xref: /linux/kernel/kprobes.c (revision 635c17c2b2b4e5cd34f5dcba19d751b4e58533c2)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 
51 #include <asm-generic/sections.h>
52 #include <asm/cacheflush.h>
53 #include <asm/errno.h>
54 #include <asm/uaccess.h>
55 
56 #define KPROBE_HASH_BITS 6
57 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
58 
59 
60 /*
61  * Some oddball architectures like 64bit powerpc have function descriptors
62  * so this must be overridable.
63  */
64 #ifndef kprobe_lookup_name
65 #define kprobe_lookup_name(name, addr) \
66 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
67 #endif
68 
69 static int kprobes_initialized;
70 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
71 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
72 
73 /* NOTE: change this value only with kprobe_mutex held */
74 static bool kprobes_all_disarmed;
75 
76 static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
77 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
78 static struct {
79 	spinlock_t lock ____cacheline_aligned_in_smp;
80 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
81 
82 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
83 {
84 	return &(kretprobe_table_locks[hash].lock);
85 }
86 
87 /*
88  * Normally, functions that we'd want to prohibit kprobes in, are marked
89  * __kprobes. But, there are cases where such functions already belong to
90  * a different section (__sched for preempt_schedule)
91  *
92  * For such cases, we now have a blacklist
93  */
94 static struct kprobe_blackpoint kprobe_blacklist[] = {
95 	{"preempt_schedule",},
96 	{"native_get_debugreg",},
97 	{"irq_entries_start",},
98 	{"common_interrupt",},
99 	{"mcount",},	/* mcount can be called from everywhere */
100 	{NULL}    /* Terminator */
101 };
102 
103 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
104 /*
105  * kprobe->ainsn.insn points to the copy of the instruction to be
106  * single-stepped. x86_64, POWER4 and above have no-exec support and
107  * stepping on the instruction on a vmalloced/kmalloced/data page
108  * is a recipe for disaster
109  */
110 struct kprobe_insn_page {
111 	struct list_head list;
112 	kprobe_opcode_t *insns;		/* Page of instruction slots */
113 	int nused;
114 	int ngarbage;
115 	char slot_used[];
116 };
117 
118 #define KPROBE_INSN_PAGE_SIZE(slots)			\
119 	(offsetof(struct kprobe_insn_page, slot_used) +	\
120 	 (sizeof(char) * (slots)))
121 
122 struct kprobe_insn_cache {
123 	struct list_head pages;	/* list of kprobe_insn_page */
124 	size_t insn_size;	/* size of instruction slot */
125 	int nr_garbage;
126 };
127 
128 static int slots_per_page(struct kprobe_insn_cache *c)
129 {
130 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
131 }
132 
133 enum kprobe_slot_state {
134 	SLOT_CLEAN = 0,
135 	SLOT_DIRTY = 1,
136 	SLOT_USED = 2,
137 };
138 
139 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
140 static struct kprobe_insn_cache kprobe_insn_slots = {
141 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
142 	.insn_size = MAX_INSN_SIZE,
143 	.nr_garbage = 0,
144 };
145 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
146 
147 /**
148  * __get_insn_slot() - Find a slot on an executable page for an instruction.
149  * We allocate an executable page if there's no room on existing ones.
150  */
151 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
152 {
153 	struct kprobe_insn_page *kip;
154 
155  retry:
156 	list_for_each_entry(kip, &c->pages, list) {
157 		if (kip->nused < slots_per_page(c)) {
158 			int i;
159 			for (i = 0; i < slots_per_page(c); i++) {
160 				if (kip->slot_used[i] == SLOT_CLEAN) {
161 					kip->slot_used[i] = SLOT_USED;
162 					kip->nused++;
163 					return kip->insns + (i * c->insn_size);
164 				}
165 			}
166 			/* kip->nused is broken. Fix it. */
167 			kip->nused = slots_per_page(c);
168 			WARN_ON(1);
169 		}
170 	}
171 
172 	/* If there are any garbage slots, collect it and try again. */
173 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
174 		goto retry;
175 
176 	/* All out of space.  Need to allocate a new page. */
177 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178 	if (!kip)
179 		return NULL;
180 
181 	/*
182 	 * Use module_alloc so this page is within +/- 2GB of where the
183 	 * kernel image and loaded module images reside. This is required
184 	 * so x86_64 can correctly handle the %rip-relative fixups.
185 	 */
186 	kip->insns = module_alloc(PAGE_SIZE);
187 	if (!kip->insns) {
188 		kfree(kip);
189 		return NULL;
190 	}
191 	INIT_LIST_HEAD(&kip->list);
192 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193 	kip->slot_used[0] = SLOT_USED;
194 	kip->nused = 1;
195 	kip->ngarbage = 0;
196 	list_add(&kip->list, &c->pages);
197 	return kip->insns;
198 }
199 
200 
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
202 {
203 	kprobe_opcode_t *ret = NULL;
204 
205 	mutex_lock(&kprobe_insn_mutex);
206 	ret = __get_insn_slot(&kprobe_insn_slots);
207 	mutex_unlock(&kprobe_insn_mutex);
208 
209 	return ret;
210 }
211 
212 /* Return 1 if all garbages are collected, otherwise 0. */
213 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
214 {
215 	kip->slot_used[idx] = SLOT_CLEAN;
216 	kip->nused--;
217 	if (kip->nused == 0) {
218 		/*
219 		 * Page is no longer in use.  Free it unless
220 		 * it's the last one.  We keep the last one
221 		 * so as not to have to set it up again the
222 		 * next time somebody inserts a probe.
223 		 */
224 		if (!list_is_singular(&kip->list)) {
225 			list_del(&kip->list);
226 			module_free(NULL, kip->insns);
227 			kfree(kip);
228 		}
229 		return 1;
230 	}
231 	return 0;
232 }
233 
234 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236 	struct kprobe_insn_page *kip, *next;
237 
238 	/* Ensure no-one is interrupted on the garbages */
239 	synchronize_sched();
240 
241 	list_for_each_entry_safe(kip, next, &c->pages, list) {
242 		int i;
243 		if (kip->ngarbage == 0)
244 			continue;
245 		kip->ngarbage = 0;	/* we will collect all garbages */
246 		for (i = 0; i < slots_per_page(c); i++) {
247 			if (kip->slot_used[i] == SLOT_DIRTY &&
248 			    collect_one_slot(kip, i))
249 				break;
250 		}
251 	}
252 	c->nr_garbage = 0;
253 	return 0;
254 }
255 
256 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
257 				       kprobe_opcode_t *slot, int dirty)
258 {
259 	struct kprobe_insn_page *kip;
260 
261 	list_for_each_entry(kip, &c->pages, list) {
262 		long idx = ((long)slot - (long)kip->insns) /
263 				(c->insn_size * sizeof(kprobe_opcode_t));
264 		if (idx >= 0 && idx < slots_per_page(c)) {
265 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
266 			if (dirty) {
267 				kip->slot_used[idx] = SLOT_DIRTY;
268 				kip->ngarbage++;
269 				if (++c->nr_garbage > slots_per_page(c))
270 					collect_garbage_slots(c);
271 			} else
272 				collect_one_slot(kip, idx);
273 			return;
274 		}
275 	}
276 	/* Could not free this slot. */
277 	WARN_ON(1);
278 }
279 
280 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
281 {
282 	mutex_lock(&kprobe_insn_mutex);
283 	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
284 	mutex_unlock(&kprobe_insn_mutex);
285 }
286 #ifdef CONFIG_OPTPROBES
287 /* For optimized_kprobe buffer */
288 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
289 static struct kprobe_insn_cache kprobe_optinsn_slots = {
290 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
291 	/* .insn_size is initialized later */
292 	.nr_garbage = 0,
293 };
294 /* Get a slot for optimized_kprobe buffer */
295 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
296 {
297 	kprobe_opcode_t *ret = NULL;
298 
299 	mutex_lock(&kprobe_optinsn_mutex);
300 	ret = __get_insn_slot(&kprobe_optinsn_slots);
301 	mutex_unlock(&kprobe_optinsn_mutex);
302 
303 	return ret;
304 }
305 
306 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
307 {
308 	mutex_lock(&kprobe_optinsn_mutex);
309 	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
310 	mutex_unlock(&kprobe_optinsn_mutex);
311 }
312 #endif
313 #endif
314 
315 /* We have preemption disabled.. so it is safe to use __ versions */
316 static inline void set_kprobe_instance(struct kprobe *kp)
317 {
318 	__get_cpu_var(kprobe_instance) = kp;
319 }
320 
321 static inline void reset_kprobe_instance(void)
322 {
323 	__get_cpu_var(kprobe_instance) = NULL;
324 }
325 
326 /*
327  * This routine is called either:
328  * 	- under the kprobe_mutex - during kprobe_[un]register()
329  * 				OR
330  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
331  */
332 struct kprobe __kprobes *get_kprobe(void *addr)
333 {
334 	struct hlist_head *head;
335 	struct hlist_node *node;
336 	struct kprobe *p;
337 
338 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
339 	hlist_for_each_entry_rcu(p, node, head, hlist) {
340 		if (p->addr == addr)
341 			return p;
342 	}
343 
344 	return NULL;
345 }
346 
347 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
348 
349 /* Return true if the kprobe is an aggregator */
350 static inline int kprobe_aggrprobe(struct kprobe *p)
351 {
352 	return p->pre_handler == aggr_pre_handler;
353 }
354 
355 /*
356  * Keep all fields in the kprobe consistent
357  */
358 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
359 {
360 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
361 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
362 }
363 
364 #ifdef CONFIG_OPTPROBES
365 /* NOTE: change this value only with kprobe_mutex held */
366 static bool kprobes_allow_optimization;
367 
368 /*
369  * Call all pre_handler on the list, but ignores its return value.
