1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/module.h> 39 #include <linux/moduleloader.h> 40 #include <asm-generic/sections.h> 41 #include <asm/cacheflush.h> 42 #include <asm/errno.h> 43 #include <asm/kdebug.h> 44 45 #define KPROBE_HASH_BITS 6 46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 47 48 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 49 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 50 static atomic_t kprobe_count; 51 52 DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */ 53 DEFINE_SPINLOCK(kretprobe_lock); /* Protects kretprobe_inst_table */ 54 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 55 56 static struct notifier_block kprobe_page_fault_nb = { 57 .notifier_call = kprobe_exceptions_notify, 58 .priority = 0x7fffffff /* we need to notified first */ 59 }; 60 61 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 62 /* 63 * kprobe->ainsn.insn points to the copy of the instruction to be 64 * single-stepped. x86_64, POWER4 and above have no-exec support and 65 * stepping on the instruction on a vmalloced/kmalloced/data page 66 * is a recipe for disaster 67 */ 68 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t))) 69 70 struct kprobe_insn_page { 71 struct hlist_node hlist; 72 kprobe_opcode_t *insns; /* Page of instruction slots */ 73 char slot_used[INSNS_PER_PAGE]; 74 int nused; 75 }; 76 77 static struct hlist_head kprobe_insn_pages; 78 79 /** 80 * get_insn_slot() - Find a slot on an executable page for an instruction. 81 * We allocate an executable page if there's no room on existing ones. 82 */ 83 kprobe_opcode_t __kprobes *get_insn_slot(void) 84 { 85 struct kprobe_insn_page *kip; 86 struct hlist_node *pos; 87 88 hlist_for_each(pos, &kprobe_insn_pages) { 89 kip = hlist_entry(pos, struct kprobe_insn_page, hlist); 90 if (kip->nused < INSNS_PER_PAGE) { 91 int i; 92 for (i = 0; i < INSNS_PER_PAGE; i++) { 93 if (!kip->slot_used[i]) { 94 kip->slot_used[i] = 1; 95 kip->nused++; 96 return kip->insns + (i * MAX_INSN_SIZE); 97 } 98 } 99 /* Surprise! No unused slots. Fix kip->nused. */ 100 kip->nused = INSNS_PER_PAGE; 101 } 102 } 103 104 /* All out of space. Need to allocate a new page. Use slot 0.*/ 105 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL); 106 if (!kip) { 107 return NULL; 108 } 109 110 /* 111 * Use module_alloc so this page is within +/- 2GB of where the 112 * kernel image and loaded module images reside. This is required 113 * so x86_64 can correctly handle the %rip-relative fixups. 114 */ 115 kip->insns = module_alloc(PAGE_SIZE); 116 if (!kip->insns) { 117 kfree(kip); 118 return NULL; 119 } 120 INIT_HLIST_NODE(&kip->hlist); 121 hlist_add_head(&kip->hlist, &kprobe_insn_pages); 122 memset(kip->slot_used, 0, INSNS_PER_PAGE); 123 kip->slot_used[0] = 1; 124 kip->nused = 1; 125 return kip->insns; 126 } 127 128 void __kprobes free_insn_slot(kprobe_opcode_t *slot) 129 { 130 struct kprobe_insn_page *kip; 131 struct hlist_node *pos; 132 133 hlist_for_each(pos, &kprobe_insn_pages) { 134 kip = hlist_entry(pos, struct kprobe_insn_page, hlist); 135 if (kip->insns <= slot && 136 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) { 137 int i = (slot - kip->insns) / MAX_INSN_SIZE; 138 kip->slot_used[i] = 0; 139 kip->nused--; 140 if (kip->nused == 0) { 141 /* 142 * Page is no longer in use. Free it unless 143 * it's the last one. We keep the last one 144 * so as not to have to set it up again the 145 * next time somebody inserts a probe. 