1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/module.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 51 #include <asm-generic/sections.h> 52 #include <asm/cacheflush.h> 53 #include <asm/errno.h> 54 #include <asm/uaccess.h> 55 56 #define KPROBE_HASH_BITS 6 57 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 58 59 60 /* 61 * Some oddball architectures like 64bit powerpc have function descriptors 62 * so this must be overridable. 63 */ 64 #ifndef kprobe_lookup_name 65 #define kprobe_lookup_name(name, addr) \ 66 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 67 #endif 68 69 static int kprobes_initialized; 70 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 71 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 72 73 /* NOTE: change this value only with kprobe_mutex held */ 74 static bool kprobes_all_disarmed; 75 76 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */ 77 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 78 static struct { 79 spinlock_t lock ____cacheline_aligned_in_smp; 80 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 81 82 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 83 { 84 return &(kretprobe_table_locks[hash].lock); 85 } 86 87 /* 88 * Normally, functions that we'd want to prohibit kprobes in, are marked 89 * __kprobes. But, there are cases where such functions already belong to 90 * a different section (__sched for preempt_schedule) 91 * 92 * For such cases, we now have a blacklist 93 */ 94 static struct kprobe_blackpoint kprobe_blacklist[] = { 95 {"preempt_schedule",}, 96 {"native_get_debugreg",}, 97 {"irq_entries_start",}, 98 {"common_interrupt",}, 99 {"mcount",}, /* mcount can be called from everywhere */ 100 {NULL} /* Terminator */ 101 }; 102 103 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 104 /* 105 * kprobe->ainsn.insn points to the copy of the instruction to be 106 * single-stepped. x86_64, POWER4 and above have no-exec support and 107 * stepping on the instruction on a vmalloced/kmalloced/data page 108 * is a recipe for disaster 109 */ 110 struct kprobe_insn_page { 111 struct list_head list; 112 kprobe_opcode_t *insns; /* Page of instruction slots */ 113 int nused; 114 int ngarbage; 115 char slot_used[]; 116 }; 117 118 #define KPROBE_INSN_PAGE_SIZE(slots) \ 119 (offsetof(struct kprobe_insn_page, slot_used) + \ 120 (sizeof(char) * (slots))) 121 122 struct kprobe_insn_cache { 123 struct list_head pages; /* list of kprobe_insn_page */ 124 size_t insn_size; /* size of instruction slot */ 125 int nr_garbage; 126 }; 127 128 static int slots_per_page(struct kprobe_insn_cache *c) 129 { 130 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 131 } 132 133 enum kprobe_slot_state { 134 SLOT_CLEAN = 0, 135 SLOT_DIRTY = 1, 136 SLOT_USED = 2, 137 }; 138 139 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */ 140 static struct kprobe_insn_cache kprobe_insn_slots = { 141 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 142 .insn_size = MAX_INSN_SIZE, 143 .nr_garbage = 0, 144 }; 145 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c); 146 147 /** 148 * __get_insn_slot() - Find a slot on an executable page for an instruction. 149 * We allocate an executable page if there's no room on existing ones. 150 */ 151 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c) 152 { 153 struct kprobe_insn_page *kip; 154 155 retry: 156 list_for_each_entry(kip, &c->pages, list) { 157 if (kip->nused < slots_per_page(c)) { 158 int i; 159 for (i = 0; i < slots_per_page(c); i++) { 160 if (kip->slot_used[i] == SLOT_CLEAN) { 161 kip->slot_used[i] = SLOT_USED; 162 kip->nused++; 163 return kip->insns + (i * c->insn_size); 164 } 165 } 166 /* kip->nused is broken. Fix it. */ 167 kip->nused = slots_per_page(c); 168 WARN_ON(1); 169 } 170 } 171 172 /* If there are any garbage slots, collect it and try again. */ 173 if (c->nr_garbage && collect_garbage_slots(c) == 0) 174 goto retry; 175 176 /* All out of space. Need to allocate a new page. */ 177 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 178 if (!kip) 179 return NULL; 180 181 /* 182 * Use module_alloc so this page is within +/- 2GB of where the 183 * kernel image and loaded module images reside. This is required 184 * so x86_64 can correctly handle the %rip-relative fixups. 185 */ 186 kip->insns = module_alloc(PAGE_SIZE); 187 if (!kip->insns) { 188 kfree(kip); 189 return NULL; 190 } 191 INIT_LIST_HEAD(&kip->list); 192 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 193 kip->slot_used[0] = SLOT_USED; 194 kip->nused = 1; 195 kip->ngarbage = 0; 196 list_add(&kip->list, &c->pages); 197 return kip->insns; 198 } 199 200 201 kprobe_opcode_t __kprobes *get_insn_slot(void) 202 { 203 kprobe_opcode_t *ret = NULL; 204 205 mutex_lock(&kprobe_insn_mutex); 206 ret = __get_insn_slot(&kprobe_insn_slots); 207 mutex_unlock(&kprobe_insn_mutex); 208 209 return ret; 210 } 211 212 /* Return 1 if all garbages are collected, otherwise 0. */ 213 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) 214 { 215 kip->slot_used[idx] = SLOT_CLEAN; 216 kip->nused--; 217 if (kip->nused == 0) { 218 /* 219 * Page is no longer in use. Free it unless 220 * it's the last one. We keep the last one 221 * so as not to have to set it up again the 222 * next time somebody inserts a probe. 223 */ 224 if (!list_is_singular(&kip->list)) { 225 list_del(&kip->list); 226 module_free(NULL, kip->insns); 227 kfree(kip); 228 } 229 return 1; 230 } 231 return 0; 232 } 233 234 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c) 235 { 236 struct kprobe_insn_page *kip, *next; 237 238 /* Ensure no-one is interrupted on the garbages */ 239 synchronize_sched(); 240 241 list_for_each_entry_safe(kip, next, &c->pages, list) { 242 int i; 243 if (kip->ngarbage == 0) 244 continue; 245 kip->ngarbage = 0; /* we will collect all garbages */ 246 for (i = 0; i < slots_per_page(c); i++) { 247 if (kip->slot_used[i] == SLOT_DIRTY && 248 collect_one_slot(kip, i)) 249 break; 250 } 251 } 252 c->nr_garbage = 0; 253 return 0; 254 } 255 256 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c, 257 kprobe_opcode_t *slot, int dirty) 258 { 259 struct kprobe_insn_page *kip; 260 261 list_for_each_entry(kip, &c->pages, list) { 262 long idx = ((long)slot - (long)kip->insns) / 263 (c->insn_size * sizeof(kprobe_opcode_t)); 264 if (idx >= 0 && idx < slots_per_page(c)) { 265 WARN_ON(kip->slot_used[idx] != SLOT_USED); 266 if (dirty) { 267 kip->slot_used[idx] = SLOT_DIRTY; 268 kip->ngarbage++; 269 if (++c->nr_garbage > slots_per_page(c)) 270 collect_garbage_slots(c); 271 } else 272 collect_one_slot(kip, idx); 273 return; 274 } 275 } 276 /* Could not free this slot. */ 277 WARN_ON(1); 278 } 279 280 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) 281 { 282 mutex_lock(&kprobe_insn_mutex); 283 __free_insn_slot(&kprobe_insn_slots, slot, dirty); 284 mutex_unlock(&kprobe_insn_mutex); 285 } 286 #ifdef CONFIG_OPTPROBES 287 /* For