370  * This must be called from arch-dep optimized caller.
371  */
372 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
373 {
374 	struct kprobe *kp;
375 
376 	list_for_each_entry_rcu(kp, &p->list, list) {
377 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
378 			set_kprobe_instance(kp);
379 			kp->pre_handler(kp, regs);
380 		}
381 		reset_kprobe_instance();
382 	}
383 }
384 
385 /* Return true(!0) if the kprobe is ready for optimization. */
386 static inline int kprobe_optready(struct kprobe *p)
387 {
388 	struct optimized_kprobe *op;
389 
390 	if (kprobe_aggrprobe(p)) {
391 		op = container_of(p, struct optimized_kprobe, kp);
392 		return arch_prepared_optinsn(&op->optinsn);
393 	}
394 
395 	return 0;
396 }
397 
398 /*
399  * Return an optimized kprobe whose optimizing code replaces
400  * instructions including addr (exclude breakpoint).
401  */
402 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
403 {
404 	int i;
405 	struct kprobe *p = NULL;
406 	struct optimized_kprobe *op;
407 
408 	/* Don't check i == 0, since that is a breakpoint case. */
409 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
410 		p = get_kprobe((void *)(addr - i));
411 
412 	if (p && kprobe_optready(p)) {
413 		op = container_of(p, struct optimized_kprobe, kp);
414 		if (arch_within_optimized_kprobe(op, addr))
415 			return p;
416 	}
417 
418 	return NULL;
419 }
420 
421 /* Optimization staging list, protected by kprobe_mutex */
422 static LIST_HEAD(optimizing_list);
423 
424 static void kprobe_optimizer(struct work_struct *work);
425 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
426 #define OPTIMIZE_DELAY 5
427 
428 /* Kprobe jump optimizer */
429 static __kprobes void kprobe_optimizer(struct work_struct *work)
430 {
431 	struct optimized_kprobe *op, *tmp;
432 
433 	/* Lock modules while optimizing kprobes */
434 	mutex_lock(&module_mutex);
435 	mutex_lock(&kprobe_mutex);
436 	if (kprobes_all_disarmed || !kprobes_allow_optimization)
437 		goto end;
438 
439 	/*
440 	 * Wait for quiesence period to ensure all running interrupts
441 	 * are done. Because optprobe may modify multiple instructions
442 	 * there is a chance that Nth instruction is interrupted. In that
443 	 * case, running interrupt can return to 2nd-Nth byte of jump
444 	 * instruction. This wait is for avoiding it.
445 	 */
446 	synchronize_sched();
447 
448 	/*
449 	 * The optimization/unoptimization refers online_cpus via
450 	 * stop_machine() and cpu-hotplug modifies online_cpus.
451 	 * And same time, text_mutex will be held in cpu-hotplug and here.
452 	 * This combination can cause a deadlock (cpu-hotplug try to lock
453 	 * text_mutex but stop_machine can not be done because online_cpus
454 	 * has been changed)
455 	 * To avoid this deadlock, we need to call get_online_cpus()
456 	 * for preventing cpu-hotplug outside of text_mutex locking.
457 	 */
458 	get_online_cpus();
459 	mutex_lock(&text_mutex);
460 	list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
461 		WARN_ON(kprobe_disabled(&op->kp));
462 		if (arch_optimize_kprobe(op) < 0)
463 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
464 		list_del_init(&op->list);
465 	}
466 	mutex_unlock(&text_mutex);
467 	put_online_cpus();
468 end:
469 	mutex_unlock(&kprobe_mutex);
470 	mutex_unlock(&module_mutex);
471 }
472 
473 /* Optimize kprobe if p is ready to be optimized */
474 static __kprobes void optimize_kprobe(struct kprobe *p)
475 {
476 	struct optimized_kprobe *op;
477 
478 	/* Check if the kprobe is disabled or not ready for optimization. */
479 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
480 	    (kprobe_disabled(p) || kprobes_all_disarmed))
481 		return;
482 
483 	/* Both of break_handler and post_handler are not supported. */
484 	if (p->break_handler || p->post_handler)
485 		return;
486 
487 	op = container_of(p, struct optimized_kprobe, kp);
488 
489 	/* Check there is no other kprobes at the optimized instructions */
490 	if (arch_check_optimized_kprobe(op) < 0)
491 		return;
492 
493 	/* Check if it is already optimized. */
494 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
495 		return;
496 
497 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
498 	list_add(&op->list, &optimizing_list);
499 	if (!delayed_work_pending(&optimizing_work))
500 		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
501 }
502 
503 /* Unoptimize a kprobe if p is optimized */
504 static __kprobes void unoptimize_kprobe(struct kprobe *p)
505 {
506 	struct optimized_kprobe *op;
507 
508 	if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
509 		op = container_of(p, struct optimized_kprobe, kp);
510 		if (!list_empty(&op->list))
511 			/* Dequeue from the optimization queue */
512 			list_del_init(&op->list);
513 		else
514 			/* Replace jump with break */
515 			arch_unoptimize_kprobe(op);
516 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
517 	}
518 }
519 
520 /* Remove optimized instructions */
521 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
522 {
523 	struct optimized_kprobe *op;
524 
525 	op = container_of(p, struct optimized_kprobe, kp);
526 	if (!list_empty(&op->list)) {
527 		/* Dequeue from the optimization queue */
528 		list_del_init(&op->list);
529 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
530 	}
531 	/* Don't unoptimize, because the target code will be freed. */
532 	arch_remove_optimized_kprobe(op);
533 }
534 
535 /* Try to prepare optimized instructions */
536 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
537 {
538 	struct optimized_kprobe *op;
539 
540 	op = container_of(p, struct optimized_kprobe, kp);
541 	arch_prepare_optimized_kprobe(op);
542 }
543 
544 /* Free optimized instructions and optimized_kprobe */
545 static __kprobes void free_aggr_kprobe(struct kprobe *p)
546 {
547 	struct optimized_kprobe *op;
548 
549 	op = container_of(p, struct optimized_kprobe, kp);
550 	arch_remove_optimized_kprobe(op);
551 	kfree(op);
552 }
553 
554 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
555 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
556 {
557 	struct optimized_kprobe *op;
558 
559 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
560 	if (!op)
561 		return NULL;
562 
563 	INIT_LIST_HEAD(&op->list);
564 	op->kp.addr = p->addr;
565 	arch_prepare_optimized_kprobe(op);
566 
567 	return &op->kp;
568 }
569 
570 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
571 
572 /*
573  * Prepare an optimized_kprobe and optimize it
574  * NOTE: p must be a normal registered kprobe
575  */
576 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
577 {
578 	struct kprobe *ap;
579 	struct optimized_kprobe *op;
580 
581 	ap = alloc_aggr_kprobe(p);
582 	if (!ap)
583 		return;
584 
585 	op = container_of(ap, struct optimized_kprobe, kp);
586 	if (!arch_prepared_optinsn(&op->optinsn)) {
587 		/* If failed to setup optimizing, fallback to kprobe */
588 		free_aggr_kprobe(ap);
589 		return;
590 	}
591 
592 	init_aggr_kprobe(ap, p);
593 	optimize_kprobe(ap);
594 }
595 
596 #ifdef CONFIG_SYSCTL
597 static void __kprobes optimize_all_kprobes(void)
598 {
599 	struct hlist_head *head;
600 	struct hlist_node *node;
601 	struct kprobe *p;
602 	unsigned int i;
603 
604 	/* If optimization is already allowed, just return */
605 	if (kprobes_allow_optimization)
606 		return;
607 
608 	kprobes_allow_optimization = true;
609 	mutex_lock(&text_mutex);
610 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
611 		head = &kprobe_table[i];
612 		hlist_for_each_entry_rcu(p, node, head, hlist)
613 			if (!kprobe_disabled(p))
