprobe(p->addr); 1646 if (old_p) { 1647 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */ 1648 ret = register_aggr_kprobe(old_p, p); 1649 goto out; 1650 } 1651 1652 cpus_read_lock(); 1653 /* Prevent text modification */ 1654 mutex_lock(&text_mutex); 1655 ret = prepare_kprobe(p); 1656 mutex_unlock(&text_mutex); 1657 cpus_read_unlock(); 1658 if (ret) 1659 goto out; 1660 1661 INIT_HLIST_NODE(&p->hlist); 1662 hlist_add_head_rcu(&p->hlist, 1663 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1664 1665 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1666 ret = arm_kprobe(p); 1667 if (ret) { 1668 hlist_del_rcu(&p->hlist); 1669 synchronize_rcu(); 1670 goto out; 1671 } 1672 } 1673 1674 /* Try to optimize kprobe */ 1675 try_to_optimize_kprobe(p); 1676 out: 1677 mutex_unlock(&kprobe_mutex); 1678 1679 if (probed_mod) 1680 module_put(probed_mod); 1681 1682 return ret; 1683 } 1684 EXPORT_SYMBOL_GPL(register_kprobe); 1685 1686 /* Check if all probes on the 'ap' are disabled. */ 1687 static bool aggr_kprobe_disabled(struct kprobe *ap) 1688 { 1689 struct kprobe *kp; 1690 1691 lockdep_assert_held(&kprobe_mutex); 1692 1693 list_for_each_entry(kp, &ap->list, list) 1694 if (!kprobe_disabled(kp)) 1695 /* 1696 * Since there is an active probe on the list, 1697 * we can't disable this 'ap'. 1698 */ 1699 return false; 1700 1701 return true; 1702 } 1703 1704 static struct kprobe *__disable_kprobe(struct kprobe *p) 1705 { 1706 struct kprobe *orig_p; 1707 int ret; 1708 1709 lockdep_assert_held(&kprobe_mutex); 1710 1711 /* Get an original kprobe for return */ 1712 orig_p = __get_valid_kprobe(p); 1713 if (unlikely(orig_p == NULL)) 1714 return ERR_PTR(-EINVAL); 1715 1716 if (!kprobe_disabled(p)) { 1717 /* Disable probe if it is a child probe */ 1718 if (p != orig_p) 1719 p->flags |= KPROBE_FLAG_DISABLED; 1720 1721 /* Try to disarm and disable this/parent probe */ 1722 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1723 /* 1724 * Don't be lazy here. Even if 'kprobes_all_disarmed' 1725 * is false, 'orig_p' might not have been armed yet. 1726 * Note arm_all_kprobes() __tries__ to arm all kprobes 1727 * on the best effort basis. 1728 */ 1729 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) { 1730 ret = disarm_kprobe(orig_p, true); 1731 if (ret) { 1732 p->flags &= ~KPROBE_FLAG_DISABLED; 1733 return ERR_PTR(ret); 1734 } 1735 } 1736 orig_p->flags |= KPROBE_FLAG_DISABLED; 1737 } 1738 } 1739 1740 return orig_p; 1741 } 1742 1743 /* 1744 * Unregister a kprobe without a scheduler synchronization. 1745 */ 1746 static int __unregister_kprobe_top(struct kprobe *p) 1747 { 1748 struct kprobe *ap, *list_p; 1749 1750 /* Disable kprobe. This will disarm it if needed. */ 1751 ap = __disable_kprobe(p); 1752 if (IS_ERR(ap)) 1753 return PTR_ERR(ap); 1754 1755 if (ap == p) 1756 /* 1757 * This probe is an independent(and non-optimized) kprobe 1758 * (not an aggrprobe). Remove from the hash list. 1759 */ 1760 goto disarmed; 1761 1762 /* Following process expects this probe is an aggrprobe */ 1763 WARN_ON(!kprobe_aggrprobe(ap)); 1764 1765 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1766 /* 1767 * !disarmed could be happen if the probe is under delayed 1768 * unoptimizing. 1769 */ 1770 goto disarmed; 1771 else { 1772 /* If disabling probe has special handlers, update aggrprobe */ 1773 if (p->post_handler && !kprobe_gone(p)) { 1774 list_for_each_entry(list_p, &ap->list, list) { 1775 if ((list_p != p) && (list_p->post_handler)) 1776 goto noclean; 1777 } 1778 /* 1779 * For the kprobe-on-ftrace case, we keep the 1780 * post_handler setting to identify this aggrprobe 1781 * armed with kprobe_ipmodify_ops. 1782 */ 1783 if (!kprobe_ftrace(ap)) 1784 ap->post_handler = NULL; 1785 } 1786 noclean: 1787 /* 1788 * Remove from the aggrprobe: this path will do nothing in 1789 * __unregister_kprobe_bottom(). 1790 */ 1791 list_del_rcu(&p->list); 1792 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1793 /* 1794 * Try to optimize this probe again, because post 1795 * handler may have been changed. 1796 */ 1797 optimize_kprobe(ap); 1798 } 1799 return 0; 1800 1801 disarmed: 1802 hlist_del_rcu(&ap->hlist); 1803 return 0; 1804 } 1805 1806 static void __unregister_kprobe_bottom(struct kprobe *p) 1807 { 1808 struct kprobe *ap; 1809 1810 if (list_empty(&p->list)) 1811 /* This is an independent kprobe */ 1812 arch_remove_kprobe(p); 1813 else if (list_is_singular(&p->list)) { 1814 /* This is the last child of an aggrprobe */ 1815 ap = list_entry(p->list.next, struct kprobe, list); 1816 list_del(&p->list); 1817 free_aggr_kprobe(ap); 1818 } 1819 /* Otherwise, do nothing. */ 1820 } 1821 1822 int register_kprobes(struct kprobe **kps, int num) 1823 { 1824 int i, ret = 0; 1825 1826 if (num <= 0) 1827 return -EINVAL; 1828 for (i = 0; i < num; i++) { 1829 