optimized_kprobe buffer */ 288 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */ 289 static struct kprobe_insn_cache kprobe_optinsn_slots = { 290 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 291 /* .insn_size is initialized later */ 292 .nr_garbage = 0, 293 }; 294 /* Get a slot for optimized_kprobe buffer */ 295 kprobe_opcode_t __kprobes *get_optinsn_slot(void) 296 { 297 kprobe_opcode_t *ret = NULL; 298 299 mutex_lock(&kprobe_optinsn_mutex); 300 ret = __get_insn_slot(&kprobe_optinsn_slots); 301 mutex_unlock(&kprobe_optinsn_mutex); 302 303 return ret; 304 } 305 306 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty) 307 { 308 mutex_lock(&kprobe_optinsn_mutex); 309 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty); 310 mutex_unlock(&kprobe_optinsn_mutex); 311 } 312 #endif 313 #endif 314 315 /* We have preemption disabled.. so it is safe to use __ versions */ 316 static inline void set_kprobe_instance(struct kprobe *kp) 317 { 318 __get_cpu_var(kprobe_instance) = kp; 319 } 320 321 static inline void reset_kprobe_instance(void) 322 { 323 __get_cpu_var(kprobe_instance) = NULL; 324 } 325 326 /* 327 * This routine is called either: 328 * - under the kprobe_mutex - during kprobe_[un]register() 329 * OR 330 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 331 */ 332 struct kprobe __kprobes *get_kprobe(void *addr) 333 { 334 struct hlist_head *head; 335 struct hlist_node *node; 336 struct kprobe *p; 337 338 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 339 hlist_for_each_entry_rcu(p, node, head, hlist) { 340 if (p->addr == addr) 341 return p; 342 } 343 344 return NULL; 345 } 346 347 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 348 349 /* Return true if the kprobe is an aggregator */ 350 static inline int kprobe_aggrprobe(struct kprobe *p) 351 { 352 return p->pre_handler == aggr_pre_handler; 353 } 354 355 /* 356 * Keep all fields in the kprobe consistent 357 */ 358 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p) 359 { 360 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t)); 361 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn)); 362 } 363 364 #ifdef CONFIG_OPTPROBES 365 /* NOTE: change this value only with kprobe_mutex held */ 366 static bool kprobes_allow_optimization; 367 368 /* 369 * Call all pre_handler on the list, but ignores its return value. 370 * This must be called from arch-dep optimized caller. 371 */ 372 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 373 { 374 struct kprobe *kp; 375 376 list_for_each_entry_rcu(kp, &p->list, list) { 377 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 378 set_kprobe_instance(kp); 379 kp->pre_handler(kp, regs); 380 } 381 reset_kprobe_instance(); 382 } 383 } 384 385 /* Return true(!0) if the kprobe is ready for optimization. */ 386 static inline int kprobe_optready(struct kprobe *p) 387 { 388 struct optimized_kprobe *op; 389 390 if (kprobe_aggrprobe(p)) { 391 op = container_of(p, struct optimized_kprobe, kp); 392 return arch_prepared_optinsn(&op->optinsn); 393 } 394 395 return 0; 396 } 397 398 /* 399 * Return an optimized kprobe whose optimizing code replaces 400 * instructions including addr (exclude breakpoint). 401 */ 402 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr) 403 { 404 int i; 405 struct kprobe *p = NULL; 406 struct optimized_kprobe *op; 407 408 /* Don't check i == 0, since that is a breakpoint case. */ 409 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 410 p = get_kprobe((void *)(addr - i)); 411 412 if (p && kprobe_optready(p)) { 413 op = container_of(p, struct optimized_kprobe, kp); 414 if (arch_within_optimized_kprobe(op, addr)) 415 return p; 416 } 417 418 return NULL; 419 } 420 421 /* Optimization staging list, protected by kprobe_mutex */ 422 static LIST_HEAD(optimizing_list); 423 424 static void kprobe_optimizer(struct work_struct *work); 425 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 426 #define OPTIMIZE_DELAY 5 427 428 /* Kprobe jump optimizer */ 429 static __kprobes void kprobe_optimizer(struct work_struct *work) 430 { 431 struct optimized_kprobe *op, *tmp; 432 433 /* Lock modules while optimizing kprobes */ 434 mutex_lock(&module_mutex); 435 mutex_lock(&kprobe_mutex); 436 if (kprobes_all_disarmed || !kprobes_allow_optimization) 437 goto end; 438 439 /* 440 * Wait for quiesence period to ensure all running interrupts 441 * are done. Because optprobe may modify multiple instructions 442 * there is a chance that Nth instruction is interrupted. In that 443 * case, running interrupt can return to 2nd-Nth byte of jump 444 * instruction. This wait is for avoiding it. 445 */ 446 synchronize_sched(); 447 448 /* 449 * The optimization/unoptimization refers online_cpus via 450 * stop_machine() and cpu-hotplug modifies online_cpus. 451 * And same time, text_mutex will be held in cpu-hotplug and here. 452 * This combination can cause a deadlock (cpu-hotplug try to lock 453 * text_mutex but stop_machine can not be done because online_cpus 454 * has been changed) 455 * To avoid this deadlock, we need to call get_online_cpus() 456 * for preventing cpu-hotplug outside of text_mutex locking. 457 */ 458 get_online_cpus(); 459 mutex_lock(&text_mutex); 460 list_for_each_entry_safe(op, tmp, &optimizing_list, list) { 461 WARN_ON(kprobe_disabled(&op->kp)); 462 if (arch_optimize_kprobe(op) < 0) 463 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 464 list_del_init(&op->list); 465 } 466 mutex_unlock(&text_mutex); 467 put_online_cpus(); 468 end: 469 mutex_unlock(&kprobe_mutex); 470 mutex_unlock(&module_mutex); 471 } 472 473 /* Optimize kprobe if p is ready to be optimized */ 474 static __kprobes void optimize_kprobe(struct kprobe *p) 475 { 476 struct optimized_kprobe *op; 477 478 /* Check if the kprobe is disabled or not ready for optimization. */ 479 if (!kprobe_optready(p) || !kprobes_allow_optimization || 480 (kprobe_disabled(p) || kprobes_all_disarmed)) 481 return; 482 483 /* Both of break_handler and post_handler are not supported. */ 484 if (p->break_handler || p->post_handler) 485 return; 486 487 op = container_of(p, struct optimized_kprobe, kp); 488 489 /* Check there is no other kprobes at the optimized instructions */ 490 if (arch_check_optimized_kprobe(op) < 0) 491 return; 492 493 /* Check if it is already optimized. */ 494 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 495 return; 496 497 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 498 list_add(&op->list, &optimizing_list); 499 if (!delayed_work_pending(&optimizing_work)) 500 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 501 } 502 503 /* Unoptimize a kprobe if p is optimized */ 504 static __kprobes void unoptimize_kprobe(struct kprobe *p) 505 { 506 struct optimized_kprobe *op; 507 508 if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) { 509 op = container_of(p, struct optimized_kprobe, kp); 510 if (!list_empty(&op->list)) 511 /* Dequeue from