xref: /linux/kernel/kprobes.c (revision 757dea93e136b219af09d3cd56a81063fdbdef1a)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 #include <asm-generic/sections.h>
47 #include <asm/cacheflush.h>
48 #include <asm/errno.h>
49 
50 #define KPROBE_HASH_BITS 6
51 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
52 
53 
54 /*
55  * Some oddball architectures like 64bit powerpc have function descriptors
56  * so this must be overridable.
57  */
58 #ifndef kprobe_lookup_name
59 #define kprobe_lookup_name(name, addr) \
60 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
61 #endif
62 
63 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
64 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
65 static atomic_t kprobe_count;
66 
67 DEFINE_MUTEX(kprobe_mutex);		/* Protects kprobe_table */
68 DEFINE_SPINLOCK(kretprobe_lock);	/* Protects kretprobe_inst_table */
69 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
70 
71 static struct notifier_block kprobe_page_fault_nb = {
72 	.notifier_call = kprobe_exceptions_notify,
73 	.priority = 0x7fffffff /* we need to notified first */
74 };
75 
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77 /*
78  * kprobe->ainsn.insn points to the copy of the instruction to be
79  * single-stepped. x86_64, POWER4 and above have no-exec support and
80  * stepping on the instruction on a vmalloced/kmalloced/data page
81  * is a recipe for disaster
82  */
83 #define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
84 
85 struct kprobe_insn_page {
86 	struct hlist_node hlist;
87 	kprobe_opcode_t *insns;		/* Page of instruction slots */
88 	char slot_used[INSNS_PER_PAGE];
89 	int nused;
90 	int ngarbage;
91 };
92 
93 enum kprobe_slot_state {
94 	SLOT_CLEAN = 0,
95 	SLOT_DIRTY = 1,
96 	SLOT_USED = 2,
97 };
98 
99 static struct hlist_head kprobe_insn_pages;
100 static int kprobe_garbage_slots;
101 static int collect_garbage_slots(void);
102 
103 static int __kprobes check_safety(void)
104 {
105 	int ret = 0;
106 #if defined(CONFIG_PREEMPT) && defined(CONFIG_PM)
107 	ret = freeze_processes();
108 	if (ret == 0) {
109 		struct task_struct *p, *q;
110 		do_each_thread(p, q) {
111 			if (p != current && p->state == TASK_RUNNING &&
112 			    p->pid != 0) {
113 				printk("Check failed: %s is running\n",p->comm);
114 				ret = -1;
115 				goto loop_end;
116 			}
117 		} while_each_thread(p, q);
118 	}
119 loop_end:
120 	thaw_processes();
121 #else
122 	synchronize_sched();
123 #endif
124 	return ret;
125 }
126 
127 /**
128  * get_insn_slot() - Find a slot on an executable page for an instruction.
129  * We allocate an executable page if there's no room on existing ones.
130  */
131 kprobe_opcode_t __kprobes *get_insn_slot(void)
132 {
133 	struct kprobe_insn_page *kip;
134 	struct hlist_node *pos;
135 
136       retry:
137 	hlist_for_each(pos, &kprobe_insn_pages) {
138 		kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
139 		if (kip->nused < INSNS_PER_PAGE) {
140 			int i;
141 			for (i = 0; i < INSNS_PER_PAGE; i++) {
142 				if (kip->slot_used[i] == SLOT_CLEAN) {
143 					kip->slot_used[i] = SLOT_USED;
144 					kip->nused++;
145 					return kip->insns + (i * MAX_INSN_SIZE);
146 				}
147 			}
148 			/* Surprise!  No unused slots.  Fix kip->nused. */
149 			kip->nused = INSNS_PER_PAGE;
150 		}
151 	}
152 
153 	/* If there are any garbage slots, collect it and try again. */
154 	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
155 		goto retry;
156 	}
157 	/* All out of space.  Need to allocate a new page. Use slot 0. */
158 	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
159 	if (!kip) {
160 		return NULL;
161 	}
162 
163 	/*
164 	 * Use module_alloc so this page is within +/- 2GB of where the
165 	 * kernel image and loaded module images reside. This is required
166 	 * so x86_64 can correctly handle the %rip-relative fixups.