ret = register_kprobe(kps[i]); 1830 if (ret < 0) { 1831 if (i > 0) 1832 unregister_kprobes(kps, i); 1833 break; 1834 } 1835 } 1836 return ret; 1837 } 1838 EXPORT_SYMBOL_GPL(register_kprobes); 1839 1840 void unregister_kprobe(struct kprobe *p) 1841 { 1842 unregister_kprobes(&p, 1); 1843 } 1844 EXPORT_SYMBOL_GPL(unregister_kprobe); 1845 1846 void unregister_kprobes(struct kprobe **kps, int num) 1847 { 1848 int i; 1849 1850 if (num <= 0) 1851 return; 1852 mutex_lock(&kprobe_mutex); 1853 for (i = 0; i < num; i++) 1854 if (__unregister_kprobe_top(kps[i]) < 0) 1855 kps[i]->addr = NULL; 1856 mutex_unlock(&kprobe_mutex); 1857 1858 synchronize_rcu(); 1859 for (i = 0; i < num; i++) 1860 if (kps[i]->addr) 1861 __unregister_kprobe_bottom(kps[i]); 1862 } 1863 EXPORT_SYMBOL_GPL(unregister_kprobes); 1864 1865 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1866 unsigned long val, void *data) 1867 { 1868 return NOTIFY_DONE; 1869 } 1870 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1871 1872 static struct notifier_block kprobe_exceptions_nb = { 1873 .notifier_call = kprobe_exceptions_notify, 1874 .priority = 0x7fffffff /* we need to be notified first */ 1875 }; 1876 1877 #ifdef CONFIG_KRETPROBES 1878 1879 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK) 1880 1881 /* callbacks for objpool of kretprobe instances */ 1882 static int kretprobe_init_inst(void *nod, void *context) 1883 { 1884 struct kretprobe_instance *ri = nod; 1885 1886 ri->rph = context; 1887 return 0; 1888 } 1889 static int kretprobe_fini_pool(struct objpool_head *head, void *context) 1890 { 1891 kfree(context); 1892 return 0; 1893 } 1894 1895 static void free_rp_inst_rcu(struct rcu_head *head) 1896 { 1897 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu); 1898 struct kretprobe_holder *rph = ri->rph; 1899 1900 objpool_drop(ri, &rph->pool); 1901 } 1902 NOKPROBE_SYMBOL(free_rp_inst_rcu); 1903 1904 static void recycle_rp_inst(struct kretprobe_instance *ri) 1905 { 1906 struct kretprobe *rp = get_kretprobe(ri); 1907 1908 if (likely(rp)) 1909 objpool_push(ri, &rp->rph->pool); 1910 else 1911 call_rcu(&ri->rcu, free_rp_inst_rcu); 1912 } 1913 NOKPROBE_SYMBOL(recycle_rp_inst); 1914 1915 /* 1916 * This function is called from delayed_put_task_struct() when a task is 1917 * dead and cleaned up to recycle any kretprobe instances associated with 1918 * this task. These left over instances represent probed functions that 1919 * have been called but will never return. 1920 */ 1921 void kprobe_flush_task(struct task_struct *tk) 1922 { 1923 struct kretprobe_instance *ri; 1924 struct llist_node *node; 1925 1926 /* Early boot, not yet initialized. */ 1927 if (unlikely(!kprobes_initialized)) 1928 return; 1929 1930 kprobe_busy_begin(); 1931 1932 node = __llist_del_all(&tk->kretprobe_instances); 1933 while (node) { 1934 ri = container_of(node, struct kretprobe_instance, llist); 1935 node = node->next; 1936 1937 recycle_rp_inst(ri); 1938 } 1939 1940 kprobe_busy_end(); 1941 } 1942 NOKPROBE_SYMBOL(kprobe_flush_task); 1943 1944 static inline void free_rp_inst(struct kretprobe *rp) 1945 { 1946 struct kretprobe_holder *rph = rp->rph; 1947 1948 if (!rph) 1949 return; 1950 rp->rph = NULL; 1951 objpool_fini(&rph->pool); 1952 } 1953 1954 /* This assumes the 'tsk' is the current task or the is not running. */ 1955 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk, 1956 struct llist_node **cur) 1957 { 1958 struct kretprobe_instance *ri = NULL; 1959 struct llist_node *node = *cur; 1960 1961 if (!node) 1962 node = tsk->kretprobe_instances.first; 1963 else 1964 node = node->next; 1965 1966 while (node) { 1967 ri = container_of(node, struct kretprobe_instance, llist); 1968 if (ri->ret_addr != kretprobe_trampoline_addr()) { 1969 *cur = node; 1970 return ri->ret_addr; 1971 } 1972 node = node->next; 1973 } 1974 return NULL; 1975 } 1976 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr); 1977 1978 /** 1979 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe 1980 * @tsk: Target task 1981 * @fp: A frame pointer 1982 * @cur: a storage of the loop cursor llist_node pointer for next call 1983 * 1984 * Find the correct return address modified by a kretprobe on @tsk in unsigned 1985 * long type. If it finds the return address, this returns that address value, 1986 * or this returns 0. 