xref: /linux/kernel/kprobes.c (revision 606d099cdd1080bbb50ea50dc52d98252f8f10a1)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/module.h>
39 #include <linux/moduleloader.h>
40 #include <linux/kallsyms.h>
41 #include <linux/freezer.h>
42 #include <asm-generic/sections.h>
43 #include <asm/cacheflush.h>
44 #include <asm/errno.h>
45 #include <asm/kdebug.h>
46 
47 #define KPROBE_HASH_BITS 6
48 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
49 
50 
51 /*
52  * Some oddball architectures like 64bit powerpc have function descriptors
53  * so this must be overridable.
54  */
55 #ifndef kprobe_lookup_name
56 #define kprobe_lookup_name(name, addr) \
57 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
58 #endif
59 
60 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
61 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
62 static atomic_t kprobe_count;
63 
64 DEFINE_MUTEX(kprobe_mutex);		/* Protects kprobe_table */
65 DEFINE_SPINLOCK(kretprobe_lock);	/* Protects kretprobe_inst_table */
66 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
67 
68 static struct notifier_block kprobe_page_fault_nb = {
69 	.notifier_call = kprobe_exceptions_notify,
70 	.priority = 0x7fffffff /* we need to notified first */
71 };
72 
73 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
74 /*
75  * kprobe->ainsn.insn points to the copy of the instruction to be
76  * single-stepped. x86_64, POWER4 and above have no-exec support and
77  * stepping on the instruction on a vmalloced/kmalloced/data page
78  * is a recipe for disaster
79  */
80 #define INSNS_PER_PAGE	(PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
81 
82 struct kprobe_insn_page {
83 	struct hlist_node hlist;
84 	kprobe_opcode_t *insns;		/* Page of instruction slots */
85 	char slot_used[INSNS_PER_PAGE];
86 	int nused;
87 	int ngarbage;
88 };
89 
90 static struct hlist_head kprobe_insn_pages;
91 static int kprobe_garbage_slots;
92 static int collect_garbage_slots(void);
93 
94 static int __kprobes check_safety(void)
95 {
96 	int ret = 0;
97 #if defined(CONFIG_PREEMPT) && defined(CONFIG_PM)
98 	ret = freeze_processes();
99 	if (ret == 0) {
100 		struct task_struct *p, *q;
101 		do_each_thread(p, q) {
102 			if (p != current && p->state == TASK_RUNNING &&
103 			    p->pid != 0) {
104 				printk("Check failed: %s is running\n",p->comm);
105 				ret = -1;
106 				goto loop_end;
107 			}
108 		} while_each_thread(p, q);
109 	}
110 loop_end:
111 	thaw_processes();
112 #else
113 	synchronize_sched();
114 #endif
115 	return ret;
116 }
117 
118 /**
119  * get_insn_slot() - Find a slot on an executable page for an instruction.
120  * We allocate an executable page if there's no room on existing ones.
121  */
122 kprobe_opcode_t __kprobes *get_insn_slot(void)
123 {
124 	struct kprobe_insn_page *kip;
125 	struct hlist_node *pos;
126 
127       retry:
128 	hlist_for_each(pos, &kprobe_insn_pages) {
129 		kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
130 		if (kip->nused < INSNS_PER_PAGE) {
131 			int i;
132 			for (i = 0; i < INSNS_PER_PAGE; i++) {
133 				if (!kip->slot_used[i]) {
134 					kip->slot_used[i] = 1;
135 					kip->nused++;
136 					return kip->insns + (i * MAX_INSN_SIZE);
137 				}
138 			}
139 			/* Surprise!  No unused slots.  Fix kip->nused. */
140 			kip->nused = INSNS_PER_PAGE;
141 		}
142 	}
143 
144 	/* If there are any garbage slots, collect it and try again. */
145 	if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
146 		goto retry;
147 	}
148 	/* All out of space.  Need to allocate a new page. Use slot 0. */
149 	kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
150 	if (!kip) {
151 		return NULL;
152 	}
153 
154 	/*
155 	 * Use module_alloc so this page is within +/- 2GB of where the
156 	 * kernel image and loaded module images reside. This is required
157 	 * so x86_64 can correctly handle the %rip-relative fixups.