167 	 */
168 	kip->insns = module_alloc(PAGE_SIZE);
169 	if (!kip->insns) {
170 		kfree(kip);
171 		return NULL;
172 	}
173 	INIT_HLIST_NODE(&kip->hlist);
174 	hlist_add_head(&kip->hlist, &kprobe_insn_pages);
175 	memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
176 	kip->slot_used[0] = SLOT_USED;
177 	kip->nused = 1;
178 	kip->ngarbage = 0;
179 	return kip->insns;
180 }
181 
182 /* Return 1 if all garbages are collected, otherwise 0. */
183 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
184 {
185 	kip->slot_used[idx] = SLOT_CLEAN;
186 	kip->nused--;
187 	if (kip->nused == 0) {
188 		/*
189 		 * Page is no longer in use.  Free it unless
190 		 * it's the last one.  We keep the last one
191 		 * so as not to have to set it up again the
192 		 * next time somebody inserts a probe.
193 		 */
194 		hlist_del(&kip->hlist);
195 		if (hlist_empty(&kprobe_insn_pages)) {
196 			INIT_HLIST_NODE(&kip->hlist);
197 			hlist_add_head(&kip->hlist,
198 				       &kprobe_insn_pages);
199 		} else {
200 			module_free(NULL, kip->insns);
201 			kfree(kip);
202 		}
203 		return 1;
204 	}
205 	return 0;
206 }
207 
208 static int __kprobes collect_garbage_slots(void)
209 {
210 	struct kprobe_insn_page *kip;
211 	struct hlist_node *pos, *next;
212 
213 	/* Ensure no-one is preepmted on the garbages */
214 	if (check_safety() != 0)
215 		return -EAGAIN;
216 
217 	hlist_for_each_safe(pos, next, &kprobe_insn_pages) {
218 		int i;
219 		kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
220 		if (kip->ngarbage == 0)
221 			continue;
222 		kip->ngarbage = 0;	/* we will collect all garbages */
223 		for (i = 0; i < INSNS_PER_PAGE; i++) {
224 			if (kip->slot_used[i] == SLOT_DIRTY &&
225 			    collect_one_slot(kip, i))
226 				break;
227 		}
228 	}
229 	kprobe_garbage_slots = 0;
230 	return 0;
231 }
232 
233 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
234 {
235 	struct kprobe_insn_page *kip;
236 	struct hlist_node *pos;
237 
238 	hlist_for_each(pos, &kprobe_insn_pages) {
239 		kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
240 		if (kip->insns <= slot &&
241 		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
242 			int i = (slot - kip->insns) / MAX_INSN_SIZE;
243 			if (dirty) {
244 				kip->slot_used[i] = SLOT_DIRTY;
245 				kip->ngarbage++;
246 			} else {
247 				collect_one_slot(kip, i);
248 			}
249 			break;
250 		}
251 	}
252 	if (dirty && (++kprobe_garbage_slots > INSNS_PER_PAGE)) {
253 		collect_garbage_slots();
254 	}
255 }
256 #endif
257 
258 /* We have preemption disabled.. so it is safe to use __ versions */
259 static inline void set_kprobe_instance(struct kprobe *kp)
260 {
261 	__get_cpu_var(kprobe_instance) = kp;
262 }
263 
264 static inline void reset_kprobe_instance(void)
265 {
266 	__get_cpu_var(kprobe_instance) = NULL;
267 }
268 
269 /*
270  * This routine is called either:
271  * 	- under the kprobe_mutex - during kprobe_[un]register()
272  * 				OR
273  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
274  */
275 struct kprobe __kprobes *get_kprobe(void *addr)
276 {
277 	struct hlist_head *head;
278 	struct hlist_node *node;
279 	struct kprobe *p;
280 
281 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
282 	hlist_for_each_entry_rcu(p, node, head, hlist) {
283 		if (p->addr == addr)
284 			return p;
285 	}
286 	return NULL;
287 }
288 
289 /*
290  * Aggregate handlers for multiple kprobes support - these handlers
291  * take care of invoking the individual kprobe handlers on p->list
292  */
293 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
294 {
295 	struct kprobe *kp;
296 
297 	list_for_each_entry_rcu(kp, &p->list, list) {
298 		if (kp->pre_handler) {
299 			set_kprobe_instance(kp);
300 			if (kp->pre_handler(kp, regs))
