1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm-generic/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <asm/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 /* 62 * Some oddball architectures like 64bit powerpc have function descriptors 63 * so this must be overridable. 64 */ 65 #ifndef kprobe_lookup_name 66 #define kprobe_lookup_name(name, addr) \ 67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 68 #endif 69 70 static int kprobes_initialized; 71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 73 74 /* NOTE: change this value only with kprobe_mutex held */ 75 static bool kprobes_all_disarmed; 76 77 /* This protects kprobe_table and optimizing_list */ 78 static DEFINE_MUTEX(kprobe_mutex); 79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 80 static struct { 81 raw_spinlock_t lock ____cacheline_aligned_in_smp; 82 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 83 84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 85 { 86 return &(kretprobe_table_locks[hash].lock); 87 } 88 89 /* Blacklist -- list of struct kprobe_blacklist_entry */ 90 static LIST_HEAD(kprobe_blacklist); 91 92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 93 /* 94 * kprobe->ainsn.insn points to the copy of the instruction to be 95 * single-stepped. x86_64, POWER4 and above have no-exec support and 96 * stepping on the instruction on a vmalloced/kmalloced/data page 97 * is a recipe for disaster 98 */ 99 struct kprobe_insn_page { 100 struct list_head list; 101 kprobe_opcode_t *insns; /* Page of instruction slots */ 102 struct kprobe_insn_cache *cache; 103 int nused; 104 int ngarbage; 105 char slot_used[]; 106 }; 107 108 #define KPROBE_INSN_PAGE_SIZE(slots) \ 109 (offsetof(struct kprobe_insn_page, slot_used) + \ 110 (sizeof(char) * (slots))) 111 112 static int slots_per_page(struct kprobe_insn_cache *c) 113 { 114 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 115 } 116 117 enum kprobe_slot_state { 118 SLOT_CLEAN = 0, 119 SLOT_DIRTY = 1, 120 SLOT_USED = 2, 121 }; 122 123 static void *alloc_insn_page(void) 124 { 125 return module_alloc(PAGE_SIZE); 126 } 127 128 static void free_insn_page(void *page) 129 { 130 module_memfree(page); 131 } 132 133 struct kprobe_insn_cache kprobe_insn_slots = { 134 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 135 .alloc = alloc_insn_page, 136 .free = free_insn_page, 137 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 138 .insn_size = MAX_INSN_SIZE, 139 .nr_garbage = 0, 140 }; 141 static int collect_garbage_slots(struct kprobe_insn_cache *c); 142 143 /** 144 * __get_insn_slot() - Find a slot on an executable page for an instruction. 145 * We allocate an executable page if there's no room on existing ones. 146 */ 147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 148 { 149 struct kprobe_insn_page *kip; 150 kprobe_opcode_t *slot = NULL; 151 152 mutex_lock(&c->mutex); 153 retry: 154 list_for_each_entry(kip, &c->pages, list) { 155 if (kip->nused < slots_per_page(c)) { 156 int i; 157 for (i = 0; i < slots_per_page(c); i++) { 158 if (kip->slot_used[i] == SLOT_CLEAN) { 159 kip->slot_used[i] = SLOT_USED; 160 kip->nused++; 161 slot = kip->insns + (i * c->insn_size); 162 goto out; 163 } 164 } 165 /* kip->nused is broken. Fix it. */ 166 kip->nused = slots_per_page(c); 167 WARN_ON(1); 168 } 169 } 170 171 /* If there are any garbage slots, collect it and try again. */ 172 if (c->nr_garbage && collect_garbage_slots(c) == 0) 173 goto retry; 174 175 /* All out of space. Need to allocate a new page. */ 176 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 177 if (!kip) 178 goto out; 179 180 /* 181 * Use module_alloc so this page is within +/- 2GB of where the 182 * kernel image and loaded module images reside. This is required 183 * so x86_64 can correctly handle the %rip-relative fixups. 184 */ 185 kip->insns = c->alloc(); 186 if (!kip->insns) { 187 kfree(kip); 188 goto out; 189 } 190 INIT_LIST_HEAD(&kip->list); 191 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 192 kip->slot_used[0] = SLOT_USED; 193 kip->nused = 1; 194 kip->ngarbage = 0; 195 kip->cache = c; 196 list_add(&kip->list, &c->pages); 197 slot = kip->insns; 198 out: 199 mutex_unlock(&c->mutex); 200 return slot; 201 } 202 203 /* Return 1 if all garbages are collected, otherwise 0. */ 204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 205 { 206 kip->slot_used[idx] = SLOT_CLEAN; 207 kip->nused--; 208 if (kip->nused == 0) { 209 /* 210 * Page is no longer in use. Free it unless 211 * it's the last one. We keep the last one 212 * so as not to have to set it up again the 213 * next time somebody inserts a probe. 214 */ 215 if (!list_is_singular(&kip->list)) { 216 list_del(&kip->list); 217 kip->cache->free(kip->insns); 218 kfree(kip); 219 } 220 return 1; 221 } 222 return 0; 223 } 224 225 static int collect_garbage_slots(struct kprobe_insn_cache *c) 226 { 227 struct kprobe_insn_page *kip, *next; 228 229 /* Ensure no-one is interrupted on the garbages */ 230 synchronize_sched(); 231 232 list_for_each_entry_safe(kip, next, &c->pages, list) { 233 int i; 234 if (kip->ngarbage == 0) 235 continue; 236 kip->ngarbage = 0; /* we will collect all garbages */ 237 for (i = 0; i < slots_per_page(c); i++) { 238 if (kip->slot_used[i] == SLOT_DIRTY && 239 collect_one_slot(kip, i)) 240 break; 241 } 242 } 243 c->nr_garbage = 0; 244 return 0; 245 } 246 247 void __free_insn_slot(struct kprobe_insn_cache *c, 248 kprobe_opcode_t *slot, int dirty) 249 { 250 struct kprobe_insn_page *kip; 251 252 mutex_lock(&c->mutex); 253 list_for_each_entry(kip, &c->pages, list) { 254 long idx = ((long)slot - (long)kip->insns) / 255 (c->insn_size * sizeof(kprobe_opcode_t)); 256 if (idx >= 0 && idx < slots_per_page(c)) { 257 WARN_ON(kip->slot_used[idx] != SLOT_USED); 258 if (dirty) { 259 kip->slot_used[idx] = SLOT_DIRTY; 260 kip->ngarbage++; 261 if (++c->nr_garbage > slots_per_page(c)) 262 collect_garbage_slots(c); 263 } else 264 collect_one_slot(kip, idx); 265 goto out; 266 } 267 } 268 /* Could not free this slot. */ 269 WARN_ON(1); 270 out: 271 mutex_unlock(&c->mutex); 272 } 273 274 #ifdef CONFIG_OPTPROBES 275 /* For optimized_kprobe buffer */ 276 struct kprobe_insn_cache kprobe_optinsn_slots = { 277 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 278 .alloc = alloc_insn_page, 279 .free = free_insn_page, 280 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 281 /* .insn_size is initialized later */ 282 .nr_garbage = 0, 283 }; 284 #endif 285 #endif 286 287 /* We have preemption disabled.. so it is safe to use __ versions */ 288 static inline void set_kprobe_instance(struct kprobe *kp) 289 { 290 __this_cpu_write(kprobe_instance, kp); 291 } 292 293 static inline void reset_kprobe_instance(void) 294 { 295 __this_cpu_write(kprobe_instance, NULL); 296 } 297 298 /* 299 * This routine is called either: 300 * - under the kprobe_mutex - during kprobe_[un]register() 301 * OR 302 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 303 */ 304 struct kprobe *get_kprobe(void *addr) 305 { 306 struct hlist_head *head; 307 struct kprobe *p; 308 309 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 310 hlist_for_each_entry_rcu(p, head, hlist) { 311 if (p->addr == addr) 312 return p; 313 } 314 315 return NULL; 316 } 317 NOKPROBE_SYMBOL(get_kprobe); 318 319 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 320 321 /* Return true if the kprobe is an aggregator */ 322 static inline int kprobe_aggrprobe(struct kprobe *p) 323 { 324 return p->pre_handler == aggr_pre_handler; 325 } 326 327 /* Return true(!0) if the kprobe is unused */ 328 static inline int kprobe_unused(struct kprobe *p) 329 { 330 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 331 list_empty(&p->list); 332 } 333 334 /* 335 * Keep all fields in the kprobe consistent 336 */ 337 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 338 { 339 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 340 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 341 } 342 343 #ifdef CONFIG_OPTPROBES 344 /* NOTE: change this value only with kprobe_mutex held */ 345 static bool kprobes_allow_optimization; 346 347 /* 348 * Call all pre_handler on the list, but ignores its return value. 349 * This must be called from arch-dep optimized caller. 