xref: /linux/kernel/kprobes.c (revision 43bb48c38e817b5f89fce340f49436a605e47e66)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39 #include <linux/static_call.h>
40 
41 #include <asm/sections.h>
42 #include <asm/cacheflush.h>
43 #include <asm/errno.h>
44 #include <linux/uaccess.h>
45 
46 #define KPROBE_HASH_BITS 6
47 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48 
49 
50 static int kprobes_initialized;
51 /* kprobe_table can be accessed by
52  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
53  * Or
54  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
55  */
56 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
57 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
58 
59 /* NOTE: change this value only with kprobe_mutex held */
60 static bool kprobes_all_disarmed;
61 
62 /* This protects kprobe_table and optimizing_list */
63 static DEFINE_MUTEX(kprobe_mutex);
64 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
65 static struct {
66 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
67 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
68 
69 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
70 					unsigned int __unused)
71 {
72 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
73 }
74 
75 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
76 {
77 	return &(kretprobe_table_locks[hash].lock);
78 }
79 
80 /* Blacklist -- list of struct kprobe_blacklist_entry */
81 static LIST_HEAD(kprobe_blacklist);
82 
83 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
84 /*
85  * kprobe->ainsn.insn points to the copy of the instruction to be
86  * single-stepped. x86_64, POWER4 and above have no-exec support and
87  * stepping on the instruction on a vmalloced/kmalloced/data page
88  * is a recipe for disaster
89  */
90 struct kprobe_insn_page {
91 	struct list_head list;
92 	kprobe_opcode_t *insns;		/* Page of instruction slots */
93 	struct kprobe_insn_cache *cache;
94 	int nused;
95 	int ngarbage;
96 	char slot_used[];
97 };
98 
99 #define KPROBE_INSN_PAGE_SIZE(slots)			\
100 	(offsetof(struct kprobe_insn_page, slot_used) +	\
101 	 (sizeof(char) * (slots)))
102 
103 static int slots_per_page(struct kprobe_insn_cache *c)
104 {
105 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
106 }
107 
108 enum kprobe_slot_state {
109 	SLOT_CLEAN = 0,
110 	SLOT_DIRTY = 1,
111 	SLOT_USED = 2,
112 };
113 
114 void __weak *alloc_insn_page(void)
115 {
116 	return module_alloc(PAGE_SIZE);
117 }
118 
119 void __weak free_insn_page(void *page)
120 {
121 	module_memfree(page);
122 }
123 
124 struct kprobe_insn_cache kprobe_insn_slots = {
125 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
126 	.alloc = alloc_insn_page,
127 	.free = free_insn_page,
128 	.sym = KPROBE_INSN_PAGE_SYM,
129 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
130 	.insn_size = MAX_INSN_SIZE,
131 	.nr_garbage = 0,
132 };
133 static int collect_garbage_slots(struct kprobe_insn_cache *c);
134 
135 /**
136  * __get_insn_slot() - Find a slot on an executable page for an instruction.
137  * We allocate an executable page if there's no room on existing ones.
138  */
139 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
140 {
141 	struct kprobe_insn_page *kip;
142 	kprobe_opcode_t *slot = NULL;
143 
144 	/* Since the slot array is not protected by rcu, we need a mutex */
145 	mutex_lock(&c->mutex);
146  retry:
147 	rcu_read_lock();
148 	list_for_each_entry_rcu(kip, &c->pages, list) {
149 		if (kip->nused < slots_per_page(c)) {
150 			int i;
151 			for (i = 0; i < slots_per_page(c); i++) {
152 				if (kip->slot_used[i] == SLOT_CLEAN) {
153 					kip->slot_used[i] = SLOT_USED;
154 					kip->nused++;
155 					slot = kip->insns + (i * c->insn_size);
156 					rcu_read_unlock();
157 					goto out;
158 				}
159 			}
160 			/* kip->nused is broken. Fix it. */
161 			kip->nused = slots_per_page(c);
162 			WARN_ON(1);
163 		}
164 	}
165 	rcu_read_unlock();
166 
167 	/* If there are any garbage slots, collect it and try again. */
168 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
169 		goto retry;
170 
171 	/* All out of space.  Need to allocate a new page. */
172 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
173 	if (!kip)
174 		goto out;
175 
176 	/*
177 	 * Use module_alloc so this page is within +/- 2GB of where the
178 	 * kernel image and loaded module images reside. This is required
179 	 * so x86_64 can correctly handle the %rip-relative fixups.
