1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/export.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <linux/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 /* 62 * Some oddball architectures like 64bit powerpc have function descriptors 63 * so this must be overridable. 64 */ 65 #ifndef kprobe_lookup_name 66 #define kprobe_lookup_name(name, addr) \ 67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 68 #endif 69 70 static int kprobes_initialized; 71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 73 74 /* NOTE: change this value only with kprobe_mutex held */ 75 static bool kprobes_all_disarmed; 76 77 /* This protects kprobe_table and optimizing_list */ 78 static DEFINE_MUTEX(kprobe_mutex); 79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 80 static struct { 81 raw_spinlock_t lock ____cacheline_aligned_in_smp; 82 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 83 84 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 85 { 86 return &(kretprobe_table_locks[hash].lock); 87 } 88 89 /* Blacklist -- list of struct kprobe_blacklist_entry */ 90 static LIST_HEAD(kprobe_blacklist); 91 92 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 93 /* 94 * kprobe->ainsn.insn points to the copy of the instruction to be 95 * single-stepped. x86_64, POWER4 and above have no-exec support and 96 * stepping on the instruction on a vmalloced/kmalloced/data page 97 * is a recipe for disaster 98 */ 99 struct kprobe_insn_page { 100 struct list_head list; 101 kprobe_opcode_t *insns; /* Page of instruction slots */ 102 struct kprobe_insn_cache *cache; 103 int nused; 104 int ngarbage; 105 char slot_used[]; 106 }; 107 108 #define KPROBE_INSN_PAGE_SIZE(slots) \ 109 (offsetof(struct kprobe_insn_page, slot_used) + \ 110 (sizeof(char) * (slots))) 111 112 static int slots_per_page(struct kprobe_insn_cache *c) 113 { 114 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 115 } 116 117 enum kprobe_slot_state { 118 SLOT_CLEAN = 0, 119 SLOT_DIRTY = 1, 120 SLOT_USED = 2, 121 }; 122 123 static void *alloc_insn_page(void) 124 { 125 return module_alloc(PAGE_SIZE); 126 } 127 128 static void free_insn_page(void *page) 129 { 130 module_memfree(page); 131 } 132 133 struct kprobe_insn_cache kprobe_insn_slots = { 134 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 135 .alloc = alloc_insn_page, 136 .free = free_insn_page, 137 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 138 .insn_size = MAX_INSN_SIZE, 139 .nr_garbage = 0, 140 }; 141 static int collect_garbage_slots(struct kprobe_insn_cache *c); 142 143 /** 144 * __get_insn_slot() - Find a slot on an executable page for an instruction. 145 * We allocate an executable page if there's no room on existing ones. 146 */ 147 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 148 { 149 struct kprobe_insn_page *kip; 150 kprobe_opcode_t *slot = NULL; 151 152 /* Since the slot array is not protected by rcu, we need a mutex */ 153 mutex_lock(&c->mutex); 154 retry: 155 rcu_read_lock(); 156 list_for_each_entry_rcu(kip, &c->pages, list) { 157 if (kip->nused < slots_per_page(c)) { 158 int i; 159 for (i = 0; i < slots_per_page(c); i++) { 160 if (kip->slot_used[i] == SLOT_CLEAN) { 161 kip->slot_used[i] = SLOT_USED; 162 kip->nused++; 163 slot = kip->insns + (i * c->insn_size); 164 rcu_read_unlock(); 165 goto out; 166 } 167 } 168 /* kip->nused is broken. Fix it. */ 169 kip->nused = slots_per_page(c); 170 WARN_ON(1); 171 } 172 } 173 rcu_read_unlock(); 174 175 /* If there are any garbage slots, collect it and try again. */ 176 if (c->nr_garbage && collect_garbage_slots(c) == 0) 177 goto retry; 178 179 /* All out of space. Need to allocate a new page. */ 180 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 181 if (!kip) 182 goto out; 183 184 /* 185 * Use module_alloc so this page is within +/- 2GB of where the 186 * kernel image and loaded module images reside. This is required 187 * so x86_64 can correctly handle the %rip-relative fixups. 188 */ 189 kip->insns = c->alloc(); 190 if (!kip->insns) { 191 kfree(kip); 192 goto out; 193 } 194 INIT_LIST_HEAD(&kip->list); 195 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 196 kip->slot_used[0] = SLOT_USED; 197 kip->nused = 1; 198 kip->ngarbage = 0; 199 kip->cache = c; 200 list_add_rcu(&kip->list, &c->pages); 201 slot = kip->insns; 202 out: 203 mutex_unlock(&c->mutex); 204 return slot; 205 } 206 207 /* Return 1 if all garbages are collected, otherwise 0. */ 208 static int collect_one_slot(struct kprobe_insn_page *kip, int idx) 209 { 210 kip->slot_used[idx] = SLOT_CLEAN; 211 kip->nused--; 212 if (kip->nused == 0) { 213 /* 214 * Page is no longer in use. Free it unless 215 * it's the last one. We keep the last one 216 * so as not to have to set it up again the 217 * next time somebody inserts a probe. 218 */ 219 if (!list_is_singular(&kip->list)) { 220 list_del_rcu(&kip->list); 221 synchronize_rcu(); 222 kip->cache->free(kip->insns); 223 kfree(kip); 224 } 225 return 1; 226 } 227 return 0; 228 } 229 230 static int collect_garbage_slots(struct kprobe_insn_cache *c) 231 { 232 struct kprobe_insn_page *kip, *next; 233 234 /* Ensure no-one is interrupted on the garbages */ 235 synchronize_sched(); 236 237 list_for_each_entry_safe(kip, next, &c->pages, list) { 238 int i; 239 if (kip->ngarbage == 0) 240 continue; 241 kip->ngarbage = 0; /* we will collect all garbages */ 242 for (i = 0; i < slots_per_page(c); i++) { 243 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 244 break; 245 } 246 } 247 c->nr_garbage = 0; 248 return 0; 249 } 250 251 void __free_insn_slot(struct kprobe_insn_cache *c, 252 kprobe_opcode_t *slot, int dirty) 253 { 254 struct kprobe_insn_page *kip; 255 long idx; 256 257 mutex_lock(&c->mutex); 258 rcu_read_lock(); 259 list_for_each_entry_rcu(kip, &c->pages, list) { 260 idx = ((long)slot - (long)kip->insns) / 261 (c->insn_size * sizeof(kprobe_opcode_t)); 262 if (idx >= 0 && idx < slots_per_page(c)) 263 goto out; 264 } 265 /* Could not find this slot. */ 266 WARN_ON(1); 267 kip = NULL; 268 out: 269 rcu_read_unlock(); 270 /* Mark and sweep: this may sleep */ 271 if (kip) { 272 /* Check double free */ 273 WARN_ON(kip->slot_used[idx] != SLOT_USED); 274 if (dirty) { 275 kip->slot_used[idx] = SLOT_DIRTY; 276 kip->ngarbage++; 277 if (++c->nr_garbage > slots_per_page(c)) 278 collect_garbage_slots(c); 279 } else { 280 collect_one_slot(kip, idx); 281 } 282 } 283 mutex_unlock(&c->mutex); 284 } 285 286 /* 287 * Check given address is on the page of kprobe instruction slots. 288 * This will be used for checking whether the address on a stack 289 * is on a text area or not. 290 */ 291 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 292 { 293 struct kprobe_insn_page *kip; 294 bool ret = false; 295 296 rcu_read_lock(); 297 list_for_each_entry_rcu(kip, &c->pages, list) { 298 if (addr >= (unsigned long)kip->insns && 299 addr < (unsigned long)kip->insns + PAGE_SIZE) { 300 ret = true; 301 break; 302 } 303 } 304 rcu_read_unlock(); 305 306 return ret; 307 } 308 309 #ifdef CONFIG_OPTPROBES 310 /* For optimized_kprobe buffer */ 311 struct kprobe_insn_cache kprobe_optinsn_slots = { 312 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 313 .alloc = alloc_insn_page, 314 .free = free_insn_page, 315 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 316 /* .insn_size is initialized later */ 317 .nr_garbage = 0, 318 }; 319 #endif 320 #endif 321 322 /* We have preemption disabled.. so it is safe to use __ versions */ 323 static inline void set_kprobe_instance(struct kprobe *kp) 324 { 325 __this_cpu_write(kprobe_instance, kp); 326 } 327 328 static inline void reset_kprobe_instance(void) 329 { 330 __this_cpu_write(kprobe_instance, NULL); 331 } 332 333 /* 334 * This routine is called either: 335 * - under the kprobe_mutex - during kprobe_[un]register() 336 * OR 337 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 338 */ 339 struct kprobe *get_kprobe(void *addr) 340 { 341 struct hlist_head *head; 342 struct kprobe *p; 343 344 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 345 hlist_for_each_entry_rcu(p, head, hlist) { 346 if (p->addr == addr) 347 return p; 348 } 349 350 return NULL; 351 } 352 NOKPROBE_SYMBOL(get_kprobe); 353 354 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 355 356 /* Return true if the kprobe is an aggregator */ 357 static inline int kprobe_aggrprobe(struct kprobe *p) 358 { 359 return p->pre_handler == aggr_pre_handler; 360 } 361 362 /* Return true(!0) if the kprobe is unused */ 363 static inline int kprobe_unused(struct kprobe *p) 364 { 365 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 366 list_empty(&p->list); 367 } 368 369 /* 370 * Keep all fields in the kprobe consistent 371 */ 372 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 373 { 374 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 375 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 376 } 377 378 #ifdef CONFIG_OPTPROBES 379 /* NOTE: change this value only with kprobe_mutex held */ 380 static bool kprobes_allow_optimization; 381 382 /* 383 * Call all pre_handler on the list, but ignores its return value. 