350 */ 351 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 352 { 353 struct kprobe *kp; 354 355 list_for_each_entry_rcu(kp, &p->list, list) { 356 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 357 set_kprobe_instance(kp); 358 kp->pre_handler(kp, regs); 359 } 360 reset_kprobe_instance(); 361 } 362 } 363 NOKPROBE_SYMBOL(opt_pre_handler); 364 365 /* Free optimized instructions and optimized_kprobe */ 366 static void free_aggr_kprobe(struct kprobe *p) 367 { 368 struct optimized_kprobe *op; 369 370 op = container_of(p, struct optimized_kprobe, kp); 371 arch_remove_optimized_kprobe(op); 372 arch_remove_kprobe(p); 373 kfree(op); 374 } 375 376 /* Return true(!0) if the kprobe is ready for optimization. */ 377 static inline int kprobe_optready(struct kprobe *p) 378 { 379 struct optimized_kprobe *op; 380 381 if (kprobe_aggrprobe(p)) { 382 op = container_of(p, struct optimized_kprobe, kp); 383 return arch_prepared_optinsn(&op->optinsn); 384 } 385 386 return 0; 387 } 388 389 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 390 static inline int kprobe_disarmed(struct kprobe *p) 391 { 392 struct optimized_kprobe *op; 393 394 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 395 if (!kprobe_aggrprobe(p)) 396 return kprobe_disabled(p); 397 398 op = container_of(p, struct optimized_kprobe, kp); 399 400 return kprobe_disabled(p) && list_empty(&op->list); 401 } 402 403 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 404 static int kprobe_queued(struct kprobe *p) 405 { 406 struct optimized_kprobe *op; 407 408 if (kprobe_aggrprobe(p)) { 409 op = container_of(p, struct optimized_kprobe, kp); 410 if (!list_empty(&op->list)) 411 return 1; 412 } 413 return 0; 414 } 415 416 /* 417 * Return an optimized kprobe whose optimizing code replaces 418 * instructions including addr (exclude breakpoint). 419 */ 420 static struct kprobe *get_optimized_kprobe(unsigned long addr) 421 { 422 int i; 423 struct kprobe *p = NULL; 424 struct optimized_kprobe *op; 425 426 /* Don't check i == 0, since that is a breakpoint case. */ 427 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 428 p = get_kprobe((void *)(addr - i)); 429 430 if (p && kprobe_optready(p)) { 431 op = container_of(p, struct optimized_kprobe, kp); 432 if (arch_within_optimized_kprobe(op, addr)) 433 return p; 434 } 435 436 return NULL; 437 } 438 439 /* Optimization staging list, protected by kprobe_mutex */ 440 static LIST_HEAD(optimizing_list); 441 static LIST_HEAD(unoptimizing_list); 442 static LIST_HEAD(freeing_list); 443 444 static void kprobe_optimizer(struct work_struct *work); 445 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 446 #define OPTIMIZE_DELAY 5 447 448 /* 449 * Optimize (replace a breakpoint with a jump) kprobes listed on 450 * optimizing_list. 451 */ 452 static void do_optimize_kprobes(void) 453 { 454 /* Optimization never be done when disarmed */ 455 if (kprobes_all_disarmed || !kprobes_allow_optimization || 456 list_empty(&optimizing_list)) 457 return; 458 459 /* 460 * The optimization/unoptimization refers online_cpus via 461 * stop_machine() and cpu-hotplug modifies online_cpus. 462 * And same time, text_mutex will be held in cpu-hotplug and here. 463 * This combination can cause a deadlock (cpu-hotplug try to lock 464 * text_mutex but stop_machine can not be done because online_cpus 465 * has been changed) 466 * To avoid this deadlock, we need to call get_online_cpus() 467 * for preventing cpu-hotplug outside of text_mutex locking. 468 */ 469 get_online_cpus(); 470 mutex_lock(&text_mutex); 471 arch_optimize_kprobes(&optimizing_list); 472 mutex_unlock(&text_mutex); 473 put_online_cpus(); 474 } 475 476 /* 477 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 478 * if need) kprobes listed on unoptimizing_list. 479 */ 480 static void do_unoptimize_kprobes(void) 481 { 482 struct optimized_kprobe *op, *tmp; 483 484 /* Unoptimization must be done anytime */ 485 if (list_empty(&unoptimizing_list)) 486 return; 487 488 /* Ditto to do_optimize_kprobes */ 489 get_online_cpus(); 490 mutex_lock(&text_mutex); 491 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 492 /* Loop free_list for disarming */ 493 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 494 /* Disarm probes if marked disabled */ 495 if (kprobe_disabled(&op->kp)) 496 arch_disarm_kprobe(&op->kp); 497 if (kprobe_unused(&op->kp)) { 498 /* 499 * Remove unused probes from hash list. After waiting 500 * for synchronization, these probes are reclaimed. 501 * (reclaiming is done by do_free_cleaned_kprobes.) 502 */ 503 hlist_del_rcu(&op->kp.hlist); 504 } else 505 list_del_init(&op->list); 506 } 507 mutex_unlock(&text_mutex); 508 put_online_cpus(); 509 } 510 511 /* Reclaim all kprobes on the free_list */ 512 static void do_free_cleaned_kprobes(void) 513 { 514 struct optimized_kprobe *op, *tmp; 515 516 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 517 BUG_ON(!kprobe_unused(&op->kp)); 518 list_del_init(&op->list); 519 free_aggr_kprobe(&op->kp); 520 } 521 } 522 523 /* Start optimizer after OPTIMIZE_DELAY passed */ 524 static void kick_kprobe_optimizer(void) 525 { 526 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 527 } 528 529 /* Kprobe jump optimizer */ 530 static void kprobe_optimizer(struct work_struct *work) 531 { 532 mutex_lock(&kprobe_mutex); 533 /* Lock modules while optimizing kprobes */ 534 mutex_lock(&module_mutex); 535 536 /* 537 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 538 * kprobes before waiting for quiesence period. 539 */ 540 do_unoptimize_kprobes(); 541 542 /* 543 * Step 2: Wait for quiesence period to ensure all running interrupts 544 * are done. Because optprobe may modify multiple instructions 545 * there is a chance that Nth instruction is interrupted. In that 546 * case, running interrupt can return to 2nd-Nth byte of jump 547 * instruction. This wait is for avoiding it. 548 */ 549 synchronize_sched(); 550 551 /* Step 3: Optimize kprobes after quiesence period */ 552 do_optimize_kprobes(); 553 554 /* Step 4: Free cleaned kprobes after quiesence period */ 555 do_free_cleaned_kprobes(); 556 557 mutex_unlock(&module_mutex); 558 mutex_unlock(&kprobe_mutex); 559 560 /* Step 5: Kick optimizer again if needed */ 561 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 562 kick_kprobe_optimizer(); 563 } 564 565 /* Wait for completing optimization and unoptimization */ 566 static void wait_for_kprobe_optimizer(void) 567 { 568 mutex_lock(&kprobe_mutex); 569 570 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 571 mutex_unlock(&kprobe_mutex); 572 573 /* this will also make optimizing_work execute immmediately */ 574 flush_delayed_work(&optimizing_work); 575 /* @optimizing_work might not have been queued yet, relax */ 576 cpu_relax(); 577 578 mutex_lock(&kprobe_mutex); 579 } 580 581 mutex_unlock(&kprobe_mutex); 582 } 583 584 /* Optimize kprobe if p is ready to be optimized */ 585 static void optimize_kprobe(struct kprobe *p) 586 { 587 struct optimized_kprobe *op; 588 589 /* Check if the kprobe is disabled or not ready for optimization. */ 590 if (!kprobe_optready(p) || !kprobes_allow_optimization || 591 (kprobe_disabled(p) || kprobes_all_disarmed)) 592 return; 593 594 /* Both of break_handler and post_handler are not supported. */ 595 if (p->break_handler || p->post_handler) 596 return; 597 598 op = container_of(p, struct optimized_kprobe, kp); 599 600 /* Check there is no other kprobes at the optimized instructions */ 601 if (arch_check_optimized_kprobe(op) < 0) 602 return; 603 604 /* Check if it is already optimized. */ 605 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 606 return; 607 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 608 609 if (!list_empty(&op->list)) 610 /* This is under unoptimizing. Just dequeue the probe */ 611 list_del_init(&op->list); 612 else { 613 list_add(&op->list, &optimizing_list); 614 kick_kprobe_optimizer(); 615 } 616 } 617 618 /* Short cut to direct unoptimizing */ 619 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 620 { 621 get_online_cpus(); 622 arch_unoptimize_kprobe(op); 623 put_online_cpus(); 624 if (kprobe_disabled(&op->kp)) 625 arch_disarm_kprobe(&op->kp); 626 } 627 628 /* Unoptimize a kprobe if p is optimized */ 629 static void unoptimize_kprobe(struct kprobe *p, bool force) 630 { 631 struct optimized_kprobe *op; 632 633 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 634 return; /* This is not an optprobe nor optimized */ 635 636 op = container_of(p, struct optimized_kprobe, kp); 637 if (!kprobe_optimized(p)) { 638 /* Unoptimized or unoptimizing case */ 639 if (force && !list_empty(&op->list)) { 640 /* 641 * Only if this is unoptimizing kprobe and forced, 642 * forcibly unoptimize it. (No need to unoptimize 643 * unoptimized kprobe again :) 644 */ 645 list_del_init(&op->list); 646 force_unoptimize_kprobe(op); 647 } 648 return; 649 } 650 651 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 652 if (!list_empty(&op->list)) { 653 /* Dequeue from the optimization queue */ 654 list_del_init(&op->list); 655 return; 656 } 657 /* Optimized kprobe case */ 658 if (force) 659 /* Forcibly update the code: this is a special case */ 660 force_unoptimize_kprobe(op); 661 else { 662 list_add(&op->list, &unoptimizing_list); 663 kick_kprobe_optimizer(); 664 } 665 } 666 667 /* Cancel unoptimizing for reusing */ 668 static void reuse_unused_kprobe(struct kprobe *ap) 669 { 670 struct optimized_kprobe *op; 671 672 BUG_ON(!kprobe_unused(ap)); 673 /* 674 * Unused kprobe MUST be on the way of delayed unoptimizing (means 675 * there is still a relative jump) and disabled. 