158 	 */
159 	kip->insns = module_alloc(PAGE_SIZE);
160 	if (!kip->insns) {
161 		kfree(kip);
162 		return NULL;
163 	}
164 	INIT_HLIST_NODE(&kip->hlist);
165 	hlist_add_head(&kip->hlist, &kprobe_insn_pages);
166 	memset(kip->slot_used, 0, INSNS_PER_PAGE);
167 	kip->slot_used[0] = 1;
168 	kip->nused = 1;
169 	kip->ngarbage = 0;
170 	return kip->insns;
171 }
172 
173 /* Return 1 if all garbages are collected, otherwise 0. */
174 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
175 {
176 	kip->slot_used[idx] = 0;
177 	kip->nused--;
178 	if (kip->nused == 0) {
179 		/*
180 		 * Page is no longer in use.  Free it unless
181 		 * it's the last one.  We keep the last one
182 		 * so as not to have to set it up again the
183 		 * next time somebody inserts a probe.
184 		 */
185 		hlist_del(&kip->hlist);
186 		if (hlist_empty(&kprobe_insn_pages)) {
187 			INIT_HLIST_NODE(&kip->hlist);
188 			hlist_add_head(&kip->hlist,
189 				       &kprobe_insn_pages);
190 		} else {
191 			module_free(NULL, kip->insns);
192 			kfree(kip);
193 		}
194 		return 1;
195 	}
196 	return 0;
197 }
198 
199 static int __kprobes collect_garbage_slots(void)
200 {
201 	struct kprobe_insn_page *kip;
202 	struct hlist_node *pos, *next;
203 
204 	/* Ensure no-one is preepmted on the garbages */
205 	if (check_safety() != 0)
206 		return -EAGAIN;
207 
208 	hlist_for_each_safe(pos, next, &kprobe_insn_pages) {
209 		int i;
210 		kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
211 		if (kip->ngarbage == 0)
212 			continue;
213 		kip->ngarbage = 0;	/* we will collect all garbages */
214 		for (i = 0; i < INSNS_PER_PAGE; i++) {
215 			if (kip->slot_used[i] == -1 &&
216 			    collect_one_slot(kip, i))
217 				break;
218 		}
219 	}
220 	kprobe_garbage_slots = 0;
221 	return 0;
222 }
223 
224 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
225 {
226 	struct kprobe_insn_page *kip;
227 	struct hlist_node *pos;
228 
229 	hlist_for_each(pos, &kprobe_insn_pages) {
230 		kip = hlist_entry(pos, struct kprobe_insn_page, hlist);
231 		if (kip->insns <= slot &&
232 		    slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
233 			int i = (slot - kip->insns) / MAX_INSN_SIZE;
234 			if (dirty) {
235 				kip->slot_used[i] = -1;
236 				kip->ngarbage++;
237 			} else {
238 				collect_one_slot(kip, i);
239 			}
240 			break;
241 		}
242 	}
243 	if (dirty && (++kprobe_garbage_slots > INSNS_PER_PAGE)) {
244 		collect_garbage_slots();
245 	}
246 }
247 #endif
248 
249 /* We have preemption disabled.. so it is safe to use __ versions */
250 static inline void set_kprobe_instance(struct kprobe *kp)
251 {
252 	__get_cpu_var(kprobe_instance) = kp;
253 }
254 
255 static inline void reset_kprobe_instance(void)
256 {
257 	__get_cpu_var(kprobe_instance) = NULL;
258 }
259 
260 /*
261  * This routine is called either:
262  * 	- under the kprobe_mutex - during kprobe_[un]register()
263  * 				OR
264  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
265  */
266 struct kprobe __kprobes *get_kprobe(void *addr)
267 {
268 	struct hlist_head *head;
269 	struct hlist_node *node;
270 	struct kprobe *p;
271 
272 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
273 	hlist_for_each_entry_rcu(p, node, head, hlist) {
274 		if (p->addr == addr)
275 			return p;
276 	}
277 	return NULL;
278 }
279 
280 /*
281  * Aggregate handlers for multiple kprobes support - these handlers
282  * take care of invoking the individual kprobe handlers on p->list
283  */
284 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
285 {
286 	struct kprobe *kp;
287 
288 	list_for_each_entry_rcu(kp, &p->list, list) {
289 		if (kp->pre_handler) {
290 			set_kprobe_instance(kp);
291 			if (kp->pre_handler(kp, regs))
292 				return 1;