146 */ 147 hlist_del(&kip->hlist); 148 if (hlist_empty(&kprobe_insn_pages)) { 149 INIT_HLIST_NODE(&kip->hlist); 150 hlist_add_head(&kip->hlist, 151 &kprobe_insn_pages); 152 } else { 153 module_free(NULL, kip->insns); 154 kfree(kip); 155 } 156 } 157 return; 158 } 159 } 160 } 161 #endif 162 163 /* We have preemption disabled.. so it is safe to use __ versions */ 164 static inline void set_kprobe_instance(struct kprobe *kp) 165 { 166 __get_cpu_var(kprobe_instance) = kp; 167 } 168 169 static inline void reset_kprobe_instance(void) 170 { 171 __get_cpu_var(kprobe_instance) = NULL; 172 } 173 174 /* 175 * This routine is called either: 176 * - under the kprobe_mutex - during kprobe_[un]register() 177 * OR 178 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 179 */ 180 struct kprobe __kprobes *get_kprobe(void *addr) 181 { 182 struct hlist_head *head; 183 struct hlist_node *node; 184 struct kprobe *p; 185 186 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 187 hlist_for_each_entry_rcu(p, node, head, hlist) { 188 if (p->addr == addr) 189 return p; 190 } 191 return NULL; 192 } 193 194 /* 195 * Aggregate handlers for multiple kprobes support - these handlers 196 * take care of invoking the individual kprobe handlers on p->list 197 */ 198 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 199 { 200 struct kprobe *kp; 201 202 list_for_each_entry_rcu(kp, &p->list, list) { 203 if (kp->pre_handler) { 204 set_kprobe_instance(kp); 205 if (kp->pre_handler(kp, regs)) 206 return 1; 207 } 208 reset_kprobe_instance(); 209 } 210 return 0; 211 } 212 213 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 214 unsigned long flags) 215 { 216 struct kprobe *kp; 217 218 list_for_each_entry_rcu(kp, &p->list, list) { 219 if (kp->post_handler) { 220 set_kprobe_instance(kp); 221 kp->post_handler(kp, regs, flags); 222 reset_kprobe_instance(); 223 } 224 } 225 return; 226 } 227 228 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 229 int trapnr) 230 { 231 struct kprobe *cur = __get_cpu_var(kprobe_instance); 232 233 /* 234 * if we faulted "during" the execution of a user specified 235 * probe handler, invoke just that probe's fault handler 236 */ 237 if (cur && cur->fault_handler) { 238 if (cur->fault_handler(cur, regs, trapnr)) 239 return 1; 240 } 241 return 0; 242 } 243 244 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 245 { 246 struct kprobe *cur = __get_cpu_var(kprobe_instance); 247 int ret = 0; 248 249 if (cur && cur->break_handler) { 250 if (cur->break_handler(cur, regs)) 251 ret = 1; 252 } 253 reset_kprobe_instance(); 254 return ret; 255 } 256 257 /* Walks the list and increments nmissed count for multiprobe case */ 258 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) 259 { 260 struct kprobe *kp; 261 if (p->pre_handler != aggr_pre_handler) { 262 p->nmissed++; 263 } else { 264 list_for_each_entry_rcu(kp, &p->list, list) 265 kp->nmissed++; 266 } 267 return; 268 } 269 270 /* Called with kretprobe_lock held */ 271 struct kretprobe_instance __kprobes *get_free_rp_inst(struct kretprobe *rp) 272 { 273 struct hlist_node *node; 274 struct kretprobe_instance *ri; 275 hlist_for_each_entry(ri, node, &rp->free_instances, uflist) 276 return ri; 277 return NULL; 278 } 279 280 /* Called with kretprobe_lock held */ 281 static struct kretprobe_instance __kprobes *get_used_rp_inst(struct kretprobe 282 *rp) 283 { 284 struct hlist_node *node; 285 struct kretprobe_instance *ri; 286 hlist_for_each_entry(ri, node, &rp->used_instances, uflist) 287 return ri; 288 return NULL; 289 } 290 291 /* Called with kretprobe_lock held */ 292 void __kprobes add_rp_inst(struct kretprobe_instance *ri) 293 { 294 /* 295 * Remove rp inst off the free list - 296 * Add it back when probed function returns 297 */ 298 hlist_del(&ri->uflist); 299 300 /* Add rp inst onto table */ 301 INIT_HLIST_NODE(&ri->hlist); 302 hlist_add_head(&ri->hlist, 303 &kretprobe_inst_table[hash_ptr(ri->task, KPROBE_HASH_BITS)]); 304 305 /* Also add this rp inst to the used list. */ 306 