the optimization queue */ 512 list_del_init(&op->list); 513 else 514 /* Replace jump with break */ 515 arch_unoptimize_kprobe(op); 516 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 517 } 518 } 519 520 /* Remove optimized instructions */ 521 static void __kprobes kill_optimized_kprobe(struct kprobe *p) 522 { 523 struct optimized_kprobe *op; 524 525 op = container_of(p, struct optimized_kprobe, kp); 526 if (!list_empty(&op->list)) { 527 /* Dequeue from the optimization queue */ 528 list_del_init(&op->list); 529 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 530 } 531 /* Don't unoptimize, because the target code will be freed. */ 532 arch_remove_optimized_kprobe(op); 533 } 534 535 /* Try to prepare optimized instructions */ 536 static __kprobes void prepare_optimized_kprobe(struct kprobe *p) 537 { 538 struct optimized_kprobe *op; 539 540 op = container_of(p, struct optimized_kprobe, kp); 541 arch_prepare_optimized_kprobe(op); 542 } 543 544 /* Free optimized instructions and optimized_kprobe */ 545 static __kprobes void free_aggr_kprobe(struct kprobe *p) 546 { 547 struct optimized_kprobe *op; 548 549 op = container_of(p, struct optimized_kprobe, kp); 550 arch_remove_optimized_kprobe(op); 551 kfree(op); 552 } 553 554 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 555 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 556 { 557 struct optimized_kprobe *op; 558 559 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 560 if (!op) 561 return NULL; 562 563 INIT_LIST_HEAD(&op->list); 564 op->kp.addr = p->addr; 565 arch_prepare_optimized_kprobe(op); 566 567 return &op->kp; 568 } 569 570 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 571 572 /* 573 * Prepare an optimized_kprobe and optimize it 574 * NOTE: p must be a normal registered kprobe 575 */ 576 static __kprobes void try_to_optimize_kprobe(struct kprobe *p) 577 { 578 struct kprobe *ap; 579 struct optimized_kprobe *op; 580 581 ap = alloc_aggr_kprobe(p); 582 if (!ap) 583 return; 584 585 op = container_of(ap, struct optimized_kprobe, kp); 586 if (!arch_prepared_optinsn(&op->optinsn)) { 587 /* If failed to setup optimizing, fallback to kprobe */ 588 free_aggr_kprobe(ap); 589 return; 590 } 591 592 init_aggr_kprobe(ap, p); 593 optimize_kprobe(ap); 594 } 595 596 #ifdef CONFIG_SYSCTL 597 static void __kprobes optimize_all_kprobes(void) 598 { 599 struct hlist_head *head; 600 struct hlist_node *node; 601 struct kprobe *p; 602 unsigned int i; 603 604 /* If optimization is already allowed, just return */ 605 if (kprobes_allow_optimization) 606 return; 607 608 kprobes_allow_optimization = true; 609 mutex_lock(&text_mutex); 610 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 611 head = &kprobe_table[i]; 612 hlist_for_each_entry_rcu(p, node, head, hlist) 613 if (!kprobe_disabled(p)) 614 optimize_kprobe(p); 615 } 616 mutex_unlock(&text_mutex); 617 printk(KERN_INFO "Kprobes globally optimized\n"); 618 } 619 620 static void __kprobes unoptimize_all_kprobes(void) 621 { 622 struct hlist_head *head; 623 struct hlist_node *node; 624 struct kprobe *p; 625 unsigned int i; 626 627 /* If optimization is already prohibited, just return */ 628 if (!kprobes_allow_optimization) 629 return; 630 631 kprobes_allow_optimization = false; 632 printk(KERN_INFO "Kprobes globally unoptimized\n"); 633 get_online_cpus(); /* For avoiding text_mutex deadlock */ 634 mutex_lock(&text_mutex); 635 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 636 head = &kprobe_table[i]; 637 hlist_for_each_entry_rcu(p, node, head, hlist) { 638 if (!kprobe_disabled(p)) 639 unoptimize_kprobe(p); 640 } 641 } 642 643 mutex_unlock(&text_mutex); 644 put_online_cpus(); 645 /* Allow all currently running kprobes to complete */ 646 synchronize_sched(); 647 } 648 649 int sysctl_kprobes_optimization; 650 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 651 void __user *buffer, size_t *length, 652 loff_t *ppos) 653 { 654 int ret; 655 656 mutex_lock(&kprobe_mutex); 657 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 658 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 659 660 if (sysctl_kprobes_optimization) 661 optimize_all_kprobes(); 662 else 663 unoptimize_all_kprobes(); 664 mutex_unlock(&kprobe_mutex); 665 666 return ret; 667 } 668 #endif /* CONFIG_SYSCTL */ 669 670 static void __kprobes __arm_kprobe(struct kprobe *p) 671 { 672 struct kprobe *old_p; 673 674 /* Check collision with other optimized kprobes */ 675 old_p = get_optimized_kprobe((unsigned long)p->addr); 676 if (unlikely(old_p)) 677 unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */ 678 679 arch_arm_kprobe(p); 680 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 681 } 682 683 static void __kprobes __disarm_kprobe(struct kprobe *p) 684 { 685 struct kprobe *old_p; 686 687 unoptimize_kprobe(p); /* Try to unoptimize */ 688 arch_disarm_kprobe(p); 689 690 /* If another kprobe was blocked, optimize it. */ 691 old_p = get_optimized_kprobe((unsigned long)p->addr); 692 if (unlikely(old_p)) 693 optimize_kprobe(old_p); 694 } 695 696 #else /* !CONFIG_OPTPROBES */ 697 698 #define optimize_kprobe(p) do {} while (0) 699 #define unoptimize_kprobe(p) do {} while (0) 700 #define kill_optimized_kprobe(p) do {} while (0) 701 #define prepare_optimized_kprobe(p) do {} while (0) 702 #define try_to_optimize_kprobe(p) do {} while (0) 703 #define __arm_kprobe(p) arch_arm_kprobe(p) 704 #define __disarm_kprobe(p) arch_disarm_kprobe(p) 705 706 static __kprobes void free_aggr_kprobe(struct kprobe *p) 707 { 708 kfree(p); 709 } 710 711 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 712 { 713 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 714 } 715 #endif /* CONFIG_OPTPROBES */ 716 717 /* Arm a kprobe with text_mutex */ 718 static void __kprobes arm_kprobe(struct kprobe *kp) 719 { 720 /* 721 * Here, since __arm_kprobe() doesn't use stop_machine(), 722 * this doesn't cause deadlock on text_mutex. So, we don't 723 * need get_online_cpus(). 