614 				optimize_kprobe(p);
615 	}
616 	mutex_unlock(&text_mutex);
617 	printk(KERN_INFO "Kprobes globally optimized\n");
618 }
619 
620 static void __kprobes unoptimize_all_kprobes(void)
621 {
622 	struct hlist_head *head;
623 	struct hlist_node *node;
624 	struct kprobe *p;
625 	unsigned int i;
626 
627 	/* If optimization is already prohibited, just return */
628 	if (!kprobes_allow_optimization)
629 		return;
630 
631 	kprobes_allow_optimization = false;
632 	printk(KERN_INFO "Kprobes globally unoptimized\n");
633 	get_online_cpus();	/* For avoiding text_mutex deadlock */
634 	mutex_lock(&text_mutex);
635 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
636 		head = &kprobe_table[i];
637 		hlist_for_each_entry_rcu(p, node, head, hlist) {
638 			if (!kprobe_disabled(p))
639 				unoptimize_kprobe(p);
640 		}
641 	}
642 
643 	mutex_unlock(&text_mutex);
644 	put_online_cpus();
645 	/* Allow all currently running kprobes to complete */
646 	synchronize_sched();
647 }
648 
649 int sysctl_kprobes_optimization;
650 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
651 				      void __user *buffer, size_t *length,
652 				      loff_t *ppos)
653 {
654 	int ret;
655 
656 	mutex_lock(&kprobe_mutex);
657 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
658 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
659 
660 	if (sysctl_kprobes_optimization)
661 		optimize_all_kprobes();
662 	else
663 		unoptimize_all_kprobes();
664 	mutex_unlock(&kprobe_mutex);
665 
666 	return ret;
667 }
668 #endif /* CONFIG_SYSCTL */
669 
670 static void __kprobes __arm_kprobe(struct kprobe *p)
671 {
672 	struct kprobe *old_p;
673 
674 	/* Check collision with other optimized kprobes */
675 	old_p = get_optimized_kprobe((unsigned long)p->addr);
676 	if (unlikely(old_p))
677 		unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
678 
679 	arch_arm_kprobe(p);
680 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
681 }
682 
683 static void __kprobes __disarm_kprobe(struct kprobe *p)
684 {
685 	struct kprobe *old_p;
686 
687 	unoptimize_kprobe(p);	/* Try to unoptimize */
688 	arch_disarm_kprobe(p);
689 
690 	/* If another kprobe was blocked, optimize it. */
691 	old_p = get_optimized_kprobe((unsigned long)p->addr);
692 	if (unlikely(old_p))
693 		optimize_kprobe(old_p);
694 }
695 
696 #else /* !CONFIG_OPTPROBES */
697 
698 #define optimize_kprobe(p)			do {} while (0)
699 #define unoptimize_kprobe(p)			do {} while (0)
700 #define kill_optimized_kprobe(p)		do {} while (0)
701 #define prepare_optimized_kprobe(p)		do {} while (0)
702 #define try_to_optimize_kprobe(p)		do {} while (0)
703 #define __arm_kprobe(p)				arch_arm_kprobe(p)
704 #define __disarm_kprobe(p)			arch_disarm_kprobe(p)
705 
706 static __kprobes void free_aggr_kprobe(struct kprobe *p)
707 {
708 	kfree(p);
709 }
710 
711 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
712 {
713 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
714 }
715 #endif /* CONFIG_OPTPROBES */
716 
717 /* Arm a kprobe with text_mutex */
718 static void __kprobes arm_kprobe(struct kprobe *kp)
719 {
720 	/*
721 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
722 	 * this doesn't cause deadlock on text_mutex. So, we don't
723 	 * need get_online_cpus().
724 	 */
725 	mutex_lock(&text_mutex);
726 	__arm_kprobe(kp);
727 	mutex_unlock(&text_mutex);
728 }
729 
730 /* Disarm a kprobe with text_mutex */
731 static void __kprobes disarm_kprobe(struct kprobe *kp)
732 {
733 	get_online_cpus();	/* For avoiding text_mutex deadlock */
734 	mutex_lock(&text_mutex);
735 	__disarm_kprobe(kp);
736 	mutex_unlock(&text_mutex);
737 	put_online_cpus();
738 }
739 
740 /*
741  * Aggregate handlers for multiple kprobes support - these handlers
742  * take care of invoking the individual kprobe handlers on p->list
743  */
744 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
745 {
746 	struct kprobe *kp;
747 
748 	list_for_each_entry_rcu(kp, &p->list, list) {
749 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
750 			set_kprobe_instance(kp);
751 			if (kp->pre_handler(kp, regs))
752 				return 1;
753 		}
754 		reset_kprobe_instance();
755 	}
756 	return 0;
757 }
758 
759 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
760 					unsigned long flags)
761 {
762 	struct kprobe *kp;
763 
764 	list_for_each_entry_rcu(kp, &p->list, list) {
765 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
766 			set_kprobe_instance(kp);
767 			kp->post_handler(kp, regs, flags);
768 			reset_kprobe_instance();
769 		}
770 	}
771 }
772 
773 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
774 					int trapnr)
775 {
776 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
777 
778 	/*
779 	 * if we faulted "during" the execution of a user specified
780 	 * probe handler, invoke just that probe's fault handler
781 	 */
782 	if (cur && cur->fault_handler) {
783 		if (cur->fault_handler(cur, regs, trapnr))
784 			return 1;
785 	}
786 	return 0;
787 }
788 
789 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
790 {
791 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
792 	int ret = 0;
793 
794 	if (cur && cur->break_handler) {
795 		if (cur->break_handler(cur, regs))
796 			ret = 1;
797 	}
798 	reset_kprobe_instance();
799 	return ret;
800 }
801 
802 /* Walks the list and increments nmissed count for multiprobe case */
803 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
804 {
805 	struct kprobe *kp;
806 	if (!kprobe_aggrprobe(p)) {
807 		p->nmissed++;
808 	} else {
809 		list_for_each_entry_rcu(kp, &p->list, list)
810 			kp->nmissed++;
811 	}
812 	return;
813 }
814 
815 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
816 				struct hlist_head *head)
817 {
818 	struct kretprobe *rp = ri->rp;
819 
820 	/* remove rp inst off the rprobe_inst_table */
821 	hlist_del(&ri->hlist);
822 	INIT_HLIST_NODE(&ri->hlist);
823 	if (likely(rp)) {
824 		spin_lock(&rp->lock);
825 		hlist_add_head(&ri->hlist, &rp->free_instances);
826 		spin_unlock(&rp->lock);
827 	} else
828 		/* Unregistering */
829 		hlist_add_head(&ri->hlist, head);
830 }
831 
832 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
833 			 struct hlist_head **head, unsigned long *flags)
834 __acquires(hlist_lock)
835 {
836 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
837 	spinlock_t *hlist_lock;
838 
839 	*head = &kretprobe_inst_table[hash];
840 	hlist_lock = kretprobe_table_lock_ptr(hash);
841 	spin_lock_irqsave(hlist_lock, *flags);
842 }
843 
844 static void __kprobes kretprobe_table_lock(unsigned long hash,
845 	unsigned long *flags)
846 __acquires(hlist_lock)
847 {
848 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
849 	spin_lock_irqsave(hlist_lock, *flags);
850 }
851 
852 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
853 	unsigned long *flags)
854 __releases(hlist_lock)
855 {
856 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
857 	spinlock_t *hlist_lock;
858 
859 	hlist_lock = kretprobe_table_lock_ptr(hash);
860 	spin_unlock_irqrestore(hlist_lock, *flags);
861 }
862 
863 static void __kprobes kretprobe_table_unlock(unsigned long hash,
864        unsigned long *flags)
865 __releases(hlist_lock)
866 {
867 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
868 	spin_unlock_irqrestore(hlist_lock, *flags);
869 }
870 
871 /*
872  * This function is called from finish_task_switch when task tk becomes dead,
873  * so that we can recycle any function-return probe instances associated
874  * with this task. These left over instances represent probed functions
875  * that have been called but will never return.