301 				return 1;
302 		}
303 		reset_kprobe_instance();
304 	}
305 	return 0;
306 }
307 
308 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
309 					unsigned long flags)
310 {
311 	struct kprobe *kp;
312 
313 	list_for_each_entry_rcu(kp, &p->list, list) {
314 		if (kp->post_handler) {
315 			set_kprobe_instance(kp);
316 			kp->post_handler(kp, regs, flags);
317 			reset_kprobe_instance();
318 		}
319 	}
320 	return;
321 }
322 
323 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
324 					int trapnr)
325 {
326 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
327 
328 	/*
329 	 * if we faulted "during" the execution of a user specified
330 	 * probe handler, invoke just that probe's fault handler
331 	 */
332 	if (cur && cur->fault_handler) {
333 		if (cur->fault_handler(cur, regs, trapnr))
334 			return 1;
335 	}
336 	return 0;
337 }
338 
339 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
340 {
341 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
342 	int ret = 0;
343 
344 	if (cur && cur->break_handler) {
345 		if (cur->break_handler(cur, regs))
346 			ret = 1;
347 	}
348 	reset_kprobe_instance();
349 	return ret;
350 }
351 
352 /* Walks the list and increments nmissed count for multiprobe case */
353 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
354 {
355 	struct kprobe *kp;
356 	if (p->pre_handler != aggr_pre_handler) {
357 		p->nmissed++;
358 	} else {
359 		list_for_each_entry_rcu(kp, &p->list, list)
360 			kp->nmissed++;
361 	}
362 	return;
363 }
364 
365 /* Called with kretprobe_lock held */
366 struct kretprobe_instance __kprobes *get_free_rp_inst(struct kretprobe *rp)
367 {
368 	struct hlist_node *node;
369 	struct kretprobe_instance *ri;
370 	hlist_for_each_entry(ri, node, &rp->free_instances, uflist)
371 		return ri;
372 	return NULL;
373 }
374 
375 /* Called with kretprobe_lock held */
376 static struct kretprobe_instance __kprobes *get_used_rp_inst(struct kretprobe
377 							      *rp)
378 {
379 	struct hlist_node *node;
380 	struct kretprobe_instance *ri;
381 	hlist_for_each_entry(ri, node, &rp->used_instances, uflist)
382 		return ri;
383 	return NULL;
384 }
385 
386 /* Called with kretprobe_lock held */
387 void __kprobes add_rp_inst(struct kretprobe_instance *ri)
388 {
389 	/*
390 	 * Remove rp inst off the free list -
391 	 * Add it back when probed function returns
392 	 */
393 	hlist_del(&ri->uflist);
394 
395 	/* Add rp inst onto table */
396 	INIT_HLIST_NODE(&ri->hlist);
397 	hlist_add_head(&ri->hlist,
398 			&kretprobe_inst_table[hash_ptr(ri->task, KPROBE_HASH_BITS)]);
399 
400 	/* Also add this rp inst to the used list. */
401 	INIT_HLIST_NODE(&ri->uflist);
402 	hlist_add_head(&ri->uflist, &ri->rp->used_instances);
403 }
404 
405 /* Called with kretprobe_lock held */
406 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
407 				struct hlist_head *head)
408 {
409 	/* remove rp inst off the rprobe_inst_table */
410 	hlist_del(&ri->hlist);
411 	if (ri->rp) {
412 		/* remove rp inst off the used list */
413 		hlist_del(&ri->uflist);
414 		/* put rp inst back onto the free list */
415 		INIT_HLIST_NODE(&ri->uflist);
416 		hlist_add_head(&ri->uflist, &ri->rp->free_instances);
417 	} else
418 		/* Unregistering */
419 		hlist_add_head(&ri->hlist, head);
420 }
421 
422 struct hlist_head __kprobes *kretprobe_inst_table_head(struct task_struct *tsk)
423 {
424 	return &kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)];
425 }
426 
427 /*
428  * This function is called from finish_task_switch when task tk becomes dead,
429  * so that we can recycle any function-return probe instances associated
430  * with this task. These left over instances represent probed functions
431  * that have been called but will never return.