INIT_HLIST_NODE(&ri->uflist); 307 hlist_add_head(&ri->uflist, &ri->rp->used_instances); 308 } 309 310 /* Called with kretprobe_lock held */ 311 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri) 312 { 313 /* remove rp inst off the rprobe_inst_table */ 314 hlist_del(&ri->hlist); 315 if (ri->rp) { 316 /* remove rp inst off the used list */ 317 hlist_del(&ri->uflist); 318 /* put rp inst back onto the free list */ 319 INIT_HLIST_NODE(&ri->uflist); 320 hlist_add_head(&ri->uflist, &ri->rp->free_instances); 321 } else 322 /* Unregistering */ 323 kfree(ri); 324 } 325 326 struct hlist_head __kprobes *kretprobe_inst_table_head(struct task_struct *tsk) 327 { 328 return &kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)]; 329 } 330 331 /* 332 * This function is called from finish_task_switch when task tk becomes dead, 333 * so that we can recycle any function-return probe instances associated 334 * with this task. These left over instances represent probed functions 335 * that have been called but will never return. 336 */ 337 void __kprobes kprobe_flush_task(struct task_struct *tk) 338 { 339 struct kretprobe_instance *ri; 340 struct hlist_head *head; 341 struct hlist_node *node, *tmp; 342 unsigned long flags = 0; 343 344 spin_lock_irqsave(&kretprobe_lock, flags); 345 head = kretprobe_inst_table_head(tk); 346 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 347 if (ri->task == tk) 348 recycle_rp_inst(ri); 349 } 350 spin_unlock_irqrestore(&kretprobe_lock, flags); 351 } 352 353 static inline void free_rp_inst(struct kretprobe *rp) 354 { 355 struct kretprobe_instance *ri; 356 while ((ri = get_free_rp_inst(rp)) != NULL) { 357 hlist_del(&ri->uflist); 358 kfree(ri); 359 } 360 } 361 362 /* 363 * Keep all fields in the kprobe consistent 364 */ 365 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p) 366 { 367 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t)); 368 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn)); 369 } 370 371 /* 372 * Add the new probe to old_p->list. Fail if this is the 373 * second jprobe at the address - two jprobes can't coexist 374 */ 375 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p) 376 { 377 if (p->break_handler) { 378 if (old_p->break_handler) 379 return -EEXIST; 380 list_add_tail_rcu(&p->list, &old_p->list); 381 old_p->break_handler = aggr_break_handler; 382 } else 383 list_add_rcu(&p->list, &old_p->list); 384 if (p->post_handler && !old_p->post_handler) 385 old_p->post_handler = aggr_post_handler; 386 return 0; 387 } 388 389 /* 390 * Fill in the required fields of the "manager kprobe". Replace the 391 * earlier kprobe in the hlist with the manager kprobe 392 */ 393 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 394 { 395 copy_kprobe(p, ap); 396 flush_insn_slot(ap); 397 ap->addr = p->addr; 398 ap->pre_handler = aggr_pre_handler; 399 ap->fault_handler = aggr_fault_handler; 400 if (p->post_handler) 401 ap->post_handler = aggr_post_handler; 402 if (p->break_handler) 403 ap->break_handler = aggr_break_handler; 404 405 INIT_LIST_HEAD(&ap->list); 406 list_add_rcu(&p->list, &ap->list); 407 408 hlist_replace_rcu(&p->hlist, &ap->hlist); 409 } 410 411 /* 412 * This is the second or subsequent kprobe at the address - handle 413 * the intricacies 414 */ 415 static int __kprobes register_aggr_kprobe(struct kprobe *old_p, 416 struct kprobe *p) 417 { 418 int ret = 0; 419 struct kprobe *ap; 420 421 if (old_p->pre_handler == aggr_pre_handler) { 422 copy_kprobe(old_p, p); 423 ret = add_new_kprobe(old_p, p); 424 } else { 425 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL); 426 if (!ap) 427 return -ENOMEM; 428 add_aggr_kprobe(ap, old_p); 429 copy_kprobe(ap, p); 430 ret = add_new_kprobe(ap, p); 431 } 432 return ret; 433 } 434 435 static