676 */ 677 op = container_of(ap, struct optimized_kprobe, kp); 678 if (unlikely(list_empty(&op->list))) 679 printk(KERN_WARNING "Warning: found a stray unused " 680 "aggrprobe@%p\n", ap->addr); 681 /* Enable the probe again */ 682 ap->flags &= ~KPROBE_FLAG_DISABLED; 683 /* Optimize it again (remove from op->list) */ 684 BUG_ON(!kprobe_optready(ap)); 685 optimize_kprobe(ap); 686 } 687 688 /* Remove optimized instructions */ 689 static void kill_optimized_kprobe(struct kprobe *p) 690 { 691 struct optimized_kprobe *op; 692 693 op = container_of(p, struct optimized_kprobe, kp); 694 if (!list_empty(&op->list)) 695 /* Dequeue from the (un)optimization queue */ 696 list_del_init(&op->list); 697 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 698 699 if (kprobe_unused(p)) { 700 /* Enqueue if it is unused */ 701 list_add(&op->list, &freeing_list); 702 /* 703 * Remove unused probes from the hash list. After waiting 704 * for synchronization, this probe is reclaimed. 705 * (reclaiming is done by do_free_cleaned_kprobes().) 706 */ 707 hlist_del_rcu(&op->kp.hlist); 708 } 709 710 /* Don't touch the code, because it is already freed. */ 711 arch_remove_optimized_kprobe(op); 712 } 713 714 /* Try to prepare optimized instructions */ 715 static void prepare_optimized_kprobe(struct kprobe *p) 716 { 717 struct optimized_kprobe *op; 718 719 op = container_of(p, struct optimized_kprobe, kp); 720 arch_prepare_optimized_kprobe(op); 721 } 722 723 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 724 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 725 { 726 struct optimized_kprobe *op; 727 728 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 729 if (!op) 730 return NULL; 731 732 INIT_LIST_HEAD(&op->list); 733 op->kp.addr = p->addr; 734 arch_prepare_optimized_kprobe(op); 735 736 return &op->kp; 737 } 738 739 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 740 741 /* 742 * Prepare an optimized_kprobe and optimize it 743 * NOTE: p must be a normal registered kprobe 744 */ 745 static void try_to_optimize_kprobe(struct kprobe *p) 746 { 747 struct kprobe *ap; 748 struct optimized_kprobe *op; 749 750 /* Impossible to optimize ftrace-based kprobe */ 751 if (kprobe_ftrace(p)) 752 return; 753 754 /* For preparing optimization, jump_label_text_reserved() is called */ 755 jump_label_lock(); 756 mutex_lock(&text_mutex); 757 758 ap = alloc_aggr_kprobe(p); 759 if (!ap) 760 goto out; 761 762 op = container_of(ap, struct optimized_kprobe, kp); 763 if (!arch_prepared_optinsn(&op->optinsn)) { 764 /* If failed to setup optimizing, fallback to kprobe */ 765 arch_remove_optimized_kprobe(op); 766 kfree(op); 767 goto out; 768 } 769 770 init_aggr_kprobe(ap, p); 771 optimize_kprobe(ap); /* This just kicks optimizer thread */ 772 773 out: 774 mutex_unlock(&text_mutex); 775 jump_label_unlock(); 776 } 777 778 #ifdef CONFIG_SYSCTL 779 static void optimize_all_kprobes(void) 780 { 781 struct hlist_head *head; 782 struct kprobe *p; 783 unsigned int i; 784 785 mutex_lock(&kprobe_mutex); 786 /* If optimization is already allowed, just return */ 787 if (kprobes_allow_optimization) 788 goto out; 789 790 kprobes_allow_optimization = true; 791 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 792 head = &kprobe_table[i]; 793 hlist_for_each_entry_rcu(p, head, hlist) 794 if (!kprobe_disabled(p)) 795 optimize_kprobe(p); 796 } 797 printk(KERN_INFO "Kprobes globally optimized\n"); 798 out: 799 mutex_unlock(&kprobe_mutex); 800 } 801 802 static void unoptimize_all_kprobes(void) 803 { 804 struct hlist_head *head; 805 struct kprobe *p; 806 unsigned int i; 807 808 mutex_lock(&kprobe_mutex); 809 /* If optimization is already prohibited, just return */ 810 if (!kprobes_allow_optimization) { 811 mutex_unlock(&kprobe_mutex); 812 return; 813 } 814 815 kprobes_allow_optimization = false; 816 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 817 head = &kprobe_table[i]; 818 hlist_for_each_entry_rcu(p, head, hlist) { 819 if (!kprobe_disabled(p)) 820 unoptimize_kprobe(p, false); 821 } 822 } 823 mutex_unlock(&kprobe_mutex); 824 825 /* Wait for unoptimizing completion */ 826 wait_for_kprobe_optimizer(); 827 printk(KERN_INFO "Kprobes globally unoptimized\n"); 828 } 829 830 static DEFINE_MUTEX(kprobe_sysctl_mutex); 831 int sysctl_kprobes_optimization; 832 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 833 void __user *buffer, size_t *length, 834 loff_t *ppos) 835 { 836 int ret; 837 838 mutex_lock(&kprobe_sysctl_mutex); 839 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 840 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 841 842 if (sysctl_kprobes_optimization) 843 optimize_all_kprobes(); 844 else 845 unoptimize_all_kprobes(); 846 mutex_unlock(&kprobe_sysctl_mutex); 847 848 return ret; 849 } 850 #endif /* CONFIG_SYSCTL */ 851 852 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 853 static void __arm_kprobe(struct kprobe *p) 854 { 855 struct kprobe *_p; 856 857 /* Check collision with other optimized kprobes */ 858 _p = get_optimized_kprobe((unsigned long)p->addr); 859 if (unlikely(_p)) 860 /* Fallback to unoptimized kprobe */ 861 unoptimize_kprobe(_p, true); 862 863 arch_arm_kprobe(p); 864 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 865 } 866 867 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 868 static void __disarm_kprobe(struct kprobe *p, bool reopt) 869 { 870 struct kprobe *_p; 871 872 unoptimize_kprobe(p, false); /* Try to unoptimize */ 873 874 if (!kprobe_queued(p)) { 875 arch_disarm_kprobe(p); 876 /* If another kprobe was blocked, optimize it. */ 877 _p = get_optimized_kprobe((unsigned long)p->addr); 878 if (unlikely(_p) && reopt) 879 optimize_kprobe(_p); 880 } 881 /* TODO: reoptimize others after unoptimized this probe */ 882 } 883 884 #else /* !CONFIG_OPTPROBES */ 885 886 #define optimize_kprobe(p) do {} while (0) 887 #define unoptimize_kprobe(p, f) do {} while (0) 888 #define kill_optimized_kprobe(p) do {} while (0) 889 #define prepare_optimized_kprobe(p) do {} while (0) 890 #define try_to_optimize_kprobe(p) do {} while (0) 891 #define __arm_kprobe(p) arch_arm_kprobe(p) 892 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 893 #define kprobe_disarmed(p) kprobe_disabled(p) 894 #define wait_for_kprobe_optimizer() do {} while (0) 895 896 /* There should be no unused kprobes can be reused without optimization */ 897 static void reuse_unused_kprobe(struct kprobe *ap) 898 { 899 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 900 BUG_ON(kprobe_unused(ap)); 901 } 902 903 static void free_aggr_kprobe(struct kprobe *p) 904 { 905 arch_remove_kprobe(p); 906 kfree(p); 907 } 908 909 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 910 { 911 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 912 } 913 #endif /* CONFIG_OPTPROBES */ 914 915 #ifdef CONFIG_KPROBES_ON_FTRACE 916 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 917 .func = kprobe_ftrace_handler, 918 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 919 }; 920 static int kprobe_ftrace_enabled; 921 922 /* Must ensure p->addr is really on ftrace */ 923 static int prepare_kprobe(struct kprobe *p) 924 { 925 if (!kprobe_ftrace(p)) 926 return arch_prepare_kprobe(p); 927 928 return arch_prepare_kprobe_ftrace(p); 929 } 930 931 /* Caller must lock kprobe_mutex */ 932 static void arm_kprobe_ftrace(struct kprobe *p) 933 { 934 int ret; 935 936 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 