384 * This must be called from arch-dep optimized caller. 385 */ 386 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 387 { 388 struct kprobe *kp; 389 390 list_for_each_entry_rcu(kp, &p->list, list) { 391 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 392 set_kprobe_instance(kp); 393 kp->pre_handler(kp, regs); 394 } 395 reset_kprobe_instance(); 396 } 397 } 398 NOKPROBE_SYMBOL(opt_pre_handler); 399 400 /* Free optimized instructions and optimized_kprobe */ 401 static void free_aggr_kprobe(struct kprobe *p) 402 { 403 struct optimized_kprobe *op; 404 405 op = container_of(p, struct optimized_kprobe, kp); 406 arch_remove_optimized_kprobe(op); 407 arch_remove_kprobe(p); 408 kfree(op); 409 } 410 411 /* Return true(!0) if the kprobe is ready for optimization. */ 412 static inline int kprobe_optready(struct kprobe *p) 413 { 414 struct optimized_kprobe *op; 415 416 if (kprobe_aggrprobe(p)) { 417 op = container_of(p, struct optimized_kprobe, kp); 418 return arch_prepared_optinsn(&op->optinsn); 419 } 420 421 return 0; 422 } 423 424 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */ 425 static inline int kprobe_disarmed(struct kprobe *p) 426 { 427 struct optimized_kprobe *op; 428 429 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 430 if (!kprobe_aggrprobe(p)) 431 return kprobe_disabled(p); 432 433 op = container_of(p, struct optimized_kprobe, kp); 434 435 return kprobe_disabled(p) && list_empty(&op->list); 436 } 437 438 /* Return true(!0) if the probe is queued on (un)optimizing lists */ 439 static int kprobe_queued(struct kprobe *p) 440 { 441 struct optimized_kprobe *op; 442 443 if (kprobe_aggrprobe(p)) { 444 op = container_of(p, struct optimized_kprobe, kp); 445 if (!list_empty(&op->list)) 446 return 1; 447 } 448 return 0; 449 } 450 451 /* 452 * Return an optimized kprobe whose optimizing code replaces 453 * instructions including addr (exclude breakpoint). 454 */ 455 static struct kprobe *get_optimized_kprobe(unsigned long addr) 456 { 457 int i; 458 struct kprobe *p = NULL; 459 struct optimized_kprobe *op; 460 461 /* Don't check i == 0, since that is a breakpoint case. */ 462 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 463 p = get_kprobe((void *)(addr - i)); 464 465 if (p && kprobe_optready(p)) { 466 op = container_of(p, struct optimized_kprobe, kp); 467 if (arch_within_optimized_kprobe(op, addr)) 468 return p; 469 } 470 471 return NULL; 472 } 473 474 /* Optimization staging list, protected by kprobe_mutex */ 475 static LIST_HEAD(optimizing_list); 476 static LIST_HEAD(unoptimizing_list); 477 static LIST_HEAD(freeing_list); 478 479 static void kprobe_optimizer(struct work_struct *work); 480 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 481 #define OPTIMIZE_DELAY 5 482 483 /* 484 * Optimize (replace a breakpoint with a jump) kprobes listed on 485 * optimizing_list. 486 */ 487 static void do_optimize_kprobes(void) 488 { 489 /* Optimization never be done when disarmed */ 490 if (kprobes_all_disarmed || !kprobes_allow_optimization || 491 list_empty(&optimizing_list)) 492 return; 493 494 /* 495 * The optimization/unoptimization refers online_cpus via 496 * stop_machine() and cpu-hotplug modifies online_cpus. 497 * And same time, text_mutex will be held in cpu-hotplug and here. 498 * This combination can cause a deadlock (cpu-hotplug try to lock 499 * text_mutex but stop_machine can not be done because online_cpus 500 * has been changed) 501 * To avoid this deadlock, we need to call get_online_cpus() 502 * for preventing cpu-hotplug outside of text_mutex locking. 503 */ 504 get_online_cpus(); 505 mutex_lock(&text_mutex); 506 arch_optimize_kprobes(&optimizing_list); 507 mutex_unlock(&text_mutex); 508 put_online_cpus(); 509 } 510 511 /* 512 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 513 * if need) kprobes listed on unoptimizing_list. 514 */ 515 static void do_unoptimize_kprobes(void) 516 { 517 struct optimized_kprobe *op, *tmp; 518 519 /* Unoptimization must be done anytime */ 520 if (list_empty(&unoptimizing_list)) 521 return; 522 523 /* Ditto to do_optimize_kprobes */ 524 get_online_cpus(); 525 mutex_lock(&text_mutex); 526 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 527 /* Loop free_list for disarming */ 528 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 529 /* Disarm probes if marked disabled */ 530 if (kprobe_disabled(&op->kp)) 531 arch_disarm_kprobe(&op->kp); 532 if (kprobe_unused(&op->kp)) { 533 /* 534 * Remove unused probes from hash list. After waiting 535 * for synchronization, these probes are reclaimed. 536 * (reclaiming is done by do_free_cleaned_kprobes.) 537 */ 538 hlist_del_rcu(&op->kp.hlist); 539 } else 540 list_del_init(&op->list); 541 } 542 mutex_unlock(&text_mutex); 543 put_online_cpus(); 544 } 545 546 /* Reclaim all kprobes on the free_list */ 547 static void do_free_cleaned_kprobes(void) 548 { 549 struct optimized_kprobe *op, *tmp; 550 551 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 552 BUG_ON(!kprobe_unused(&op->kp)); 553 list_del_init(&op->list); 554 free_aggr_kprobe(&op->kp); 555 } 556 } 557 558 /* Start optimizer after OPTIMIZE_DELAY passed */ 559 static void kick_kprobe_optimizer(void) 560 { 561 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 562 } 563 564 /* Kprobe jump optimizer */ 565 static void kprobe_optimizer(struct work_struct *work) 566 { 567 mutex_lock(&kprobe_mutex); 568 /* Lock modules while optimizing kprobes */ 569 mutex_lock(&module_mutex); 570 571 /* 572 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 573 * kprobes before waiting for quiesence period. 574 */ 575 do_unoptimize_kprobes(); 576 577 /* 578 * Step 2: Wait for quiesence period to ensure all running interrupts 579 * are done. Because optprobe may modify multiple instructions 580 * there is a chance that Nth instruction is interrupted. In that 581 * case, running interrupt can return to 2nd-Nth byte of jump 582 * instruction. This wait is for avoiding it. 583 */ 584 synchronize_sched(); 585 586 /* Step 3: Optimize kprobes after quiesence period */ 587 do_optimize_kprobes(); 588 589 /* Step 4: Free cleaned kprobes after quiesence period */ 590 do_free_cleaned_kprobes(); 591 592 mutex_unlock(&module_mutex); 593 mutex_unlock(&kprobe_mutex); 594 595 /* Step 5: Kick optimizer again if needed */ 596 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 597 kick_kprobe_optimizer(); 598 } 599 600 /* Wait for completing optimization and unoptimization */ 601 static void wait_for_kprobe_optimizer(void) 602 { 603 mutex_lock(&kprobe_mutex); 604 605 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 606 mutex_unlock(&kprobe_mutex); 607 608 /* this will also make optimizing_work execute immmediately */ 609 flush_delayed_work(&optimizing_work); 610 /* @optimizing_work might not have been queued yet, relax */ 611 cpu_relax(); 612 613 mutex_lock(&kprobe_mutex); 614 } 615 616 mutex_unlock(&kprobe_mutex); 617 } 618 619 /* Optimize kprobe if p is ready to be optimized */ 620 static void optimize_kprobe(struct kprobe *p) 621 { 622 struct optimized_kprobe *op; 623 624 /* Check if the kprobe is disabled or not ready for optimization. */ 625 if (!kprobe_optready(p) || !kprobes_allow_optimization || 626 (kprobe_disabled(p) || kprobes_all_disarmed)) 627 return; 628 629 /* Both of break_handler and post_handler are not supported. */ 630 if (p->break_handler || p->post_handler) 631 return; 632 633 op = container_of(p, struct optimized_kprobe, kp); 634 635 /* Check there is no other kprobes at the optimized instructions */ 636 if (arch_check_optimized_kprobe(op) < 0) 637 return; 638 639 /* Check if it is already optimized. */ 640 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 641 return; 642 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 643 644 if (!list_empty(&op->list)) 645 /* This is under unoptimizing. Just dequeue the probe */ 646 list_del_init(&op->list); 647 else { 648 list_add(&op->list, &optimizing_list); 649 kick_kprobe_optimizer(); 650 } 651 } 652 653 /* Short cut to direct unoptimizing */ 654 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 655 { 656 get_online_cpus(); 657 arch_unoptimize_kprobe(op); 658 put_online_cpus(); 659 if (kprobe_disabled(&op->kp)) 660 arch_disarm_kprobe(&op->kp); 661 } 662 663 /* Unoptimize a kprobe if p is optimized */ 