int __kprobes in_kprobes_functions(unsigned long addr) 436 { 437 if (addr >= (unsigned long)__kprobes_text_start 438 && addr < (unsigned long)__kprobes_text_end) 439 return -EINVAL; 440 return 0; 441 } 442 443 static int __kprobes __register_kprobe(struct kprobe *p, 444 unsigned long called_from) 445 { 446 int ret = 0; 447 struct kprobe *old_p; 448 struct module *probed_mod; 449 450 if ((!kernel_text_address((unsigned long) p->addr)) || 451 in_kprobes_functions((unsigned long) p->addr)) 452 return -EINVAL; 453 454 p->mod_refcounted = 0; 455 /* Check are we probing a module */ 456 if ((probed_mod = module_text_address((unsigned long) p->addr))) { 457 struct module *calling_mod = module_text_address(called_from); 458 /* We must allow modules to probe themself and 459 * in this case avoid incrementing the module refcount, 460 * so as to allow unloading of self probing modules. 461 */ 462 if (calling_mod && (calling_mod != probed_mod)) { 463 if (unlikely(!try_module_get(probed_mod))) 464 return -EINVAL; 465 p->mod_refcounted = 1; 466 } else 467 probed_mod = NULL; 468 } 469 470 p->nmissed = 0; 471 mutex_lock(&kprobe_mutex); 472 old_p = get_kprobe(p->addr); 473 if (old_p) { 474 ret = register_aggr_kprobe(old_p, p); 475 if (!ret) 476 atomic_inc(&kprobe_count); 477 goto out; 478 } 479 480 if ((ret = arch_prepare_kprobe(p)) != 0) 481 goto out; 482 483 INIT_HLIST_NODE(&p->hlist); 484 hlist_add_head_rcu(&p->hlist, 485 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 486 487 if (atomic_add_return(1, &kprobe_count) == \ 488 (ARCH_INACTIVE_KPROBE_COUNT + 1)) 489 register_page_fault_notifier(&kprobe_page_fault_nb); 490 491 arch_arm_kprobe(p); 492 493 out: 494 mutex_unlock(&kprobe_mutex); 495 496 if (ret && probed_mod) 497 module_put(probed_mod); 498 return ret; 499 } 500 501 int __kprobes register_kprobe(struct kprobe *p) 502 { 503 return __register_kprobe(p, 504 (unsigned long)__builtin_return_address(0)); 505 } 506 507 void __kprobes unregister_kprobe(struct kprobe *p) 508 { 509 struct module *mod; 510 struct kprobe *old_p, *list_p; 511 int cleanup_p; 512 513 mutex_lock(&kprobe_mutex); 514 old_p = get_kprobe(p->addr); 515 if (unlikely(!old_p)) { 516 mutex_unlock(&kprobe_mutex); 517 return; 518 } 519 if (p != old_p) { 520 list_for_each_entry_rcu(list_p, &old_p->list, list) 521 if (list_p == p) 522 /* kprobe p is a valid probe */ 523 goto valid_p; 524 mutex_unlock(&kprobe_mutex); 525 return; 526 } 527 valid_p: 528 if ((old_p == p) || ((old_p->pre_handler == aggr_pre_handler) && 529 (p->list.next == &old_p->list) && 530 (p->list.prev == &old_p->list))) { 531 /* Only probe on the hash list */ 532 arch_disarm_kprobe(p); 533 hlist_del_rcu(&old_p->hlist); 534 cleanup_p = 1; 535 } else { 536 list_del_rcu(&p->list); 537 cleanup_p = 0; 538 } 539 540 mutex_unlock(&kprobe_mutex); 541 542 synchronize_sched(); 543 if (p->mod_refcounted && 544 (mod = module_text_address((unsigned long)p->addr))) 545 module_put(mod); 546 547 if (cleanup_p) { 548 if (p != old_p) { 549 list_del_rcu(&p->list); 550 kfree(old_p); 551 } 552 arch_remove_kprobe(p); 553 } else { 554 mutex_lock(&kprobe_mutex); 555 if (p->break_handler) 556 old_p->break_handler = NULL; 557 if (p->post_handler){ 558 list_for_each_entry_rcu(list_p, &old_p->list, list){ 559 if (list_p->post_handler){ 560 cleanup_p = 2; 561 break; 562 } 563 } 564 if (cleanup_p == 0) 565 old_p->post_handler = NULL; 566 } 567 mutex_unlock(&kprobe_mutex); 568 } 569 570 /* Call unregister_page_fault_notifier() 571 * if no probes are active 572 */ 573 mutex_lock(&kprobe_mutex); 574 if (atomic_add_return(-1, &kprobe_count) == \ 575 ARCH_INACTIVE_KPROBE_COUNT) 576 unregister_page_fault_notifier(&kprobe_page_fault_nb); 577 mutex_unlock(&kprobe_mutex); 578 