1987 * The @tsk must be 'current' or a task which is not running. @fp is a hint 1988 * to get the currect return address - which is compared with the 1989 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the 1990 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the 1991 * first call, but '@cur' itself must NOT NULL. 1992 */ 1993 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp, 1994 struct llist_node **cur) 1995 { 1996 struct kretprobe_instance *ri = NULL; 1997 kprobe_opcode_t *ret; 1998 1999 if (WARN_ON_ONCE(!cur)) 2000 return 0; 2001 2002 do { 2003 ret = __kretprobe_find_ret_addr(tsk, cur); 2004 if (!ret) 2005 break; 2006 ri = container_of(*cur, struct kretprobe_instance, llist); 2007 } while (ri->fp != fp); 2008 2009 return (unsigned long)ret; 2010 } 2011 NOKPROBE_SYMBOL(kretprobe_find_ret_addr); 2012 2013 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs, 2014 kprobe_opcode_t *correct_ret_addr) 2015 { 2016 /* 2017 * Do nothing by default. Please fill this to update the fake return 2018 * address on the stack with the correct one on each arch if possible. 2019 */ 2020 } 2021 2022 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, 2023 void *frame_pointer) 2024 { 2025 struct kretprobe_instance *ri = NULL; 2026 struct llist_node *first, *node = NULL; 2027 kprobe_opcode_t *correct_ret_addr; 2028 struct kretprobe *rp; 2029 2030 /* Find correct address and all nodes for this frame. */ 2031 correct_ret_addr = __kretprobe_find_ret_addr(current, &node); 2032 if (!correct_ret_addr) { 2033 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n"); 2034 BUG_ON(1); 2035 } 2036 2037 /* 2038 * Set the return address as the instruction pointer, because if the 2039 * user handler calls stack_trace_save_regs() with this 'regs', 2040 * the stack trace will start from the instruction pointer. 2041 */ 2042 instruction_pointer_set(regs, (unsigned long)correct_ret_addr); 2043 2044 /* Run the user handler of the nodes. */ 2045 first = current->kretprobe_instances.first; 2046 while (first) { 2047 ri = container_of(first, struct kretprobe_instance, llist); 2048 2049 if (WARN_ON_ONCE(ri->fp != frame_pointer)) 2050 break; 2051 2052 rp = get_kretprobe(ri); 2053 if (rp && rp->handler) { 2054 struct kprobe *prev = kprobe_running(); 2055 2056 __this_cpu_write(current_kprobe, &rp->kp); 2057 ri->ret_addr = correct_ret_addr; 2058 rp->handler(ri, regs); 2059 __this_cpu_write(current_kprobe, prev); 2060 } 2061 if (first == node) 2062 break; 2063 2064 first = first->next; 2065 } 2066 2067 arch_kretprobe_fixup_return(regs, correct_ret_addr); 2068 2069 /* Unlink all nodes for this frame. */ 2070 first = current->kretprobe_instances.first; 2071 current->kretprobe_instances.first = node->next; 2072 node->next = NULL; 2073 2074 /* Recycle free instances. */ 2075 while (first) { 2076 ri = container_of(first, struct kretprobe_instance, llist); 2077 first = first->next; 2078 2079 recycle_rp_inst(ri); 2080 } 2081 2082 return (unsigned long)correct_ret_addr; 2083 } 2084 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) 2085 2086 /* 2087 * This kprobe pre_handler is registered with every kretprobe. When probe 2088 * hits it will set up the return probe. 2089 */ 2090 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2091 { 2092 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 2093 struct kretprobe_holder *rph = rp->rph; 2094 struct kretprobe_instance *ri; 2095 2096 ri = objpool_pop(&rph->pool); 2097 if (!ri) { 2098 rp->nmissed++; 2099 return 0; 2100 } 2101 2102 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 2103 objpool_push(ri, &rph->pool); 2104 return 0; 2105 } 2106 2107 arch_prepare_kretprobe(ri, regs); 2108 2109 __llist_add(&ri->llist, ¤t->kretprobe_instances); 2110 2111 return 0; 2112 } 2113 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2114 #else /* CONFIG_KRETPROBE_ON_RETHOOK */ 2115 /* 2116 * This kprobe pre_handler is registered with every kretprobe. When probe 2117 * hits it will set up the return probe. 2118 */ 2119 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2120 { 2121 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 2122 struct kretprobe_instance *ri; 2123 struct rethook_node *rhn; 2124 2125 rhn = rethook_try_get(rp->rh); 2126 if (!rhn) { 2127 rp->nmissed++; 2128 return 0; 2129 } 2130 2131 ri = container_of(rhn, struct kretprobe_instance, node); 2132 2133 if (rp->entry_handler && rp->entry_handler(ri, regs)) 2134 rethook_recycle(rhn); 2135 else 2136 rethook_hook(rhn, regs, kprobe_ftrace(p)); 2137 2138 return 0; 2139 } 2140 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2141 2142 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data, 2143 unsigned long ret_addr, 2144 struct pt_regs *regs) 2145 { 2146 struct kretprobe *rp = (struct kretprobe *)data; 2147 struct kretprobe_instance *ri; 2148 struct kprobe_ctlblk *kcb; 2149 2150 /* The data must NOT be null. This means rethook data structure is broken. */ 2151 if (WARN_ON_ONCE(!data) || !rp->handler) 2152 return; 2153 2154 __this_cpu_write(current_kprobe, &rp->kp); 2155 kcb = get_kprobe_ctlblk(); 2156 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 2157 2158 ri = container_of(rh, struct kretprobe_instance, node); 2159 rp->handler(ri, regs); 2160 2161 __this_cpu_write(current_kprobe, NULL); 2162 } 2163 NOKPROBE_SYMBOL(kretprobe_rethook_handler); 2164 2165 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */ 2166 2167 /** 2168 * kprobe_on_func_entry() -- check whether given address is function entry 2169 * @addr: Target address 2170 * @sym: Target symbol name 2171 * @offset: The offset from the symbol or the address 2172 * 2173 * This checks whether the given @addr+@offset or @sym+@offset is on the 2174 * function entry address or not. 2175 * This returns 0 if it is the function entry, or -EINVAL if it is not. 2176 * And also it returns -ENOENT if it fails the symbol or address lookup. 