664 static void unoptimize_kprobe(struct kprobe *p, bool force) 665 { 666 struct optimized_kprobe *op; 667 668 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 669 return; /* This is not an optprobe nor optimized */ 670 671 op = container_of(p, struct optimized_kprobe, kp); 672 if (!kprobe_optimized(p)) { 673 /* Unoptimized or unoptimizing case */ 674 if (force && !list_empty(&op->list)) { 675 /* 676 * Only if this is unoptimizing kprobe and forced, 677 * forcibly unoptimize it. (No need to unoptimize 678 * unoptimized kprobe again :) 679 */ 680 list_del_init(&op->list); 681 force_unoptimize_kprobe(op); 682 } 683 return; 684 } 685 686 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 687 if (!list_empty(&op->list)) { 688 /* Dequeue from the optimization queue */ 689 list_del_init(&op->list); 690 return; 691 } 692 /* Optimized kprobe case */ 693 if (force) 694 /* Forcibly update the code: this is a special case */ 695 force_unoptimize_kprobe(op); 696 else { 697 list_add(&op->list, &unoptimizing_list); 698 kick_kprobe_optimizer(); 699 } 700 } 701 702 /* Cancel unoptimizing for reusing */ 703 static void reuse_unused_kprobe(struct kprobe *ap) 704 { 705 struct optimized_kprobe *op; 706 707 BUG_ON(!kprobe_unused(ap)); 708 /* 709 * Unused kprobe MUST be on the way of delayed unoptimizing (means 710 * there is still a relative jump) and disabled. 711 */ 712 op = container_of(ap, struct optimized_kprobe, kp); 713 if (unlikely(list_empty(&op->list))) 714 printk(KERN_WARNING "Warning: found a stray unused " 715 "aggrprobe@%p\n", ap->addr); 716 /* Enable the probe again */ 717 ap->flags &= ~KPROBE_FLAG_DISABLED; 718 /* Optimize it again (remove from op->list) */ 719 BUG_ON(!kprobe_optready(ap)); 720 optimize_kprobe(ap); 721 } 722 723 /* Remove optimized instructions */ 724 static void kill_optimized_kprobe(struct kprobe *p) 725 { 726 struct optimized_kprobe *op; 727 728 op = container_of(p, struct optimized_kprobe, kp); 729 if (!list_empty(&op->list)) 730 /* Dequeue from the (un)optimization queue */ 731 list_del_init(&op->list); 732 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 733 734 if (kprobe_unused(p)) { 735 /* Enqueue if it is unused */ 736 list_add(&op->list, &freeing_list); 737 /* 738 * Remove unused probes from the hash list. After waiting 739 * for synchronization, this probe is reclaimed. 740 * (reclaiming is done by do_free_cleaned_kprobes().) 741 */ 742 hlist_del_rcu(&op->kp.hlist); 743 } 744 745 /* Don't touch the code, because it is already freed. */ 746 arch_remove_optimized_kprobe(op); 747 } 748 749 /* Try to prepare optimized instructions */ 750 static void prepare_optimized_kprobe(struct kprobe *p) 751 { 752 struct optimized_kprobe *op; 753 754 op = container_of(p, struct optimized_kprobe, kp); 755 arch_prepare_optimized_kprobe(op, p); 756 } 757 758 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 759 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 760 { 761 struct optimized_kprobe *op; 762 763 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 764 if (!op) 765 return NULL; 766 767 INIT_LIST_HEAD(&op->list); 768 op->kp.addr = p->addr; 769 arch_prepare_optimized_kprobe(op, p); 770 771 return &op->kp; 772 } 773 774 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 775 776 /* 777 * Prepare an optimized_kprobe and optimize it 778 * NOTE: p must be a normal registered kprobe 779 */ 780 static void try_to_optimize_kprobe(struct kprobe *p) 781 { 782 struct kprobe *ap; 783 struct optimized_kprobe *op; 784 785 /* Impossible to optimize ftrace-based kprobe */ 786 if (kprobe_ftrace(p)) 787 return; 788 789 /* For preparing optimization, jump_label_text_reserved() is called */ 790 jump_label_lock(); 791 mutex_lock(&text_mutex); 792 793 ap = alloc_aggr_kprobe(p); 794 if (!ap) 795 goto out; 796 797 op = container_of(ap, struct optimized_kprobe, kp); 798 if (!arch_prepared_optinsn(&op->optinsn)) { 799 /* If failed to setup optimizing, fallback to kprobe */ 800 arch_remove_optimized_kprobe(op); 801 kfree(op); 802 goto out; 803 } 804 805 init_aggr_kprobe(ap, p); 806 optimize_kprobe(ap); /* This just kicks optimizer thread */ 807 808 out: 809 mutex_unlock(&text_mutex); 810 jump_label_unlock(); 811 } 812 813 #ifdef CONFIG_SYSCTL 814 static void optimize_all_kprobes(void) 815 { 816 struct hlist_head *head; 817 struct kprobe *p; 818 unsigned int i; 819 820 mutex_lock(&kprobe_mutex); 821 /* If optimization is already allowed, just return */ 822 if (kprobes_allow_optimization) 823 goto out; 824 825 kprobes_allow_optimization = true; 826 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 827 head = &kprobe_table[i]; 828 hlist_for_each_entry_rcu(p, head, hlist) 829 if (!kprobe_disabled(p)) 830 optimize_kprobe(p); 831 } 832 printk(KERN_INFO "Kprobes globally optimized\n"); 833 out: 834 mutex_unlock(&kprobe_mutex); 835 } 836 837 static void unoptimize_all_kprobes(void) 838 { 839 struct hlist_head *head; 840 struct kprobe *p; 841 unsigned int i; 842 843 mutex_lock(&kprobe_mutex); 844 /* If optimization is already prohibited, just return */ 845 if (!kprobes_allow_optimization) { 846 mutex_unlock(&kprobe_mutex); 847 return; 848 } 849 850 kprobes_allow_optimization = false; 851 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 852 head = &kprobe_table[i]; 853 hlist_for_each_entry_rcu(p, head, hlist) { 854 if (!kprobe_disabled(p)) 855 unoptimize_kprobe(p, false); 856 } 857 } 858 mutex_unlock(&kprobe_mutex); 859 860 /* Wait for unoptimizing completion */ 861 wait_for_kprobe_optimizer(); 862 printk(KERN_INFO "Kprobes globally unoptimized\n"); 863 } 864 865 static DEFINE_MUTEX(kprobe_sysctl_mutex); 866 int sysctl_kprobes_optimization; 867 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 868 void __user *buffer, size_t *length, 869 loff_t *ppos) 870 { 871 int ret; 872 873 mutex_lock(&kprobe_sysctl_mutex); 874 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 875 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 876 877 if (sysctl_kprobes_optimization) 878 optimize_all_kprobes(); 879 else 880 unoptimize_all_kprobes(); 881 mutex_unlock(&kprobe_sysctl_mutex); 882 883 return ret; 884 } 885 #endif /* CONFIG_SYSCTL */ 886 887 /* Put a breakpoint for a probe. Must be called with text_mutex locked */ 888 static void __arm_kprobe(struct kprobe *p) 889 { 890 struct kprobe *_p; 891 892 /* Check collision with other optimized kprobes */ 893 _p = get_optimized_kprobe((unsigned long)p->addr); 894 if (unlikely(_p)) 895 /* Fallback to unoptimized kprobe */ 896 unoptimize_kprobe(_p, true); 897 898 arch_arm_kprobe(p); 899 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 900 } 901 902 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */ 903 static void __disarm_kprobe(struct kprobe *p, bool reopt) 904 { 905 struct kprobe *_p; 906 907 /* Try to unoptimize */ 908 unoptimize_kprobe(p, kprobes_all_disarmed); 909 910 if (!kprobe_queued(p)) { 911 arch_disarm_kprobe(p); 912 /* If another kprobe was blocked, optimize it. */ 913 _p = get_optimized_kprobe((unsigned long)p->addr); 914 if (unlikely(_p) && reopt) 915 optimize_kprobe(_p); 916 } 917 /* TODO: reoptimize others after unoptimized this probe */ 918 } 919 920 #else /* !CONFIG_OPTPROBES */ 921 922 #define optimize_kprobe(p) do {} while (0) 923 #define unoptimize_kprobe(p, f) do {} while (0) 924 #define kill_optimized_kprobe(p) do {} while (0) 925 #define prepare_optimized_kprobe(p) do {} while (0) 926 #define try_to_optimize_kprobe(p) do {} while (0) 927 #define __arm_kprobe(p) arch_arm_kprobe(p) 928 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 929 #define kprobe_disarmed(p) kprobe_disabled(p) 930 #define wait_for_kprobe_optimizer() do {} while (0) 931 932 /* There should be no unused kprobes can be reused without optimization */ 933 static void reuse_unused_kprobe(struct kprobe *ap) 934 { 935 printk(KERN_ERR "Error: There should be no unused kprobe here.