293 		}
294 		reset_kprobe_instance();
295 	}
296 	return 0;
297 }
298 
299 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
300 					unsigned long flags)
301 {
302 	struct kprobe *kp;
303 
304 	list_for_each_entry_rcu(kp, &p->list, list) {
305 		if (kp->post_handler) {
306 			set_kprobe_instance(kp);
307 			kp->post_handler(kp, regs, flags);
308 			reset_kprobe_instance();
309 		}
310 	}
311 	return;
312 }
313 
314 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
315 					int trapnr)
316 {
317 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
318 
319 	/*
320 	 * if we faulted "during" the execution of a user specified
321 	 * probe handler, invoke just that probe's fault handler
322 	 */
323 	if (cur && cur->fault_handler) {
324 		if (cur->fault_handler(cur, regs, trapnr))
325 			return 1;
326 	}
327 	return 0;
328 }
329 
330 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
331 {
332 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
333 	int ret = 0;
334 
335 	if (cur && cur->break_handler) {
336 		if (cur->break_handler(cur, regs))
337 			ret = 1;
338 	}
339 	reset_kprobe_instance();
340 	return ret;
341 }
342 
343 /* Walks the list and increments nmissed count for multiprobe case */
344 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
345 {
346 	struct kprobe *kp;
347 	if (p->pre_handler != aggr_pre_handler) {
348 		p->nmissed++;
349 	} else {
350 		list_for_each_entry_rcu(kp, &p->list, list)
351 			kp->nmissed++;
352 	}
353 	return;
354 }
355 
356 /* Called with kretprobe_lock held */
357 struct kretprobe_instance __kprobes *get_free_rp_inst(struct kretprobe *rp)
358 {
359 	struct hlist_node *node;
360 	struct kretprobe_instance *ri;
361 	hlist_for_each_entry(ri, node, &rp->free_instances, uflist)
362 		return ri;
363 	return NULL;
364 }
365 
366 /* Called with kretprobe_lock held */
367 static struct kretprobe_instance __kprobes *get_used_rp_inst(struct kretprobe
368 							      *rp)
369 {
370 	struct hlist_node *node;
371 	struct kretprobe_instance *ri;
372 	hlist_for_each_entry(ri, node, &rp->used_instances, uflist)
373 		return ri;
374 	return NULL;
375 }
376 
377 /* Called with kretprobe_lock held */
378 void __kprobes add_rp_inst(struct kretprobe_instance *ri)
379 {
380 	/*
381 	 * Remove rp inst off the free list -
382 	 * Add it back when probed function returns
383 	 */
384 	hlist_del(&ri->uflist);
385 
386 	/* Add rp inst onto table */
387 	INIT_HLIST_NODE(&ri->hlist);
388 	hlist_add_head(&ri->hlist,
389 			&kretprobe_inst_table[hash_ptr(ri->task, KPROBE_HASH_BITS)]);
390 
391 	/* Also add this rp inst to the used list. */
392 	INIT_HLIST_NODE(&ri->uflist);
393 	hlist_add_head(&ri->uflist, &ri->rp->used_instances);
394 }
395 
396 /* Called with kretprobe_lock held */
397 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
398 				struct hlist_head *head)
399 {
400 	/* remove rp inst off the rprobe_inst_table */
401 	hlist_del(&ri->hlist);
402 	if (ri->rp) {
403 		/* remove rp inst off the used list */
404 		hlist_del(&ri->uflist);
405 		/* put rp inst back onto the free list */
406 		INIT_HLIST_NODE(&ri->uflist);
407 		hlist_add_head(&ri->uflist, &ri->rp->free_instances);
408 	} else
409 		/* Unregistering */
410 		hlist_add_head(&ri->hlist, head);
411 }
412 
413 struct hlist_head __kprobes *kretprobe_inst_table_head(struct task_struct *tsk)
414 {
415 	return &kretprobe_inst_table[hash_ptr(tsk, KPROBE_HASH_BITS)];
416 }
417 
418 /*
419  * This function is called from finish_task_switch when task tk becomes dead,
420  * so that we can recycle any function-return probe instances associated
421  * with this task. These left over instances represent probed functions
422  * that have been called but will never return.