432  */
433 void __kprobes kprobe_flush_task(struct task_struct *tk)
434 {
435 	struct kretprobe_instance *ri;
436 	struct hlist_head *head, empty_rp;
437 	struct hlist_node *node, *tmp;
438 	unsigned long flags = 0;
439 
440 	INIT_HLIST_HEAD(&empty_rp);
441 	spin_lock_irqsave(&kretprobe_lock, flags);
442 	head = kretprobe_inst_table_head(tk);
443 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
444 		if (ri->task == tk)
445 			recycle_rp_inst(ri, &empty_rp);
446 	}
447 	spin_unlock_irqrestore(&kretprobe_lock, flags);
448 
449 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
450 		hlist_del(&ri->hlist);
451 		kfree(ri);
452 	}
453 }
454 
455 static inline void free_rp_inst(struct kretprobe *rp)
456 {
457 	struct kretprobe_instance *ri;
458 	while ((ri = get_free_rp_inst(rp)) != NULL) {
459 		hlist_del(&ri->uflist);
460 		kfree(ri);
461 	}
462 }
463 
464 /*
465  * Keep all fields in the kprobe consistent
466  */
467 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
468 {
469 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
470 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
471 }
472 
473 /*
474 * Add the new probe to old_p->list. Fail if this is the
475 * second jprobe at the address - two jprobes can't coexist
476 */
477 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
478 {
479 	if (p->break_handler) {
480 		if (old_p->break_handler)
481 			return -EEXIST;
482 		list_add_tail_rcu(&p->list, &old_p->list);
483 		old_p->break_handler = aggr_break_handler;
484 	} else
485 		list_add_rcu(&p->list, &old_p->list);
486 	if (p->post_handler && !old_p->post_handler)
487 		old_p->post_handler = aggr_post_handler;
488 	return 0;
489 }
490 
491 /*
492  * Fill in the required fields of the "manager kprobe". Replace the
493  * earlier kprobe in the hlist with the manager kprobe
494  */
495 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
496 {
497 	copy_kprobe(p, ap);
498 	flush_insn_slot(ap);
499 	ap->addr = p->addr;
500 	ap->pre_handler = aggr_pre_handler;
501 	ap->fault_handler = aggr_fault_handler;
502 	if (p->post_handler)
503 		ap->post_handler = aggr_post_handler;
504 	if (p->break_handler)
505 		ap->break_handler = aggr_break_handler;
506 
507 	INIT_LIST_HEAD(&ap->list);
508 	list_add_rcu(&p->list, &ap->list);
509 
510 	hlist_replace_rcu(&p->hlist, &ap->hlist);
511 }
512 
513 /*
514  * This is the second or subsequent kprobe at the address - handle
515  * the intricacies
516  */
517 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
518 					  struct kprobe *p)
519 {
520 	int ret = 0;
521 	struct kprobe *ap;
522 
523 	if (old_p->pre_handler == aggr_pre_handler) {
524 		copy_kprobe(old_p, p);
525 		ret = add_new_kprobe(old_p, p);
526 	} else {
527 		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
528 		if (!ap)
529 			return -ENOMEM;
530 		add_aggr_kprobe(ap, old_p);
531 		copy_kprobe(ap, p);
532 		ret = add_new_kprobe(ap, p);
533 	}
534 	return ret;
535 }
536 
537 static int __kprobes in_kprobes_functions(unsigned long addr)
538 {
539 	if (addr >= (unsigned long)__kprobes_text_start
540 		&& addr < (unsigned long)__kprobes_text_end)
541 		return -EINVAL;
542 	return 0;
543 }
544 
545 static int __kprobes __register_kprobe(struct kprobe *p,
546 	unsigned long called_from)
547 {
548 	int ret = 0;
549 	struct kprobe *old_p;
550 	struct module *probed_mod;
551 
552 	/*
553 	 * If we have a symbol_name argument look it up,
554 	 * and add it to the address.  That way the addr
555 	 * field can either be global or relative to a symbol.
556 	 */
557 	if (p->symbol_name) {
558 		if (p->addr)
559 			return -EINVAL;
560 		kprobe_lookup_name(p->symbol_name, p->addr);
561 	}
562 
563 	if (!p->addr)
564 		return -EINVAL;
565 	p->addr = (kprobe_opcode_t *)(((char *)p->addr)+ p->offset);
566 
567 	if ((!kernel_text_address((unsigned long) p->addr)) ||
568 		in_kprobes_functions((unsigned long) p->addr))
569 		return -EINVAL;
570 
571 	p->mod_refcounted = 0;
572 	/* Check are we probing a module */
573 	if ((probed_mod = module_text_address((unsigned long) p->addr))) {
574 		struct module *calling_mod = module_text_address(called_from);
575 		/* We must allow modules to probe themself and
576 		 * in this case avoid incrementing the module refcount,
577 		 * so as to allow unloading of self probing modules.