876  */
877 void __kprobes kprobe_flush_task(struct task_struct *tk)
878 {
879 	struct kretprobe_instance *ri;
880 	struct hlist_head *head, empty_rp;
881 	struct hlist_node *node, *tmp;
882 	unsigned long hash, flags = 0;
883 
884 	if (unlikely(!kprobes_initialized))
885 		/* Early boot.  kretprobe_table_locks not yet initialized. */
886 		return;
887 
888 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
889 	head = &kretprobe_inst_table[hash];
890 	kretprobe_table_lock(hash, &flags);
891 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
892 		if (ri->task == tk)
893 			recycle_rp_inst(ri, &empty_rp);
894 	}
895 	kretprobe_table_unlock(hash, &flags);
896 	INIT_HLIST_HEAD(&empty_rp);
897 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
898 		hlist_del(&ri->hlist);
899 		kfree(ri);
900 	}
901 }
902 
903 static inline void free_rp_inst(struct kretprobe *rp)
904 {
905 	struct kretprobe_instance *ri;
906 	struct hlist_node *pos, *next;
907 
908 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
909 		hlist_del(&ri->hlist);
910 		kfree(ri);
911 	}
912 }
913 
914 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
915 {
916 	unsigned long flags, hash;
917 	struct kretprobe_instance *ri;
918 	struct hlist_node *pos, *next;
919 	struct hlist_head *head;
920 
921 	/* No race here */
922 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
923 		kretprobe_table_lock(hash, &flags);
924 		head = &kretprobe_inst_table[hash];
925 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
926 			if (ri->rp == rp)
927 				ri->rp = NULL;
928 		}
929 		kretprobe_table_unlock(hash, &flags);
930 	}
931 	free_rp_inst(rp);
932 }
933 
934 /*
935 * Add the new probe to ap->list. Fail if this is the
936 * second jprobe at the address - two jprobes can't coexist
937 */
938 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
939 {
940 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
941 
942 	if (p->break_handler || p->post_handler)
943 		unoptimize_kprobe(ap);	/* Fall back to normal kprobe */
944 
945 	if (p->break_handler) {
946 		if (ap->break_handler)
947 			return -EEXIST;
948 		list_add_tail_rcu(&p->list, &ap->list);
949 		ap->break_handler = aggr_break_handler;
950 	} else
951 		list_add_rcu(&p->list, &ap->list);
952 	if (p->post_handler && !ap->post_handler)
953 		ap->post_handler = aggr_post_handler;
954 
955 	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
956 		ap->flags &= ~KPROBE_FLAG_DISABLED;
957 		if (!kprobes_all_disarmed)
958 			/* Arm the breakpoint again. */
959 			__arm_kprobe(ap);
960 	}
961 	return 0;
962 }
963 
964 /*
965  * Fill in the required fields of the "manager kprobe". Replace the
966  * earlier kprobe in the hlist with the manager kprobe
967  */
968 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
969 {
970 	/* Copy p's insn slot to ap */
971 	copy_kprobe(p, ap);
972 	flush_insn_slot(ap);
973 	ap->addr = p->addr;
974 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
975 	ap->pre_handler = aggr_pre_handler;
976 	ap->fault_handler = aggr_fault_handler;
977 	/* We don't care the kprobe which has gone. */
978 	if (p->post_handler && !kprobe_gone(p))
979 		ap->post_handler = aggr_post_handler;
980 	if (p->break_handler && !kprobe_gone(p))
981 		ap->break_handler = aggr_break_handler;
982 
983 	INIT_LIST_HEAD(&ap->list);
984 	INIT_HLIST_NODE(&ap->hlist);
985 
986 	list_add_rcu(&p->list, &ap->list);
987 	hlist_replace_rcu(&p->hlist, &ap->hlist);
988 }
989 
990 /*
991  * This is the second or subsequent kprobe at the address - handle
992  * the intricacies
993  */
994 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
995 					  struct kprobe *p)
996 {
997 	int ret = 0;
998 	struct kprobe *ap = old_p;
999 
1000 	if (!kprobe_aggrprobe(old_p)) {
1001 		/* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
1002 		ap = alloc_aggr_kprobe(old_p);
1003 		if (!ap)
1004 			return -ENOMEM;
1005 		init_aggr_kprobe(ap, old_p);
1006 	}
1007 
1008 	if (kprobe_gone(ap)) {
1009 		/*
1010 		 * Attempting to insert new probe at the same location that
1011 		 * had a probe in the module vaddr area which already
1012 		 * freed. So, the instruction slot has already been
1013 		 * released. We need a new slot for the new probe.
1014 		 */
1015 		ret = arch_prepare_kprobe(ap);
1016 		if (ret)
1017 			/*
1018 			 * Even if fail to allocate new slot, don't need to
1019 			 * free aggr_probe. It will be used next time, or
1020 			 * freed by unregister_kprobe.
1021 			 */
1022 			return ret;
1023 
1024 		/* Prepare optimized instructions if possible. */
1025 		prepare_optimized_kprobe(ap);
1026 
1027 		/*
1028 		 * Clear gone flag to prevent allocating new slot again, and
1029 		 * set disabled flag because it is not armed yet.
1030 		 */
1031 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1032 			    | KPROBE_FLAG_DISABLED;
1033 	}
1034 
1035 	/* Copy ap's insn slot to p */
1036 	copy_kprobe(ap, p);
1037 	return add_new_kprobe(ap, p);
1038 }
1039 
1040 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1041 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1042 {
1043 	struct kprobe *kp;
1044 
1045 	list_for_each_entry_rcu(kp, &p->list, list) {
1046 		if (!kprobe_disabled(kp))
1047 			/*
1048 			 * There is an active probe on the list.
1049 			 * We can't disable aggr_kprobe.
1050 			 */
1051 			return 0;
1052 	}
1053 	p->flags |= KPROBE_FLAG_DISABLED;
1054 	return 1;
1055 }
1056 
1057 static int __kprobes in_kprobes_functions(unsigned long addr)
1058 {
1059 	struct kprobe_blackpoint *kb;
1060 
1061 	if (addr >= (unsigned long)__kprobes_text_start &&
1062 	    addr < (unsigned long)__kprobes_text_end)
1063 		return -EINVAL;
1064 	/*
1065 	 * If there exists a kprobe_blacklist, verify and
1066 	 * fail any probe registration in the prohibited area
1067 	 */
1068 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1069 		if (kb->start_addr) {
1070 			if (addr >= kb->start_addr &&
1071 			    addr < (kb->start_addr + kb->range))
1072 				return -EINVAL;
1073 		}
1074 	}
1075 	return 0;
1076 }
1077 
1078 /*
1079  * If we have a symbol_name argument, look it up and add the offset field
1080  * to it. This way, we can specify a relative address to a symbol.