180 	 */
181 	kip->insns = c->alloc();
182 	if (!kip->insns) {
183 		kfree(kip);
184 		goto out;
185 	}
186 	INIT_LIST_HEAD(&kip->list);
187 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
188 	kip->slot_used[0] = SLOT_USED;
189 	kip->nused = 1;
190 	kip->ngarbage = 0;
191 	kip->cache = c;
192 	list_add_rcu(&kip->list, &c->pages);
193 	slot = kip->insns;
194 
195 	/* Record the perf ksymbol register event after adding the page */
196 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
197 			   PAGE_SIZE, false, c->sym);
198 out:
199 	mutex_unlock(&c->mutex);
200 	return slot;
201 }
202 
203 /* Return 1 if all garbages are collected, otherwise 0. */
204 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
205 {
206 	kip->slot_used[idx] = SLOT_CLEAN;
207 	kip->nused--;
208 	if (kip->nused == 0) {
209 		/*
210 		 * Page is no longer in use.  Free it unless
211 		 * it's the last one.  We keep the last one
212 		 * so as not to have to set it up again the
213 		 * next time somebody inserts a probe.
214 		 */
215 		if (!list_is_singular(&kip->list)) {
216 			/*
217 			 * Record perf ksymbol unregister event before removing
218 			 * the page.
219 			 */
220 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
221 					   (unsigned long)kip->insns, PAGE_SIZE, true,
222 					   kip->cache->sym);
223 			list_del_rcu(&kip->list);
224 			synchronize_rcu();
225 			kip->cache->free(kip->insns);
226 			kfree(kip);
227 		}
228 		return 1;
229 	}
230 	return 0;
231 }
232 
233 static int collect_garbage_slots(struct kprobe_insn_cache *c)
234 {
235 	struct kprobe_insn_page *kip, *next;
236 
237 	/* Ensure no-one is interrupted on the garbages */
238 	synchronize_rcu();
239 
240 	list_for_each_entry_safe(kip, next, &c->pages, list) {
241 		int i;
242 		if (kip->ngarbage == 0)
243 			continue;
244 		kip->ngarbage = 0;	/* we will collect all garbages */
245 		for (i = 0; i < slots_per_page(c); i++) {
246 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
247 				break;
248 		}
249 	}
250 	c->nr_garbage = 0;
251 	return 0;
252 }
253 
254 void __free_insn_slot(struct kprobe_insn_cache *c,
255 		      kprobe_opcode_t *slot, int dirty)
256 {
257 	struct kprobe_insn_page *kip;
258 	long idx;
259 
260 	mutex_lock(&c->mutex);
261 	rcu_read_lock();
262 	list_for_each_entry_rcu(kip, &c->pages, list) {
263 		idx = ((long)slot - (long)kip->insns) /
264 			(c->insn_size * sizeof(kprobe_opcode_t));
265 		if (idx >= 0 && idx < slots_per_page(c))
266 			goto out;
267 	}
268 	/* Could not find this slot. */
269 	WARN_ON(1);
270 	kip = NULL;
271 out:
272 	rcu_read_unlock();
273 	/* Mark and sweep: this may sleep */
274 	if (kip) {
275 		/* Check double free */
276 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
277 		if (dirty) {
278 			kip->slot_used[idx] = SLOT_DIRTY;
279 			kip->ngarbage++;
280 			if (++c->nr_garbage > slots_per_page(c))
281 				collect_garbage_slots(c);
282 		} else {
283 			collect_one_slot(kip, idx);
284 		}
285 	}
286 	mutex_unlock(&c->mutex);
287 }
288 
289 /*
290  * Check given address is on the page of kprobe instruction slots.