return; 579 } 580 581 static struct notifier_block kprobe_exceptions_nb = { 582 .notifier_call = kprobe_exceptions_notify, 583 .priority = 0x7fffffff /* we need to be notified first */ 584 }; 585 586 587 int __kprobes register_jprobe(struct jprobe *jp) 588 { 589 /* Todo: Verify probepoint is a function entry point */ 590 jp->kp.pre_handler = setjmp_pre_handler; 591 jp->kp.break_handler = longjmp_break_handler; 592 593 return __register_kprobe(&jp->kp, 594 (unsigned long)__builtin_return_address(0)); 595 } 596 597 void __kprobes unregister_jprobe(struct jprobe *jp) 598 { 599 unregister_kprobe(&jp->kp); 600 } 601 602 #ifdef ARCH_SUPPORTS_KRETPROBES 603 604 /* 605 * This kprobe pre_handler is registered with every kretprobe. When probe 606 * hits it will set up the return probe. 607 */ 608 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 609 struct pt_regs *regs) 610 { 611 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 612 unsigned long flags = 0; 613 614 /*TODO: consider to only swap the RA after the last pre_handler fired */ 615 spin_lock_irqsave(&kretprobe_lock, flags); 616 arch_prepare_kretprobe(rp, regs); 617 spin_unlock_irqrestore(&kretprobe_lock, flags); 618 return 0; 619 } 620 621 int __kprobes register_kretprobe(struct kretprobe *rp) 622 { 623 int ret = 0; 624 struct kretprobe_instance *inst; 625 int i; 626 627 rp->kp.pre_handler = pre_handler_kretprobe; 628 rp->kp.post_handler = NULL; 629 rp->kp.fault_handler = NULL; 630 rp->kp.break_handler = NULL; 631 632 /* Pre-allocate memory for max kretprobe instances */ 633 if (rp->maxactive <= 0) { 634 #ifdef CONFIG_PREEMPT 635 rp->maxactive = max(10, 2 * NR_CPUS); 636 #else 637 rp->maxactive = NR_CPUS; 638 #endif 639 } 640 INIT_HLIST_HEAD(&rp->used_instances); 641 INIT_HLIST_HEAD(&rp->free_instances); 642 for (i = 0; i < rp->maxactive; i++) { 643 inst = kmalloc(sizeof(struct kretprobe_instance), GFP_KERNEL); 644 if (inst == NULL) { 645 free_rp_inst(rp); 646 return -ENOMEM; 647 } 648 INIT_HLIST_NODE(&inst->uflist); 649 hlist_add_head(&inst->uflist, &rp->free_instances); 650 } 651 652 rp->nmissed = 0; 653 /* Establish function entry probe point */ 654 if ((ret = __register_kprobe(&rp->kp, 655 (unsigned long)__builtin_return_address(0))) != 0) 656 free_rp_inst(rp); 657 return ret; 658 } 659 660 #else /* ARCH_SUPPORTS_KRETPROBES */ 661 662 int __kprobes register_kretprobe(struct kretprobe *rp) 663 { 664 return -ENOSYS; 665 } 666 667 #endif /* ARCH_SUPPORTS_KRETPROBES */ 668 669 void __kprobes unregister_kretprobe(struct kretprobe *rp) 670 { 671 unsigned long flags; 672 struct kretprobe_instance *ri; 673 674 unregister_kprobe(&rp->kp); 675 /* No race here */ 676 spin_lock_irqsave(&kretprobe_lock, flags); 677 while ((ri = get_used_rp_inst(rp)) != NULL) { 678 ri->rp = NULL; 679 hlist_del(&ri->uflist); 680 } 681 spin_unlock_irqrestore(&kretprobe_lock, flags); 682 free_rp_inst(rp); 683 } 684 685 static int __init init_kprobes(void) 686 { 687 int i, err = 0; 688 689 /* FIXME allocate the probe table, currently defined statically */ 690 /* initialize all list heads */ 691 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 692 INIT_HLIST_HEAD(&kprobe_table[i]); 693 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 694 } 695 atomic_set(&kprobe_count, 0); 696 697 err = arch_init_kprobes(); 698 if (!err) 699 err = register_die_notifier(&kprobe_exceptions_nb); 700 701 return err; 702 } 703 704 __initcall(init_kprobes); 705 706 EXPORT_SYMBOL_GPL(register_kprobe); 707 EXPORT_SYMBOL_GPL(unregister_kprobe); 708 EXPORT_SYMBOL_GPL(register_jprobe); 709 EXPORT_SYMBOL_GPL(unregister_jprobe); 710 EXPORT_SYMBOL_GPL(jprobe_return); 711 EXPORT_SYMBOL_GPL(register_kretprobe); 712 EXPORT_SYMBOL_GPL(unregister_kretprobe); 713 714