2177 * Caller must pass @addr or @sym (either one must be NULL), or this 2178 * returns -EINVAL. 2179 */ 2180 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 2181 { 2182 bool on_func_entry; 2183 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry); 2184 2185 if (IS_ERR(kp_addr)) 2186 return PTR_ERR(kp_addr); 2187 2188 if (!on_func_entry) 2189 return -EINVAL; 2190 2191 return 0; 2192 } 2193 2194 int register_kretprobe(struct kretprobe *rp) 2195 { 2196 int ret; 2197 int i; 2198 void *addr; 2199 2200 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); 2201 if (ret) 2202 return ret; 2203 2204 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */ 2205 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp)) 2206 return -EINVAL; 2207 2208 if (kretprobe_blacklist_size) { 2209 addr = kprobe_addr(&rp->kp); 2210 if (IS_ERR(addr)) 2211 return PTR_ERR(addr); 2212 2213 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2214 if (kretprobe_blacklist[i].addr == addr) 2215 return -EINVAL; 2216 } 2217 } 2218 2219 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE) 2220 return -E2BIG; 2221 2222 rp->kp.pre_handler = pre_handler_kretprobe; 2223 rp->kp.post_handler = NULL; 2224 2225 /* Pre-allocate memory for max kretprobe instances */ 2226 if (rp->maxactive <= 0) 2227 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 2228 2229 #ifdef CONFIG_KRETPROBE_ON_RETHOOK 2230 rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler, 2231 sizeof(struct kretprobe_instance) + 2232 rp->data_size, rp->maxactive); 2233 if (IS_ERR(rp->rh)) 2234 return PTR_ERR(rp->rh); 2235 2236 rp->nmissed = 0; 2237 /* Establish function entry probe point */ 2238 ret = register_kprobe(&rp->kp); 2239 if (ret != 0) { 2240 rethook_free(rp->rh); 2241 rp->rh = NULL; 2242 } 2243 #else /* !CONFIG_KRETPROBE_ON_RETHOOK */ 2244 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL); 2245 if (!rp->rph) 2246 return -ENOMEM; 2247 2248 if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size + 2249 sizeof(struct kretprobe_instance), GFP_KERNEL, 2250 rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) { 2251 kfree(rp->rph); 2252 rp->rph = NULL; 2253 return -ENOMEM; 2254 } 2255 rcu_assign_pointer(rp->rph->rp, rp); 2256 rp->nmissed = 0; 2257 /* Establish function entry probe point */ 2258 ret = register_kprobe(&rp->kp); 2259 if (ret != 0) 2260 free_rp_inst(rp); 2261 #endif 2262 return ret; 2263 } 2264 EXPORT_SYMBOL_GPL(register_kretprobe); 2265 2266 int register_kretprobes(struct kretprobe **rps, int num) 2267 { 2268 int ret = 0, i; 2269 2270 if (num <= 0) 2271 return -EINVAL; 2272 for (i = 0; i < num; i++) { 2273 ret = register_kretprobe(rps[i]); 2274 if (ret < 0) { 2275 if (i > 0) 2276 unregister_kretprobes(rps, i); 2277 break; 2278 } 2279 } 2280 return ret; 2281 } 2282 EXPORT_SYMBOL_GPL(register_kretprobes); 2283 2284 void unregister_kretprobe(struct kretprobe *rp) 2285 { 2286 unregister_kretprobes(&rp, 1); 2287 } 2288 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2289 2290 void unregister_kretprobes(struct kretprobe **rps, int num) 2291 { 2292 int i; 2293 2294 if (num <= 0) 2295 return; 2296 mutex_lock(&kprobe_mutex); 2297 for (i = 0; i < num; i++) { 2298 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2299 rps[i]->kp.addr = NULL; 2300 #ifdef CONFIG_KRETPROBE_ON_RETHOOK 2301 rethook_free(rps[i]->rh); 2302 #else 2303 rcu_assign_pointer(rps[i]->rph->rp, NULL); 2304 #endif 2305 } 2306 mutex_unlock(&kprobe_mutex); 2307 2308 synchronize_rcu(); 2309 for (i = 0; i < num; i++) { 2310 if (rps[i]->kp.addr) { 2311 __unregister_kprobe_bottom(&rps[i]->kp); 2312 #ifndef CONFIG_KRETPROBE_ON_RETHOOK 2313 free_rp_inst(rps[i]); 2314 #endif 2315 } 2316 } 2317 } 2318 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2319 2320 #else /* CONFIG_KRETPROBES */ 2321 int register_kretprobe(struct kretprobe *rp) 2322 { 2323 return -EOPNOTSUPP; 2324 } 2325 EXPORT_SYMBOL_GPL(register_kretprobe); 2326 2327 int register_kretprobes(struct kretprobe **rps, int num) 2328 { 2329 return -EOPNOTSUPP; 2330 } 2331 EXPORT_SYMBOL_GPL(register_kretprobes); 2332 2333 void unregister_kretprobe(struct kretprobe *rp) 2334 { 2335 } 2336 