578 		 */
579 		if (calling_mod && (calling_mod != probed_mod)) {
580 			if (unlikely(!try_module_get(probed_mod)))
581 				return -EINVAL;
582 			p->mod_refcounted = 1;
583 		} else
584 			probed_mod = NULL;
585 	}
586 
587 	p->nmissed = 0;
588 	mutex_lock(&kprobe_mutex);
589 	old_p = get_kprobe(p->addr);
590 	if (old_p) {
591 		ret = register_aggr_kprobe(old_p, p);
592 		if (!ret)
593 			atomic_inc(&kprobe_count);
594 		goto out;
595 	}
596 
597 	if ((ret = arch_prepare_kprobe(p)) != 0)
598 		goto out;
599 
600 	INIT_HLIST_NODE(&p->hlist);
601 	hlist_add_head_rcu(&p->hlist,
602 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
603 
604 	if (atomic_add_return(1, &kprobe_count) == \
605 				(ARCH_INACTIVE_KPROBE_COUNT + 1))
606 		register_page_fault_notifier(&kprobe_page_fault_nb);
607 
608 	arch_arm_kprobe(p);
609 
610 out:
611 	mutex_unlock(&kprobe_mutex);
612 
613 	if (ret && probed_mod)
614 		module_put(probed_mod);
615 	return ret;
616 }
617 
618 int __kprobes register_kprobe(struct kprobe *p)
619 {
620 	return __register_kprobe(p,
621 		(unsigned long)__builtin_return_address(0));
622 }
623 
624 void __kprobes unregister_kprobe(struct kprobe *p)
625 {
626 	struct module *mod;
627 	struct kprobe *old_p, *list_p;
628 	int cleanup_p;
629 
630 	mutex_lock(&kprobe_mutex);
631 	old_p = get_kprobe(p->addr);
632 	if (unlikely(!old_p)) {
633 		mutex_unlock(&kprobe_mutex);
634 		return;
635 	}
636 	if (p != old_p) {
637 		list_for_each_entry_rcu(list_p, &old_p->list, list)
638 			if (list_p == p)
639 			/* kprobe p is a valid probe */
640 				goto valid_p;
641 		mutex_unlock(&kprobe_mutex);
642 		return;
643 	}
644 valid_p:
645 	if ((old_p == p) || ((old_p->pre_handler == aggr_pre_handler) &&
646 		(p->list.next == &old_p->list) &&
647 		(p->list.prev == &old_p->list))) {
648 		/* Only probe on the hash list */
649 		arch_disarm_kprobe(p);
650 		hlist_del_rcu(&old_p->hlist);
651 		cleanup_p = 1;
652 	} else {
653 		list_del_rcu(&p->list);
654 		cleanup_p = 0;
655 	}
656 
657 	mutex_unlock(&kprobe_mutex);
658 
659 	synchronize_sched();
660 	if (p->mod_refcounted &&
661 	    (mod = module_text_address((unsigned long)p->addr)))
662 		module_put(mod);
663 
664 	if (cleanup_p) {
665 		if (p != old_p) {
666 			list_del_rcu(&p->list);
667 			kfree(old_p);
668 		}
669 		arch_remove_kprobe(p);
670 	} else {
671 		mutex_lock(&kprobe_mutex);
672 		if (p->break_handler)
673 			old_p->break_handler = NULL;
674 		if (p->post_handler){
675 			list_for_each_entry_rcu(list_p, &old_p->list, list){
676 				if (list_p->post_handler){
677 					cleanup_p = 2;
678 					break;
679 				}
680 			}
681 			if (cleanup_p == 0)
682 				old_p->post_handler = NULL;
683 		}
684 		mutex_unlock(&kprobe_mutex);
685 	}
686 
687 	/* Call unregister_page_fault_notifier()
688 	 * if no probes are active
689 	 */
690 	mutex_lock(&kprobe_mutex);
691 	if (atomic_add_return(-1, &kprobe_count) == \
692 				ARCH_INACTIVE_KPROBE_COUNT)
693 		unregister_page_fault_notifier(&kprobe_page_fault_nb);
694 	mutex_unlock(&kprobe_mutex);
695 	return;
696 }
697 
698 static struct notifier_block kprobe_exceptions_nb = {
699 	.notifier_call = kprobe_exceptions_notify,
700 	.priority = 0x7fffffff /* we need to be notified first */
701 };
702 
703 