291  * This will be used for checking whether the address on a stack
292  * is on a text area or not.
293  */
294 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
295 {
296 	struct kprobe_insn_page *kip;
297 	bool ret = false;
298 
299 	rcu_read_lock();
300 	list_for_each_entry_rcu(kip, &c->pages, list) {
301 		if (addr >= (unsigned long)kip->insns &&
302 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
303 			ret = true;
304 			break;
305 		}
306 	}
307 	rcu_read_unlock();
308 
309 	return ret;
310 }
311 
312 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
313 			     unsigned long *value, char *type, char *sym)
314 {
315 	struct kprobe_insn_page *kip;
316 	int ret = -ERANGE;
317 
318 	rcu_read_lock();
319 	list_for_each_entry_rcu(kip, &c->pages, list) {
320 		if ((*symnum)--)
321 			continue;
322 		strlcpy(sym, c->sym, KSYM_NAME_LEN);
323 		*type = 't';
324 		*value = (unsigned long)kip->insns;
325 		ret = 0;
326 		break;
327 	}
328 	rcu_read_unlock();
329 
330 	return ret;
331 }
332 
333 #ifdef CONFIG_OPTPROBES
334 /* For optimized_kprobe buffer */
335 struct kprobe_insn_cache kprobe_optinsn_slots = {
336 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
337 	.alloc = alloc_insn_page,
338 	.free = free_insn_page,
339 	.sym = KPROBE_OPTINSN_PAGE_SYM,
340 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
341 	/* .insn_size is initialized later */
342 	.nr_garbage = 0,
343 };
344 #endif
345 #endif
346 
347 /* We have preemption disabled.. so it is safe to use __ versions */
348 static inline void set_kprobe_instance(struct kprobe *kp)
349 {
350 	__this_cpu_write(kprobe_instance, kp);
351 }
352 
353 static inline void reset_kprobe_instance(void)
354 {
355 	__this_cpu_write(kprobe_instance, NULL);
356 }
357 
358 /*
359  * This routine is called either:
360  * 	- under the kprobe_mutex - during kprobe_[un]register()
361  * 				OR
362  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
363  */
364 struct kprobe *get_kprobe(void *addr)
365 {
366 	struct hlist_head *head;
367 	struct kprobe *p;
368 
369 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
370 	hlist_for_each_entry_rcu(p, head, hlist,
371 				 lockdep_is_held(&kprobe_mutex)) {
372 		if (p->addr == addr)
373 			return p;
374 	}
375 
376 	return NULL;
377 }
378 NOKPROBE_SYMBOL(get_kprobe);
379 
380 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
381 
382 /* Return true if the kprobe is an aggregator */
383 static inline int kprobe_aggrprobe(struct kprobe *p)
384 {
385 	return p->pre_handler == aggr_pre_handler;
386 }
387 
388 /* Return true(!0) if the kprobe is unused */
389 static inline int kprobe_unused(struct kprobe *p)
390 {
391 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
392 	       list_empty(&p->list);
393 }
394 
395 /*
396  * Keep all fields in the kprobe consistent
397  */
398 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
399 {
400 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
401 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
402 }
403 
404 #ifdef CONFIG_OPTPROBES
405 /* NOTE: change this value only with kprobe_mutex held */
406 static bool kprobes_allow_optimization;
407 
408 /*
409  * Call all pre_handler on the list, but ignores its return value.
410  * This must be called from arch-dep optimized caller.