724 */ 725 mutex_lock(&text_mutex); 726 __arm_kprobe(kp); 727 mutex_unlock(&text_mutex); 728 } 729 730 /* Disarm a kprobe with text_mutex */ 731 static void __kprobes disarm_kprobe(struct kprobe *kp) 732 { 733 get_online_cpus(); /* For avoiding text_mutex deadlock */ 734 mutex_lock(&text_mutex); 735 __disarm_kprobe(kp); 736 mutex_unlock(&text_mutex); 737 put_online_cpus(); 738 } 739 740 /* 741 * Aggregate handlers for multiple kprobes support - these handlers 742 * take care of invoking the individual kprobe handlers on p->list 743 */ 744 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 745 { 746 struct kprobe *kp; 747 748 list_for_each_entry_rcu(kp, &p->list, list) { 749 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 750 set_kprobe_instance(kp); 751 if (kp->pre_handler(kp, regs)) 752 return 1; 753 } 754 reset_kprobe_instance(); 755 } 756 return 0; 757 } 758 759 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 760 unsigned long flags) 761 { 762 struct kprobe *kp; 763 764 list_for_each_entry_rcu(kp, &p->list, list) { 765 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 766 set_kprobe_instance(kp); 767 kp->post_handler(kp, regs, flags); 768 reset_kprobe_instance(); 769 } 770 } 771 } 772 773 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 774 int trapnr) 775 { 776 struct kprobe *cur = __get_cpu_var(kprobe_instance); 777 778 /* 779 * if we faulted "during" the execution of a user specified 780 * probe handler, invoke just that probe's fault handler 781 */ 782 if (cur && cur->fault_handler) { 783 if (cur->fault_handler(cur, regs, trapnr)) 784 return 1; 785 } 786 return 0; 787 } 788 789 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 790 { 791 struct kprobe *cur = __get_cpu_var(kprobe_instance); 792 int ret = 0; 793 794 if (cur && cur->break_handler) { 795 if (cur->break_handler(cur, regs)) 796 ret = 1; 797 } 798 reset_kprobe_instance(); 799 return ret; 800 } 801 802 /* Walks the list and increments nmissed count for multiprobe case */ 803 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) 804 { 805 struct kprobe *kp; 806 if (!kprobe_aggrprobe(p)) { 807 p->nmissed++; 808 } else { 809 list_for_each_entry_rcu(kp, &p->list, list) 810 kp->nmissed++; 811 } 812 return; 813 } 814 815 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri, 816 struct hlist_head *head) 817 { 818 struct kretprobe *rp = ri->rp; 819 820 /* remove rp inst off the rprobe_inst_table */ 821 hlist_del(&ri->hlist); 822 INIT_HLIST_NODE(&ri->hlist); 823 if (likely(rp)) { 824 spin_lock(&rp->lock); 825 hlist_add_head(&ri->hlist, &rp->free_instances); 826 spin_unlock(&rp->lock); 827 } else 828 /* Unregistering */ 829 hlist_add_head(&ri->hlist, head); 830 } 831 832 void __kprobes kretprobe_hash_lock(struct task_struct *tsk, 833 struct hlist_head **head, unsigned long *flags) 834 __acquires(hlist_lock) 835 { 836 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 837 spinlock_t *hlist_lock; 838 839 *head = &kretprobe_inst_table[hash]; 840 hlist_lock = kretprobe_table_lock_ptr(hash); 841 spin_lock_irqsave(hlist_lock, *flags); 842 } 843 844 static void __kprobes kretprobe_table_lock(unsigned long hash, 845 unsigned long *flags) 846 __acquires(hlist_lock) 847 { 848 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 849 spin_lock_irqsave(hlist_lock, *flags); 850 } 851 852 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk, 853 unsigned long *flags) 854 __releases(hlist_lock) 855 { 856 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 857 spinlock_t *hlist_lock; 858 859 hlist_lock = kretprobe_table_lock_ptr(hash); 860 spin_unlock_irqrestore(hlist_lock, *flags); 861 } 862 863 static void __kprobes kretprobe_table_unlock(unsigned long hash, 864 unsigned long *flags) 865 __releases(hlist_lock) 866 { 867 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 868 spin_unlock_irqrestore(hlist_lock, *flags); 869 } 870 871 /* 872 * This function is called from finish_task_switch when task tk becomes dead, 873 * so that we can recycle any function-return probe instances associated 874 * with this task. These left over instances represent probed functions 875 * that have been called but will never return. 876 */ 877 void __kprobes kprobe_flush_task(struct task_struct *tk) 878 { 879 struct kretprobe_instance *ri; 880 struct hlist_head *head, empty_rp; 881 struct hlist_node *node, *tmp; 882 unsigned long hash, flags = 0; 883 884 if (unlikely(!kprobes_initialized)) 885 /* Early boot. kretprobe_table_locks not yet initialized. */ 886 return; 887 888 hash = hash_ptr(tk, KPROBE_HASH_BITS); 889 head = &kretprobe_inst_table[hash]; 890 kretprobe_table_lock(hash, &flags); 891 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 892 if (ri->task == tk) 893 recycle_rp_inst(ri, &empty_rp); 894 } 895 kretprobe_table_unlock(hash, &flags); 896 INIT_HLIST_HEAD(&empty_rp); 897 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 898 hlist_del(&ri->hlist); 899 kfree(ri); 900 } 901 } 902 903 static inline void free_rp_inst(struct kretprobe *rp) 904 { 905 struct kretprobe_instance *ri; 906 struct hlist_node *pos, *next; 907 908 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) { 909 hlist_del(&ri->hlist); 910 kfree(ri); 911 } 912 } 913 914 static void __kprobes cleanup_rp_inst(struct kretprobe *rp) 915 { 916 unsigned long flags, hash; 917 struct kretprobe_instance *ri; 918 struct hlist_node *pos, *next; 919 struct hlist_head *head; 920 921 /* No race here */ 922 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 923 kretprobe_table_lock(hash, &flags); 924 head = &kretprobe_inst_table[hash]; 925 hlist_for_each_entry_safe(ri, pos, next, head, hlist) { 926 if (ri->rp == rp) 927 ri->rp = NULL; 928 } 929 kretprobe_table_unlock(hash, &flags); 930 } 931 free_rp_inst(rp); 932 } 933 934 /* 935 * Add the new probe to ap->list. Fail if this is the 936 * second jprobe at the address - two jprobes can't coexist 937 */ 938 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) 939 { 940 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 941 942 if (p->break_handler || p->post_handler) 943 unoptimize_kprobe(ap); /* Fall back to normal kprobe */ 944 945 if (p->break_handler) { 946 if (ap->break_handler) 947 return -EEXIST; 948 list_add_tail_rcu(&p->list, &ap->list); 949 ap->break_handler = aggr_break_handler; 950 } else 951 list_add_rcu(&p->list, &ap->list); 952 if (p->post_handler && !ap->post_handler) 953 ap->post_handler = aggr_post_handler; 954 955 if (kprobe_disabled(ap) && !kprobe_disabled(p)) { 956 ap->flags &= ~KPROBE_FLAG_DISABLED; 957 if (!kprobes_all_disarmed) 958 /* Arm the breakpoint again. */ 959 __arm_kprobe(ap); 960 } 961 return 0; 962 } 963 964 /* 965 * Fill in the required fields of the "manager kprobe". Replace the 966 * earlier kprobe in the hlist with the manager kprobe 967 */ 968 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 969 { 970 /* Copy p's insn slot to ap */ 971 copy_kprobe(p, ap); 972 flush_insn_slot(ap); 973 ap->addr = p->addr; 974 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 975 ap->pre_handler = aggr_pre_handler; 976 ap->fault_handler = aggr_fault_handler; 977 /* We don't care the kprobe which has gone. */ 978 if (p->post_handler && !kprobe_gone(p)) 979 ap->post_handler = aggr_post_handler; 980 if (p->break_handler && !kprobe_gone(p)) 981 ap->break_handler = aggr_break_handler; 982 983 INIT_LIST_HEAD(&ap->list); 984 INIT_HLIST_NODE(&ap->hlist); 985 986 list_add_rcu(&p->list, &ap->list); 987 hlist_replace_rcu(&p->hlist, &ap->hlist); 988 } 989 990 /* 991 * This is the second or subsequent kprobe at the address - handle 992 * the intricacies 993 */ 994 static int __kprobes register_aggr_kprobe(struct kprobe *old_p, 995 struct kprobe *p) 996 { 997 int ret = 0; 998 struct kprobe *ap = old_p; 999 1000 if (!kprobe_aggrprobe(old_p)) { 1001 /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */ 1002 ap = alloc_aggr_kprobe(old_p); 1003 if (!ap) 1004 return -ENOMEM; 1005 init_aggr_kprobe(ap, old_p); 1006 } 1007 1008 if (kprobe_gone(ap)) { 1009 /* 1010 * Attempting to insert new probe at the same location that 1011 * had a probe in the module vaddr area which already 1012 * freed. So, the instruction slot has already been 1013 * released. We need a new slot for the new probe. 