704 int __kprobes register_jprobe(struct jprobe *jp)
705 {
706 	/* Todo: Verify probepoint is a function entry point */
707 	jp->kp.pre_handler = setjmp_pre_handler;
708 	jp->kp.break_handler = longjmp_break_handler;
709 
710 	return __register_kprobe(&jp->kp,
711 		(unsigned long)__builtin_return_address(0));
712 }
713 
714 void __kprobes unregister_jprobe(struct jprobe *jp)
715 {
716 	unregister_kprobe(&jp->kp);
717 }
718 
719 #ifdef ARCH_SUPPORTS_KRETPROBES
720 
721 /*
722  * This kprobe pre_handler is registered with every kretprobe. When probe
723  * hits it will set up the return probe.
724  */
725 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
726 					   struct pt_regs *regs)
727 {
728 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
729 	unsigned long flags = 0;
730 
731 	/*TODO: consider to only swap the RA after the last pre_handler fired */
732 	spin_lock_irqsave(&kretprobe_lock, flags);
733 	arch_prepare_kretprobe(rp, regs);
734 	spin_unlock_irqrestore(&kretprobe_lock, flags);
735 	return 0;
736 }
737 
738 int __kprobes register_kretprobe(struct kretprobe *rp)
739 {
740 	int ret = 0;
741 	struct kretprobe_instance *inst;
742 	int i;
743 
744 	rp->kp.pre_handler = pre_handler_kretprobe;
745 	rp->kp.post_handler = NULL;
746 	rp->kp.fault_handler = NULL;
747 	rp->kp.break_handler = NULL;
748 
749 	/* Pre-allocate memory for max kretprobe instances */
750 	if (rp->maxactive <= 0) {
751 #ifdef CONFIG_PREEMPT
752 		rp->maxactive = max(10, 2 * NR_CPUS);
753 #else
754 		rp->maxactive = NR_CPUS;
755 #endif
756 	}
757 	INIT_HLIST_HEAD(&rp->used_instances);
758 	INIT_HLIST_HEAD(&rp->free_instances);
759 	for (i = 0; i < rp->maxactive; i++) {
760 		inst = kmalloc(sizeof(struct kretprobe_instance), GFP_KERNEL);
761 		if (inst == NULL) {
762 			free_rp_inst(rp);
763 			return -ENOMEM;
764 		}
765 		INIT_HLIST_NODE(&inst->uflist);
766 		hlist_add_head(&inst->uflist, &rp->free_instances);
767 	}
768 
769 	rp->nmissed = 0;
770 	/* Establish function entry probe point */
771 	if ((ret = __register_kprobe(&rp->kp,
772 		(unsigned long)__builtin_return_address(0))) != 0)
773 		free_rp_inst(rp);
774 	return ret;
775 }
776 
777 #else /* ARCH_SUPPORTS_KRETPROBES */
778 
779 int __kprobes register_kretprobe(struct kretprobe *rp)
780 {
781 	return -ENOSYS;
782 }
783 
784 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
785 					   struct pt_regs *regs)
786 {
787 	return 0;
788 }
789 
790 #endif /* ARCH_SUPPORTS_KRETPROBES */
791 
792 void __kprobes unregister_kretprobe(struct kretprobe *rp)
793 {
794 	unsigned long flags;
795 	struct kretprobe_instance *ri;
796 
797 	unregister_kprobe(&rp->kp);
798 	/* No race here */
799 	spin_lock_irqsave(&kretprobe_lock, flags);
800 	while ((ri = get_used_rp_inst(rp)) != NULL) {
801 		ri->rp = NULL;
802 		hlist_del(&ri->uflist);
803 	}
804 	spin_unlock_irqrestore(&kretprobe_lock, flags);
805 	free_rp_inst(rp);
806 }
807 
808 static int __init init_kprobes(void)
809 {
810 	int i, err = 0;
811 
812 	/* FIXME allocate the probe table, currently defined statically */
813 	/* initialize all list heads */
814 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
815 		INIT_HLIST_HEAD(&kprobe_table[i]);
816 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
817 	}