411  */
412 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
413 {
414 	struct kprobe *kp;
415 
416 	list_for_each_entry_rcu(kp, &p->list, list) {
417 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
418 			set_kprobe_instance(kp);
419 			kp->pre_handler(kp, regs);
420 		}
421 		reset_kprobe_instance();
422 	}
423 }
424 NOKPROBE_SYMBOL(opt_pre_handler);
425 
426 /* Free optimized instructions and optimized_kprobe */
427 static void free_aggr_kprobe(struct kprobe *p)
428 {
429 	struct optimized_kprobe *op;
430 
431 	op = container_of(p, struct optimized_kprobe, kp);
432 	arch_remove_optimized_kprobe(op);
433 	arch_remove_kprobe(p);
434 	kfree(op);
435 }
436 
437 /* Return true(!0) if the kprobe is ready for optimization. */
438 static inline int kprobe_optready(struct kprobe *p)
439 {
440 	struct optimized_kprobe *op;
441 
442 	if (kprobe_aggrprobe(p)) {
443 		op = container_of(p, struct optimized_kprobe, kp);
444 		return arch_prepared_optinsn(&op->optinsn);
445 	}
446 
447 	return 0;
448 }
449 
450 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
451 static inline int kprobe_disarmed(struct kprobe *p)
452 {
453 	struct optimized_kprobe *op;
454 
455 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
456 	if (!kprobe_aggrprobe(p))
457 		return kprobe_disabled(p);
458 
459 	op = container_of(p, struct optimized_kprobe, kp);
460 
461 	return kprobe_disabled(p) && list_empty(&op->list);
462 }
463 
464 /* Return true(!0) if the probe is queued on (un)optimizing lists */
465 static int kprobe_queued(struct kprobe *p)
466 {
467 	struct optimized_kprobe *op;
468 
469 	if (kprobe_aggrprobe(p)) {
470 		op = container_of(p, struct optimized_kprobe, kp);
471 		if (!list_empty(&op->list))
472 			return 1;
473 	}
474 	return 0;
475 }
476 
477 /*
478  * Return an optimized kprobe whose optimizing code replaces
479  * instructions including addr (exclude breakpoint).
480  */
481 static struct kprobe *get_optimized_kprobe(unsigned long addr)
482 {
483 	int i;
484 	struct kprobe *p = NULL;
485 	struct optimized_kprobe *op;
486 
487 	/* Don't check i == 0, since that is a breakpoint case. */
488 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
489 		p = get_kprobe((void *)(addr - i));
490 
491 	if (p && kprobe_optready(p)) {
492 		op = container_of(p, struct optimized_kprobe, kp);
493 		if (arch_within_optimized_kprobe(op, addr))
494 			return p;
495 	}
496 
497 	return NULL;
498 }
499 
500 /* Optimization staging list, protected by kprobe_mutex */
501 static LIST_HEAD(optimizing_list);
502 static LIST_HEAD(unoptimizing_list);
503 static LIST_HEAD(freeing_list);
504 
505 static void kprobe_optimizer(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
507 #define OPTIMIZE_DELAY 5
508 
509 /*
510  * Optimize (replace a breakpoint with a jump) kprobes listed on
511  * optimizing_list.
512  */
513 static void do_optimize_kprobes(void)
514 {
515 	lockdep_assert_held(&text_mutex);
516 	/*
517 	 * The optimization/unoptimization refers online_cpus via
518 	 * stop_machine() and cpu-hotplug modifies online_cpus.
519 	 * And same time, text_mutex will be held in cpu-hotplug and here.
520 	 * This combination can cause a deadlock (cpu-hotplug try to lock
521 	 * text_mutex but stop_machine can not be done because online_cpus
522 	 * has been changed)
523 	 * To avoid this deadlock, caller must have locked cpu hotplug
524 	 * for preventing cpu-hotplug outside of text_mutex locking.