423  */
424 void __kprobes kprobe_flush_task(struct task_struct *tk)
425 {
426 	struct kretprobe_instance *ri;
427 	struct hlist_head *head, empty_rp;
428 	struct hlist_node *node, *tmp;
429 	unsigned long flags = 0;
430 
431 	INIT_HLIST_HEAD(&empty_rp);
432 	spin_lock_irqsave(&kretprobe_lock, flags);
433 	head = kretprobe_inst_table_head(tk);
434 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
435 		if (ri->task == tk)
436 			recycle_rp_inst(ri, &empty_rp);
437 	}
438 	spin_unlock_irqrestore(&kretprobe_lock, flags);
439 
440 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
441 		hlist_del(&ri->hlist);
442 		kfree(ri);
443 	}
444 }
445 
446 static inline void free_rp_inst(struct kretprobe *rp)
447 {
448 	struct kretprobe_instance *ri;
449 	while ((ri = get_free_rp_inst(rp)) != NULL) {
450 		hlist_del(&ri->uflist);
451 		kfree(ri);
452 	}
453 }
454 
455 /*
456  * Keep all fields in the kprobe consistent
457  */
458 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
459 {
460 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
461 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
462 }
463 
464 /*
465 * Add the new probe to old_p->list. Fail if this is the
466 * second jprobe at the address - two jprobes can't coexist
467 */
468 static int __kprobes add_new_kprobe(struct kprobe *old_p, struct kprobe *p)
469 {
470 	if (p->break_handler) {
471 		if (old_p->break_handler)
472 			return -EEXIST;
473 		list_add_tail_rcu(&p->list, &old_p->list);
474 		old_p->break_handler = aggr_break_handler;
475 	} else
476 		list_add_rcu(&p->list, &old_p->list);
477 	if (p->post_handler && !old_p->post_handler)
478 		old_p->post_handler = aggr_post_handler;
479 	return 0;
480 }
481 
482 /*
483  * Fill in the required fields of the "manager kprobe". Replace the
484  * earlier kprobe in the hlist with the manager kprobe
485  */
486 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
487 {
488 	copy_kprobe(p, ap);
489 	flush_insn_slot(ap);
490 	ap->addr = p->addr;
491 	ap->pre_handler = aggr_pre_handler;
492 	ap->fault_handler = aggr_fault_handler;
493 	if (p->post_handler)
494 		ap->post_handler = aggr_post_handler;
495 	if (p->break_handler)
496 		ap->break_handler = aggr_break_handler;
497 
498 	INIT_LIST_HEAD(&ap->list);
499 	list_add_rcu(&p->list, &ap->list);
500 
501 	hlist_replace_rcu(&p->hlist, &ap->hlist);
502 }
503 
504 /*
505  * This is the second or subsequent kprobe at the address - handle
506  * the intricacies
507  */
508 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
509 					  struct kprobe *p)
510 {
511 	int ret = 0;
512 	struct kprobe *ap;
513 
514 	if (old_p->pre_handler == aggr_pre_handler) {
515 		copy_kprobe(old_p, p);
516 		ret = add_new_kprobe(old_p, p);
517 	} else {
518 		ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
519 		if (!ap)
520 			return -ENOMEM;
521 		add_aggr_kprobe(ap, old_p);
522 		copy_kprobe(ap, p);
523 		ret = add_new_kprobe(ap, p);
524 	}
525 	return ret;
526 }
527 
528 static int __kprobes in_kprobes_functions(unsigned long addr)
529 {
530 	if (addr >= (unsigned long)__kprobes_text_start
531 		&& addr < (unsigned long)__kprobes_text_end)
532 		return -EINVAL;
533 	return 0;
534 }
535 
536 static int __kprobes __register_kprobe(struct kprobe *p,
537 	unsigned long called_from)
538 {
539 	int ret = 0;
540 	struct kprobe *old_p;
541 	struct module *probed_mod;
542 
543 	/*
544 	 * If we have a symbol_name argument look it up,
545 	 * and add it to the address.  That way the addr
546 	 * field can either be global or relative to a symbol.
547 	 */
548 	if (p->symbol_name) {
549 		if (p->addr)
550 			return -EINVAL;
551 		kprobe_lookup_name(p->symbol_name, p->addr);
552 	}
553 
554 	if (!p->addr)
555 		return -EINVAL;
556 	p->addr = (kprobe_opcode_t *)(((char *)p->addr)+ p->offset);
557 
558 	if ((!kernel_text_address((unsigned long) p->addr)) ||
559 		in_kprobes_functions((unsigned long) p->addr))
560 		return -EINVAL;
561 
562 	p->mod_refcounted = 0;
563 	/* Check are we probing a module */
564 	if ((probed_mod = module_text_address((unsigned long) p->addr))) {
565 		struct module *calling_mod = module_text_address(called_from);
566 		/* We must allow modules to probe themself and
567 		 * in this case avoid incrementing the module refcount,
568 		 * so as to allow unloading of self probing modules.