1014 */ 1015 ret = arch_prepare_kprobe(ap); 1016 if (ret) 1017 /* 1018 * Even if fail to allocate new slot, don't need to 1019 * free aggr_probe. It will be used next time, or 1020 * freed by unregister_kprobe. 1021 */ 1022 return ret; 1023 1024 /* Prepare optimized instructions if possible. */ 1025 prepare_optimized_kprobe(ap); 1026 1027 /* 1028 * Clear gone flag to prevent allocating new slot again, and 1029 * set disabled flag because it is not armed yet. 1030 */ 1031 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1032 | KPROBE_FLAG_DISABLED; 1033 } 1034 1035 /* Copy ap's insn slot to p */ 1036 copy_kprobe(ap, p); 1037 return add_new_kprobe(ap, p); 1038 } 1039 1040 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/ 1041 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p) 1042 { 1043 struct kprobe *kp; 1044 1045 list_for_each_entry_rcu(kp, &p->list, list) { 1046 if (!kprobe_disabled(kp)) 1047 /* 1048 * There is an active probe on the list. 1049 * We can't disable aggr_kprobe. 1050 */ 1051 return 0; 1052 } 1053 p->flags |= KPROBE_FLAG_DISABLED; 1054 return 1; 1055 } 1056 1057 static int __kprobes in_kprobes_functions(unsigned long addr) 1058 { 1059 struct kprobe_blackpoint *kb; 1060 1061 if (addr >= (unsigned long)__kprobes_text_start && 1062 addr < (unsigned long)__kprobes_text_end) 1063 return -EINVAL; 1064 /* 1065 * If there exists a kprobe_blacklist, verify and 1066 * fail any probe registration in the prohibited area 1067 */ 1068 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1069 if (kb->start_addr) { 1070 if (addr >= kb->start_addr && 1071 addr < (kb->start_addr + kb->range)) 1072 return -EINVAL; 1073 } 1074 } 1075 return 0; 1076 } 1077 1078 /* 1079 * If we have a symbol_name argument, look it up and add the offset field 1080 * to it. This way, we can specify a relative address to a symbol. 1081 */ 1082 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) 1083 { 1084 kprobe_opcode_t *addr = p->addr; 1085 if (p->symbol_name) { 1086 if (addr) 1087 return NULL; 1088 kprobe_lookup_name(p->symbol_name, addr); 1089 } 1090 1091 if (!addr) 1092 return NULL; 1093 return (kprobe_opcode_t *)(((char *)addr) + p->offset); 1094 } 1095 1096 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1097 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p) 1098 { 1099 struct kprobe *old_p, *list_p; 1100 1101 old_p = get_kprobe(p->addr); 1102 if (unlikely(!old_p)) 1103 return NULL; 1104 1105 if (p != old_p) { 1106 list_for_each_entry_rcu(list_p, &old_p->list, list) 1107 if (list_p == p) 1108 /* kprobe p is a valid probe */ 1109 goto valid; 1110 return NULL; 1111 } 1112 valid: 1113 return old_p; 1114 } 1115 1116 /* Return error if the kprobe is being re-registered */ 1117 static inline int check_kprobe_rereg(struct kprobe *p) 1118 { 1119 int ret = 0; 1120 struct kprobe *old_p; 1121 1122 mutex_lock(&kprobe_mutex); 1123 old_p = __get_valid_kprobe(p); 1124 if (old_p) 1125 ret = -EINVAL; 1126 mutex_unlock(&kprobe_mutex); 1127 return ret; 1128 } 1129 1130 int __kprobes register_kprobe(struct kprobe *p) 1131 { 1132 int ret = 0; 1133 struct kprobe *old_p; 1134 struct module *probed_mod; 1135 kprobe_opcode_t *addr; 1136 1137 addr = kprobe_addr(p); 1138 if (!addr) 1139 return -EINVAL; 1140 p->addr = addr; 1141 1142 ret = check_kprobe_rereg(p); 1143 if (ret) 1144 return ret; 1145 1146 preempt_disable(); 1147 if (!kernel_text_address((unsigned long) p->addr) || 1148 in_kprobes_functions((unsigned long) p->addr) || 1149 ftrace_text_reserved(p->addr, p->addr)) { 1150 preempt_enable(); 1151 return -EINVAL; 1152 } 1153 1154 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1155 p->flags &= KPROBE_FLAG_DISABLED; 1156 1157 /* 1158 * Check if are we probing a module. 1159 */ 1160 probed_mod = __module_text_address((unsigned long) p->addr); 1161 if (probed_mod) { 1162 /* 1163 * We must hold a refcount of the probed module while updating 1164 * its code to prohibit unexpected unloading. 1165 */ 1166 if (unlikely(!try_module_get(probed_mod))) { 1167 preempt_enable(); 1168 return -EINVAL; 1169 } 1170 /* 1171 * If the module freed .init.text, we couldn't insert 1172 * kprobes in there. 1173 */ 1174 if (within_module_init((unsigned long)p->addr, probed_mod) && 1175 probed_mod->state != MODULE_STATE_COMING) { 1176 module_put(probed_mod); 1177 preempt_enable(); 1178 return -EINVAL; 1179 } 1180 } 1181 preempt_enable(); 1182 1183 p->nmissed = 0; 1184 INIT_LIST_HEAD(&p->list); 1185 mutex_lock(&kprobe_mutex); 1186 1187 get_online_cpus(); /* For avoiding text_mutex deadlock. */ 1188 mutex_lock(&text_mutex); 1189 1190 old_p = get_kprobe(p->addr); 1191 if (old_p) { 1192 /* Since this may unoptimize old_p, locking text_mutex. */ 1193 ret = register_aggr_kprobe(old_p, p); 1194 goto out; 1195 } 1196 1197 ret = arch_prepare_kprobe(p); 1198 if (ret) 1199 goto out; 1200 1201 INIT_HLIST_NODE(&p->hlist); 1202 hlist_add_head_rcu(&p->hlist, 1203 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1204 1205 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1206 __arm_kprobe(p); 1207 1208 /* Try to optimize kprobe */ 1209 try_to_optimize_kprobe(p); 1210 1211 out: 1212 mutex_unlock(&text_mutex); 1213 put_online_cpus(); 1214 mutex_unlock(&kprobe_mutex); 1215 1216 if (probed_mod) 1217 module_put(probed_mod); 1218 1219 return ret; 1220 } 1221 EXPORT_SYMBOL_GPL(register_kprobe); 1222 1223 /* 1224 * Unregister a kprobe without a scheduler synchronization. 1225 */ 1226 static int __kprobes __unregister_kprobe_top(struct kprobe *p) 1227 { 1228 struct kprobe *old_p, *list_p; 1229 1230 old_p = __get_valid_kprobe(p); 1231 if (old_p == NULL) 1232 return -EINVAL; 1233 1234 if (old_p == p || 1235 (kprobe_aggrprobe(old_p) && 1236 list_is_singular(&old_p->list))) { 1237 /* 1238 * Only probe on the hash list. Disarm only if kprobes are 1239 * enabled and not gone - otherwise, the breakpoint would 1240 * already have been removed. We save on flushing icache. 