1081  */
1082 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1083 {
1084 	kprobe_opcode_t *addr = p->addr;
1085 	if (p->symbol_name) {
1086 		if (addr)
1087 			return NULL;
1088 		kprobe_lookup_name(p->symbol_name, addr);
1089 	}
1090 
1091 	if (!addr)
1092 		return NULL;
1093 	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1094 }
1095 
1096 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1097 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1098 {
1099 	struct kprobe *old_p, *list_p;
1100 
1101 	old_p = get_kprobe(p->addr);
1102 	if (unlikely(!old_p))
1103 		return NULL;
1104 
1105 	if (p != old_p) {
1106 		list_for_each_entry_rcu(list_p, &old_p->list, list)
1107 			if (list_p == p)
1108 			/* kprobe p is a valid probe */
1109 				goto valid;
1110 		return NULL;
1111 	}
1112 valid:
1113 	return old_p;
1114 }
1115 
1116 /* Return error if the kprobe is being re-registered */
1117 static inline int check_kprobe_rereg(struct kprobe *p)
1118 {
1119 	int ret = 0;
1120 	struct kprobe *old_p;
1121 
1122 	mutex_lock(&kprobe_mutex);
1123 	old_p = __get_valid_kprobe(p);
1124 	if (old_p)
1125 		ret = -EINVAL;
1126 	mutex_unlock(&kprobe_mutex);
1127 	return ret;
1128 }
1129 
1130 int __kprobes register_kprobe(struct kprobe *p)
1131 {
1132 	int ret = 0;
1133 	struct kprobe *old_p;
1134 	struct module *probed_mod;
1135 	kprobe_opcode_t *addr;
1136 
1137 	addr = kprobe_addr(p);
1138 	if (!addr)
1139 		return -EINVAL;
1140 	p->addr = addr;
1141 
1142 	ret = check_kprobe_rereg(p);
1143 	if (ret)
1144 		return ret;
1145 
1146 	preempt_disable();
1147 	if (!kernel_text_address((unsigned long) p->addr) ||
1148 	    in_kprobes_functions((unsigned long) p->addr) ||
1149 	    ftrace_text_reserved(p->addr, p->addr)) {
1150 		preempt_enable();
1151 		return -EINVAL;
1152 	}
1153 
1154 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1155 	p->flags &= KPROBE_FLAG_DISABLED;
1156 
1157 	/*
1158 	 * Check if are we probing a module.
1159 	 */
1160 	probed_mod = __module_text_address((unsigned long) p->addr);
1161 	if (probed_mod) {
1162 		/*
1163 		 * We must hold a refcount of the probed module while updating
1164 		 * its code to prohibit unexpected unloading.
1165 		 */
1166 		if (unlikely(!try_module_get(probed_mod))) {
1167 			preempt_enable();
1168 			return -EINVAL;
1169 		}
1170 		/*
1171 		 * If the module freed .init.text, we couldn't insert
1172 		 * kprobes in there.
1173 		 */
1174 		if (within_module_init((unsigned long)p->addr, probed_mod) &&
1175 		    probed_mod->state != MODULE_STATE_COMING) {
1176 			module_put(probed_mod);
1177 			preempt_enable();
1178 			return -EINVAL;
1179 		}
1180 	}
1181 	preempt_enable();
1182 
1183 	p->nmissed = 0;
1184 	INIT_LIST_HEAD(&p->list);
1185 	mutex_lock(&kprobe_mutex);
1186 
1187 	get_online_cpus();	/* For avoiding text_mutex deadlock. */
1188 	mutex_lock(&text_mutex);
1189 
1190 	old_p = get_kprobe(p->addr);
1191 	if (old_p) {
1192 		/* Since this may unoptimize old_p, locking text_mutex. */
1193 		ret = register_aggr_kprobe(old_p, p);
1194 		goto out;
1195 	}
1196 
1197 	ret = arch_prepare_kprobe(p);
1198 	if (ret)
1199 		goto out;
1200 
1201 	INIT_HLIST_NODE(&p->hlist);
1202 	hlist_add_head_rcu(&p->hlist,
1203 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1204 
1205 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1206 		__arm_kprobe(p);
1207 
1208 	/* Try to optimize kprobe */
1209 	try_to_optimize_kprobe(p);
1210 
1211 out:
1212 	mutex_unlock(&text_mutex);
1213 	put_online_cpus();
1214 	mutex_unlock(&kprobe_mutex);
1215 
1216 	if (probed_mod)
1217 		module_put(probed_mod);
1218 
1219 	return ret;
1220 }
1221 EXPORT_SYMBOL_GPL(register_kprobe);
1222 
1223 /*
1224  * Unregister a kprobe without a scheduler synchronization.
1225  */
1226 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1227 {
1228 	struct kprobe *old_p, *list_p;
1229 
1230 	old_p = __get_valid_kprobe(p);
1231 	if (old_p == NULL)
1232 		return -EINVAL;
1233 
1234 	if (old_p == p ||
1235 	    (kprobe_aggrprobe(old_p) &&
1236 	     list_is_singular(&old_p->list))) {
1237 		/*
1238 		 * Only probe on the hash list. Disarm only if kprobes are
1239 		 * enabled and not gone - otherwise, the breakpoint would
1240 		 * already have been removed. We save on flushing icache.
1241 		 */
1242 		if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1243 			disarm_kprobe(old_p);
1244 		hlist_del_rcu(&old_p->hlist);
1245 	} else {
1246 		if (p->break_handler && !kprobe_gone(p))
1247 			old_p->break_handler = NULL;
1248 		if (p->post_handler && !kprobe_gone(p)) {
1249 			list_for_each_entry_rcu(list_p, &old_p->list, list) {
1250 				if ((list_p != p) && (list_p->post_handler))
1251 					goto noclean;
1252 			}
1253 			old_p->post_handler = NULL;
1254 		}
1255 noclean:
1256 		list_del_rcu(&p->list);
1257 		if (!kprobe_disabled(old_p)) {
1258 			try_to_disable_aggr_kprobe(old_p);
1259 			if (!kprobes_all_disarmed) {
1260 				if (kprobe_disabled(old_p))
1261 					disarm_kprobe(old_p);
1262 				else
1263 					/* Try to optimize this probe again */
1264 					optimize_kprobe(old_p);
1265 			}
1266 		}
1267 	}
1268 	return 0;
1269 }
1270 
1271 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1272 {
1273 	struct kprobe *old_p;
1274 
1275 	if (list_empty(&p->list))
1276 		arch_remove_kprobe(p);
1277 	else if (list_is_singular(&p->list)) {
1278 		/* "p" is the last child of an aggr_kprobe */
1279 		old_p = list_entry(p->list.next, struct kprobe, list);
1280 		list_del(&p->list);
1281 		arch_remove_kprobe(old_p);
1282 		free_aggr_kprobe(old_p);
1283 	}
1284 }
1285 
1286 int __kprobes register_kprobes(struct kprobe **kps, int num)
1287 {
1288 	int i, ret = 0;
1289 
1290 	if (num <= 0)
1291 		return -EINVAL;
1292 	for (i = 0; i < num; i++) {
1293 		ret = register_kprobe(kps[i]);
1294 		if (ret < 0) {
1295 			if (i > 0)
1296 				unregister_kprobes(kps, i);
1297 			break;
1298 		}
1299 	}
1300 	return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(register_kprobes);
1303 
1304 void __kprobes unregister_kprobe(struct kprobe *p)
1305 {
1306 	unregister_kprobes(&p, 1);
1307 }
1308 EXPORT_SYMBOL_GPL(unregister_kprobe);
1309 
1310 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1311 {
1312 	int i;
1313 
1314 	if (num <= 0)
1315 		return;
1316 	mutex_lock(&kprobe_mutex);
1317 	for (i = 0; i < num; i++)
1318 		if (__unregister_kprobe_top(kps[i]) < 0)
1319 			kps[i]->addr = NULL;
1320 	mutex_unlock(&kprobe_mutex);
1321 
1322 	synchronize_sched();
1323 	for (i = 0; i < num; i++)
1324 		if (kps[i]->addr)
1325 			__unregister_kprobe_bottom(kps[i]);
1326 }
1327 EXPORT_SYMBOL_GPL(unregister_kprobes);
1328 
1329 static struct notifier_block kprobe_exceptions_nb = {
1330 	.notifier_call = kprobe_exceptions_notify,
1331 	.priority = 0x7fffffff /* we need to be notified first */
1332 };
1333 
1334 unsigned long __weak arch_deref_entry_point(void *entry)