818 	atomic_set(&kprobe_count, 0);
819 
820 	err = arch_init_kprobes();
821 	if (!err)
822 		err = register_die_notifier(&kprobe_exceptions_nb);
823 
824 	return err;
825 }
826 
827 #ifdef CONFIG_DEBUG_FS
828 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
829                const char *sym, int offset,char *modname)
830 {
831 	char *kprobe_type;
832 
833 	if (p->pre_handler == pre_handler_kretprobe)
834 		kprobe_type = "r";
835 	else if (p->pre_handler == setjmp_pre_handler)
836 		kprobe_type = "j";
837 	else
838 		kprobe_type = "k";
839 	if (sym)
840 		seq_printf(pi, "%p  %s  %s+0x%x  %s\n", p->addr, kprobe_type,
841 			sym, offset, (modname ? modname : " "));
842 	else
843 		seq_printf(pi, "%p  %s  %p\n", p->addr, kprobe_type, p->addr);
844 }
845 
846 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
847 {
848 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
849 }
850 
851 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
852 {
853 	(*pos)++;
854 	if (*pos >= KPROBE_TABLE_SIZE)
855 		return NULL;
856 	return pos;
857 }
858 
859 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
860 {
861 	/* Nothing to do */
862 }
863 
864 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
865 {
866 	struct hlist_head *head;
867 	struct hlist_node *node;
868 	struct kprobe *p, *kp;
869 	const char *sym = NULL;
870 	unsigned int i = *(loff_t *) v;
871 	unsigned long size, offset = 0;
872 	char *modname, namebuf[128];
873 
874 	head = &kprobe_table[i];
875 	preempt_disable();
876 	hlist_for_each_entry_rcu(p, node, head, hlist) {
877 		sym = kallsyms_lookup((unsigned long)p->addr, &size,
878 					&offset, &modname, namebuf);
879 		if (p->pre_handler == aggr_pre_handler) {
880 			list_for_each_entry_rcu(kp, &p->list, list)
881 				report_probe(pi, kp, sym, offset, modname);
882 		} else
883 			report_probe(pi, p, sym, offset, modname);
884 	}
885 	preempt_enable();
886 	return 0;
887 }
888 
889 static struct seq_operations kprobes_seq_ops = {
890 	.start = kprobe_seq_start,
891 	.next  = kprobe_seq_next,
892 	.stop  = kprobe_seq_stop,
893 	.show  = show_kprobe_addr
894 };
895 
896 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
897 {
898 	return seq_open(filp, &kprobes_seq_ops);
899 }
900 
901 static struct file_operations debugfs_kprobes_operations = {
902 	.open           = kprobes_open,
903 	.read           = seq_read,
904 	.llseek         = seq_lseek,
905 	.release        = seq_release,
906 };
907 
908 static int __kprobes debugfs_kprobe_init(void)
909 {
910 	struct dentry *dir, *file;
911 
912 	dir = debugfs_create_dir("kprobes", NULL);
913 	if (!dir)
914 		return -ENOMEM;
915 
916 	file = debugfs_create_file("list", 0444, dir, NULL,
917 				&debugfs_kprobes_operations);
918 	if (!file) {
919 		debugfs_remove(dir);
920 		return -ENOMEM;
921 	}
922 
923 	return 0;
924 }
925 
926 late_initcall(debugfs_kprobe_init);
927 #endif /* CONFIG_DEBUG_FS */
928 
929 module_init(init_kprobes);
930 
931 EXPORT_SYMBOL_GPL(register_kprobe);
932 EXPORT_SYMBOL_GPL(unregister_kprobe);
933 EXPORT_SYMBOL_GPL(register_jprobe);
934 EXPORT_SYMBOL_GPL(unregister_jprobe);
935 EXPORT_SYMBOL_GPL(jprobe_return);
936 EXPORT_SYMBOL_GPL(register_kretprobe);
937 EXPORT_SYMBOL_GPL(unregister_kretprobe);
938