\n"); 936 BUG_ON(kprobe_unused(ap)); 937 } 938 939 static void free_aggr_kprobe(struct kprobe *p) 940 { 941 arch_remove_kprobe(p); 942 kfree(p); 943 } 944 945 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 946 { 947 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 948 } 949 #endif /* CONFIG_OPTPROBES */ 950 951 #ifdef CONFIG_KPROBES_ON_FTRACE 952 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 953 .func = kprobe_ftrace_handler, 954 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 955 }; 956 static int kprobe_ftrace_enabled; 957 958 /* Must ensure p->addr is really on ftrace */ 959 static int prepare_kprobe(struct kprobe *p) 960 { 961 if (!kprobe_ftrace(p)) 962 return arch_prepare_kprobe(p); 963 964 return arch_prepare_kprobe_ftrace(p); 965 } 966 967 /* Caller must lock kprobe_mutex */ 968 static void arm_kprobe_ftrace(struct kprobe *p) 969 { 970 int ret; 971 972 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 973 (unsigned long)p->addr, 0, 0); 974 WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret); 975 kprobe_ftrace_enabled++; 976 if (kprobe_ftrace_enabled == 1) { 977 ret = register_ftrace_function(&kprobe_ftrace_ops); 978 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 979 } 980 } 981 982 /* Caller must lock kprobe_mutex */ 983 static void disarm_kprobe_ftrace(struct kprobe *p) 984 { 985 int ret; 986 987 kprobe_ftrace_enabled--; 988 if (kprobe_ftrace_enabled == 0) { 989 ret = unregister_ftrace_function(&kprobe_ftrace_ops); 990 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret); 991 } 992 ret = ftrace_set_filter_ip(&kprobe_ftrace_ops, 993 (unsigned long)p->addr, 1, 0); 994 WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret); 995 } 996 #else /* !CONFIG_KPROBES_ON_FTRACE */ 997 #define prepare_kprobe(p) arch_prepare_kprobe(p) 998 #define arm_kprobe_ftrace(p) do {} while (0) 999 #define disarm_kprobe_ftrace(p) do {} while (0) 1000 #endif 1001 1002 /* Arm a kprobe with text_mutex */ 1003 static void arm_kprobe(struct kprobe *kp) 1004 { 1005 if (unlikely(kprobe_ftrace(kp))) { 1006 arm_kprobe_ftrace(kp); 1007 return; 1008 } 1009 /* 1010 * Here, since __arm_kprobe() doesn't use stop_machine(), 1011 * this doesn't cause deadlock on text_mutex. So, we don't 1012 * need get_online_cpus(). 1013 */ 1014 mutex_lock(&text_mutex); 1015 __arm_kprobe(kp); 1016 mutex_unlock(&text_mutex); 1017 } 1018 1019 /* Disarm a kprobe with text_mutex */ 1020 static void disarm_kprobe(struct kprobe *kp, bool reopt) 1021 { 1022 if (unlikely(kprobe_ftrace(kp))) { 1023 disarm_kprobe_ftrace(kp); 1024 return; 1025 } 1026 /* Ditto */ 1027 mutex_lock(&text_mutex); 1028 __disarm_kprobe(kp, reopt); 1029 mutex_unlock(&text_mutex); 1030 } 1031 1032 /* 1033 * Aggregate handlers for multiple kprobes support - these handlers 1034 * take care of invoking the individual kprobe handlers on p->list 1035 */ 1036 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1037 { 1038 struct kprobe *kp; 1039 1040 list_for_each_entry_rcu(kp, &p->list, list) { 1041 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1042 set_kprobe_instance(kp); 1043 if (kp->pre_handler(kp, regs)) 1044 return 1; 1045 } 1046 reset_kprobe_instance(); 1047 } 1048 return 0; 1049 } 1050 NOKPROBE_SYMBOL(aggr_pre_handler); 1051 1052 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1053 unsigned long flags) 1054 { 1055 struct kprobe *kp; 1056 1057 list_for_each_entry_rcu(kp, &p->list, list) { 1058 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1059 set_kprobe_instance(kp); 1060 kp->post_handler(kp, regs, flags); 1061 reset_kprobe_instance(); 1062 } 1063 } 1064 } 1065 NOKPROBE_SYMBOL(aggr_post_handler); 1066 1067 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 1068 int trapnr) 1069 { 1070 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1071 1072 /* 1073 * if we faulted "during" the execution of a user specified 1074 * probe handler, invoke just that probe's fault handler 1075 */ 1076 if (cur && cur->fault_handler) { 1077 if (cur->fault_handler(cur, regs, trapnr)) 1078 return 1; 1079 } 1080 return 0; 1081 } 1082 NOKPROBE_SYMBOL(aggr_fault_handler); 1083 1084 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 1085 { 1086 struct kprobe *cur = __this_cpu_read(kprobe_instance); 1087 int ret = 0; 1088 1089 if (cur && cur->break_handler) { 1090 if (cur->break_handler(cur, regs)) 1091 ret = 1; 1092 } 1093 reset_kprobe_instance(); 1094 return ret; 1095 } 1096 NOKPROBE_SYMBOL(aggr_break_handler); 1097 1098 /* Walks the list and increments nmissed count for multiprobe case */ 1099 void kprobes_inc_nmissed_count(struct kprobe *p) 1100 { 1101 struct kprobe *kp; 1102 if (!kprobe_aggrprobe(p)) { 1103 p->nmissed++; 1104 } else { 1105 list_for_each_entry_rcu(kp, &p->list, list) 1106 kp->nmissed++; 1107 } 1108 return; 1109 } 1110 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1111 1112 void recycle_rp_inst(struct kretprobe_instance *ri, 1113 struct hlist_head *head) 1114 { 1115 struct kretprobe *rp = ri->rp; 1116 1117 /* remove rp inst off the rprobe_inst_table */ 1118 hlist_del(&ri->hlist); 1119 INIT_HLIST_NODE(&ri->hlist); 1120 if (likely(rp)) { 1121 raw_spin_lock(&rp->lock); 1122 hlist_add_head(&ri->hlist, &rp->free_instances); 1123 raw_spin_unlock(&rp->lock); 1124 } else 1125 /* Unregistering */ 1126 hlist_add_head(&ri->hlist, head); 1127 } 1128 NOKPROBE_SYMBOL(recycle_rp_inst); 1129 1130 void kretprobe_hash_lock(struct task_struct *tsk, 1131 struct hlist_head **head, unsigned long *flags) 1132 __acquires(hlist_lock) 1133 { 1134 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1135 raw_spinlock_t *hlist_lock; 1136 1137 *head = &kretprobe_inst_table[hash]; 1138 hlist_lock = kretprobe_table_lock_ptr(hash); 1139 raw_spin_lock_irqsave(hlist_lock, *flags); 1140 } 1141 NOKPROBE_SYMBOL(kretprobe_hash_lock); 1142 1143 static void kretprobe_table_lock(unsigned long hash, 1144 unsigned long *flags) 1145 __acquires(hlist_lock) 1146 { 1147 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1148 raw_spin_lock_irqsave(hlist_lock, *flags); 1149 } 1150 NOKPROBE_SYMBOL(kretprobe_table_lock); 1151 1152 void kretprobe_hash_unlock(struct task_struct *tsk, 1153 unsigned long *flags) 1154 __releases(hlist_lock) 1155 { 1156 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 1157 raw_spinlock_t *hlist_lock; 1158 1159 hlist_lock = kretprobe_table_lock_ptr(hash); 1160 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1161 } 1162 NOKPROBE_SYMBOL(kretprobe_hash_unlock); 1163 1164 static void kretprobe_table_unlock(unsigned long hash, 1165 unsigned long *flags) 1166 __releases(hlist_lock) 1167 { 1168 raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 1169 raw_spin_unlock_irqrestore(hlist_lock, *flags); 1170 } 1171 NOKPROBE_SYMBOL(kretprobe_table_unlock); 1172 1173 /* 1174 * This function is called from finish_task_switch when task tk becomes dead, 1175 * so that we can recycle any function-return probe instances associated 1176 * with this task. These left over instances represent probed functions 1177 * that have been called but will never return. 1178 */ 1179 void kprobe_flush_task(struct task_struct *tk) 1180 { 1181 struct kretprobe_instance *ri; 1182 struct hlist_head *head, empty_rp; 1183 struct hlist_node *tmp; 1184 unsigned long hash, flags = 0; 1185 1186 if (unlikely(!kprobes_initialized)) 1187 /* Early boot. kretprobe_table_locks not yet initialized. */ 1188 return; 1189 1190 INIT_HLIST_HEAD(&empty_rp); 1191 hash = hash_ptr(tk, KPROBE_HASH_BITS); 1192 head = &kretprobe_inst_table[hash]; 1193 kretprobe_table_lock(hash, &flags); 1194 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 1195 if (ri->task == tk) 1196 recycle_rp_inst(ri, &empty_rp); 1197 } 1198 kretprobe_table_unlock(hash, &flags); 1199 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 1200 hlist_del(&ri->hlist); 1201 kfree(ri); 1202 } 1203 } 1204 NOKPROBE_SYMBOL(kprobe_flush_task); 1205 1206 static inline void free_rp_inst(struct kretprobe *rp) 1207 { 1208 struct kretprobe_instance *ri; 1209 struct hlist_node *next; 1210 1211 hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) { 1212 hlist_del(&ri->hlist); 1213 kfree(ri); 1214 } 1215 } 1216 1217 static void cleanup_rp_inst(struct kretprobe *rp) 1218 { 1219 unsigned long flags, hash; 1220 struct kretprobe_instance *ri; 1221 struct hlist_node *next; 1222 struct hlist_head *head; 1223 1224 /* No race here */ 1225 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 1226 kretprobe_table_lock(hash, &flags); 1227 head = &kretprobe_inst_table[hash]; 1228 hlist_for_each_entry_safe(ri, next, head, hlist) { 1229 if (ri->rp == rp) 1230 ri->rp = NULL; 1231 } 1232 kretprobe_table_unlock(hash, &flags); 1233 } 1234 free_rp_inst(rp); 1235 } 1236 NOKPROBE_SYMBOL(cleanup_rp_inst); 1237 1238 /* 1239 * Add the new probe to ap->list. Fail if this is the 1240 * second jprobe at the address - two jprobes can't coexist 1241 */ 1242 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1243 { 1244 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 1245 1246 if (p->break_handler || p->post_handler) 1247 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1248 1249 if (p->break_handler) { 1250 if (ap->break_handler) 1251 return -EEXIST; 1252 list_add_tail_rcu(&p->list, &ap->list); 1253 ap->break_handler = aggr_break_handler; 1254 } else 1255 list_add_rcu(&p->list, &ap->list); 1256 if (p->post_handler && !ap->post_handler) 1257 ap->post_handler = aggr_post_handler; 1258 1259 return 0; 1260 } 1261 1262 /* 1263 * Fill in the