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2337 2338 void unregister_kretprobes(struct kretprobe **rps, int num) 2339 { 2340 } 2341 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2342 2343 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2344 { 2345 return 0; 2346 } 2347 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2348 2349 #endif /* CONFIG_KRETPROBES */ 2350 2351 /* Set the kprobe gone and remove its instruction buffer. */ 2352 static void kill_kprobe(struct kprobe *p) 2353 { 2354 struct kprobe *kp; 2355 2356 lockdep_assert_held(&kprobe_mutex); 2357 2358 /* 2359 * The module is going away. We should disarm the kprobe which 2360 * is using ftrace, because ftrace framework is still available at 2361 * 'MODULE_STATE_GOING' notification. 2362 */ 2363 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) 2364 disarm_kprobe_ftrace(p); 2365 2366 p->flags |= KPROBE_FLAG_GONE; 2367 if (kprobe_aggrprobe(p)) { 2368 /* 2369 * If this is an aggr_kprobe, we have to list all the 2370 * chained probes and mark them GONE. 2371 */ 2372 list_for_each_entry(kp, &p->list, list) 2373 kp->flags |= KPROBE_FLAG_GONE; 2374 p->post_handler = NULL; 2375 kill_optimized_kprobe(p); 2376 } 2377 /* 2378 * Here, we can remove insn_slot safely, because no thread calls 2379 * the original probed function (which will be freed soon) any more. 2380 */ 2381 arch_remove_kprobe(p); 2382 } 2383 2384 /* Disable one kprobe */ 2385 int disable_kprobe(struct kprobe *kp) 2386 { 2387 int ret = 0; 2388 struct kprobe *p; 2389 2390 mutex_lock(&kprobe_mutex); 2391 2392 /* Disable this kprobe */ 2393 p = __disable_kprobe(kp); 2394 if (IS_ERR(p)) 2395 ret = PTR_ERR(p); 2396 2397 mutex_unlock(&kprobe_mutex); 2398 return ret; 2399 } 2400 EXPORT_SYMBOL_GPL(disable_kprobe); 2401 2402 /* Enable one kprobe */ 2403 int enable_kprobe(struct kprobe *kp) 2404 { 2405 int ret = 0; 2406 struct kprobe *p; 2407 2408 mutex_lock(&kprobe_mutex); 2409 2410 /* Check whether specified probe is valid. */ 2411 p = __get_valid_kprobe(kp); 2412 if (unlikely(p == NULL)) { 2413 ret = -EINVAL; 2414 goto out; 2415 } 2416 2417 if (kprobe_gone(kp)) { 2418 /* This kprobe has gone, we couldn't enable it. */ 2419 ret = -EINVAL; 2420 goto out; 2421 } 2422 2423 if (p != kp) 2424 kp->flags &= ~KPROBE_FLAG_DISABLED; 2425 2426 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2427 p->flags &= ~KPROBE_FLAG_DISABLED; 2428 ret = arm_kprobe(p); 2429 if (ret) { 2430 p->flags |= KPROBE_FLAG_DISABLED; 2431 if (p != kp) 2432 kp->flags |= KPROBE_FLAG_DISABLED; 2433 } 2434 } 2435 out: 2436 mutex_unlock(&kprobe_mutex); 2437 return ret; 2438 } 2439 EXPORT_SYMBOL_GPL(enable_kprobe); 2440 2441 /* Caller must NOT call this in usual path. This is only for critical case */ 2442 void dump_kprobe(struct kprobe *kp) 2443 { 2444 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n", 2445 kp->symbol_name, kp->offset, kp->addr); 2446 } 2447 NOKPROBE_SYMBOL(dump_kprobe); 2448 2449 int kprobe_add_ksym_blacklist(unsigned long entry) 2450 { 2451 struct kprobe_blacklist_entry *ent; 2452 unsigned long offset = 0, size = 0; 2453 2454 if (!kernel_text_address(entry) || 2455 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2456 return -EINVAL; 2457 2458 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2459 if (!ent) 2460 return -ENOMEM; 2461 ent->start_addr = entry; 2462 ent->end_addr = entry + size; 2463 INIT_LIST_HEAD(&ent->list); 2464 list_add_tail(&ent->list, &kprobe_blacklist); 2465 2466 return (int)size; 2467 } 2468 2469 /* Add all symbols in given area into kprobe blacklist */ 2470 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2471 { 2472 unsigned long entry; 2473 int ret = 0; 2474 2475 for (entry = start; entry < end; entry += ret) { 2476 ret = kprobe_add_ksym_blacklist(entry); 2477 if (ret < 0) 2478 return ret; 2479 if (ret == 0) /* In case of alias symbol */ 2480 ret = 1; 2481 } 2482 return 0; 2483 } 2484 2485 /* Remove all symbols in given area from kprobe blacklist */ 2486 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2487 { 2488 struct kprobe_blacklist_entry *ent, *n; 2489 2490 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2491 if (ent->start_addr < start || ent->start_addr >= end) 2492 continue; 2493 list_del(&ent->list); 2494 kfree(ent); 2495 } 2496 } 2497 2498 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2499 { 2500 kprobe_remove_area_blacklist(entry, entry + 1); 2501 } 2502 2503 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, 2504 char *type, char *sym) 2505 { 2506 return -ERANGE; 2507 } 2508 2509 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 2510 char *sym) 2511 { 2512 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 2513 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) 2514 return 0; 2515 #ifdef CONFIG_OPTPROBES 2516 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) 2517 return 0; 2518 #endif 2519 #endif 2520 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) 2521 return 0; 2522 return -ERANGE; 2523 } 2524 2525 int __init __weak arch_populate_kprobe_blacklist(void) 2526 { 2527 return 0; 2528 } 2529 2530 /* 2531 * Lookup and populate the kprobe_blacklist. 