1335 {
1336 	return (unsigned long)entry;
1337 }
1338 
1339 int __kprobes register_jprobes(struct jprobe **jps, int num)
1340 {
1341 	struct jprobe *jp;
1342 	int ret = 0, i;
1343 
1344 	if (num <= 0)
1345 		return -EINVAL;
1346 	for (i = 0; i < num; i++) {
1347 		unsigned long addr, offset;
1348 		jp = jps[i];
1349 		addr = arch_deref_entry_point(jp->entry);
1350 
1351 		/* Verify probepoint is a function entry point */
1352 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1353 		    offset == 0) {
1354 			jp->kp.pre_handler = setjmp_pre_handler;
1355 			jp->kp.break_handler = longjmp_break_handler;
1356 			ret = register_kprobe(&jp->kp);
1357 		} else
1358 			ret = -EINVAL;
1359 
1360 		if (ret < 0) {
1361 			if (i > 0)
1362 				unregister_jprobes(jps, i);
1363 			break;
1364 		}
1365 	}
1366 	return ret;
1367 }
1368 EXPORT_SYMBOL_GPL(register_jprobes);
1369 
1370 int __kprobes register_jprobe(struct jprobe *jp)
1371 {
1372 	return register_jprobes(&jp, 1);
1373 }
1374 EXPORT_SYMBOL_GPL(register_jprobe);
1375 
1376 void __kprobes unregister_jprobe(struct jprobe *jp)
1377 {
1378 	unregister_jprobes(&jp, 1);
1379 }
1380 EXPORT_SYMBOL_GPL(unregister_jprobe);
1381 
1382 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1383 {
1384 	int i;
1385 
1386 	if (num <= 0)
1387 		return;
1388 	mutex_lock(&kprobe_mutex);
1389 	for (i = 0; i < num; i++)
1390 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1391 			jps[i]->kp.addr = NULL;
1392 	mutex_unlock(&kprobe_mutex);
1393 
1394 	synchronize_sched();
1395 	for (i = 0; i < num; i++) {
1396 		if (jps[i]->kp.addr)
1397 			__unregister_kprobe_bottom(&jps[i]->kp);
1398 	}
1399 }
1400 EXPORT_SYMBOL_GPL(unregister_jprobes);
1401 
1402 #ifdef CONFIG_KRETPROBES
1403 /*
1404  * This kprobe pre_handler is registered with every kretprobe. When probe
1405  * hits it will set up the return probe.
1406  */
1407 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1408 					   struct pt_regs *regs)
1409 {
1410 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1411 	unsigned long hash, flags = 0;
1412 	struct kretprobe_instance *ri;
1413 
1414 	/*TODO: consider to only swap the RA after the last pre_handler fired */
1415 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1416 	spin_lock_irqsave(&rp->lock, flags);
1417 	if (!hlist_empty(&rp->free_instances)) {
1418 		ri = hlist_entry(rp->free_instances.first,
1419 				struct kretprobe_instance, hlist);
1420 		hlist_del(&ri->hlist);
1421 		spin_unlock_irqrestore(&rp->lock, flags);
1422 
1423 		ri->rp = rp;
1424 		ri->task = current;
1425 
1426 		if (rp->entry_handler && rp->entry_handler(ri, regs))
1427 			return 0;
1428 
1429 		arch_prepare_kretprobe(ri, regs);
1430 
1431 		/* XXX(hch): why is there no hlist_move_head? */
1432 		INIT_HLIST_NODE(&ri->hlist);
1433 		kretprobe_table_lock(hash, &flags);
1434 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1435 		kretprobe_table_unlock(hash, &flags);
1436 	} else {
1437 		rp->nmissed++;
1438 		spin_unlock_irqrestore(&rp->lock, flags);
1439 	}
1440 	return 0;
1441 }
1442 
1443 int __kprobes register_kretprobe(struct kretprobe *rp)
1444 {
1445 	int ret = 0;
1446 	struct kretprobe_instance *inst;
1447 	int i;
1448 	void *addr;
1449 
1450 	if (kretprobe_blacklist_size) {
1451 		addr = kprobe_addr(&rp->kp);
1452 		if (!addr)
1453 			return -EINVAL;
1454 
1455 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1456 			if (kretprobe_blacklist[i].addr == addr)
1457 				return -EINVAL;
1458 		}
1459 	}
1460 
1461 	rp->kp.pre_handler = pre_handler_kretprobe;
1462 	rp->kp.post_handler = NULL;
1463 	rp->kp.fault_handler = NULL;
1464 	rp->kp.break_handler = NULL;
1465 
1466 	/* Pre-allocate memory for max kretprobe instances */
1467 	if (rp->maxactive <= 0) {
1468 #ifdef CONFIG_PREEMPT
1469 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1470 #else
1471 		rp->maxactive = num_possible_cpus();
1472 #endif
1473 	}
1474 	spin_lock_init(&rp->lock);
1475 	INIT_HLIST_HEAD(&rp->free_instances);
1476 	for (i = 0; i < rp->maxactive; i++) {
1477 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1478 			       rp->data_size, GFP_KERNEL);
1479 		if (inst == NULL) {
1480 			free_rp_inst(rp);
1481 			return -ENOMEM;
1482 		}
1483 		INIT_HLIST_NODE(&inst->hlist);
1484 		hlist_add_head(&inst->hlist, &rp->free_instances);
1485 	}
1486 
1487 	rp->nmissed = 0;
1488 	/* Establish function entry probe point */
1489 	ret = register_kprobe(&rp->kp);
1490 	if (ret != 0)
1491 		free_rp_inst(rp);
1492 	return ret;
1493 }
1494 EXPORT_SYMBOL_GPL(register_kretprobe);
1495 
1496 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1497 {
1498 	int ret = 0, i;
1499 
1500 	if (num <= 0)
1501 		return -EINVAL;
1502 	for (i = 0; i < num; i++) {
1503 		ret = register_kretprobe(rps[i]);
1504 		if (ret < 0) {
1505 			if (i > 0)
1506 				unregister_kretprobes(rps, i);
1507 			break;
1508 		}
1509 	}
1510 	return ret;
1511 }
1512 EXPORT_SYMBOL_GPL(register_kretprobes);
1513 
1514 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1515 {
1516 	unregister_kretprobes(&rp, 1);
1517 }
1518 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1519 
1520 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1521 {
1522 	int i;
1523 
1524 	if (num <= 0)
1525 		return;
1526 	mutex_lock(&kprobe_mutex);
1527 	for (i = 0; i < num; i++)
1528 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1529 			rps[i]->kp.addr = NULL;
1530 	mutex_unlock(&kprobe_mutex);
1531 
1532 	synchronize_sched();
1533 	for (i = 0; i < num; i++) {
1534 		if (rps[i]->kp.addr) {
1535 			__unregister_kprobe_bottom(&rps[i]->kp);
1536 			cleanup_rp_inst(rps[i]);
1537 		}
1538 	}
1539 }
1540 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1541 
1542 #else /* CONFIG_KRETPROBES */
1543 int __kprobes register_kretprobe(struct kretprobe *rp)
1544 {
1545 	return -ENOSYS;
1546 }
1547 EXPORT_SYMBOL_GPL(register_kretprobe);
1548 
1549 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1550 {
1551 	return -ENOSYS;
1552 }
1553 EXPORT_SYMBOL_GPL(register_kretprobes);
1554 
1555 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1556 {
1557 }
1558 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1559 
1560 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1561 {
1562 }
1563 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1564 
1565 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1566 					   struct pt_regs *regs)
1567 {
1568 	return 0;
1569 }
1570 
1571 #endif /* CONFIG_KRETPROBES */
1572 
1573 /* Set the kprobe gone and remove its instruction buffer. */
1574 static void __kprobes kill_kprobe(struct kprobe *p)
1575 {
1576 	struct kprobe *kp;
1577 
1578 	p->flags |= KPROBE_FLAG_GONE;
1579 	if (kprobe_aggrprobe(p)) {
1580 		/*
1581 		 * If this is an aggr_kprobe, we have to list all the
1582 		 * chained probes and mark them GONE.