required fields of the "manager kprobe". Replace the 1264 * earlier kprobe in the hlist with the manager kprobe 1265 */ 1266 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1267 { 1268 /* Copy p's insn slot to ap */ 1269 copy_kprobe(p, ap); 1270 flush_insn_slot(ap); 1271 ap->addr = p->addr; 1272 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1273 ap->pre_handler = aggr_pre_handler; 1274 ap->fault_handler = aggr_fault_handler; 1275 /* We don't care the kprobe which has gone. */ 1276 if (p->post_handler && !kprobe_gone(p)) 1277 ap->post_handler = aggr_post_handler; 1278 if (p->break_handler && !kprobe_gone(p)) 1279 ap->break_handler = aggr_break_handler; 1280 1281 INIT_LIST_HEAD(&ap->list); 1282 INIT_HLIST_NODE(&ap->hlist); 1283 1284 list_add_rcu(&p->list, &ap->list); 1285 hlist_replace_rcu(&p->hlist, &ap->hlist); 1286 } 1287 1288 /* 1289 * This is the second or subsequent kprobe at the address - handle 1290 * the intricacies 1291 */ 1292 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1293 { 1294 int ret = 0; 1295 struct kprobe *ap = orig_p; 1296 1297 /* For preparing optimization, jump_label_text_reserved() is called */ 1298 jump_label_lock(); 1299 /* 1300 * Get online CPUs to avoid text_mutex deadlock.with stop machine, 1301 * which is invoked by unoptimize_kprobe() in add_new_kprobe() 1302 */ 1303 get_online_cpus(); 1304 mutex_lock(&text_mutex); 1305 1306 if (!kprobe_aggrprobe(orig_p)) { 1307 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */ 1308 ap = alloc_aggr_kprobe(orig_p); 1309 if (!ap) { 1310 ret = -ENOMEM; 1311 goto out; 1312 } 1313 init_aggr_kprobe(ap, orig_p); 1314 } else if (kprobe_unused(ap)) 1315 /* This probe is going to die. Rescue it */ 1316 reuse_unused_kprobe(ap); 1317 1318 if (kprobe_gone(ap)) { 1319 /* 1320 * Attempting to insert new probe at the same location that 1321 * had a probe in the module vaddr area which already 1322 * freed. So, the instruction slot has already been 1323 * released. We need a new slot for the new probe. 1324 */ 1325 ret = arch_prepare_kprobe(ap); 1326 if (ret) 1327 /* 1328 * Even if fail to allocate new slot, don't need to 1329 * free aggr_probe. It will be used next time, or 1330 * freed by unregister_kprobe. 1331 */ 1332 goto out; 1333 1334 /* Prepare optimized instructions if possible. */ 1335 prepare_optimized_kprobe(ap); 1336 1337 /* 1338 * Clear gone flag to prevent allocating new slot again, and 1339 * set disabled flag because it is not armed yet. 1340 */ 1341 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1342 | KPROBE_FLAG_DISABLED; 1343 } 1344 1345 /* Copy ap's insn slot to p */ 1346 copy_kprobe(ap, p); 1347 ret = add_new_kprobe(ap, p); 1348 1349 out: 1350 mutex_unlock(&text_mutex); 1351 put_online_cpus(); 1352 jump_label_unlock(); 1353 1354 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1355 ap->flags &= ~KPROBE_FLAG_DISABLED; 1356 if (!kprobes_all_disarmed) 1357 /* Arm the breakpoint again. */ 1358 arm_kprobe(ap); 1359 } 1360 return ret; 1361 } 1362 1363 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1364 { 1365 /* The __kprobes marked functions and entry code must not be probed */ 1366 return addr >= (unsigned long)__kprobes_text_start && 1367 addr < (unsigned long)__kprobes_text_end; 1368 } 1369 1370 bool within_kprobe_blacklist(unsigned long addr) 1371 { 1372 struct kprobe_blacklist_entry *ent; 1373 1374 if (arch_within_kprobe_blacklist(addr)) 1375 return true; 1376 /* 1377 * If there exists a kprobe_blacklist, verify and 1378 * fail any probe registration in the prohibited area 1379 */ 1380 list_for_each_entry(ent, &kprobe_blacklist, list) { 1381 if (addr >= ent->start_addr && addr < ent->end_addr) 1382 return true; 1383 } 1384 1385 return false; 1386 } 1387 1388 /* 1389 * If we have a symbol_name argument, look it up and add the offset field 1390 * to it. This way, we can specify a relative address to a symbol. 1391 * This returns encoded errors if it fails to look up symbol or invalid 1392 * combination of parameters. 1393 */ 1394 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr, 1395 const char *symbol_name, unsigned int offset) 1396 { 1397 if ((symbol_name && addr) || (!symbol_name && !addr)) 1398 goto invalid; 1399 1400 if (symbol_name) { 1401 kprobe_lookup_name(symbol_name, addr); 1402 if (!addr) 1403 return ERR_PTR(-ENOENT); 1404 } 1405 1406 addr = (kprobe_opcode_t *)(((char *)addr) + offset); 1407 if (addr) 1408 return addr; 1409 1410 invalid: 1411 return ERR_PTR(-EINVAL); 1412 } 1413 1414 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1415 { 1416 return _kprobe_addr(p->addr, p->symbol_name, p->offset); 1417 } 1418 1419 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1420 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1421 { 1422 struct kprobe *ap, *list_p; 1423 1424 ap = get_kprobe(p->addr); 1425 if (unlikely(!ap)) 1426 return NULL; 1427 1428 if (p != ap) { 1429 list_for_each_entry_rcu(list_p, &ap->list, list) 1430 if (list_p == p) 1431 /* kprobe p is a valid probe */ 1432 goto valid; 1433 return NULL; 1434 } 1435 valid: 1436 return ap; 1437 } 1438 1439 /* Return error if the kprobe is being re-registered */ 1440 static inline int check_kprobe_rereg(struct kprobe *p) 1441 { 1442 int ret = 0; 1443 1444 mutex_lock(&kprobe_mutex); 1445 if (__get_valid_kprobe(p)) 1446 ret = -EINVAL; 1447 mutex_unlock(&kprobe_mutex); 1448 1449 return ret; 1450 } 1451 1452 int __weak arch_check_ftrace_location(struct kprobe *p) 1453 { 1454 unsigned long ftrace_addr; 1455 1456 ftrace_addr = ftrace_location((unsigned long)p->addr); 1457 if (ftrace_addr) { 1458 #ifdef CONFIG_KPROBES_ON_FTRACE 1459 /* Given address is not on the instruction boundary */ 1460 if ((unsigned long)p->addr != ftrace_addr) 1461 return -EILSEQ; 1462 p->flags |= KPROBE_FLAG_FTRACE; 1463 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1464 return -EINVAL; 1465 #endif 1466 } 1467 return 0; 1468 } 1469 1470 static int check_kprobe_address_safe(struct kprobe *p, 1471 struct module **probed_mod) 1472 { 1473 int ret; 1474 1475 ret = arch_check_ftrace_location(p); 1476 if (ret) 1477 return ret; 1478 jump_label_lock(); 1479 preempt_disable(); 1480 1481 /* Ensure it is not in reserved area nor out of text */ 1482 if (!kernel_text_address((unsigned long) p->addr) || 1483 within_kprobe_blacklist((unsigned long) p->addr) || 1484 jump_label_text_reserved(p->addr, p->addr)) { 1485 ret = -EINVAL; 1486 goto out; 1487 } 1488 1489 /* Check if are we probing a module */ 1490 *probed_mod = __module_text_address((unsigned long) p->addr); 1491 if (*probed_mod) { 1492 /* 1493 * We must hold a refcount of the probed module while updating 1494 * its code to prohibit unexpected unloading. 1495 */ 1496 if (unlikely(!try_module_get(*probed_mod))) { 1497 ret = -ENOENT; 1498 goto out; 1499 } 1500 1501 /* 1502 * If the module freed .init.text, we couldn't insert 1503 * kprobes in there. 1504 */ 1505 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1506 (*probed_mod)->state != MODULE_STATE_COMING) { 1507 module_put(*probed_mod); 1508 *probed_mod = NULL; 1509 ret = -ENOENT; 1510 } 1511 } 1512 out: 1513 preempt_enable(); 1514 jump_label_unlock(); 1515 1516 return ret; 1517 } 1518 1519 int register_kprobe(struct kprobe *p) 1520 { 1521 int ret; 1522 struct kprobe *old_p; 1523 struct module *probed_mod; 1524 kprobe_opcode_t *addr; 1525 1526 /* Adjust probe address from symbol */ 1527 addr = kprobe_addr(p); 1528 if (IS_ERR(addr)) 1529 return PTR_ERR(addr); 1530 p->addr = addr; 1531 1532 ret = check_kprobe_rereg(p); 1533 if (ret) 1534 return ret; 1535 1536 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1537 p->flags &= KPROBE_FLAG_DISABLED; 1538 p->nmissed = 0; 1539 INIT_LIST_HEAD(&p->list); 1540 1541 ret = check_kprobe_address_safe(p, &probed_mod); 1542 if (ret) 1543 return ret; 1544 1545 mutex_lock(&kprobe_mutex); 1546 1547 old_p = get_kprobe(p->addr); 1548 if (old_p) { 1549 /* Since this may unoptimize old_p, locking text_mutex. */ 1550 ret = register_aggr_kprobe(old_p, p); 1551 goto out; 1552 } 1553 1554 mutex_lock(&text_mutex); /* Avoiding text modification */ 1555 ret = prepare_kprobe(p); 1556 mutex_unlock(&text_mutex); 1557 if (ret) 1558 goto out; 1559 1560 INIT_HLIST_NODE(&p->hlist); 1561 hlist_add_head_rcu(&p->hlist, 1562 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1563 1564 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1565 arm_kprobe(p); 1566 1567 /* Try to optimize kprobe */ 1568 try_to_optimize_kprobe(p); 1569 1570 out: 1571 mutex_unlock(&kprobe_mutex); 1572 1573 if (probed_mod) 1574 module_put(probed_mod); 1575 1576 return ret; 1577 } 1578 EXPORT_SYMBOL_GPL(register_kprobe); 1579 1580 /* Check if all probes on the aggrprobe are disabled */ 1581 static int aggr_kprobe_disabled(struct kprobe *ap) 1582 { 1583 struct kprobe *kp; 1584 1585 list_for_each_entry_rcu(kp, &ap->list, list) 1586 if (!kprobe_disabled(kp)) 1587 /* 1588 * There is an active probe on the list. 1589 * We can't disable this ap. 1590 */ 1591 return 0; 1592 1593 return 1; 1594 } 1595 1596 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */ 1597 static struct kprobe *__disable_kprobe(struct kprobe *p) 1598 { 1599 struct kprobe *orig_p; 1600 1601 /* Get an original kprobe for return */ 1602 orig_p = __get_valid_kprobe(p); 1603 if (unlikely(orig_p == NULL)) 1604 return NULL; 1605 1606 if (!kprobe_disabled(p)) { 1607 /* Disable probe if it is a child probe */ 1608 if (p != orig_p) 1609 p->flags |= KPROBE_FLAG_DISABLED; 1610 1611 /* Try to disarm and disable this/parent probe */ 1612 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1613 /* 1614 * If kprobes_all_disarmed is set, orig_p 1615 * should have already been disarmed, so 1616 * skip unneed disarming process. 