2532 * 2533 * Unlike the kretprobe blacklist, we'll need to determine 2534 * the range of addresses that belong to the said functions, 2535 * since a kprobe need not necessarily be at the beginning 2536 * of a function. 2537 */ 2538 static int __init populate_kprobe_blacklist(unsigned long *start, 2539 unsigned long *end) 2540 { 2541 unsigned long entry; 2542 unsigned long *iter; 2543 int ret; 2544 2545 for (iter = start; iter < end; iter++) { 2546 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter); 2547 ret = kprobe_add_ksym_blacklist(entry); 2548 if (ret == -EINVAL) 2549 continue; 2550 if (ret < 0) 2551 return ret; 2552 } 2553 2554 /* Symbols in '__kprobes_text' are blacklisted */ 2555 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2556 (unsigned long)__kprobes_text_end); 2557 if (ret) 2558 return ret; 2559 2560 /* Symbols in 'noinstr' section are blacklisted */ 2561 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2562 (unsigned long)__noinstr_text_end); 2563 2564 return ret ? : arch_populate_kprobe_blacklist(); 2565 } 2566 2567 static void add_module_kprobe_blacklist(struct module *mod) 2568 { 2569 unsigned long start, end; 2570 int i; 2571 2572 if (mod->kprobe_blacklist) { 2573 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2574 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2575 } 2576 2577 start = (unsigned long)mod->kprobes_text_start; 2578 if (start) { 2579 end = start + mod->kprobes_text_size; 2580 kprobe_add_area_blacklist(start, end); 2581 } 2582 2583 start = (unsigned long)mod->noinstr_text_start; 2584 if (start) { 2585 end = start + mod->noinstr_text_size; 2586 kprobe_add_area_blacklist(start, end); 2587 } 2588 } 2589 2590 static void remove_module_kprobe_blacklist(struct module *mod) 2591 { 2592 unsigned long start, end; 2593 int i; 2594 2595 if (mod->kprobe_blacklist) { 2596 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2597 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2598 } 2599 2600 start = (unsigned long)mod->kprobes_text_start; 2601 if (start) { 2602 end = start + mod->kprobes_text_size; 2603 kprobe_remove_area_blacklist(start, end); 2604 } 2605 2606 start = (unsigned long)mod->noinstr_text_start; 2607 if (start) { 2608 end = start + mod->noinstr_text_size; 2609 kprobe_remove_area_blacklist(start, end); 2610 } 2611 } 2612 2613 /* Module notifier call back, checking kprobes on the module */ 2614 static int kprobes_module_callback(struct notifier_block *nb, 2615 unsigned long val, void *data) 2616 { 2617 struct module *mod = data; 2618 struct hlist_head *head; 2619 struct kprobe *p; 2620 unsigned int i; 2621 int checkcore = (val == MODULE_STATE_GOING); 2622 2623 if (val == MODULE_STATE_COMING) { 2624 mutex_lock(&kprobe_mutex); 2625 add_module_kprobe_blacklist(mod); 2626 mutex_unlock(&kprobe_mutex); 2627 } 2628 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2629 return NOTIFY_DONE; 2630 2631 /* 2632 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and 2633 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was 2634 * notified, only '.init.text' section would be freed. We need to 2635 * disable kprobes which have been inserted in the sections. 2636 */ 2637 mutex_lock(&kprobe_mutex); 2638 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2639 head = &kprobe_table[i]; 2640 hlist_for_each_entry(p, head, hlist) 2641 if (within_module_init((unsigned long)p->addr, mod) || 2642 (checkcore && 2643 within_module_core((unsigned long)p->addr, mod))) { 2644 /* 2645 * The vaddr this probe is installed will soon 2646 * be vfreed buy not synced to disk. Hence, 2647 * disarming the breakpoint isn't needed. 2648 * 2649 * Note, this will also move any optimized probes 2650 * that are pending to be removed from their 2651 * corresponding lists to the 'freeing_list' and 2652 * will not be touched by the delayed 2653 * kprobe_optimizer() work handler. 