1583 		 */
1584 		list_for_each_entry_rcu(kp, &p->list, list)
1585 			kp->flags |= KPROBE_FLAG_GONE;
1586 		p->post_handler = NULL;
1587 		p->break_handler = NULL;
1588 		kill_optimized_kprobe(p);
1589 	}
1590 	/*
1591 	 * Here, we can remove insn_slot safely, because no thread calls
1592 	 * the original probed function (which will be freed soon) any more.
1593 	 */
1594 	arch_remove_kprobe(p);
1595 }
1596 
1597 /* Disable one kprobe */
1598 int __kprobes disable_kprobe(struct kprobe *kp)
1599 {
1600 	int ret = 0;
1601 	struct kprobe *p;
1602 
1603 	mutex_lock(&kprobe_mutex);
1604 
1605 	/* Check whether specified probe is valid. */
1606 	p = __get_valid_kprobe(kp);
1607 	if (unlikely(p == NULL)) {
1608 		ret = -EINVAL;
1609 		goto out;
1610 	}
1611 
1612 	/* If the probe is already disabled (or gone), just return */
1613 	if (kprobe_disabled(kp))
1614 		goto out;
1615 
1616 	kp->flags |= KPROBE_FLAG_DISABLED;
1617 	if (p != kp)
1618 		/* When kp != p, p is always enabled. */
1619 		try_to_disable_aggr_kprobe(p);
1620 
1621 	if (!kprobes_all_disarmed && kprobe_disabled(p))
1622 		disarm_kprobe(p);
1623 out:
1624 	mutex_unlock(&kprobe_mutex);
1625 	return ret;
1626 }
1627 EXPORT_SYMBOL_GPL(disable_kprobe);
1628 
1629 /* Enable one kprobe */
1630 int __kprobes enable_kprobe(struct kprobe *kp)
1631 {
1632 	int ret = 0;
1633 	struct kprobe *p;
1634 
1635 	mutex_lock(&kprobe_mutex);
1636 
1637 	/* Check whether specified probe is valid. */
1638 	p = __get_valid_kprobe(kp);
1639 	if (unlikely(p == NULL)) {
1640 		ret = -EINVAL;
1641 		goto out;
1642 	}
1643 
1644 	if (kprobe_gone(kp)) {
1645 		/* This kprobe has gone, we couldn't enable it. */
1646 		ret = -EINVAL;
1647 		goto out;
1648 	}
1649 
1650 	if (p != kp)
1651 		kp->flags &= ~KPROBE_FLAG_DISABLED;
1652 
1653 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1654 		p->flags &= ~KPROBE_FLAG_DISABLED;
1655 		arm_kprobe(p);
1656 	}
1657 out:
1658 	mutex_unlock(&kprobe_mutex);
1659 	return ret;
1660 }
1661 EXPORT_SYMBOL_GPL(enable_kprobe);
1662 
1663 void __kprobes dump_kprobe(struct kprobe *kp)
1664 {
1665 	printk(KERN_WARNING "Dumping kprobe:\n");
1666 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1667 	       kp->symbol_name, kp->addr, kp->offset);
1668 }
1669 
1670 /* Module notifier call back, checking kprobes on the module */
1671 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1672 					     unsigned long val, void *data)
1673 {
1674 	struct module *mod = data;
1675 	struct hlist_head *head;
1676 	struct hlist_node *node;
1677 	struct kprobe *p;
1678 	unsigned int i;
1679 	int checkcore = (val == MODULE_STATE_GOING);
1680 
1681 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1682 		return NOTIFY_DONE;
1683 
1684 	/*
1685 	 * When MODULE_STATE_GOING was notified, both of module .text and
1686 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1687 	 * notified, only .init.text section would be freed. We need to
1688 	 * disable kprobes which have been inserted in the sections.
1689 	 */
1690 	mutex_lock(&kprobe_mutex);
1691 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1692 		head = &kprobe_table[i];
1693 		hlist_for_each_entry_rcu(p, node, head, hlist)
1694 			if (within_module_init((unsigned long)p->addr, mod) ||
1695 			    (checkcore &&
1696 			     within_module_core((unsigned long)p->addr, mod))) {
1697 				/*
1698 				 * The vaddr this probe is installed will soon
1699 				 * be vfreed buy not synced to disk. Hence,
1700 				 * disarming the breakpoint isn't needed.
1701 				 */
1702 				kill_kprobe(p);
1703 			}
1704 	}
1705 	mutex_unlock(&kprobe_mutex);
1706 	return NOTIFY_DONE;
1707 }
1708 
1709 static struct notifier_block kprobe_module_nb = {
1710 	.notifier_call = kprobes_module_callback,
1711 	.priority = 0
1712 };
1713 
1714 static int __init init_kprobes(void)
1715 {
1716 	int i, err = 0;
1717 	unsigned long offset = 0, size = 0;
1718 	char *modname, namebuf[128];
1719 	const char *symbol_name;
1720 	void *addr;
1721 	struct kprobe_blackpoint *kb;
1722 
1723 	/* FIXME allocate the probe table, currently defined statically */
1724 	/* initialize all list heads */
1725 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1726 		INIT_HLIST_HEAD(&kprobe_table[i]);
1727 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1728 		spin_lock_init(&(kretprobe_table_locks[i].lock));
1729 	}
1730 
1731 	/*
1732 	 * Lookup and populate the kprobe_blacklist.
1733 	 *
1734 	 * Unlike the kretprobe blacklist, we'll need to determine
1735 	 * the range of addresses that belong to the said functions,
1736 	 * since a kprobe need not necessarily be at the beginning
1737 	 * of a function.