1617 */ 1618 if (!kprobes_all_disarmed) 1619 disarm_kprobe(orig_p, true); 1620 orig_p->flags |= KPROBE_FLAG_DISABLED; 1621 } 1622 } 1623 1624 return orig_p; 1625 } 1626 1627 /* 1628 * Unregister a kprobe without a scheduler synchronization. 1629 */ 1630 static int __unregister_kprobe_top(struct kprobe *p) 1631 { 1632 struct kprobe *ap, *list_p; 1633 1634 /* Disable kprobe. This will disarm it if needed. */ 1635 ap = __disable_kprobe(p); 1636 if (ap == NULL) 1637 return -EINVAL; 1638 1639 if (ap == p) 1640 /* 1641 * This probe is an independent(and non-optimized) kprobe 1642 * (not an aggrprobe). Remove from the hash list. 1643 */ 1644 goto disarmed; 1645 1646 /* Following process expects this probe is an aggrprobe */ 1647 WARN_ON(!kprobe_aggrprobe(ap)); 1648 1649 if (list_is_singular(&ap->list) && kprobe_disarmed(ap)) 1650 /* 1651 * !disarmed could be happen if the probe is under delayed 1652 * unoptimizing. 1653 */ 1654 goto disarmed; 1655 else { 1656 /* If disabling probe has special handlers, update aggrprobe */ 1657 if (p->break_handler && !kprobe_gone(p)) 1658 ap->break_handler = NULL; 1659 if (p->post_handler && !kprobe_gone(p)) { 1660 list_for_each_entry_rcu(list_p, &ap->list, list) { 1661 if ((list_p != p) && (list_p->post_handler)) 1662 goto noclean; 1663 } 1664 ap->post_handler = NULL; 1665 } 1666 noclean: 1667 /* 1668 * Remove from the aggrprobe: this path will do nothing in 1669 * __unregister_kprobe_bottom(). 1670 */ 1671 list_del_rcu(&p->list); 1672 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1673 /* 1674 * Try to optimize this probe again, because post 1675 * handler may have been changed. 1676 */ 1677 optimize_kprobe(ap); 1678 } 1679 return 0; 1680 1681 disarmed: 1682 BUG_ON(!kprobe_disarmed(ap)); 1683 hlist_del_rcu(&ap->hlist); 1684 return 0; 1685 } 1686 1687 static void __unregister_kprobe_bottom(struct kprobe *p) 1688 { 1689 struct kprobe *ap; 1690 1691 if (list_empty(&p->list)) 1692 /* This is an independent kprobe */ 1693 arch_remove_kprobe(p); 1694 else if (list_is_singular(&p->list)) { 1695 /* This is the last child of an aggrprobe */ 1696 ap = list_entry(p->list.next, struct kprobe, list); 1697 list_del(&p->list); 1698 free_aggr_kprobe(ap); 1699 } 1700 /* Otherwise, do nothing. */ 1701 } 1702 1703 int register_kprobes(struct kprobe **kps, int num) 1704 { 1705 int i, ret = 0; 1706 1707 if (num <= 0) 1708 return -EINVAL; 1709 for (i = 0; i < num; i++) { 1710 ret = register_kprobe(kps[i]); 1711 if (ret < 0) { 1712 if (i > 0) 1713 unregister_kprobes(kps, i); 1714 break; 1715 } 1716 } 1717 return ret; 1718 } 1719 EXPORT_SYMBOL_GPL(register_kprobes); 1720 1721 void unregister_kprobe(struct kprobe *p) 1722 { 1723 unregister_kprobes(&p, 1); 1724 } 1725 EXPORT_SYMBOL_GPL(unregister_kprobe); 1726 1727 void unregister_kprobes(struct kprobe **kps, int num) 1728 { 1729 int i; 1730 1731 if (num <= 0) 1732 return; 1733 mutex_lock(&kprobe_mutex); 1734 for (i = 0; i < num; i++) 1735 if (__unregister_kprobe_top(kps[i]) < 0) 1736 kps[i]->addr = NULL; 1737 mutex_unlock(&kprobe_mutex); 1738 1739 synchronize_sched(); 1740 for (i = 0; i < num; i++) 1741 if (kps[i]->addr) 1742 __unregister_kprobe_bottom(kps[i]); 1743 } 1744 EXPORT_SYMBOL_GPL(unregister_kprobes); 1745 1746 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1747 unsigned long val, void *data) 1748 { 1749 return NOTIFY_DONE; 1750 } 1751 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1752 1753 static struct notifier_block kprobe_exceptions_nb = { 1754 .notifier_call = kprobe_exceptions_notify, 1755 .priority = 0x7fffffff /* we need to be notified first */ 1756 }; 1757 1758 unsigned long __weak arch_deref_entry_point(void *entry) 1759 { 1760 return (unsigned long)entry; 1761 } 1762 1763 int register_jprobes(struct jprobe **jps, int num) 1764 { 1765 struct jprobe *jp; 1766 int ret = 0, i; 1767 1768 if (num <= 0) 1769 return -EINVAL; 1770 for (i = 0; i < num; i++) { 1771 unsigned long addr, offset; 1772 jp = jps[i]; 1773 addr = arch_deref_entry_point(jp->entry); 1774 1775 /* Verify probepoint is a function entry point */ 1776 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && 1777 offset == 0) { 1778 jp->kp.pre_handler = setjmp_pre_handler; 1779 jp->kp.break_handler = longjmp_break_handler; 1780 ret = register_kprobe(&jp->kp); 1781 } else 1782 ret = -EINVAL; 1783 1784 if (ret < 0) { 1785 if (i > 0) 1786 unregister_jprobes(jps, i); 1787 break; 1788 } 1789 } 1790 return ret; 1791 } 1792 EXPORT_SYMBOL_GPL(register_jprobes); 1793 1794 int register_jprobe(struct jprobe *jp) 1795 { 1796 return register_jprobes(&jp, 1); 1797 } 1798 EXPORT_SYMBOL_GPL(register_jprobe); 1799 1800 void unregister_jprobe(struct jprobe *jp) 1801 { 1802 unregister_jprobes(&jp, 1); 1803 } 1804 EXPORT_SYMBOL_GPL(unregister_jprobe); 1805 1806 void unregister_jprobes(struct jprobe **jps, int num) 1807 { 1808 int i; 1809 1810 if (num <= 0) 1811 return; 1812 mutex_lock(&kprobe_mutex); 1813 for (i = 0; i < num; i++) 1814 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1815 jps[i]->kp.addr = NULL; 1816 mutex_unlock(&kprobe_mutex); 1817 1818 synchronize_sched(); 1819 for (i = 0; i < num; i++) { 1820 if (jps[i]->kp.addr) 1821 __unregister_kprobe_bottom(&jps[i]->kp); 1822 } 1823 } 1824 EXPORT_SYMBOL_GPL(unregister_jprobes); 1825 1826 #ifdef CONFIG_KRETPROBES 1827 /* 1828 * This kprobe pre_handler is registered with every kretprobe. When probe 1829 * hits it will set up the return probe. 1830 */ 1831 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 1832 { 1833 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1834 unsigned long hash, flags = 0; 1835 struct kretprobe_instance *ri; 1836 1837 /* 1838 * To avoid deadlocks, prohibit return probing in NMI contexts, 1839 * just skip the probe and increase the (inexact) 'nmissed' 1840 * statistical counter, so that the user is informed that 1841 * something happened: 1842 */ 1843 if (unlikely(in_nmi())) { 1844 rp->nmissed++; 1845 return 0; 1846 } 1847 1848 /* TODO: consider to only swap the RA after the last pre_handler fired */ 1849 hash = hash_ptr(current, KPROBE_HASH_BITS); 1850 raw_spin_lock_irqsave(&rp->lock, flags); 1851 if (!hlist_empty(&rp->free_instances)) { 1852 ri = hlist_entry(rp->free_instances.first, 1853 struct kretprobe_instance, hlist); 1854 hlist_del(&ri->hlist); 1855 raw_spin_unlock_irqrestore(&rp->lock, flags); 1856 1857 ri->rp = rp; 1858 ri->task = current; 1859 1860 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 1861 raw_spin_lock_irqsave(&rp->lock, flags); 1862 hlist_add_head(&ri->hlist, &rp->free_instances); 1863 raw_spin_unlock_irqrestore(&rp->lock, flags); 1864 return 0; 1865 } 1866 1867 arch_prepare_kretprobe(ri, regs); 1868 1869 /* XXX(hch): why is there no hlist_move_head? */ 1870 INIT_HLIST_NODE(&ri->hlist); 1871 kretprobe_table_lock(hash, &flags); 1872 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1873 kretprobe_table_unlock(hash, &flags); 1874 } else { 1875 rp->nmissed++; 1876 raw_spin_unlock_irqrestore(&rp->lock, flags); 1877 } 1878 return 0; 1879 } 1880 NOKPROBE_SYMBOL(pre_handler_kretprobe); 1881 1882 bool __weak arch_function_offset_within_entry(unsigned long offset) 1883 { 1884 return !offset; 1885 } 1886 1887 bool function_offset_within_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 1888 { 1889 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset); 1890 1891 if (IS_ERR(kp_addr)) 1892 return false; 1893 1894 if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) || 1895 !arch_function_offset_within_entry(offset)) 1896 return false; 1897 1898 return true; 1899 } 1900 1901 int register_kretprobe(struct kretprobe *rp) 1902 { 1903 int ret = 0; 1904 struct