569 		 */
570 		if (calling_mod && (calling_mod != probed_mod)) {
571 			if (unlikely(!try_module_get(probed_mod)))
572 				return -EINVAL;
573 			p->mod_refcounted = 1;
574 		} else
575 			probed_mod = NULL;
576 	}
577 
578 	p->nmissed = 0;
579 	mutex_lock(&kprobe_mutex);
580 	old_p = get_kprobe(p->addr);
581 	if (old_p) {
582 		ret = register_aggr_kprobe(old_p, p);
583 		if (!ret)
584 			atomic_inc(&kprobe_count);
585 		goto out;
586 	}
587 
588 	if ((ret = arch_prepare_kprobe(p)) != 0)
589 		goto out;
590 
591 	INIT_HLIST_NODE(&p->hlist);
592 	hlist_add_head_rcu(&p->hlist,
593 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
594 
595 	if (atomic_add_return(1, &kprobe_count) == \
596 				(ARCH_INACTIVE_KPROBE_COUNT + 1))
597 		register_page_fault_notifier(&kprobe_page_fault_nb);
598 
599 	arch_arm_kprobe(p);
600 
601 out:
602 	mutex_unlock(&kprobe_mutex);
603 
604 	if (ret && probed_mod)
605 		module_put(probed_mod);
606 	return ret;
607 }
608 
609 int __kprobes register_kprobe(struct kprobe *p)
610 {
611 	return __register_kprobe(p,
612 		(unsigned long)__builtin_return_address(0));
613 }
614 
615 void __kprobes unregister_kprobe(struct kprobe *p)
616 {
617 	struct module *mod;
618 	struct kprobe *old_p, *list_p;
619 	int cleanup_p;
620 
621 	mutex_lock(&kprobe_mutex);
622 	old_p = get_kprobe(p->addr);
623 	if (unlikely(!old_p)) {
624 		mutex_unlock(&kprobe_mutex);
625 		return;
626 	}
627 	if (p != old_p) {
628 		list_for_each_entry_rcu(list_p, &old_p->list, list)
629 			if (list_p == p)
630 			/* kprobe p is a valid probe */
631 				goto valid_p;
632 		mutex_unlock(&kprobe_mutex);
633 		return;
634 	}
635 valid_p:
636 	if ((old_p == p) || ((old_p->pre_handler == aggr_pre_handler) &&
637 		(p->list.next == &old_p->list) &&
638 		(p->list.prev == &old_p->list))) {
639 		/* Only probe on the hash list */
640 		arch_disarm_kprobe(p);
641 		hlist_del_rcu(&old_p->hlist);
642 		cleanup_p = 1;
643 	} else {
644 		list_del_rcu(&p->list);
645 		cleanup_p = 0;
646 	}
647 
648 	mutex_unlock(&kprobe_mutex);
649 
650 	synchronize_sched();
651 	if (p->mod_refcounted &&
652 	    (mod = module_text_address((unsigned long)p->addr)))
653 		module_put(mod);
654 
655 	if (cleanup_p) {
656 		if (p != old_p) {
657 			list_del_rcu(&p->list);
658 			kfree(old_p);
659 		}
660 		arch_remove_kprobe(p);
661 	} else {
662 		mutex_lock(&kprobe_mutex);
663 		if (p->break_handler)
664 			old_p->break_handler = NULL;
665 		if (p->post_handler){
666 			list_for_each_entry_rcu(list_p, &old_p->list, list){
667 				if (list_p->post_handler){
668 					cleanup_p = 2;
669 					break;
670 				}
671 			}
672 			if (cleanup_p == 0)
673 				old_p->post_handler = NULL;
674 		}
675 		mutex_unlock(&kprobe_mutex);
676 	}
677 
678 	/* Call unregister_page_fault_notifier()
679 	 * if no probes are active
680 	 */
681 	mutex_lock(&kprobe_mutex);
682 	if (atomic_add_return(-1, &kprobe_count) == \
683 				ARCH_INACTIVE_KPROBE_COUNT)
684 		unregister_page_fault_notifier(&kprobe_page_fault_nb);
685 	mutex_unlock(&kprobe_mutex);
686 	return;
687 }
688 
689 static struct notifier_block kprobe_exceptions_nb = {
690 	.notifier_call = kprobe_exceptions_notify,
691 	.priority = 0x7fffffff /* we need to be notified first */
692 };
693 
694 
695 int __kprobes register_jprobe(struct jprobe *jp)
696 {
697 	/* Todo: Verify probepoint is a function entry point */
698 	jp->kp.pre_handler = setjmp_pre_handler;
699 	jp->kp.break_handler = longjmp_break_handler;
700 
701 	return __register_kprobe(&jp->kp,
702 		(unsigned long)__builtin_return_address(0));
703 }
704 
705 void __kprobes unregister_jprobe(struct jprobe *jp)
706 {
707 	unregister_kprobe(&jp->kp);
708 }
709 
710 #ifdef ARCH_SUPPORTS_KRETPROBES
711 
712 /*
713  * This kprobe pre_handler is registered with every kretprobe. When probe
714  * hits it will set up the return probe.