937 (unsigned long)p->addr, 0, 0); 938 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret); 939 kprobe_ftrace_enabled++; 940 if (kprobe_ftrace_enabled == 1) { 941 ret = register_ftrace_function(&kprobe_ftrace_ops); 942 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 943 } 944 } 945 946 /* Caller must lock kprobe_mutex */ 947 static void disarm_kprobe_ftrace(struct kprobe *p) 948 { 949 int ret; 950 951 kprobe_ftrace_enabled--; 952 if (kprobe_ftrace_enabled == 0) { 953 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 954 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 955 } 956 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 957 (unsigned long)p->addr, 1, 0); 958 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret); 959 } 960 #else /* !CONFIG_KPROBES_ON_FTRACE */ 961 #define prepare_kprobe(p) arch_prepare_kprobe(p) 962 #define arm_kprobe_ftrace(p) do {} while (0) 963 #define disarm_kprobe_ftrace(p) do {} while (0) 964 #endif 965 966 /* Arm a kprobe with text_mutex */ 967 static void arm_kprobe(struct kprobe *kp) 968 { 969 if (unlikely(kprobe_ftrace(kp))) { 970 arm_kprobe_ftrace(kp); 971 return; 972 } 973 /* 974 * Here, since __arm_kprobe() doesn't use stop_machine(), 975 * this doesn't cause deadlock on text_mutex. So, we don't 976 * need get_online_cpus(). 977 */ 978 mutex_lock(&text_mutex); 979 __arm_kprobe(kp); 980 mutex_unlock(&text_mutex); 981 } 982 983 /* Disarm a kprobe with text_mutex */ 984 static void disarm_kprobe(struct kprobe *kp, bool reopt) 985 { 986 if (unlikely(kprobe_ftrace(kp))) { 987 disarm_kprobe_ftrace(kp); 988 return; 989 } 990 /* Ditto */ 991 mutex_lock(&text_mutex); 992 __disarm_kprobe(kp, reopt); 993 mutex_unlock(&text_mutex); 994 } 995 996 /* 997 * Aggregate handlers for multiple kprobes support - these handlers 998 * take care of invoking the individual kprobe handlers on p->list 999 */ 1000 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1001 { 1002 struct kprobe *kp; 1003 1004 list_for_each_entry_rcu(kp, &p->list, list) { 1005 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1006 set_kprobe_instance(kp); 1007 if (kp->pre_handler(kp, regs)) 1008 return 1; 1009 } 1010 reset_kprobe_instance(); 1011 } 1012 return 0; 1013 } 1014 NOKPROBE_SYMBOL(aggr_pre_handler); 1015 1016 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1017 unsigned long flags) 1018 { 1019 struct kprobe *kp; 1020 1021 list_for_each_entry_rcu(kp, &p->list, list) { 1022 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1023 set_kprobe_instance(kp); 1024 kp->post_handler(kp, regs, flags); 1025 reset_kprobe_instance(); 1026 } 1027 } 1028 } 1029 NOKPROBE_SYMBOL(aggr_post_handler); 1030 1031 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1032 int trapnr) 1033 { 1034 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1035 1036 /* 1037 * if we faulted "during" the execution of a user specified 1038 * probe handler, invoke just that probe's fault handler 1039 */ 1040 if (cur && cur->fault_handler) { 1041 if (cur->fault_handler(cur, regs, trapnr)) 1042 return 1; 1043 } 1044 return 0; 1045 } 1046 NOKPROBE_SYMBOL(aggr_fault_handler); 1047 1048 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 1049 { 1050 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1051 int ret = 0; 1052 1053 if (cur && cur->break_handler) { 1054 if (cur->break_handler(cur, regs)) 1055 ret = 1; 1056 } 1057 reset_kprobe_instance(); 1058 return ret; 1059 } 1060 NOKPROBE_SYMBOL(aggr_break_handler); 1061 1062 /* Walks the list and increments nmissed count for multiprobe case */ 1063 void kprobes_inc_nmissed_count(struct kprobe *p) 1064 { 1065 struct kprobe *kp; 1066 if (!kprobe_aggrprobe(p)) { 1067 p->nmissed++; 1068 } else { 1069 list_for_each_entry_rcu(kp, &p->list, list) 1070 kp->nmissed++; 1071 } 1072 return; 1073 } 1074 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1075 1076 void recycle_rp_inst(struct kretprobe_instance *ri, 1077 struct hlist_head *head) 1078 { 1079 struct kretprobe *rp = ri->rp; 1080 1081 /* remove rp inst off the rprobe_inst_table */ 1082 hlist_del(&ri->hlist); 1083 INIT_HLIST_NODE(&ri->hlist); 1084 if (likely(rp)) { 1085 raw_spin_lock(&rp->lock); 1086 hlist_add_head(&ri->hlist, &rp->free_instances); 1087 raw_spin_unlock(&rp->lock); 1088 } else 1089 /* Unregistering */ 1090 hlist_add_head(&ri->hlist, head); 1091 } 1092 NOKPROBE_SYMBOL(recycle_rp_inst); 1093 1094 void kretprobe_hash_lock(struct task_struct *tsk, 1095 struct hlist_head **head, unsigned long *flags) 1096 __acquires(hlist_lock) 1097 { 1098 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1099 raw_spinlock_t *hlist_lock; 1100 1101 *head = &kretprobe_inst_table[hash]; 1102 hlist_lock = kretprobe_table_lock_ptr(hash); 1103 raw_spin_lock_irqsave(hlist_lock, *flags); 1104 } 1105 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1106 1107 static void kretprobe_table_lock(unsigned long hash, 1108 unsigned long *flags) 1109 __acquires(hlist_lock) 1110 { 1111 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1112 raw_spin_lock_irqsave(hlist_lock, *flags); 1113 } 1114 NOKPROBE_SYMBOL(kretprobe_table_lock); 1115 1116 void kretprobe_hash_unlock(struct task_struct *tsk, 1117 unsigned long *flags) 1118 __releases(hlist_lock) 1119 { 1120 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1121 raw_spinlock_t *hlist_lock; 1122 1123 hlist_lock = kretprobe_table_lock_ptr(hash); 1124 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1125 } 1126 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1127 1128 static void kretprobe_table_unlock(unsigned long hash, 1129 unsigned long *flags) 1130 __releases(hlist_lock) 1131 { 1132 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1133 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1134 } 1135 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1136 1137 /* 1138 * This function is called from finish_task_switch when task tk becomes dead, 1139 * so that we can recycle any function-return probe instances associated 1140 * with this task. These left over instances represent probed functions 1141 * that have been called but will never return. 1142 */ 1143 void kprobe_flush_task(struct task_struct *tk) 1144 { 1145 struct kretprobe_instance *ri; 1146 struct hlist_head *head, empty_rp; 1147 struct hlist_node *tmp; 1148 unsigned long hash, flags = 0; 1149 1150 if (unlikely(!kprobes_initialized)) 1151 /* Early boot. kretprobe_table_locks not yet initialized. */ 1152 return; 1153 1154 INIT_HLIST_HEAD(&empty_rp); 1155 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1156 head = &kretprobe_inst_table[hash]; 1157 kretprobe_table_lock(hash, &flags); 1158 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1159 if (ri->task == tk) 1160 recycle_rp_inst(ri, &empty_rp); 1161 } 1162 kretprobe_table_unlock(hash, &flags); 1163 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1164 hlist_del(&ri->hlist); 1165 kfree(ri); 1166 } 1167 } 1168 NOKPROBE_SYMBOL(kprobe_flush_task); 1169 1170 static inline void free_rp_inst(struct kretprobe *rp) 1171 { 1172 struct kretprobe_instance *ri; 1173 struct hlist_node *next; 1174 1175 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1176 hlist_del(&ri->hlist); 1177 kfree(ri); 1178 } 1179 } 1180 1181 static void cleanup_rp_inst(struct kretprobe *rp) 1182 { 1183 unsigned long flags, hash; 1184 struct kretprobe_instance *ri; 1185 struct hlist_node *next; 1186 struct hlist_head *head; 1187 1188 /* No race here */ 1189 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1190 kretprobe_table_lock(hash, &flags); 1191 head = &kretprobe_inst_table[hash]; 1192 hlist_for_each_entry_safe(ri, next, head, hlist) { 1193 if (ri->rp == rp) 1194 ri->rp = NULL; 1195 } 1196 kretprobe_table_unlock(hash, &flags); 1197 } 1198 free_rp_inst(rp); 1199 } 1200 NOKPROBE_SYMBOL(cleanup_rp_inst); 1201 1202 /* 1203 * Add the new probe to ap->list. Fail if this is the 1204 * second jprobe at the address - two jprobes can't coexist 1205 */ 1206 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1207 { 1208 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1209 1210 if (p->break_handler || p->post_handler) 1211 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1212 1213 if (p->break_handler) { 1214 if (ap->break_handler) 1215 return -EEXIST; 1216 list_add_tail_rcu(&p->list, &ap->list); 1217 ap->break_handler = aggr_break_handler; 1218 } else 1219 list_add_rcu(&p->list, &ap->list); 