2654 */ 2655 kill_kprobe(p); 2656 } 2657 } 2658 if (val == MODULE_STATE_GOING) 2659 remove_module_kprobe_blacklist(mod); 2660 mutex_unlock(&kprobe_mutex); 2661 return NOTIFY_DONE; 2662 } 2663 2664 static struct notifier_block kprobe_module_nb = { 2665 .notifier_call = kprobes_module_callback, 2666 .priority = 0 2667 }; 2668 2669 void kprobe_free_init_mem(void) 2670 { 2671 void *start = (void *)(&__init_begin); 2672 void *end = (void *)(&__init_end); 2673 struct hlist_head *head; 2674 struct kprobe *p; 2675 int i; 2676 2677 mutex_lock(&kprobe_mutex); 2678 2679 /* Kill all kprobes on initmem because the target code has been freed. */ 2680 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2681 head = &kprobe_table[i]; 2682 hlist_for_each_entry(p, head, hlist) { 2683 if (start <= (void *)p->addr && (void *)p->addr < end) 2684 kill_kprobe(p); 2685 } 2686 } 2687 2688 mutex_unlock(&kprobe_mutex); 2689 } 2690 2691 static int __init init_kprobes(void) 2692 { 2693 int i, err; 2694 2695 /* FIXME allocate the probe table, currently defined statically */ 2696 /* initialize all list heads */ 2697 for (i = 0; i < KPROBE_TABLE_SIZE; i++) 2698 INIT_HLIST_HEAD(&kprobe_table[i]); 2699 2700 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2701 __stop_kprobe_blacklist); 2702 if (err) 2703 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err); 2704 2705 if (kretprobe_blacklist_size) { 2706 /* lookup the function address from its name */ 2707 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2708 kretprobe_blacklist[i].addr = 2709 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2710 if (!kretprobe_blacklist[i].addr) 2711 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n", 2712 kretprobe_blacklist[i].name); 2713 } 2714 } 2715 2716 /* By default, kprobes are armed */ 2717 kprobes_all_disarmed = false; 2718 2719 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2720 /* Init 'kprobe_optinsn_slots' for allocation */ 2721 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2722 #endif 2723 2724 err = arch_init_kprobes(); 2725 if (!err) 2726 err = register_die_notifier(&kprobe_exceptions_nb); 2727 if (!err) 2728 err = register_module_notifier(&kprobe_module_nb); 2729 2730 kprobes_initialized = (err == 0); 2731 kprobe_sysctls_init(); 2732 return err; 2733 } 2734 early_initcall(init_kprobes); 2735 2736 #if defined(CONFIG_OPTPROBES) 2737 static int __init init_optprobes(void) 2738 { 2739 /* 2740 * Enable kprobe optimization - this kicks the optimizer which 2741 * depends on synchronize_rcu_tasks() and ksoftirqd, that is 2742 * not spawned in early initcall. So delay the optimization. 2743 */ 2744 optimize_all_kprobes(); 2745 2746 return 0; 2747 } 2748 subsys_initcall(init_optprobes); 2749 #endif 2750 2751 #ifdef CONFIG_DEBUG_FS 2752 static void report_probe(struct seq_file *pi, struct kprobe *p, 2753 const char *sym, int offset, char *modname, struct kprobe *pp) 2754 { 2755 char *kprobe_type; 2756 void *addr = p->addr; 2757 2758 if (p->pre_handler == pre_handler_kretprobe) 2759 kprobe_type = "r"; 2760 else 2761 kprobe_type = "k"; 2762 2763 if (!kallsyms_show_value(pi->file->f_cred)) 2764 addr = NULL; 2765 2766 if (sym) 2767 seq_printf(pi, "%px %s %s+0x%x %s ", 2768 addr, kprobe_type, sym, offset, 2769 (modname ? modname : " ")); 2770 else /* try to use %pS */ 2771 seq_printf(pi, "%px %s %pS ", 2772 addr, kprobe_type, p->addr); 2773 2774 if (!pp) 2775 pp = p; 2776 seq_printf(pi, "%s%s%s%s\n", 2777 (kprobe_gone(p) ? "[GONE]" : ""), 2778 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2779 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2780 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2781 } 2782 2783 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2784 { 2785 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2786 } 2787 2788 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2789 { 2790 (*pos)++; 2791 if (*pos >= KPROBE_TABLE_SIZE) 2792 return NULL; 2793 return pos; 2794 } 2795 2796 static void kprobe_seq_stop(struct seq_file *f, void *v) 2797 { 2798 /* Nothing to do */ 2799 } 2800 2801 static int show_kprobe_addr(struct seq_file *pi, void *v) 2802 { 2803 struct hlist_head *head; 2804 struct kprobe *p, *kp; 2805 const char *sym = NULL; 2806 unsigned int i = *(loff_t *) v; 2807 unsigned long offset = 0; 2808 char *modname, namebuf[KSYM_NAME_LEN]; 2809 2810 head = &kprobe_table[i]; 2811 preempt_disable(); 2812 hlist_for_each_entry_rcu(p, head, hlist) { 2813 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2814 &offset, &modname, namebuf); 2815 if (kprobe_aggrprobe(p)) { 2816 list_for_each_entry_rcu(kp, &p->list, list) 2817 report_probe(pi, kp, sym, offset, modname, p); 2818 } else 2819 report_probe(pi, p, sym, offset, modname, NULL); 2820 } 2821 preempt_enable(); 2822 return 0; 2823 } 2824 2825 static const struct seq_operations kprobes_sops = { 2826 .start = kprobe_seq_start, 2827 .next = kprobe_seq_next, 2828 .stop = kprobe_seq_stop, 2829 .show = show_kprobe_addr 2830 }; 2831 2832 DEFINE_SEQ_ATTRIBUTE(kprobes); 2833 2834 /* kprobes/blacklist -- shows which functions can not be probed */ 2835 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2836 { 2837 mutex_lock(&kprobe_mutex); 2838 return seq_list_start(&kprobe_blacklist, *pos); 2839 } 2840 2841 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2842 { 2843 return seq_list_next(v, &kprobe_blacklist, pos); 2844 } 2845 2846 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2847 { 2848 struct kprobe_blacklist_entry *ent = 2849 list_entry(v, struct kprobe_blacklist_entry, list); 2850 2851 /* 2852 * If '/proc/kallsyms' is not showing kernel address, we won't 2853 * show them here either. 