1241 */ 1242 if (!kprobes_all_disarmed && !kprobe_disabled(old_p)) 1243 disarm_kprobe(old_p); 1244 hlist_del_rcu(&old_p->hlist); 1245 } else { 1246 if (p->break_handler && !kprobe_gone(p)) 1247 old_p->break_handler = NULL; 1248 if (p->post_handler && !kprobe_gone(p)) { 1249 list_for_each_entry_rcu(list_p, &old_p->list, list) { 1250 if ((list_p != p) && (list_p->post_handler)) 1251 goto noclean; 1252 } 1253 old_p->post_handler = NULL; 1254 } 1255 noclean: 1256 list_del_rcu(&p->list); 1257 if (!kprobe_disabled(old_p)) { 1258 try_to_disable_aggr_kprobe(old_p); 1259 if (!kprobes_all_disarmed) { 1260 if (kprobe_disabled(old_p)) 1261 disarm_kprobe(old_p); 1262 else 1263 /* Try to optimize this probe again */ 1264 optimize_kprobe(old_p); 1265 } 1266 } 1267 } 1268 return 0; 1269 } 1270 1271 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) 1272 { 1273 struct kprobe *old_p; 1274 1275 if (list_empty(&p->list)) 1276 arch_remove_kprobe(p); 1277 else if (list_is_singular(&p->list)) { 1278 /* "p" is the last child of an aggr_kprobe */ 1279 old_p = list_entry(p->list.next, struct kprobe, list); 1280 list_del(&p->list); 1281 arch_remove_kprobe(old_p); 1282 free_aggr_kprobe(old_p); 1283 } 1284 } 1285 1286 int __kprobes register_kprobes(struct kprobe **kps, int num) 1287 { 1288 int i, ret = 0; 1289 1290 if (num <= 0) 1291 return -EINVAL; 1292 for (i = 0; i < num; i++) { 1293 ret = register_kprobe(kps[i]); 1294 if (ret < 0) { 1295 if (i > 0) 1296 unregister_kprobes(kps, i); 1297 break; 1298 } 1299 } 1300 return ret; 1301 } 1302 EXPORT_SYMBOL_GPL(register_kprobes); 1303 1304 void __kprobes unregister_kprobe(struct kprobe *p) 1305 { 1306 unregister_kprobes(&p, 1); 1307 } 1308 EXPORT_SYMBOL_GPL(unregister_kprobe); 1309 1310 void __kprobes unregister_kprobes(struct kprobe **kps, int num) 1311 { 1312 int i; 1313 1314 if (num <= 0) 1315 return; 1316 mutex_lock(&kprobe_mutex); 1317 for (i = 0; i < num; i++) 1318 if (__unregister_kprobe_top(kps[i]) < 0) 1319 kps[i]->addr = NULL; 1320 mutex_unlock(&kprobe_mutex); 1321 1322 synchronize_sched(); 1323 for (i = 0; i < num; i++) 1324 if (kps[i]->addr) 1325 __unregister_kprobe_bottom(kps[i]); 1326 } 1327 EXPORT_SYMBOL_GPL(unregister_kprobes); 1328 1329 static struct notifier_block kprobe_exceptions_nb = { 1330 .notifier_call = kprobe_exceptions_notify, 1331 .priority = 0x7fffffff /* we need to be notified first */ 1332 }; 1333 1334 unsigned long __weak arch_deref_entry_point(void *entry) 1335 { 1336 return (unsigned long)entry; 1337 } 1338 1339 int __kprobes register_jprobes(struct jprobe **jps, int num) 1340 { 1341 struct jprobe *jp; 1342 int ret = 0, i; 1343 1344 if (num <= 0) 1345 return -EINVAL; 1346 for (i = 0; i < num; i++) { 1347 unsigned long addr, offset; 1348 jp = jps[i]; 1349 addr = arch_deref_entry_point(jp->entry); 1350 1351 /* Verify probepoint is a function entry point */ 1352 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && 1353 offset == 0) { 1354 jp->kp.pre_handler = setjmp_pre_handler; 1355 jp->kp.break_handler = longjmp_break_handler; 1356 ret = register_kprobe(&jp->kp); 1357 } else 1358 ret = -EINVAL; 1359 1360 if (ret < 0) { 1361 if (i > 0) 1362 unregister_jprobes(jps, i); 1363 break; 1364 } 1365 } 1366 return ret; 1367 } 1368 EXPORT_SYMBOL_GPL(register_jprobes); 1369 1370 int __kprobes register_jprobe(struct jprobe *jp) 1371 { 1372 return register_jprobes(&jp, 1); 1373 } 1374 EXPORT_SYMBOL_GPL(register_jprobe); 1375 1376 void __kprobes unregister_jprobe(struct jprobe *jp) 1377 { 1378 unregister_jprobes(&jp, 1); 1379 } 1380 EXPORT_SYMBOL_GPL(unregister_jprobe); 1381 1382 void __kprobes unregister_jprobes(struct jprobe **jps, int num) 1383 { 1384 int i; 1385 1386 if (num <= 0) 1387 return; 1388 mutex_lock(&kprobe_mutex); 1389 for (i = 0; i < num; i++) 1390 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1391 jps[i]->kp.addr = NULL; 1392 mutex_unlock(&kprobe_mutex); 1393 1394 synchronize_sched(); 1395 for (i = 0; i < num; i++) { 1396 if (jps[i]->kp.addr) 1397 __unregister_kprobe_bottom(&jps[i]->kp); 1398 } 1399 } 1400 EXPORT_SYMBOL_GPL(unregister_jprobes); 1401 1402 #ifdef CONFIG_KRETPROBES 1403 /* 1404 * This kprobe pre_handler is registered with every kretprobe. When probe 1405 * hits it will set up the return probe. 1406 */ 1407 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1408 struct pt_regs *regs) 1409 { 1410 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1411 unsigned long hash, flags = 0; 1412 struct kretprobe_instance *ri; 1413 1414 /*TODO: consider to only swap the RA after the last pre_handler fired */ 1415 hash = hash_ptr(current, KPROBE_HASH_BITS); 1416 spin_lock_irqsave(&rp->lock, flags); 1417 if (!hlist_empty(&rp->free_instances)) { 1418 ri = hlist_entry(rp->free_instances.first, 1419 struct kretprobe_instance, hlist); 1420 hlist_del(&ri->hlist); 1421 spin_unlock_irqrestore(&rp->lock, flags); 1422 1423 ri->rp = rp; 1424 ri->task = current; 1425 1426 if (rp->entry_handler && rp->entry_handler(ri, regs)) 1427 return 0; 1428 1429 arch_prepare_kretprobe(ri, regs); 1430 1431 /* XXX(hch): why is there no hlist_move_head? */ 1432 INIT_HLIST_NODE(&ri->hlist); 1433 kretprobe_table_lock(hash, &flags); 1434 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1435 kretprobe_table_unlock(hash, &flags); 1436 } else { 1437 rp->nmissed++; 1438 spin_unlock_irqrestore(&rp->lock, flags); 1439 } 1440 return 0; 1441 } 1442 1443 int __kprobes register_kretprobe(struct kretprobe *rp) 1444 { 1445 int ret = 0; 1446 struct kretprobe_instance *inst; 1447 int i; 1448 void *addr; 1449 1450 if (kretprobe_blacklist_size) { 1451 addr = kprobe_addr(&rp->kp); 1452 if (!addr) 1453 return -EINVAL; 1454 1455 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1456 if (kretprobe_blacklist[i].addr == addr) 1457 return -EINVAL; 1458 } 1459 } 1460 1461 rp->kp.pre_handler = pre_handler_kretprobe; 1462 rp->kp.post_handler = NULL; 1463 rp->kp.fault_handler = NULL; 1464 rp->kp.break_handler = NULL; 1465 1466 /* Pre-allocate memory for max kretprobe instances */ 1467 if (rp->maxactive <= 0) { 1468 #ifdef CONFIG_PREEMPT 1469 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1470 #else 1471 rp->maxactive = num_possible_cpus(); 1472 #endif 1473 } 1474 spin_lock_init(&rp->lock); 1475 INIT_HLIST_HEAD(&rp->free_instances); 1476 for (i = 0; i < rp->maxactive; i++) { 1477 inst = kmalloc(sizeof(struct kretprobe_instance) + 1478 rp->data_size, GFP_KERNEL); 1479 if (inst == NULL) { 1480 free_rp_inst(rp); 1481 return -ENOMEM; 1482 } 1483 INIT_HLIST_NODE(&inst->hlist); 1484 hlist_add_head(&inst->hlist, &rp->free_instances); 1485 } 1486 1487 rp->nmissed = 0; 1488 /* Establish function entry probe point */ 1489 ret = register_kprobe(&rp->kp); 1490 if (ret != 0) 1491 free_rp_inst(rp); 1492 return ret; 1493 } 1494 EXPORT_SYMBOL_GPL(register_kretprobe); 1495 1496 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1497 { 1498 int ret = 0, i; 1499 1500 if (num <= 0) 1501 return -EINVAL; 1502 for (i = 0; i < num; i++) { 1503 ret = register_kretprobe(rps[i]); 1504 if (ret < 0) { 1505 if (i > 0) 1506 unregister_kretprobes(rps, i); 1507 break; 1508 } 1509 } 1510 return ret; 1511 } 1512 EXPORT_SYMBOL_GPL(register_kretprobes); 1513 1514 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1515 { 1516 unregister_kretprobes(&rp, 1); 1517 } 1518 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1519 1520 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1521 { 1522 int i; 1523 1524 if (num <= 0) 1525 return; 1526 mutex_lock(&kprobe_mutex); 