1220 if (p->post_handler && !ap->post_handler) 1221 ap->post_handler = aggr_post_handler; 1222 1223 return 0; 1224 } 1225 1226 /* 1227 * Fill in the required fields of the "manager kprobe". Replace the 1228 * earlier kprobe in the hlist with the manager kprobe 1229 */ 1230 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1231 { 1232 /* Copy p's insn slot to ap */ 1233 copy_kprobe(p, ap); 1234 flush_insn_slot(ap); 1235 ap->addr = p->addr; 1236 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1237 ap->pre_handler = aggr_pre_handler; 1238 ap->fault_handler = aggr_fault_handler; 1239 /* We don't care the kprobe which has gone. */ 1240 if (p->post_handler && !kprobe_gone(p)) 1241 ap->post_handler = aggr_post_handler; 1242 if (p->break_handler && !kprobe_gone(p)) 1243 ap->break_handler = aggr_break_handler; 1244 1245 INIT_LIST_HEAD(&ap->list); 1246 INIT_HLIST_NODE(&ap->hlist); 1247 1248 list_add_rcu(&p->list, &ap->list); 1249 hlist_replace_rcu(&p->hlist, &ap->hlist); 1250 } 1251 1252 /* 1253 * This is the second or subsequent kprobe at the address - handle 1254 * the intricacies 1255 */ 1256 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1257 { 1258 int ret = 0; 1259 struct kprobe *ap = orig_p; 1260 1261 /* For preparing optimization, jump_label_text_reserved() is called */ 1262 jump_label_lock(); 1263 /* 1264 * Get online CPUs to avoid text_mutex deadlock.with stop machine, 1265 * which is invoked by unoptimize_kprobe() in add_new_kprobe() 1266 */ 1267 get_online_cpus(); 1268 mutex_lock(&text_mutex); 1269 1270 if (!kprobe_aggrprobe(orig_p)) { 1271 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1272 ap = alloc_aggr_kprobe(orig_p); 1273 if (!ap) { 1274 ret = -ENOMEM; 1275 goto out; 1276 } 1277 init_aggr_kprobe(ap, orig_p); 1278 } else if (kprobe_unused(ap)) 1279 /* This probe is going to die. Rescue it */ 1280 reuse_unused_kprobe(ap); 1281 1282 if (kprobe_gone(ap)) { 1283 /* 1284 * Attempting to insert new probe at the same location that 1285 * had a probe in the module vaddr area which already 1286 * freed. So, the instruction slot has already been 1287 * released. We need a new slot for the new probe. 1288 */ 1289 ret = arch_prepare_kprobe(ap); 1290 if (ret) 1291 /* 1292 * Even if fail to allocate new slot, don't need to 1293 * free aggr_probe. It will be used next time, or 1294 * freed by unregister_kprobe. 1295 */ 1296 goto out; 1297 1298 /* Prepare optimized instructions if possible. */ 1299 prepare_optimized_kprobe(ap); 1300 1301 /* 1302 * Clear gone flag to prevent allocating new slot again, and 1303 * set disabled flag because it is not armed yet. 1304 */ 1305 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1306 | KPROBE_FLAG_DISABLED; 1307 } 1308 1309 /* Copy ap's insn slot to p */ 1310 copy_kprobe(ap, p); 1311 ret = add_new_kprobe(ap, p); 1312 1313 out: 1314 mutex_unlock(&text_mutex); 1315 put_online_cpus(); 1316 jump_label_unlock(); 1317 1318 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1319 ap->flags &= ~KPROBE_FLAG_DISABLED; 1320 if (!kprobes_all_disarmed) 1321 /* Arm the breakpoint again. */ 1322 arm_kprobe(ap); 1323 } 1324 return ret; 1325 } 1326 1327 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1328 { 1329 /* The __kprobes marked functions and entry code must not be probed */ 1330 return addr >= (unsigned long)__kprobes_text_start && 1331 addr < (unsigned long)__kprobes_text_end; 1332 } 1333 1334 static bool within_kprobe_blacklist(unsigned long addr) 1335 { 1336 struct kprobe_blacklist_entry *ent; 1337 1338 if (arch_within_kprobe_blacklist(addr)) 1339 return true; 1340 /* 1341 * If there exists a kprobe_blacklist, verify and 1342 * fail any probe registration in the prohibited area 1343 */ 1344 list_for_each_entry(ent, &kprobe_blacklist, list) { 1345 if (addr >= ent->start_addr && addr < ent->end_addr) 1346 return true; 1347 } 1348 1349 return false; 1350 } 1351 1352 /* 1353 * If we have a symbol_name argument, look it up and add the offset field 1354 * to it. This way, we can specify a relative address to a symbol. 1355 * This returns encoded errors if it fails to look up symbol or invalid 1356 * combination of parameters. 1357 */ 1358 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1359 { 1360 kprobe_opcode_t *addr = p->addr; 1361 1362 if ((p->symbol_name && p->addr) || 1363 (!p->symbol_name && !p->addr)) 1364 goto invalid; 1365 1366 if (p->symbol_name) { 1367 kprobe_lookup_name(p->symbol_name, addr); 1368 if (!addr) 1369 return ERR_PTR(-ENOENT); 1370 } 1371 1372 addr = (kprobe_opcode_t *)(((char *)addr) + p->offset); 1373 if (addr) 1374 return addr; 1375 1376 invalid: 1377 return ERR_PTR(-EINVAL); 1378 } 1379 1380 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1381 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1382 { 1383 struct kprobe *ap, *list_p; 1384 1385 ap = get_kprobe(p->addr); 1386 if (unlikely(!ap)) 1387 return NULL; 1388 1389 if (p != ap) { 1390 list_for_each_entry_rcu(list_p, &ap->list, list) 1391 if (list_p == p) 1392 /* kprobe p is a valid probe */ 1393 goto valid; 1394 return NULL; 1395 } 1396 valid: 1397 return ap; 1398 } 1399 1400 /* Return error if the kprobe is being re-registered */ 1401 static inline int check_kprobe_rereg(struct kprobe *p) 1402 { 1403 int ret = 0; 1404 1405 mutex_lock(&kprobe_mutex); 1406 if (__get_valid_kprobe(p)) 1407 ret = -EINVAL; 1408 mutex_unlock(&kprobe_mutex); 1409 1410 return ret; 1411 } 1412 1413 int __weak arch_check_ftrace_location(struct kprobe *p) 1414 { 1415 unsigned long ftrace_addr; 1416 1417 ftrace_addr = ftrace_location((unsigned long)p->addr); 1418 if (ftrace_addr) { 1419 #ifdef CONFIG_KPROBES_ON_FTRACE 1420 /* Given address is not on the instruction boundary */ 1421 if ((unsigned long)p->addr != ftrace_addr) 1422 return -EILSEQ; 1423 p->flags |= KPROBE_FLAG_FTRACE; 1424 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1425 return -EINVAL; 1426 #endif 1427 } 1428 return 0; 1429 } 1430 1431 static int check_kprobe_address_safe(struct kprobe *p, 1432 struct module **probed_mod) 1433 { 1434 int ret; 1435 1436 ret = arch_check_ftrace_location(p); 1437 if (ret) 1438 return ret; 1439 jump_label_lock(); 1440 preempt_disable(); 1441 1442 /* Ensure it is not in reserved area nor out of text */ 1443 if (!kernel_text_address((unsigned long) p->addr) || 1444 within_kprobe_blacklist((unsigned long) p->addr) || 1445 jump_label_text_reserved(p->addr, p->addr)) { 1446 ret = -EINVAL; 1447 goto out; 1448 } 1449 1450 /* Check if are we probing a module */ 1451 *probed_mod = __module_text_address((unsigned long) p->addr); 1452 if (*probed_mod) { 1453 /* 1454 * We must hold a refcount of the probed module while updating 1455 * its code to prohibit unexpected unloading. 1456 */ 1457 if (unlikely(!try_module_get(*probed_mod))) { 1458 ret = -ENOENT; 1459 goto out; 1460 } 1461 1462 /* 1463 * If the module freed .init.text, we couldn't insert 1464 * kprobes in there. 1465 */ 1466 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1467 (*probed_mod)->state != MODULE_STATE_COMING) { 1468 module_put(*probed_mod); 1469 *probed_mod = NULL; 1470 ret = -ENOENT; 1471 } 1472 } 1473 out: 1474 preempt_enable(); 1475 jump_label_unlock(); 1476 1477 return ret; 1478 } 1479 1480 int register_kprobe(struct kprobe *p) 1481 { 1482 int ret; 1483 struct kprobe *old_p; 1484 struct module *probed_mod; 1485 kprobe_opcode_t *addr; 1486 1487 /* Adjust probe address from symbol */ 1488 addr = kprobe_addr(p); 1489 if (IS_ERR(addr)) 1490 return PTR_ERR(addr); 1491 p->addr = addr; 1492 1493 ret = check_kprobe_rereg(p); 1494 if (ret) 1495 return ret; 1496 1497 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1498 p->flags &= KPROBE_FLAG_DISABLED; 1499 p->nmissed = 0; 1500 INIT_LIST_HEAD(&p->list); 1501 1502 ret = check_kprobe_address_safe(p, &probed_mod); 1503 if (ret) 1504 return ret; 1505 1506 mutex_lock(&kprobe_mutex); 1507 1508 old_p = get_kprobe(p->addr); 1509 if (old_p) { 1510 /* Since this may unoptimize old_p, locking text_mutex. */ 1511 ret = register_aggr_kprobe(old_p, p); 1512 goto out; 1513 } 1514 1515 mutex_lock(&text_mutex); /* Avoiding text modification */ 1516 ret = prepare_kprobe(p); 1517 mutex_unlock(&text_mutex); 1518 if (ret) 1519 goto out; 1520 1521 INIT_HLIST_NODE(&p->hlist); 1522 hlist_add_head_rcu(&p->hlist, 1523 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1524 1525 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1526 