kretprobe_instance *inst; 1905 int i; 1906 void *addr; 1907 1908 if (!function_offset_within_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset)) 1909 return -EINVAL; 1910 1911 if (kretprobe_blacklist_size) { 1912 addr = kprobe_addr(&rp->kp); 1913 if (IS_ERR(addr)) 1914 return PTR_ERR(addr); 1915 1916 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1917 if (kretprobe_blacklist[i].addr == addr) 1918 return -EINVAL; 1919 } 1920 } 1921 1922 rp->kp.pre_handler = pre_handler_kretprobe; 1923 rp->kp.post_handler = NULL; 1924 rp->kp.fault_handler = NULL; 1925 rp->kp.break_handler = NULL; 1926 1927 /* Pre-allocate memory for max kretprobe instances */ 1928 if (rp->maxactive <= 0) { 1929 #ifdef CONFIG_PREEMPT 1930 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1931 #else 1932 rp->maxactive = num_possible_cpus(); 1933 #endif 1934 } 1935 raw_spin_lock_init(&rp->lock); 1936 INIT_HLIST_HEAD(&rp->free_instances); 1937 for (i = 0; i < rp->maxactive; i++) { 1938 inst = kmalloc(sizeof(struct kretprobe_instance) + 1939 rp->data_size, GFP_KERNEL); 1940 if (inst == NULL) { 1941 free_rp_inst(rp); 1942 return -ENOMEM; 1943 } 1944 INIT_HLIST_NODE(&inst->hlist); 1945 hlist_add_head(&inst->hlist, &rp->free_instances); 1946 } 1947 1948 rp->nmissed = 0; 1949 /* Establish function entry probe point */ 1950 ret = register_kprobe(&rp->kp); 1951 if (ret != 0) 1952 free_rp_inst(rp); 1953 return ret; 1954 } 1955 EXPORT_SYMBOL_GPL(register_kretprobe); 1956 1957 int register_kretprobes(struct kretprobe **rps, int num) 1958 { 1959 int ret = 0, i; 1960 1961 if (num <= 0) 1962 return -EINVAL; 1963 for (i = 0; i < num; i++) { 1964 ret = register_kretprobe(rps[i]); 1965 if (ret < 0) { 1966 if (i > 0) 1967 unregister_kretprobes(rps, i); 1968 break; 1969 } 1970 } 1971 return ret; 1972 } 1973 EXPORT_SYMBOL_GPL(register_kretprobes); 1974 1975 void unregister_kretprobe(struct kretprobe *rp) 1976 { 1977 unregister_kretprobes(&rp, 1); 1978 } 1979 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1980 1981 void unregister_kretprobes(struct kretprobe **rps, int num) 1982 { 1983 int i; 1984 1985 if (num <= 0) 1986 return; 1987 mutex_lock(&kprobe_mutex); 1988 for (i = 0; i < num; i++) 1989 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1990 rps[i]->kp.addr = NULL; 1991 mutex_unlock(&kprobe_mutex); 1992 1993 synchronize_sched(); 1994 for (i = 0; i < num; i++) { 1995 if (rps[i]->kp.addr) { 1996 __unregister_kprobe_bottom(&rps[i]->kp); 1997 cleanup_rp_inst(rps[i]); 1998 } 1999 } 2000 } 2001 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2002 2003 #else /* CONFIG_KRETPROBES */ 2004 int register_kretprobe(struct kretprobe *rp) 2005 { 2006 return -ENOSYS; 2007 } 2008 EXPORT_SYMBOL_GPL(register_kretprobe); 2009 2010 int register_kretprobes(struct kretprobe **rps, int num) 2011 { 2012 return -ENOSYS; 2013 } 2014 EXPORT_SYMBOL_GPL(register_kretprobes); 2015 2016 void unregister_kretprobe(struct kretprobe *rp) 2017 { 2018 } 2019 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2020 2021 void unregister_kretprobes(struct kretprobe **rps, int num) 2022 { 2023 } 2024 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2025 2026 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2027 { 2028 return 0; 2029 } 2030 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2031 2032 #endif /* CONFIG_KRETPROBES */ 2033 2034 /* Set the kprobe gone and remove its instruction buffer. */ 2035 static void kill_kprobe(struct kprobe *p) 2036 { 2037 struct kprobe *kp; 2038 2039 p->flags |= KPROBE_FLAG_GONE; 2040 if (kprobe_aggrprobe(p)) { 2041 /* 2042 * If this is an aggr_kprobe, we have to list all the 2043 * chained probes and mark them GONE. 2044 */ 2045 list_for_each_entry_rcu(kp, &p->list, list) 2046 kp->flags |= KPROBE_FLAG_GONE; 2047 p->post_handler = NULL; 2048 p->break_handler = NULL; 2049 kill_optimized_kprobe(p); 2050 } 2051 /* 2052 * Here, we can remove insn_slot safely, because no thread calls 2053 * the original probed function (which will be freed soon) any more. 2054 */ 2055 arch_remove_kprobe(p); 2056 } 2057 2058 /* Disable one kprobe */ 2059 int disable_kprobe(struct kprobe *kp) 2060 { 2061 int ret = 0; 2062 2063 mutex_lock(&kprobe_mutex); 2064 2065 /* Disable this kprobe */ 2066 if (__disable_kprobe(kp) == NULL) 2067 ret = -EINVAL; 2068 2069 mutex_unlock(&kprobe_mutex); 2070 return ret; 2071 } 2072 EXPORT_SYMBOL_GPL(disable_kprobe); 2073 2074 /* Enable one kprobe */ 2075 int enable_kprobe(struct kprobe *kp) 2076 { 2077 int ret = 0; 2078 struct kprobe *p; 2079 2080 mutex_lock(&kprobe_mutex); 2081 2082 /* Check whether specified probe is valid. */ 2083 p = __get_valid_kprobe(kp); 2084 if (unlikely(p == NULL)) { 2085 ret = -EINVAL; 2086 goto out; 2087 } 2088 2089 if (kprobe_gone(kp)) { 2090 /* This kprobe has gone, we couldn't enable it. */ 2091 ret = -EINVAL; 2092 goto out; 2093 } 2094 2095 if (p != kp) 2096 kp->flags &= ~KPROBE_FLAG_DISABLED; 2097 2098 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2099 p->flags &= ~KPROBE_FLAG_DISABLED; 2100 arm_kprobe(p); 2101 } 2102 out: 2103 mutex_unlock(&kprobe_mutex); 2104 return ret; 2105 } 2106 EXPORT_SYMBOL_GPL(enable_kprobe); 2107 2108 void dump_kprobe(struct kprobe *kp) 2109 { 2110 printk(KERN_WARNING "Dumping kprobe:\n"); 2111 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 2112 kp->symbol_name, kp->addr, kp->offset); 2113 } 2114 NOKPROBE_SYMBOL(dump_kprobe); 2115 2116 /* 2117 * Lookup and populate the kprobe_blacklist. 2118 * 2119 * Unlike the kretprobe blacklist, we'll need to determine 2120 * the range of addresses that belong to the said functions, 2121 * since a kprobe need not necessarily be at the beginning 2122 * of a function. 2123 */ 2124 static int __init populate_kprobe_blacklist(unsigned long *start, 2125 unsigned long *end) 2126 { 2127 unsigned long *iter; 2128 struct kprobe_blacklist_entry *ent; 2129 unsigned long entry, offset = 0, size = 0; 2130 2131 for (iter = start; iter < end; iter++) { 2132 entry = arch_deref_entry_point((void *)*iter); 2133 2134 if (!kernel_text_address(entry) || 2135 !kallsyms_lookup_size_offset(entry, &size, &offset)) { 2136 pr_err("Failed to find blacklist at %p\n", 2137 (void *)entry); 2138 continue; 2139 } 2140 2141 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2142 if (!ent) 2143 return -ENOMEM; 2144 ent->start_addr = entry; 2145 ent->end_addr = entry + size; 2146 INIT_LIST_HEAD(&ent->list); 2147 list_add_tail(&ent->list, &kprobe_blacklist); 2148 } 2149 return 0; 2150 } 2151 2152 /* Module notifier call back, checking kprobes on the module */ 2153 static int kprobes_module_callback(struct notifier_block *nb, 2154 unsigned long val, void *data) 2155 { 2156 struct module *mod = data; 2157 struct hlist_head *head; 2158 struct kprobe *p; 2159 unsigned int i; 2160 int checkcore = (val == MODULE_STATE_GOING); 2161 2162 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2163 return NOTIFY_DONE; 2164 2165 /* 2166 * When MODULE_STATE_GOING was notified, both of module .text and 2167 * .init.text sections would be freed. When MODULE_STATE_LIVE was 2168 * notified, only .init.text section would be freed. We need to 2169 * disable kprobes which have been inserted in the sections. 2170 */ 2171 mutex_lock(&kprobe_mutex); 2172 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2173 head = &kprobe_table[i]; 2174 hlist_for_each_entry_rcu(p, head, hlist) 2175 if (within_module_init((unsigned long)p->addr, mod) || 2176 (checkcore && 2177 within_module_core((unsigned long)p->addr, mod))) { 2178 /* 2179 * The vaddr this probe is installed will soon 2180 * be vfreed buy not synced to disk. Hence, 2181 * disarming the breakpoint isn't needed. 2182 */ 2183 kill_kprobe(p); 2184 } 2185 } 2186 mutex_unlock(&kprobe_mutex); 2187 return NOTIFY_DONE; 2188 } 2189 2190 static struct notifier_block kprobe_module_nb = { 2191 .notifier_call = kprobes_module_callback, 2192 .priority = 0 2193 }; 2194 2195 /* Markers of _kprobe_blacklist section */ 2196 extern unsigned long __start_kprobe_blacklist[]; 2197 extern unsigned long __stop_kprobe_blacklist[]; 2198 2199 static int __init init_kprobes(void) 2200 { 2201 int i, err = 0; 2202 2203 /* FIXME allocate the probe table, currently defined statically */ 2204 /* initialize all list heads */ 2205 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2206 INIT_HLIST_HEAD(&kprobe_table[i]); 2207 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 2208 raw_spin_lock_init(&(kretprobe_table_locks[i].lock)); 2209 } 2210 2211 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2212 __stop_kprobe_blacklist); 2213 if (err) { 2214 pr_err("kprobes: failed to populate blacklist: %d\n", err); 2215 pr_err("Please take care of using kprobes.