1527 for (i = 0; i < num; i++) 1528 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1529 rps[i]->kp.addr = NULL; 1530 mutex_unlock(&kprobe_mutex); 1531 1532 synchronize_sched(); 1533 for (i = 0; i < num; i++) { 1534 if (rps[i]->kp.addr) { 1535 __unregister_kprobe_bottom(&rps[i]->kp); 1536 cleanup_rp_inst(rps[i]); 1537 } 1538 } 1539 } 1540 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1541 1542 #else /* CONFIG_KRETPROBES */ 1543 int __kprobes register_kretprobe(struct kretprobe *rp) 1544 { 1545 return -ENOSYS; 1546 } 1547 EXPORT_SYMBOL_GPL(register_kretprobe); 1548 1549 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1550 { 1551 return -ENOSYS; 1552 } 1553 EXPORT_SYMBOL_GPL(register_kretprobes); 1554 1555 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1556 { 1557 } 1558 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1559 1560 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1561 { 1562 } 1563 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1564 1565 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1566 struct pt_regs *regs) 1567 { 1568 return 0; 1569 } 1570 1571 #endif /* CONFIG_KRETPROBES */ 1572 1573 /* Set the kprobe gone and remove its instruction buffer. */ 1574 static void __kprobes kill_kprobe(struct kprobe *p) 1575 { 1576 struct kprobe *kp; 1577 1578 p->flags |= KPROBE_FLAG_GONE; 1579 if (kprobe_aggrprobe(p)) { 1580 /* 1581 * If this is an aggr_kprobe, we have to list all the 1582 * chained probes and mark them GONE. 1583 */ 1584 list_for_each_entry_rcu(kp, &p->list, list) 1585 kp->flags |= KPROBE_FLAG_GONE; 1586 p->post_handler = NULL; 1587 p->break_handler = NULL; 1588 kill_optimized_kprobe(p); 1589 } 1590 /* 1591 * Here, we can remove insn_slot safely, because no thread calls 1592 * the original probed function (which will be freed soon) any more. 1593 */ 1594 arch_remove_kprobe(p); 1595 } 1596 1597 /* Disable one kprobe */ 1598 int __kprobes disable_kprobe(struct kprobe *kp) 1599 { 1600 int ret = 0; 1601 struct kprobe *p; 1602 1603 mutex_lock(&kprobe_mutex); 1604 1605 /* Check whether specified probe is valid. */ 1606 p = __get_valid_kprobe(kp); 1607 if (unlikely(p == NULL)) { 1608 ret = -EINVAL; 1609 goto out; 1610 } 1611 1612 /* If the probe is already disabled (or gone), just return */ 1613 if (kprobe_disabled(kp)) 1614 goto out; 1615 1616 kp->flags |= KPROBE_FLAG_DISABLED; 1617 if (p != kp) 1618 /* When kp != p, p is always enabled. */ 1619 try_to_disable_aggr_kprobe(p); 1620 1621 if (!kprobes_all_disarmed && kprobe_disabled(p)) 1622 disarm_kprobe(p); 1623 out: 1624 mutex_unlock(&kprobe_mutex); 1625 return ret; 1626 } 1627 EXPORT_SYMBOL_GPL(disable_kprobe); 1628 1629 /* Enable one kprobe */ 1630 int __kprobes enable_kprobe(struct kprobe *kp) 1631 { 1632 int ret = 0; 1633 struct kprobe *p; 1634 1635 mutex_lock(&kprobe_mutex); 1636 1637 /* Check whether specified probe is valid. */ 1638 p = __get_valid_kprobe(kp); 1639 if (unlikely(p == NULL)) { 1640 ret = -EINVAL; 1641 goto out; 1642 } 1643 1644 if (kprobe_gone(kp)) { 1645 /* This kprobe has gone, we couldn't enable it. */ 1646 ret = -EINVAL; 1647 goto out; 1648 } 1649 1650 if (p != kp) 1651 kp->flags &= ~KPROBE_FLAG_DISABLED; 1652 1653 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 1654 p->flags &= ~KPROBE_FLAG_DISABLED; 1655 arm_kprobe(p); 1656 } 1657 out: 1658 mutex_unlock(&kprobe_mutex); 1659 return ret; 1660 } 1661 EXPORT_SYMBOL_GPL(enable_kprobe); 1662 1663 void __kprobes dump_kprobe(struct kprobe *kp) 1664 { 1665 printk(KERN_WARNING "Dumping kprobe:\n"); 1666 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 1667 kp->symbol_name, kp->addr, kp->offset); 1668 } 1669 1670 /* Module notifier call back, checking kprobes on the module */ 1671 static int __kprobes kprobes_module_callback(struct notifier_block *nb, 1672 unsigned long val, void *data) 1673 { 1674 struct module *mod = data; 1675 struct hlist_head *head; 1676 struct hlist_node *node; 1677 struct kprobe *p; 1678 unsigned int i; 1679 int checkcore = (val == MODULE_STATE_GOING); 1680 1681 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 1682 return NOTIFY_DONE; 1683 1684 /* 1685 * When MODULE_STATE_GOING was notified, both of module .text and 1686 * .init.text sections would be freed. When MODULE_STATE_LIVE was 1687 * notified, only .init.text section would be freed. We need to 1688 * disable kprobes which have been inserted in the sections. 1689 */ 1690 mutex_lock(&kprobe_mutex); 1691 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1692 head = &kprobe_table[i]; 1693 hlist_for_each_entry_rcu(p, node, head, hlist) 1694 if (within_module_init((unsigned long)p->addr, mod) || 1695 (checkcore && 1696 within_module_core((unsigned long)p->addr, mod))) { 1697 /* 1698 * The vaddr this probe is installed will soon 1699 * be vfreed buy not synced to disk. Hence, 1700 * disarming the breakpoint isn't needed. 1701 */ 1702 kill_kprobe(p); 1703 } 1704 } 1705 mutex_unlock(&kprobe_mutex); 1706 return NOTIFY_DONE; 1707 } 1708 1709 static struct notifier_block kprobe_module_nb = { 1710 .notifier_call = kprobes_module_callback, 1711 .priority = 0 1712 }; 1713 1714 static int __init init_kprobes(void) 1715 { 1716 int i, err = 0; 1717 unsigned long offset = 0, size = 0; 1718 char *modname, namebuf[128]; 1719 const char *symbol_name; 1720 void *addr; 1721 struct kprobe_blackpoint *kb; 1722 1723 /* FIXME allocate the probe table, currently defined statically */ 1724 /* initialize all list heads */ 1725 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1726 INIT_HLIST_HEAD(&kprobe_table[i]); 1727 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 1728 spin_lock_init(&(kretprobe_table_locks[i].lock)); 1729 } 1730 1731 /* 1732 * Lookup and populate the kprobe_blacklist. 1733 * 1734 * Unlike the kretprobe blacklist, we'll need to determine 1735 * the range of addresses that belong to the said functions, 1736 * since a kprobe need not necessarily be at the beginning 1737 * of a function. 