arm_kprobe(p); 1527 1528 /* Try to optimize kprobe */ 1529 try_to_optimize_kprobe(p); 1530 1531 out: 1532 mutex_unlock(&kprobe_mutex); 1533 1534 if (probed_mod) 1535 module_put(probed_mod); 1536 1537 return ret; 1538 } 1539 EXPORT_SYMBOL_GPL(register_kprobe); 1540 1541 /* Check if all probes on the aggrprobe are disabled */ 1542 static int aggr_kprobe_disabled(struct kprobe *ap) 1543 { 1544 struct kprobe *kp; 1545 1546 list_for_each_entry_rcu(kp, &ap->list, list) 1547 if (!kprobe_disabled(kp)) 1548 /* 1549 * There is an active probe on the list. 1550 * We can't disable this ap. 1551 */ 1552 return 0; 1553 1554 return 1; 1555 } 1556 1557 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1558 static struct kprobe *__disable_kprobe(struct kprobe *p) 1559 { 1560 struct kprobe *orig_p; 1561 1562 /* Get an original kprobe for return */ 1563 orig_p = __get_valid_kprobe(p); 1564 if (unlikely(orig_p == NULL)) 1565 return NULL; 1566 1567 if (!kprobe_disabled(p)) { 1568 /* Disable probe if it is a child probe */ 1569 if (p != orig_p) 1570 p->flags |= KPROBE_FLAG_DISABLED; 1571 1572 /* Try to disarm and disable this/parent probe */ 1573 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1574 disarm_kprobe(orig_p, true); 1575 orig_p->flags |= KPROBE_FLAG_DISABLED; 1576 } 1577 } 1578 1579 return orig_p; 1580 } 1581 1582 /* 1583 * Unregister a kprobe without a scheduler synchronization. 1584 */ 1585 static int __unregister_kprobe_top(struct kprobe *p) 1586 { 1587 struct kprobe *ap, *list_p; 1588 1589 /* Disable kprobe. This will disarm it if needed. */ 1590 ap = __disable_kprobe(p); 1591 if (ap == NULL) 1592 return -EINVAL; 1593 1594 if (ap == p) 1595 /* 1596 * This probe is an independent(and non-optimized) kprobe 1597 * (not an aggrprobe). Remove from the hash list. 1598 */ 1599 goto disarmed; 1600 1601 /* Following process expects this probe is an aggrprobe */ 1602 WARN_ON(!kprobe_aggrprobe(ap)); 1603 1604 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1605 /* 1606 * !disarmed could be happen if the probe is under delayed 1607 * unoptimizing. 1608 */ 1609 goto disarmed; 1610 else { 1611 /* If disabling probe has special handlers, update aggrprobe */ 1612 if (p->break_handler && !kprobe_gone(p)) 1613 ap->break_handler = NULL; 1614 if (p->post_handler && !kprobe_gone(p)) { 1615 list_for_each_entry_rcu(list_p, &ap->list, list) { 1616 if ((list_p != p) && (list_p->post_handler)) 1617 goto noclean; 1618 } 1619 ap->post_handler = NULL; 1620 } 1621 noclean: 1622 /* 1623 * Remove from the aggrprobe: this path will do nothing in 1624 * __unregister_kprobe_bottom(). 1625 */ 1626 list_del_rcu(&p->list); 1627 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1628 /* 1629 * Try to optimize this probe again, because post 1630 * handler may have been changed. 1631 */ 1632 optimize_kprobe(ap); 1633 } 1634 return 0; 1635 1636 disarmed: 1637 BUG_ON(!kprobe_disarmed(ap)); 1638 hlist_del_rcu(&ap->hlist); 1639 return 0; 1640 } 1641 1642 static void __unregister_kprobe_bottom(struct kprobe *p) 1643 { 1644 struct kprobe *ap; 1645 1646 if (list_empty(&p->list)) 1647 /* This is an independent kprobe */ 1648 arch_remove_kprobe(p); 1649 else if (list_is_singular(&p->list)) { 1650 /* This is the last child of an aggrprobe */ 1651 ap = list_entry(p->list.next, struct kprobe, list); 1652 list_del(&p->list); 1653 free_aggr_kprobe(ap); 1654 } 1655 /* Otherwise, do nothing. */ 1656 } 1657 1658 int register_kprobes(struct kprobe **kps, int num) 1659 { 1660 int i, ret = 0; 1661 1662 if (num <= 0) 1663 return -EINVAL; 1664 for (i = 0; i < num; i++) { 1665 ret = register_kprobe(kps[i]); 1666 if (ret < 0) { 1667 if (i > 0) 1668 unregister_kprobes(kps, i); 1669 break; 1670 } 1671 } 1672 return ret; 1673 } 1674 EXPORT_SYMBOL_GPL(register_kprobes); 1675 1676 void unregister_kprobe(struct kprobe *p) 1677 { 1678 unregister_kprobes(&p, 1); 1679 } 1680 EXPORT_SYMBOL_GPL(unregister_kprobe); 1681 1682 void unregister_kprobes(struct kprobe **kps, int num) 1683 { 1684 int i; 1685 1686 if (num <= 0) 1687 return; 1688 mutex_lock(&kprobe_mutex); 1689 for (i = 0; i < num; i++) 1690 if (__unregister_kprobe_top(kps[i]) < 0) 1691 kps[i]->addr = NULL; 1692 mutex_unlock(&kprobe_mutex); 1693 1694 synchronize_sched(); 1695 for (i = 0; i < num; i++) 1696 if (kps[i]->addr) 1697 __unregister_kprobe_bottom(kps[i]); 1698 } 1699 EXPORT_SYMBOL_GPL(unregister_kprobes); 1700 1701 static struct notifier_block kprobe_exceptions_nb = { 1702 .notifier_call = kprobe_exceptions_notify, 1703 .priority = 0x7fffffff /* we need to be notified first */ 1704 }; 1705 1706 unsigned long __weak arch_deref_entry_point(void *entry) 1707 { 1708 return (unsigned long)entry; 1709 } 1710 1711 int register_jprobes(struct jprobe **jps, int num) 1712 { 1713 struct jprobe *jp; 1714 int ret = 0, i; 1715 1716 if (num <= 0) 1717 return -EINVAL; 1718 for (i = 0; i < num; i++) { 1719 unsigned long addr, offset; 1720 jp = jps[i]; 1721 addr = arch_deref_entry_point(jp->entry); 1722 1723 /* Verify probepoint is a function entry point */ 1724 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && 1725 offset == 0) { 1726 jp->kp.pre_handler = setjmp_pre_handler; 1727 jp->kp.break_handler = longjmp_break_handler; 1728 ret = register_kprobe(&jp->kp); 1729 } else 1730 ret = -EINVAL; 1731 1732 if (ret < 0) { 1733 if (i > 0) 1734 unregister_jprobes(jps, i); 1735 break; 1736 } 1737 } 1738 return ret; 1739 } 1740 EXPORT_SYMBOL_GPL(register_jprobes); 1741 1742 int register_jprobe(struct jprobe *jp) 1743 { 1744 return register_jprobes(&jp, 1); 1745 } 1746 EXPORT_SYMBOL_GPL(register_jprobe); 1747 1748 void unregister_jprobe(struct jprobe *jp) 1749 { 1750 unregister_jprobes(&jp, 1); 1751 } 1752 EXPORT_SYMBOL_GPL(unregister_jprobe); 1753 1754 void unregister_jprobes(struct jprobe **jps, int num) 1755 { 1756 int i; 1757 1758 if (num <= 0) 1759 return; 1760 mutex_lock(&kprobe_mutex); 1761 for (i = 0; i < num; i++) 1762 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1763 jps[i]->kp.addr = NULL; 1764 mutex_unlock(&kprobe_mutex); 1765 1766 synchronize_sched(); 1767 for (i = 0; i < num; i++) { 1768 if (jps[i]->kp.addr) 1769 __unregister_kprobe_bottom(&jps[i]->kp); 1770 } 1771 } 1772 EXPORT_SYMBOL_GPL(unregister_jprobes); 1773 1774 #ifdef CONFIG_KRETPROBES 1775 /* 1776 * This kprobe pre_handler is registered with every kretprobe. When probe 1777 * hits it will set up the return probe. 1778 */ 1779 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1780 { 1781 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1782 unsigned long hash, flags = 0; 1783 struct kretprobe_instance *ri; 1784 1785 /* 1786 * To avoid deadlocks, prohibit return probing in NMI contexts, 1787 * just skip the probe and increase the (inexact) 'nmissed' 1788 * statistical counter, so that the user is informed that 1789 * something happened: 1790 */ 1791 if (unlikely(in_nmi())) { 1792 rp->nmissed++; 1793 return 0; 1794 } 1795 1796 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1797 hash = hash_ptr(current, KPROBE_HASH_BITS); 1798 raw_spin_lock_irqsave(&rp->lock, flags); 1799 if (!hlist_empty(&rp->free_instances)) { 1800 ri = hlist_entry(rp->free_instances.first, 1801 struct kretprobe_instance, hlist); 1802 hlist_del(&ri->hlist); 1803 raw_spin_unlock_irqrestore(&rp->lock, flags); 1804 1805 ri->rp = rp; 1806 ri->task = current; 1807 1808 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1809 raw_spin_lock_irqsave(&rp->lock, flags); 1810 hlist_add_head(&ri->hlist, &rp->free_instances); 1811 raw_spin_unlock_irqrestore(&rp->lock, flags); 1812 return 0; 1813 } 1814 1815 arch_prepare_kretprobe(ri, regs); 1816 1817 /* XXX(hch): why is there no hlist_move_head? */ 1818 INIT_HLIST_NODE(&ri->hlist); 1819 kretprobe_table_lock(hash, &flags); 1820 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1821 kretprobe_table_unlock(hash, &flags); 1822 } else { 1823 rp->nmissed++; 1824 raw_spin_unlock_irqrestore(&rp->lock, flags); 1825 } 1826 return 0; 1827 } 1828 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1829 1830 int register_kretprobe(struct kretprobe *rp) 1831 { 1832 int ret = 0; 1833 struct kretprobe_instance *inst; 1834 int i; 1835 void *addr; 1836 1837 if (kretprobe_blacklist_size) { 1838 addr = kprobe_addr(&rp->kp); 1839 if (IS_ERR(addr)) 1840 return PTR_ERR(addr); 1841 1842 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1843 if (kretprobe_blacklist[i].addr == addr) 1844 return -EINVAL; 1845 } 1846 } 1847 1848 rp->kp.pre_handler = pre_handler_kretprobe; 1849 rp->kp.post_handler = NULL; 1850 rp->kp.fault_handler = NULL; 1851 rp->kp.break_handler = NULL; 1852 1853 /* Pre-allocate memory for max kretprobe instances */ 1854 if (rp->maxactive <= 0) { 1855 #ifdef CONFIG_PREEMPT 1856 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1857 #else 1858 rp->maxactive = num_possible_cpus(); 1859 #endif 1860 } 1861 raw_spin_lock_init(&rp->lock); 1862 INIT_HLIST_HEAD(&rp->free_instances); 1863 for (i = 0; i < rp->maxactive; i++) { 1864 inst = kmalloc(sizeof(struct kretprobe_instance) + 1865 rp->data_size, GFP_KERNEL); 1866 if (inst == NULL) { 1867 free_rp_inst(rp); 1868 return -ENOMEM; 1869 } 1870 INIT_HLIST_NODE(&inst->hlist); 1871 hlist_add_head(&inst->hlist, &rp->free_instances); 1872 } 1873 1874 rp->nmissed = 0; 1875 /* Establish function entry probe point */ 1876 ret = register_kprobe(&rp->kp); 1877 if (ret != 0) 1878 free_rp_inst(rp); 1879 return ret; 1880 } 1881 EXPORT_SYMBOL_GPL(register_kretprobe); 1882 1883 int register_kretprobes(struct kretprobe **rps, int num) 1884 { 1885 int ret = 0, i; 1886 1887 if (num <= 0) 1888 return -EINVAL; 1889 for (i = 0; i < num; i++) { 1890 ret = register_kretprobe(rps[i]); 1891 if (ret < 0) { 1892 if (i > 0) 1893 unregister_kretprobes(rps, i); 1894 break; 1895 } 1896 } 1897 return ret; 1898 } 1899 EXPORT_SYMBOL_GPL(register_kretprobes); 1900 1901 void unregister_kretprobe(struct kretprobe *rp) 1902 { 1903 unregister_kretprobes(&rp, 1); 1904 } 1905 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1906 1907 void unregister_kretprobes(struct kretprobe **rps, int num) 1908 { 1909 int i; 1910 1911 if (num <= 0) 1912 return; 1913 mutex_lock(&kprobe_mutex); 1914 for (i = 0; i < num; i++) 1915 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1916 rps[i]->kp.addr = NULL; 1917 mutex_unlock(&kprobe_mutex); 1918 1919 synchronize_sched(); 1920 for (i = 0; i < num; i++) { 1921 if (rps[i]->kp.addr) { 1922 __unregister_kprobe_bottom(&rps[i]->kp); 1923 cleanup_rp_inst(rps[i]); 1924 } 1925 } 1926 } 1927 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1928 1929 #else /* CONFIG_KRETPROBES */ 1930 int register_kretprobe(struct kretprobe *rp) 1931 { 1932 return -ENOSYS; 1933 } 1934 EXPORT_SYMBOL_GPL(register_kretprobe); 1935 1936 int register_kretprobes(struct kretprobe **rps, int num) 1937 { 1938 return -ENOSYS; 1939 } 1940 EXPORT_SYMBOL_GPL(register_kretprobes); 1941 1942 void unregister_kretprobe(struct kretprobe *rp) 1943 { 1944 } 1945 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1946 1947 void unregister_kretprobes(struct kretprobe **rps, int num) 1948 { 1949 } 1950 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1951 1952 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1953 { 1954 return 0; 1955 } 1956 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1957 1958 #endif /* CONFIG_KRETPROBES */ 1959 1960 /* Set the kprobe gone and remove its instruction buffer. */ 1961 static void kill_kprobe(struct kprobe *p) 1962 { 1963 struct kprobe *kp; 1964 1965 p->flags |= KPROBE_FLAG_GONE; 1966 if (kprobe_aggrprobe(p)) { 1967 /* 1968 * If this is an aggr_kprobe, we have to list all the 1969 * chained probes and mark them GONE. 1970 */ 1971 list_for_each_entry_rcu(kp, &p->list, list) 1972 kp->flags |= KPROBE_FLAG_GONE; 1973 p->post_handler = NULL; 1974 p->break_handler = NULL; 1975 kill_optimized_kprobe(p); 1976 } 1977 /* 1978 * Here, we can remove insn_slot safely, because no thread calls 1979 * the original probed function (which will be freed soon) any more. 1980 */ 1981 arch_remove_kprobe(p); 1982 } 1983 1984 /* Disable one kprobe */ 1985 int disable_kprobe(struct kprobe *kp) 1986 { 1987 int ret = 0; 1988 1989 mutex_lock(&kprobe_mutex); 1990 1991 /* Disable this kprobe */ 1992 if (__disable_kprobe(kp) == NULL) 1993 ret = -EINVAL; 1994 1995 mutex_unlock(&kprobe_mutex); 1996 return ret; 1997 } 1998 EXPORT_SYMBOL_GPL(disable_kprobe); 1999 2000 /* Enable one kprobe */ 2001 int enable_kprobe(struct kprobe *kp) 2002 { 2003 int ret = 0; 2004 struct kprobe *p; 2005 2006 mutex_lock(&kprobe_mutex); 2007 2008 /* Check whether specified probe is valid. */ 2009 p = __get_valid_kprobe(kp); 2010 if (unlikely(p == NULL)) { 2011 ret = -EINVAL; 2012 goto out; 2013 } 2014 2015 if (kprobe_gone(kp)) { 2016 /* This kprobe has gone, we couldn't enable it. */ 2017 ret = -EINVAL; 2018 goto out; 2019 } 2020 2021 if (p != kp) 2022 kp->flags &= ~KPROBE_FLAG_DISABLED; 2023 2024 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2025 p->flags &= ~KPROBE_FLAG_DISABLED; 2026 arm_kprobe(p); 2027 } 2028 out: 2029 mutex_unlock(&kprobe_mutex); 2030 return ret; 2031 } 2032 EXPORT_SYMBOL_GPL(enable_kprobe); 2033 2034 void dump_kprobe(struct kprobe *kp) 2035 { 2036 printk(KERN_WARNING "Dumping kprobe:\n"); 2037 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 2038 kp->symbol_name, kp->addr, kp->offset); 2039 } 2040 NOKPROBE_SYMBOL(dump_kprobe); 2041 2042 /* 2043 * Lookup and populate the kprobe_blacklist. 2044 * 2045 * Unlike the kretprobe blacklist, we'll need to determine 2046 * the range of addresses that belong to the said functions, 2047 * since a kprobe need not necessarily be at the beginning 2048 * of a function. 2049 */ 2050 static int __init populate_kprobe_blacklist(unsigned long *start, 2051 unsigned long *end) 2052 { 2053 unsigned long *iter; 2054 struct kprobe_blacklist_entry *ent; 2055 unsigned long entry, offset = 0, size = 0; 2056 2057 for (iter = start; iter < end; iter++) { 2058 entry = arch_deref_entry_point((void *)*iter); 2059 2060 if (!kernel_text_address(entry) || 2061 !kallsyms_lookup_size_offset(entry, &size, &offset)) { 2062 pr_err("Failed to find blacklist at %p\n", 2063 (void *)entry); 2064 continue; 2065 } 2066 2067 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2068 if (!ent) 2069 return -ENOMEM; 2070 ent->start_addr = entry; 2071 ent->end_addr = entry + size; 2072 INIT_LIST_HEAD(&ent->list); 2073 list_add_tail(&ent->list, &kprobe_blacklist); 2074 } 2075 return 0; 2076 } 2077 2078 /* Module notifier call back, checking kprobes on the module */ 2079 static int kprobes_module_callback(struct notifier_block *nb, 2080 unsigned long val, void *data) 2081 { 2082 struct module *mod = data; 2083 struct hlist_head *head; 2084 struct kprobe *p; 2085 unsigned int i; 2086 int checkcore = (val == MODULE_STATE_GOING); 2087 2088 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2089 return NOTIFY_DONE; 2090 2091 /* 2092 * When MODULE_STATE_GOING was notified, both of module .text and 2093 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2094 * notified, only .init.text section would be freed. We need to 2095 * disable kprobes which have been inserted in the sections. 2096 */ 2097 mutex_lock(&kprobe_mutex); 2098 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2099 head = &kprobe_table[i]; 2100 hlist_for_each_entry_rcu(p, head, hlist) 2101 if (within_module_init((unsigned long)p->addr, mod) || 2102 (checkcore && 2103 within_module_core((unsigned long)p->addr, mod))) { 2104 /* 2105 * The vaddr this probe is installed will soon 2106 * be vfreed buy not synced to disk. Hence, 2107 * disarming the breakpoint isn't needed. 2108 */ 2109 kill_kprobe(p); 2110 } 2111 } 2112 mutex_unlock(&kprobe_mutex); 2113 return NOTIFY_DONE; 2114 } 2115 2116 static struct notifier_block kprobe_module_nb = { 2117 .notifier_call = kprobes_module_callback, 2118 .priority = 0 2119 }; 2120 2121 /* Markers of _kprobe_blacklist section */ 2122 extern unsigned long __start_kprobe_blacklist[]; 2123 extern unsigned long __stop_kprobe_blacklist[]; 2124 2125 static int __init init_kprobes(void) 2126 { 2127 int i, err = 0; 2128 2129 /* FIXME allocate the probe table, currently defined statically */ 2130 /* initialize all list heads */ 2131 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2132 INIT_HLIST_HEAD(&kprobe_table[i]); 2133 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2134 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2135 } 2136 2137 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2138 __stop_kprobe_blacklist); 2139 if (err) { 2140 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2141 pr_err("Please take care of using kprobes.