525 	 */
526 	lockdep_assert_cpus_held();
527 
528 	/* Optimization never be done when disarmed */
529 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
530 	    list_empty(&optimizing_list))
531 		return;
532 
533 	arch_optimize_kprobes(&optimizing_list);
534 }
535 
536 /*
537  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
538  * if need) kprobes listed on unoptimizing_list.
539  */
540 static void do_unoptimize_kprobes(void)
541 {
542 	struct optimized_kprobe *op, *tmp;
543 
544 	lockdep_assert_held(&text_mutex);
545 	/* See comment in do_optimize_kprobes() */
546 	lockdep_assert_cpus_held();
547 
548 	/* Unoptimization must be done anytime */
549 	if (list_empty(&unoptimizing_list))
550 		return;
551 
552 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
553 	/* Loop free_list for disarming */
554 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
555 		/* Switching from detour code to origin */
556 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
557 		/* Disarm probes if marked disabled */
558 		if (kprobe_disabled(&op->kp))
559 			arch_disarm_kprobe(&op->kp);
560 		if (kprobe_unused(&op->kp)) {
561 			/*
562 			 * Remove unused probes from hash list. After waiting
563 			 * for synchronization, these probes are reclaimed.
564 			 * (reclaiming is done by do_free_cleaned_kprobes.)
565 			 */
566 			hlist_del_rcu(&op->kp.hlist);
567 		} else
568 			list_del_init(&op->list);
569 	}
570 }
571 
572 /* Reclaim all kprobes on the free_list */
573 static void do_free_cleaned_kprobes(void)
574 {
575 	struct optimized_kprobe *op, *tmp;
576 
577 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
578 		list_del_init(&op->list);
579 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
580 			/*
581 			 * This must not happen, but if there is a kprobe
582 			 * still in use, keep it on kprobes hash list.
583 			 */
584 			continue;
585 		}
586 		free_aggr_kprobe(&op->kp);
587 	}
588 }
589 
590 /* Start optimizer after OPTIMIZE_DELAY passed */
591 static void kick_kprobe_optimizer(void)
592 {
593 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
594 }
595 
596 /* Kprobe jump optimizer */
597 static void kprobe_optimizer(struct work_struct *work)
598 {
599 	mutex_lock(&kprobe_mutex);
600 	cpus_read_lock();
601 	mutex_lock(&text_mutex);
602 
603 	/*
604 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
605 	 * kprobes before waiting for quiesence period.
606 	 */
607 	do_unoptimize_kprobes();
608 
609 	/*
610 	 * Step 2: Wait for quiesence period to ensure all potentially
611 	 * preempted tasks to have normally scheduled. Because optprobe
612 	 * may modify multiple instructions, there is a chance that Nth
613 	 * instruction is preempted. In that case, such tasks can return
614 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
615 	 * Note that on non-preemptive kernel, this is transparently converted
616 	 * to synchronoze_sched() to wait for all interrupts to have completed.