1738 */ 1739 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1740 kprobe_lookup_name(kb->name, addr); 1741 if (!addr) 1742 continue; 1743 1744 kb->start_addr = (unsigned long)addr; 1745 symbol_name = kallsyms_lookup(kb->start_addr, 1746 &size, &offset, &modname, namebuf); 1747 if (!symbol_name) 1748 kb->range = 0; 1749 else 1750 kb->range = size; 1751 } 1752 1753 if (kretprobe_blacklist_size) { 1754 /* lookup the function address from its name */ 1755 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1756 kprobe_lookup_name(kretprobe_blacklist[i].name, 1757 kretprobe_blacklist[i].addr); 1758 if (!kretprobe_blacklist[i].addr) 1759 printk("kretprobe: lookup failed: %s\n", 1760 kretprobe_blacklist[i].name); 1761 } 1762 } 1763 1764 #if defined(CONFIG_OPTPROBES) 1765 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 1766 /* Init kprobe_optinsn_slots */ 1767 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 1768 #endif 1769 /* By default, kprobes can be optimized */ 1770 kprobes_allow_optimization = true; 1771 #endif 1772 1773 /* By default, kprobes are armed */ 1774 kprobes_all_disarmed = false; 1775 1776 err = arch_init_kprobes(); 1777 if (!err) 1778 err = register_die_notifier(&kprobe_exceptions_nb); 1779 if (!err) 1780 err = register_module_notifier(&kprobe_module_nb); 1781 1782 kprobes_initialized = (err == 0); 1783 1784 if (!err) 1785 init_test_probes(); 1786 return err; 1787 } 1788 1789 #ifdef CONFIG_DEBUG_FS 1790 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, 1791 const char *sym, int offset, char *modname, struct kprobe *pp) 1792 { 1793 char *kprobe_type; 1794 1795 if (p->pre_handler == pre_handler_kretprobe) 1796 kprobe_type = "r"; 1797 else if (p->pre_handler == setjmp_pre_handler) 1798 kprobe_type = "j"; 1799 else 1800 kprobe_type = "k"; 1801 1802 if (sym) 1803 seq_printf(pi, "%p %s %s+0x%x %s ", 1804 p->addr, kprobe_type, sym, offset, 1805 (modname ? modname : " ")); 1806 else 1807 seq_printf(pi, "%p %s %p ", 1808 p->addr, kprobe_type, p->addr); 1809 1810 if (!pp) 1811 pp = p; 1812 seq_printf(pi, "%s%s%s\n", 1813 (kprobe_gone(p) ? "[GONE]" : ""), 1814 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 1815 (kprobe_optimized(pp) ? "[OPTIMIZED]" : "")); 1816 } 1817 1818 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) 1819 { 1820 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 1821 } 1822 1823 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 1824 { 1825 (*pos)++; 1826 if (*pos >= KPROBE_TABLE_SIZE) 1827 return NULL; 1828 return pos; 1829 } 1830 1831 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v) 1832 { 1833 /* Nothing to do */ 1834 } 1835 1836 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) 1837 { 1838 struct hlist_head *head; 1839 struct hlist_node *node; 1840 struct kprobe *p, *kp; 1841 const char *sym = NULL; 1842 unsigned int i = *(loff_t *) v; 1843 unsigned long offset = 0; 1844 char *modname, namebuf[128]; 1845 1846 head = &kprobe_table[i]; 1847 preempt_disable(); 1848 hlist_for_each_entry_rcu(p, node, head, hlist) { 1849 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 1850 &offset, &modname, namebuf); 1851 if (kprobe_aggrprobe(p)) { 1852 list_for_each_entry_rcu(kp, &p->list, list) 1853 report_probe(pi, kp, sym, offset, modname, p); 1854 } else 1855 report_probe(pi, p, sym, offset, modname, NULL); 1856 } 1857 preempt_enable(); 1858 return 0; 1859 } 1860 1861 static const struct seq_operations kprobes_seq_ops = { 1862 .start = kprobe_seq_start, 1863 .next = kprobe_seq_next, 1864 .stop = kprobe_seq_stop, 1865 .show = show_kprobe_addr 1866 }; 1867 1868 static int __kprobes kprobes_open(struct inode *inode, struct file *filp) 1869 { 1870 return seq_open(filp, &kprobes_seq_ops); 1871 } 1872 1873 static const struct file_operations debugfs_kprobes_operations = { 1874 .open = kprobes_open, 1875 .read = seq_read, 1876 .llseek = seq_lseek, 1877 .release = seq_release, 1878 }; 1879 1880 static void __kprobes arm_all_kprobes(void) 1881 { 1882 struct hlist_head *head; 1883 struct hlist_node *node; 1884 struct kprobe *p; 1885 unsigned int i; 1886 1887 mutex_lock(&kprobe_mutex); 1888 1889 /* If kprobes are armed, just return */ 1890 if (!kprobes_all_disarmed) 1891 goto already_enabled; 1892 1893 /* Arming kprobes doesn't optimize kprobe itself */ 1894 mutex_lock(&text_mutex); 1895 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1896 head = &kprobe_table[i]; 1897 hlist_for_each_entry_rcu(p, node, head, hlist) 1898 if (!kprobe_disabled(p)) 1899 __arm_kprobe(p); 1900 } 1901 mutex_unlock(&text_mutex); 1902 1903 kprobes_all_disarmed = false; 1904 printk(KERN_INFO "Kprobes globally enabled\n"); 1905 1906 already_enabled: 1907 mutex_unlock(&kprobe_mutex); 1908 return; 1909 } 1910 1911 static void __kprobes disarm_all_kprobes(void) 1912 { 1913 struct hlist_head *head; 1914 struct hlist_node *node; 1915 struct kprobe *p; 1916 unsigned int i; 1917 1918 mutex_lock(&kprobe_mutex); 1919 1920 /* If kprobes are already disarmed, just return */ 1921 if (kprobes_all_disarmed) 1922 goto already_disabled; 1923 1924 kprobes_all_disarmed = true; 1925 printk(KERN_INFO "Kprobes globally disabled\n"); 1926 1927 /* 1928 * Here we call get_online_cpus() for avoiding text_mutex deadlock, 1929 * because disarming may also unoptimize kprobes. 1930 */ 1931 get_online_cpus(); 1932 mutex_lock(&text_mutex); 1933 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1934 head = &kprobe_table[i]; 1935 hlist_for_each_entry_rcu(p, node, head, hlist) { 1936 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 1937 __disarm_kprobe(p); 1938 } 1939 } 1940 1941 mutex_unlock(&text_mutex); 1942 put_online_cpus(); 1943 mutex_unlock(&kprobe_mutex); 1944 /* Allow all currently running kprobes to complete */ 1945 synchronize_sched(); 1946 return; 1947 1948 already_disabled: 1949 mutex_unlock(&kprobe_mutex); 1950 return; 1951 } 1952 1953 /* 1954 * XXX: The debugfs bool file interface doesn't allow for callbacks 1955 * when the bool state is switched. We can reuse that facility when 1956 * available 1957 */ 1958 static ssize_t read_enabled_file_bool(struct file *file, 1959 char __user *user_buf, size_t count, loff_t *ppos) 1960 { 1961 char buf[3]; 1962 1963 if (!kprobes_all_disarmed) 1964 buf[0] = '1'; 1965 else 1966 buf[0] = '0'; 1967 buf[1] = '\n'; 1968 buf[2] = 0x00; 1969 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 1970 } 1971 1972 static ssize_t write_enabled_file_bool(struct file *file, 1973 const char __user *user_buf, size_t count, loff_t *ppos) 1974 { 1975 char buf[32]; 1976 int buf_size; 1977 1978 buf_size = min(count, (sizeof(buf)-1)); 1979 if (copy_from_user(buf, user_buf, buf_size)) 1980 return -EFAULT; 1981 1982 switch (buf[0]) { 1983 case 'y': 1984 case 'Y': 1985 case '1': 1986 arm_all_kprobes(); 1987 break; 1988 case 'n': 1989 case 'N': 1990 case '0': 1991 disarm_all_kprobes(); 1992 break; 1993 } 1994 1995 return count; 1996 } 1997 1998 static const struct file_operations fops_kp = { 1999 .read = read_enabled_file_bool, 2000 .write = write_enabled_file_bool, 2001 }; 2002 2003 static int __kprobes debugfs_kprobe_init(void) 2004 { 2005 struct dentry *dir, *file; 2006 unsigned int value = 1; 2007 2008 dir = debugfs_create_dir("kprobes", NULL); 2009 if (!dir) 2010 return -ENOMEM; 2011 2012 file = debugfs_create_file("list", 0444, dir, NULL, 2013 &debugfs_kprobes_operations); 2014 if (!file) { 2015 debugfs_remove(dir); 2016 return -ENOMEM; 2017 } 2018 2019 file = debugfs_create_file("enabled", 0600, dir, 2020 &value, &fops_kp); 2021 if (!file) { 2022 debugfs_remove(dir); 2023 return -ENOMEM; 2024 } 2025 2026 return 0; 2027 } 2028 2029 late_initcall(debugfs_kprobe_init); 2030 #endif /* CONFIG_DEBUG_FS */ 2031 2032 module_init(init_kprobes); 2033 2034 /* defined in arch/.../kernel/kprobes.c */ 2035 EXPORT_SYMBOL_GPL(jprobe_return); 2036