2854 */ 2855 if (!kallsyms_show_value(m->file->f_cred)) 2856 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2857 (void *)ent->start_addr); 2858 else 2859 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2860 (void *)ent->end_addr, (void *)ent->start_addr); 2861 return 0; 2862 } 2863 2864 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2865 { 2866 mutex_unlock(&kprobe_mutex); 2867 } 2868 2869 static const struct seq_operations kprobe_blacklist_sops = { 2870 .start = kprobe_blacklist_seq_start, 2871 .next = kprobe_blacklist_seq_next, 2872 .stop = kprobe_blacklist_seq_stop, 2873 .show = kprobe_blacklist_seq_show, 2874 }; 2875 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2876 2877 static int arm_all_kprobes(void) 2878 { 2879 struct hlist_head *head; 2880 struct kprobe *p; 2881 unsigned int i, total = 0, errors = 0; 2882 int err, ret = 0; 2883 2884 mutex_lock(&kprobe_mutex); 2885 2886 /* If kprobes are armed, just return */ 2887 if (!kprobes_all_disarmed) 2888 goto already_enabled; 2889 2890 /* 2891 * optimize_kprobe() called by arm_kprobe() checks 2892 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2893 * arm_kprobe. 2894 */ 2895 kprobes_all_disarmed = false; 2896 /* Arming kprobes doesn't optimize kprobe itself */ 2897 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2898 head = &kprobe_table[i]; 2899 /* Arm all kprobes on a best-effort basis */ 2900 hlist_for_each_entry(p, head, hlist) { 2901 if (!kprobe_disabled(p)) { 2902 err = arm_kprobe(p); 2903 if (err) { 2904 errors++; 2905 ret = err; 2906 } 2907 total++; 2908 } 2909 } 2910 } 2911 2912 if (errors) 2913 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n", 2914 errors, total); 2915 else 2916 pr_info("Kprobes globally enabled\n"); 2917 2918 already_enabled: 2919 mutex_unlock(&kprobe_mutex); 2920 return ret; 2921 } 2922 2923 static int disarm_all_kprobes(void) 2924 { 2925 struct hlist_head *head; 2926 struct kprobe *p; 2927 unsigned int i, total = 0, errors = 0; 2928 int err, ret = 0; 2929 2930 mutex_lock(&kprobe_mutex); 2931 2932 /* If kprobes are already disarmed, just return */ 2933 if (kprobes_all_disarmed) { 2934 mutex_unlock(&kprobe_mutex); 2935 return 0; 2936 } 2937 2938 kprobes_all_disarmed = true; 2939 2940 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2941 head = &kprobe_table[i]; 2942 /* Disarm all kprobes on a best-effort basis */ 2943 hlist_for_each_entry(p, head, hlist) { 2944 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2945 err = disarm_kprobe(p, false); 2946 if (err) { 2947 errors++; 2948 ret = err; 2949 } 2950 total++; 2951 } 2952 } 2953 } 2954 2955 if (errors) 2956 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n", 2957 errors, total); 2958 else 2959 pr_info("Kprobes globally disabled\n"); 2960 2961 mutex_unlock(&kprobe_mutex); 2962 2963 /* Wait for disarming all kprobes by optimizer */ 2964 wait_for_kprobe_optimizer(); 2965 2966 return ret; 2967 } 2968 2969 /* 2970 * XXX: The debugfs bool file interface doesn't allow for callbacks 2971 * when the bool state is switched. We can reuse that facility when 2972 * available 2973 */ 2974 static ssize_t read_enabled_file_bool(struct file *file, 2975 char __user *user_buf, size_t count, loff_t *ppos) 2976 { 2977 char buf[3]; 2978 2979 if (!kprobes_all_disarmed) 2980 buf[0] = '1'; 2981 else 2982 buf[0] = '0'; 2983 buf[1] = '\n'; 2984 buf[2] = 0x00; 2985 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2986 } 2987 2988 static ssize_t write_enabled_file_bool(struct file *file, 2989 const char __user *user_buf, size_t count, loff_t *ppos) 2990 { 2991 bool enable; 2992 int ret; 2993 2994 ret = kstrtobool_from_user(user_buf, count, &enable); 2995 if (ret) 2996 return ret; 2997 2998 ret = enable ? arm_all_kprobes() : disarm_all_kprobes(); 2999 if (ret) 3000 return ret; 3001 3002 return count; 3003 } 3004 3005 static const struct file_operations fops_kp = { 3006 .read = read_enabled_file_bool, 3007 .write = write_enabled_file_bool, 3008 .llseek = default_llseek, 3009 }; 3010 3011 static int __init debugfs_kprobe_init(void) 3012 { 3013 struct dentry *dir; 3014 3015 dir = debugfs_create_dir("kprobes", NULL); 3016 3017 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 3018 3019 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp); 3020 3021 debugfs_create_file("blacklist", 0400, dir, NULL, 3022 &kprobe_blacklist_fops); 3023 3024 return 0; 3025 } 3026 3027 late_initcall(debugfs_kprobe_init); 3028 #endif /* CONFIG_DEBUG_FS */ 3029