\n"); 2142 } 2143 2144 if (kretprobe_blacklist_size) { 2145 /* lookup the function address from its name */ 2146 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2147 kprobe_lookup_name(kretprobe_blacklist[i].name, 2148 kretprobe_blacklist[i].addr); 2149 if (!kretprobe_blacklist[i].addr) 2150 printk("kretprobe: lookup failed: %s\n", 2151 kretprobe_blacklist[i].name); 2152 } 2153 } 2154 2155 #if defined(CONFIG_OPTPROBES) 2156 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2157 /* Init kprobe_optinsn_slots */ 2158 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2159 #endif 2160 /* By default, kprobes can be optimized */ 2161 kprobes_allow_optimization = true; 2162 #endif 2163 2164 /* By default, kprobes are armed */ 2165 kprobes_all_disarmed = false; 2166 2167 err = arch_init_kprobes(); 2168 if (!err) 2169 err = register_die_notifier(&kprobe_exceptions_nb); 2170 if (!err) 2171 err = register_module_notifier(&kprobe_module_nb); 2172 2173 kprobes_initialized = (err == 0); 2174 2175 if (!err) 2176 init_test_probes(); 2177 return err; 2178 } 2179 2180 #ifdef CONFIG_DEBUG_FS 2181 static void report_probe(struct seq_file *pi, struct kprobe *p, 2182 const char *sym, int offset, char *modname, struct kprobe *pp) 2183 { 2184 char *kprobe_type; 2185 2186 if (p->pre_handler == pre_handler_kretprobe) 2187 kprobe_type = "r"; 2188 else if (p->pre_handler == setjmp_pre_handler) 2189 kprobe_type = "j"; 2190 else 2191 kprobe_type = "k"; 2192 2193 if (sym) 2194 seq_printf(pi, "%p %s %s+0x%x %s ", 2195 p->addr, kprobe_type, sym, offset, 2196 (modname ? modname : " ")); 2197 else 2198 seq_printf(pi, "%p %s %p ", 2199 p->addr, kprobe_type, p->addr); 2200 2201 if (!pp) 2202 pp = p; 2203 seq_printf(pi, "%s%s%s%s\n", 2204 (kprobe_gone(p) ? "[GONE]" : ""), 2205 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2206 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2207 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2208 } 2209 2210 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2211 { 2212 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2213 } 2214 2215 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2216 { 2217 (*pos)++; 2218 if (*pos >= KPROBE_TABLE_SIZE) 2219 return NULL; 2220 return pos; 2221 } 2222 2223 static void kprobe_seq_stop(struct seq_file *f, void *v) 2224 { 2225 /* Nothing to do */ 2226 } 2227 2228 static int show_kprobe_addr(struct seq_file *pi, void *v) 2229 { 2230 struct hlist_head *head; 2231 struct kprobe *p, *kp; 2232 const char *sym = NULL; 2233 unsigned int i = *(loff_t *) v; 2234 unsigned long offset = 0; 2235 char *modname, namebuf[KSYM_NAME_LEN]; 2236 2237 head = &kprobe_table[i]; 2238 preempt_disable(); 2239 hlist_for_each_entry_rcu(p, head, hlist) { 2240 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2241 &offset, &modname, namebuf); 2242 if (kprobe_aggrprobe(p)) { 2243 list_for_each_entry_rcu(kp, &p->list, list) 2244 report_probe(pi, kp, sym, offset, modname, p); 2245 } else 2246 report_probe(pi, p, sym, offset, modname, NULL); 2247 } 2248 preempt_enable(); 2249 return 0; 2250 } 2251 2252 static const struct seq_operations kprobes_seq_ops = { 2253 .start = kprobe_seq_start, 2254 .next = kprobe_seq_next, 2255 .stop = kprobe_seq_stop, 2256 .show = show_kprobe_addr 2257 }; 2258 2259 static int kprobes_open(struct inode *inode, struct file *filp) 2260 { 2261 return seq_open(filp, &kprobes_seq_ops); 2262 } 2263 2264 static const struct file_operations debugfs_kprobes_operations = { 2265 .open = kprobes_open, 2266 .read = seq_read, 2267 .llseek = seq_lseek, 2268 .release = seq_release, 2269 }; 2270 2271 /* kprobes/blacklist -- shows which functions can not be probed */ 2272 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2273 { 2274 return seq_list_start(&kprobe_blacklist, *pos); 2275 } 2276 2277 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2278 { 2279 return seq_list_next(v, &kprobe_blacklist, pos); 2280 } 2281 2282 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2283 { 2284 struct kprobe_blacklist_entry *ent = 2285 list_entry(v, struct kprobe_blacklist_entry, list); 2286 2287 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr, 2288 (void *)ent->end_addr, (void *)ent->start_addr); 2289 return 0; 2290 } 2291 2292 static const struct seq_operations kprobe_blacklist_seq_ops = { 2293 .start = kprobe_blacklist_seq_start, 2294 .next = kprobe_blacklist_seq_next, 2295 .stop = kprobe_seq_stop, /* Reuse void function */ 2296 .show = kprobe_blacklist_seq_show, 2297 }; 2298 2299 static int kprobe_blacklist_open(struct inode *inode, struct file *filp) 2300 { 2301 return seq_open(filp, &kprobe_blacklist_seq_ops); 2302 } 2303 2304 static const struct file_operations debugfs_kprobe_blacklist_ops = { 2305 .open = kprobe_blacklist_open, 2306 .read = seq_read, 2307 .llseek = seq_lseek, 2308 .release = seq_release, 2309 }; 2310 2311 static void arm_all_kprobes(void) 2312 { 2313 struct hlist_head *head; 2314 struct kprobe *p; 2315 unsigned int i; 2316 2317 mutex_lock(&kprobe_mutex); 2318 2319 /* If kprobes are armed, just return */ 2320 if (!kprobes_all_disarmed) 2321 goto already_enabled; 2322 2323 /* Arming kprobes doesn't optimize kprobe itself */ 2324 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2325 head = &kprobe_table[i]; 2326 hlist_for_each_entry_rcu(p, head, hlist) 2327 if (!kprobe_disabled(p)) 2328 arm_kprobe(p); 2329 } 2330 2331 kprobes_all_disarmed = false; 2332 printk(KERN_INFO "Kprobes globally enabled\n"); 2333 2334 already_enabled: 2335 mutex_unlock(&kprobe_mutex); 2336 return; 2337 } 2338 2339 static void disarm_all_kprobes(void) 2340 { 2341 struct hlist_head *head; 2342 struct kprobe *p; 2343 unsigned int i; 2344 2345 mutex_lock(&kprobe_mutex); 2346 2347 /* If kprobes are already disarmed, just return */ 2348 if (kprobes_all_disarmed) { 2349 mutex_unlock(&kprobe_mutex); 2350 return; 2351 } 2352 2353 kprobes_all_disarmed = true; 2354 printk(KERN_INFO "Kprobes globally disabled\n"); 2355 2356 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2357 head = &kprobe_table[i]; 2358 hlist_for_each_entry_rcu(p, head, hlist) { 2359 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 2360 disarm_kprobe(p, false); 2361 } 2362 } 2363 mutex_unlock(&kprobe_mutex); 2364 2365 /* Wait for disarming all kprobes by optimizer */ 2366 wait_for_kprobe_optimizer(); 2367 } 2368 2369 /* 2370 * XXX: The debugfs bool file interface doesn't allow for callbacks 2371 * when the bool state is switched. We can reuse that facility when 2372 * available 2373 */ 2374 static ssize_t read_enabled_file_bool(struct file *file, 2375 char __user *user_buf, size_t count, loff_t *ppos) 2376 { 2377 char buf[3]; 2378 2379 if (!kprobes_all_disarmed) 2380 buf[0] = '1'; 2381 else 2382 buf[0] = '0'; 2383 buf[1] = '\n'; 2384 buf[2] = 0x00; 2385 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2386 } 2387 2388 static ssize_t write_enabled_file_bool(struct file *file, 2389 const char __user *user_buf, size_t count, loff_t *ppos) 2390 { 2391 char buf[32]; 2392 size_t buf_size; 2393 2394 buf_size = min(count, (sizeof(buf)-1)); 2395 if (copy_from_user(buf, user_buf, buf_size)) 2396 return -EFAULT; 2397 2398 buf[buf_size] = '\0'; 2399 switch (buf[0]) { 2400 case 'y': 2401 case 'Y': 2402 case '1': 2403 arm_all_kprobes(); 2404 break; 2405 case 'n': 2406 case 'N': 2407 case '0': 2408 disarm_all_kprobes(); 2409 break; 2410 default: 2411 return -EINVAL; 2412 } 2413 2414 return count; 2415 } 2416 2417 static const struct file_operations fops_kp = { 2418 .read = read_enabled_file_bool, 2419 .write = write_enabled_file_bool, 2420 .llseek = default_llseek, 2421 }; 2422 2423 static int __init debugfs_kprobe_init(void) 2424 { 2425 struct dentry *dir, *file; 2426 unsigned int value = 1; 2427 2428 dir = debugfs_create_dir("kprobes", NULL); 2429 if (!dir) 2430 return -ENOMEM; 2431 2432 file = debugfs_create_file("list", 0444, dir, NULL, 2433 &debugfs_kprobes_operations); 2434 if (!file) 2435 goto error; 2436 2437 file = debugfs_create_file("enabled", 0600, dir, 2438 &value, &fops_kp); 2439 if (!file) 2440 goto error; 2441 2442 file = debugfs_create_file("blacklist", 0444, dir, NULL, 2443 &debugfs_kprobe_blacklist_ops); 2444 if (!file) 2445 goto error; 2446 2447 return 0; 2448 2449 error: 2450 debugfs_remove(dir); 2451 return -ENOMEM; 2452 } 2453 2454 late_initcall(debugfs_kprobe_init); 2455 #endif /* CONFIG_DEBUG_FS */ 2456 2457 module_init(init_kprobes); 2458 2459 /* defined in arch/.../kernel/kprobes.c */ 2460 EXPORT_SYMBOL_GPL(jprobe_return); 2461