1738 	 */
1739 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1740 		kprobe_lookup_name(kb->name, addr);
1741 		if (!addr)
1742 			continue;
1743 
1744 		kb->start_addr = (unsigned long)addr;
1745 		symbol_name = kallsyms_lookup(kb->start_addr,
1746 				&size, &offset, &modname, namebuf);
1747 		if (!symbol_name)
1748 			kb->range = 0;
1749 		else
1750 			kb->range = size;
1751 	}
1752 
1753 	if (kretprobe_blacklist_size) {
1754 		/* lookup the function address from its name */
1755 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1756 			kprobe_lookup_name(kretprobe_blacklist[i].name,
1757 					   kretprobe_blacklist[i].addr);
1758 			if (!kretprobe_blacklist[i].addr)
1759 				printk("kretprobe: lookup failed: %s\n",
1760 				       kretprobe_blacklist[i].name);
1761 		}
1762 	}
1763 
1764 #if defined(CONFIG_OPTPROBES)
1765 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1766 	/* Init kprobe_optinsn_slots */
1767 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1768 #endif
1769 	/* By default, kprobes can be optimized */
1770 	kprobes_allow_optimization = true;
1771 #endif
1772 
1773 	/* By default, kprobes are armed */
1774 	kprobes_all_disarmed = false;
1775 
1776 	err = arch_init_kprobes();
1777 	if (!err)
1778 		err = register_die_notifier(&kprobe_exceptions_nb);
1779 	if (!err)
1780 		err = register_module_notifier(&kprobe_module_nb);
1781 
1782 	kprobes_initialized = (err == 0);
1783 
1784 	if (!err)
1785 		init_test_probes();
1786 	return err;
1787 }
1788 
1789 #ifdef CONFIG_DEBUG_FS
1790 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1791 		const char *sym, int offset, char *modname, struct kprobe *pp)
1792 {
1793 	char *kprobe_type;
1794 
1795 	if (p->pre_handler == pre_handler_kretprobe)
1796 		kprobe_type = "r";
1797 	else if (p->pre_handler == setjmp_pre_handler)
1798 		kprobe_type = "j";
1799 	else
1800 		kprobe_type = "k";
1801 
1802 	if (sym)
1803 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
1804 			p->addr, kprobe_type, sym, offset,
1805 			(modname ? modname : " "));
1806 	else
1807 		seq_printf(pi, "%p  %s  %p ",
1808 			p->addr, kprobe_type, p->addr);
1809 
1810 	if (!pp)
1811 		pp = p;
1812 	seq_printf(pi, "%s%s%s\n",
1813 		(kprobe_gone(p) ? "[GONE]" : ""),
1814 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
1815 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1816 }
1817 
1818 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1819 {
1820 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1821 }
1822 
1823 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1824 {
1825 	(*pos)++;
1826 	if (*pos >= KPROBE_TABLE_SIZE)
1827 		return NULL;
1828 	return pos;
1829 }
1830 
1831 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1832 {
1833 	/* Nothing to do */
1834 }
1835 
1836 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1837 {
1838 	struct hlist_head *head;
1839 	struct hlist_node *node;
1840 	struct kprobe *p, *kp;
1841 	const char *sym = NULL;
1842 	unsigned int i = *(loff_t *) v;
1843 	unsigned long offset = 0;
1844 	char *modname, namebuf[128];
1845 
1846 	head = &kprobe_table[i];
1847 	preempt_disable();
1848 	hlist_for_each_entry_rcu(p, node, head, hlist) {
1849 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1850 					&offset, &modname, namebuf);
1851 		if (kprobe_aggrprobe(p)) {
1852 			list_for_each_entry_rcu(kp, &p->list, list)
1853 				report_probe(pi, kp, sym, offset, modname, p);
1854 		} else
1855 			report_probe(pi, p, sym, offset, modname, NULL);
1856 	}
1857 	preempt_enable();
1858 	return 0;
1859 }
1860 
1861 static const struct seq_operations kprobes_seq_ops = {
1862 	.start = kprobe_seq_start,
1863 	.next  = kprobe_seq_next,
1864 	.stop  = kprobe_seq_stop,
1865 	.show  = show_kprobe_addr
1866 };
1867 
1868 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1869 {
1870 	return seq_open(filp, &kprobes_seq_ops);
1871 }
1872 
1873 static const struct file_operations debugfs_kprobes_operations = {
1874 	.open           = kprobes_open,
1875 	.read           = seq_read,
1876 	.llseek         = seq_lseek,
1877 	.release        = seq_release,
1878 };
1879 
1880 static void __kprobes arm_all_kprobes(void)
1881 {
1882 	struct hlist_head *head;
1883 	struct hlist_node *node;
1884 	struct kprobe *p;
1885 	unsigned int i;
1886 
1887 	mutex_lock(&kprobe_mutex);
1888 
1889 	/* If kprobes are armed, just return */
1890 	if (!kprobes_all_disarmed)
1891 		goto already_enabled;
1892 
1893 	/* Arming kprobes doesn't optimize kprobe itself */
1894 	mutex_lock(&text_mutex);
1895 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1896 		head = &kprobe_table[i];
1897 		hlist_for_each_entry_rcu(p, node, head, hlist)
1898 			if (!kprobe_disabled(p))
1899 				__arm_kprobe(p);
1900 	}
1901 	mutex_unlock(&text_mutex);
1902 
1903 	kprobes_all_disarmed = false;
1904 	printk(KERN_INFO "Kprobes globally enabled\n");
1905 
1906 already_enabled:
1907 	mutex_unlock(&kprobe_mutex);
1908 	return;
1909 }
1910 
1911 static void __kprobes disarm_all_kprobes(void)
1912 {
1913 	struct hlist_head *head;
1914 	struct hlist_node *node;
1915 	struct kprobe *p;
1916 	unsigned int i;
1917 
1918 	mutex_lock(&kprobe_mutex);
1919 
1920 	/* If kprobes are already disarmed, just return */
1921 	if (kprobes_all_disarmed)
1922 		goto already_disabled;
1923 
1924 	kprobes_all_disarmed = true;
1925 	printk(KERN_INFO "Kprobes globally disabled\n");
1926 
1927 	/*
1928 	 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1929 	 * because disarming may also unoptimize kprobes.
1930 	 */
1931 	get_online_cpus();
1932 	mutex_lock(&text_mutex);
1933 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1934 		head = &kprobe_table[i];
1935 		hlist_for_each_entry_rcu(p, node, head, hlist) {
1936 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1937 				__disarm_kprobe(p);
1938 		}
1939 	}
1940 
1941 	mutex_unlock(&text_mutex);
1942 	put_online_cpus();
1943 	mutex_unlock(&kprobe_mutex);
1944 	/* Allow all currently running kprobes to complete */
1945 	synchronize_sched();
1946 	return;
1947 
1948 already_disabled:
1949 	mutex_unlock(&kprobe_mutex);
1950 	return;
1951 }
1952 
1953 /*
1954  * XXX: The debugfs bool file interface doesn't allow for callbacks
1955  * when the bool state is switched. We can reuse that facility when
1956  * available
1957  */
1958 static ssize_t read_enabled_file_bool(struct file *file,
1959 	       char __user *user_buf, size_t count, loff_t *ppos)
1960 {
1961 	char buf[3];
1962 
1963 	if (!kprobes_all_disarmed)
1964 		buf[0] = '1';
1965 	else
1966 		buf[0] = '0';
1967 	buf[1] = '\n';
1968 	buf[2] = 0x00;
1969 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1970 }
1971 
1972 static ssize_t write_enabled_file_bool(struct file *file,
1973 	       const char __user *user_buf, size_t count, loff_t *ppos)
1974 {
1975 	char buf[32];
1976 	int buf_size;
1977 
1978 	buf_size = min(count, (sizeof(buf)-1));
1979 	if (copy_from_user(buf, user_buf, buf_size))
1980 		return -EFAULT;
1981 
1982 	switch (buf[0]) {
1983 	case 'y':
1984 	case 'Y':
1985 	case '1':
1986 		arm_all_kprobes();
1987 		break;
1988 	case 'n':
1989 	case 'N':
1990 	case '0':
1991 		disarm_all_kprobes();
1992 		break;
1993 	}
1994 
1995 	return count;
1996 }
1997 
1998 static const struct file_operations fops_kp = {
1999 	.read =         read_enabled_file_bool,
2000 	.write =        write_enabled_file_bool,
2001 };
2002 
2003 static int __kprobes debugfs_kprobe_init(void)
2004 {
2005 	struct dentry *dir, *file;
2006 	unsigned int value = 1;
2007 
2008 	dir = debugfs_create_dir("kprobes", NULL);
2009 	if (!dir)
2010 		return -ENOMEM;
2011 
2012 	file = debugfs_create_file("list", 0444, dir, NULL,
2013 				&debugfs_kprobes_operations);
2014 	if (!file) {
2015 		debugfs_remove(dir);
2016 		return -ENOMEM;
2017 	}
2018 
2019 	file = debugfs_create_file("enabled", 0600, dir,
2020 					&value, &fops_kp);
2021 	if (!file) {
2022 		debugfs_remove(dir);
2023 		return -ENOMEM;
2024 	}
2025 
2026 	return 0;
2027 }
2028 
2029 late_initcall(debugfs_kprobe_init);
2030 #endif /* CONFIG_DEBUG_FS */
2031 
2032 module_init(init_kprobes);
2033 
2034 /* defined in arch/.../kernel/kprobes.c */
2035 EXPORT_SYMBOL_GPL(jprobe_return);
2036