715  */
716 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
717 					   struct pt_regs *regs)
718 {
719 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
720 	unsigned long flags = 0;
721 
722 	/*TODO: consider to only swap the RA after the last pre_handler fired */
723 	spin_lock_irqsave(&kretprobe_lock, flags);
724 	arch_prepare_kretprobe(rp, regs);
725 	spin_unlock_irqrestore(&kretprobe_lock, flags);
726 	return 0;
727 }
728 
729 int __kprobes register_kretprobe(struct kretprobe *rp)
730 {
731 	int ret = 0;
732 	struct kretprobe_instance *inst;
733 	int i;
734 
735 	rp->kp.pre_handler = pre_handler_kretprobe;
736 	rp->kp.post_handler = NULL;
737 	rp->kp.fault_handler = NULL;
738 	rp->kp.break_handler = NULL;
739 
740 	/* Pre-allocate memory for max kretprobe instances */
741 	if (rp->maxactive <= 0) {
742 #ifdef CONFIG_PREEMPT
743 		rp->maxactive = max(10, 2 * NR_CPUS);
744 #else
745 		rp->maxactive = NR_CPUS;
746 #endif
747 	}
748 	INIT_HLIST_HEAD(&rp->used_instances);
749 	INIT_HLIST_HEAD(&rp->free_instances);
750 	for (i = 0; i < rp->maxactive; i++) {
751 		inst = kmalloc(sizeof(struct kretprobe_instance), GFP_KERNEL);
752 		if (inst == NULL) {
753 			free_rp_inst(rp);
754 			return -ENOMEM;
755 		}
756 		INIT_HLIST_NODE(&inst->uflist);
757 		hlist_add_head(&inst->uflist, &rp->free_instances);
758 	}
759 
760 	rp->nmissed = 0;
761 	/* Establish function entry probe point */
762 	if ((ret = __register_kprobe(&rp->kp,
763 		(unsigned long)__builtin_return_address(0))) != 0)
764 		free_rp_inst(rp);
765 	return ret;
766 }
767 
768 #else /* ARCH_SUPPORTS_KRETPROBES */
769 
770 int __kprobes register_kretprobe(struct kretprobe *rp)
771 {
772 	return -ENOSYS;
773 }
774 
775 #endif /* ARCH_SUPPORTS_KRETPROBES */
776 
777 void __kprobes unregister_kretprobe(struct kretprobe *rp)
778 {
779 	unsigned long flags;
780 	struct kretprobe_instance *ri;
781 
782 	unregister_kprobe(&rp->kp);
783 	/* No race here */
784 	spin_lock_irqsave(&kretprobe_lock, flags);
785 	while ((ri = get_used_rp_inst(rp)) != NULL) {
786 		ri->rp = NULL;
787 		hlist_del(&ri->uflist);
788 	}
789 	spin_unlock_irqrestore(&kretprobe_lock, flags);
790 	free_rp_inst(rp);
791 }
792 
793 static int __init init_kprobes(void)
794 {
795 	int i, err = 0;
796 
797 	/* FIXME allocate the probe table, currently defined statically */
798 	/* initialize all list heads */
799 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
800 		INIT_HLIST_HEAD(&kprobe_table[i]);
801 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
802 	}
803 	atomic_set(&kprobe_count, 0);
804 
805 	err = arch_init_kprobes();
806 	if (!err)
807 		err = register_die_notifier(&kprobe_exceptions_nb);
808 
809 	return err;
810 }
811 
812 __initcall(init_kprobes);
813 
814 EXPORT_SYMBOL_GPL(register_kprobe);
815 EXPORT_SYMBOL_GPL(unregister_kprobe);
816 EXPORT_SYMBOL_GPL(register_jprobe);
817 EXPORT_SYMBOL_GPL(unregister_jprobe);
818 EXPORT_SYMBOL_GPL(jprobe_return);
819 EXPORT_SYMBOL_GPL(register_kretprobe);
820 EXPORT_SYMBOL_GPL(unregister_kretprobe);
821 
822