\n"); 2216 } 2217 2218 if (kretprobe_blacklist_size) { 2219 /* lookup the function address from its name */ 2220 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2221 kprobe_lookup_name(kretprobe_blacklist[i].name, 2222 kretprobe_blacklist[i].addr); 2223 if (!kretprobe_blacklist[i].addr) 2224 printk("kretprobe: lookup failed: %s\n", 2225 kretprobe_blacklist[i].name); 2226 } 2227 } 2228 2229 #if defined(CONFIG_OPTPROBES) 2230 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2231 /* Init kprobe_optinsn_slots */ 2232 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2233 #endif 2234 /* By default, kprobes can be optimized */ 2235 kprobes_allow_optimization = true; 2236 #endif 2237 2238 /* By default, kprobes are armed */ 2239 kprobes_all_disarmed = false; 2240 2241 err = arch_init_kprobes(); 2242 if (!err) 2243 err = register_die_notifier(&kprobe_exceptions_nb); 2244 if (!err) 2245 err = register_module_notifier(&kprobe_module_nb); 2246 2247 kprobes_initialized = (err == 0); 2248 2249 if (!err) 2250 init_test_probes(); 2251 return err; 2252 } 2253 2254 #ifdef CONFIG_DEBUG_FS 2255 static void report_probe(struct seq_file *pi, struct kprobe *p, 2256 const char *sym, int offset, char *modname, struct kprobe *pp) 2257 { 2258 char *kprobe_type; 2259 2260 if (p->pre_handler == pre_handler_kretprobe) 2261 kprobe_type = "r"; 2262 else if (p->pre_handler == setjmp_pre_handler) 2263 kprobe_type = "j"; 2264 else 2265 kprobe_type = "k"; 2266 2267 if (sym) 2268 seq_printf(pi, "%p %s %s+0x%x %s ", 2269 p->addr, kprobe_type, sym, offset, 2270 (modname ? modname : " ")); 2271 else 2272 seq_printf(pi, "%p %s %p ", 2273 p->addr, kprobe_type, p->addr); 2274 2275 if (!pp) 2276 pp = p; 2277 seq_printf(pi, "%s%s%s%s\n", 2278 (kprobe_gone(p) ? "[GONE]" : ""), 2279 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2280 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2281 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2282 } 2283 2284 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2285 { 2286 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2287 } 2288 2289 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2290 { 2291 (*pos)++; 2292 if (*pos >= KPROBE_TABLE_SIZE) 2293 return NULL; 2294 return pos; 2295 } 2296 2297 static void kprobe_seq_stop(struct seq_file *f, void *v) 2298 { 2299 /* Nothing to do */ 2300 } 2301 2302 static int show_kprobe_addr(struct seq_file *pi, void *v) 2303 { 2304 struct hlist_head *head; 2305 struct kprobe *p, *kp; 2306 const char *sym = NULL; 2307 unsigned int i = *(loff_t *) v; 2308 unsigned long offset = 0; 2309 char *modname, namebuf[KSYM_NAME_LEN]; 2310 2311 head = &kprobe_table[i]; 2312 preempt_disable(); 2313 hlist_for_each_entry_rcu(p, head, hlist) { 2314 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2315 &offset, &modname, namebuf); 2316 if (kprobe_aggrprobe(p)) { 2317 list_for_each_entry_rcu(kp, &p->list, list) 2318 report_probe(pi, kp, sym, offset, modname, p); 2319 } else 2320 report_probe(pi, p, sym, offset, modname, NULL); 2321 } 2322 preempt_enable(); 2323 return 0; 2324 } 2325 2326 static const struct seq_operations kprobes_seq_ops = { 2327 .start = kprobe_seq_start, 2328 .next = kprobe_seq_next, 2329 .stop = kprobe_seq_stop, 2330 .show = show_kprobe_addr 2331 }; 2332 2333 static int kprobes_open(struct inode *inode, struct file *filp) 2334 { 2335 return seq_open(filp, &kprobes_seq_ops); 2336 } 2337 2338 static const struct file_operations debugfs_kprobes_operations = { 2339 .open = kprobes_open, 2340 .read = seq_read, 2341 .llseek = seq_lseek, 2342 .release = seq_release, 2343 }; 2344 2345 /* kprobes/blacklist -- shows which functions can not be probed */ 2346 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2347 { 2348 return seq_list_start(&kprobe_blacklist, *pos); 2349 } 2350 2351 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2352 { 2353 return seq_list_next(v, &kprobe_blacklist, pos); 2354 } 2355 2356 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2357 { 2358 struct kprobe_blacklist_entry *ent = 2359 list_entry(v, struct kprobe_blacklist_entry, list); 2360 2361 seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr, 2362 (void *)ent->end_addr, (void *)ent->start_addr); 2363 return 0; 2364 } 2365 2366 static const struct seq_operations kprobe_blacklist_seq_ops = { 2367 .start = kprobe_blacklist_seq_start, 2368 .next = kprobe_blacklist_seq_next, 2369 .stop = kprobe_seq_stop, /* Reuse void function */ 2370 .show = kprobe_blacklist_seq_show, 2371 }; 2372 2373 static int kprobe_blacklist_open(struct inode *inode, struct file *filp) 2374 { 2375 return seq_open(filp, &kprobe_blacklist_seq_ops); 2376 } 2377 2378 static const struct file_operations debugfs_kprobe_blacklist_ops = { 2379 .open = kprobe_blacklist_open, 2380 .read = seq_read, 2381 .llseek = seq_lseek, 2382 .release = seq_release, 2383 }; 2384 2385 static void arm_all_kprobes(void) 2386 { 2387 struct hlist_head *head; 2388 struct kprobe *p; 2389 unsigned int i; 2390 2391 mutex_lock(&kprobe_mutex); 2392 2393 /* If kprobes are armed, just return */ 2394 if (!kprobes_all_disarmed) 2395 goto already_enabled; 2396 2397 /* 2398 * optimize_kprobe() called by arm_kprobe() checks 2399 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2400 * arm_kprobe. 2401 */ 2402 kprobes_all_disarmed = false; 2403 /* Arming kprobes doesn't optimize kprobe itself */ 2404 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2405 head = &kprobe_table[i]; 2406 hlist_for_each_entry_rcu(p, head, hlist) 2407 if (!kprobe_disabled(p)) 2408 arm_kprobe(p); 2409 } 2410 2411 printk(KERN_INFO "Kprobes globally enabled\n"); 2412 2413 already_enabled: 2414 mutex_unlock(&kprobe_mutex); 2415 return; 2416 } 2417 2418 static void disarm_all_kprobes(void) 2419 { 2420 struct hlist_head *head; 2421 struct kprobe *p; 2422 unsigned int i; 2423 2424 mutex_lock(&kprobe_mutex); 2425 2426 /* If kprobes are already disarmed, just return */ 2427 if (kprobes_all_disarmed) { 2428 mutex_unlock(&kprobe_mutex); 2429 return; 2430 } 2431 2432 kprobes_all_disarmed = true; 2433 printk(KERN_INFO "Kprobes globally disabled\n"); 2434 2435 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2436 head = &kprobe_table[i]; 2437 hlist_for_each_entry_rcu(p, head, hlist) { 2438 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 2439 disarm_kprobe(p, false); 2440 } 2441 } 2442 mutex_unlock(&kprobe_mutex); 2443 2444 /* Wait for disarming all kprobes by optimizer */ 2445 wait_for_kprobe_optimizer(); 2446 } 2447 2448 /* 2449 * XXX: The debugfs bool file interface doesn't allow for callbacks 2450 * when the bool state is switched. We can reuse that facility when 2451 * available 2452 */ 2453 static ssize_t read_enabled_file_bool(struct file *file, 2454 char __user *user_buf, size_t count, loff_t *ppos) 2455 { 2456 char buf[3]; 2457 2458 if (!kprobes_all_disarmed) 2459 buf[0] = '1'; 2460 else 2461 buf[0] = '0'; 2462 buf[1] = '\n'; 2463 buf[2] = 0x00; 2464 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2465 } 2466 2467 static ssize_t write_enabled_file_bool(struct file *file, 2468 const char __user *user_buf, size_t count, loff_t *ppos) 2469 { 2470 char buf[32]; 2471 size_t buf_size; 2472 2473 buf_size = min(count, (sizeof(buf)-1)); 2474 if (copy_from_user(buf, user_buf, buf_size)) 2475 return -EFAULT; 2476 2477 buf[buf_size] = '\0'; 2478 switch (buf[0]) { 2479 case 'y': 2480 case 'Y': 2481 case '1': 2482 arm_all_kprobes(); 2483 break; 2484 case 'n': 2485 case 'N': 2486 case '0': 2487 disarm_all_kprobes(); 2488 break; 2489 default: 2490 return -EINVAL; 2491 } 2492 2493 return count; 2494 } 2495 2496 static const struct file_operations fops_kp = { 2497 .read = read_enabled_file_bool, 2498 .write = write_enabled_file_bool, 2499 .llseek = default_llseek, 2500 }; 2501 2502 static int __init debugfs_kprobe_init(void) 2503 { 2504 struct dentry *dir, *file; 2505 unsigned int value = 1; 2506 2507 dir = debugfs_create_dir("kprobes", NULL); 2508 if (!dir) 2509 return -ENOMEM; 2510 2511 file = debugfs_create_file("list", 0444, dir, NULL, 2512 &debugfs_kprobes_operations); 2513 if (!file) 2514 goto error; 2515 2516 file = debugfs_create_file("enabled", 0600, dir, 2517 &value, &fops_kp); 2518 if (!file) 2519 goto error; 2520 2521 file = debugfs_create_file("blacklist", 0444, dir, NULL, 2522 &debugfs_kprobe_blacklist_ops); 2523 if (!file) 2524 goto error; 2525 2526 return 0; 2527 2528 error: 2529 debugfs_remove(dir); 2530 return -ENOMEM; 2531 } 2532 2533 late_initcall(debugfs_kprobe_init); 2534 #endif /* CONFIG_DEBUG_FS */ 2535 2536 module_init(init_kprobes); 2537 2538 /* defined in arch/.../kernel/kprobes.c */ 2539 EXPORT_SYMBOL_GPL(jprobe_return); 2540