617 	 */
618 	synchronize_rcu_tasks();
619 
620 	/* Step 3: Optimize kprobes after quiesence period */
621 	do_optimize_kprobes();
622 
623 	/* Step 4: Free cleaned kprobes after quiesence period */
624 	do_free_cleaned_kprobes();
625 
626 	mutex_unlock(&text_mutex);
627 	cpus_read_unlock();
628 
629 	/* Step 5: Kick optimizer again if needed */
630 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
631 		kick_kprobe_optimizer();
632 
633 	mutex_unlock(&kprobe_mutex);
634 }
635 
636 /* Wait for completing optimization and unoptimization */
637 void wait_for_kprobe_optimizer(void)
638 {
639 	mutex_lock(&kprobe_mutex);
640 
641 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
642 		mutex_unlock(&kprobe_mutex);
643 
644 		/* this will also make optimizing_work execute immmediately */
645 		flush_delayed_work(&optimizing_work);
646 		/* @optimizing_work might not have been queued yet, relax */
647 		cpu_relax();
648 
649 		mutex_lock(&kprobe_mutex);
650 	}
651 
652 	mutex_unlock(&kprobe_mutex);
653 }
654 
655 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
656 {
657 	struct optimized_kprobe *_op;
658 
659 	list_for_each_entry(_op, &unoptimizing_list, list) {
660 		if (op == _op)
661 			return true;
662 	}
663 
664 	return false;
665 }
666 
667 /* Optimize kprobe if p is ready to be optimized */
668 static void optimize_kprobe(struct kprobe *p)
669 {
670 	struct optimized_kprobe *op;
671 
672 	/* Check if the kprobe is disabled or not ready for optimization. */
673 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
674 	    (kprobe_disabled(p) || kprobes_all_disarmed))
675 		return;
676 
677 	/* kprobes with post_handler can not be optimized */
678 	if (p->post_handler)
679 		return;
680 
681 	op = container_of(p, struct optimized_kprobe, kp);
682 
683 	/* Check there is no other kprobes at the optimized instructions */
684 	if (arch_check_optimized_kprobe(op) < 0)
685 		return;
686 
687 	/* Check if it is already optimized. */
688 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
689 		if (optprobe_queued_unopt(op)) {
690 			/* This is under unoptimizing. Just dequeue the probe */
691 			list_del_init(&op->list);
692 		}
693 		return;
694 	}
695 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
696 
697 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
698 	if (WARN_ON_ONCE(!list_empty(&op->list)))
699 		return;
700 
701 	list_add(&op->list, &optimizing_list);
702 	kick_kprobe_optimizer();
703 }
704 
705 /* Short cut to direct unoptimizing */
706 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
707 {
708 	lockdep_assert_cpus_held();
709 	arch_unoptimize_kprobe(op);
710 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
711 }
712 
713 /* Unoptimize a kprobe if p is optimized */
714 static void unoptimize_kprobe(struct kprobe *p, bool force)
715 {
716 	struct optimized_kprobe *op;
717 
718 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
719 		return; /* This is not an optprobe nor optimized */
720 
721 	op = container_of(p, struct optimized_kprobe, kp);
722 	if (!kprobe_optimized(p))
723 		return;
724 
725 	if (!list_empty(&op->list)) {
726 		if (optprobe_queued_unopt(op)) {
727 			/* Queued in unoptimizing queue */
728 			if (force) {
729 				/*
730 				 * Forcibly unoptimize the kprobe here, and queue it
731 				 * in the freeing list for release afterwards.
732 				 */
733 				force_unoptimize_kprobe(op);
734 				list_move(&op->list, &freeing_list);
735 			}
736 		} else {
737 			/* Dequeue from the optimizing queue */
738 			list_del_init(&op->list);
739 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
740 		}
741 		return;
742 	}
743 
744 	/* Optimized kprobe case */
745 	if (force) {
746 		/* Forcibly update the code: this is a special case */
747 		force_unoptimize_kprobe(op);
748 	} else {
749 		list_add(&op->list, &unoptimizing_list);
750 		kick_kprobe_optimizer();
751 	}
752 }
753 
754 /* Cancel unoptimizing for reusing */
755 static int reuse_unused_kprobe(struct kprobe *ap)
756 {
757 	struct optimized_kprobe *op;
758 
759 	/*
760 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
761 	 * there is still a relative jump) and disabled.
762 	 */
763 	op = container_of(ap, struct optimized_kprobe, kp);
764 	WARN_ON_ONCE(list_empty(&op->list));
765 	/* Enable the probe again */
766 	ap->flags &= ~KPROBE_FLAG_DISABLED;
767 	/* Optimize it again (remove from op->list) */
768 	if (!kprobe_optready(ap))
769 		return -EINVAL;
770 
771 	optimize_kprobe(ap);
772 	return 0;
773 }
774 
775 /* Remove optimized instructions */
776 static void kill_optimized_kprobe(struct kprobe *p)
777 {
778 	struct optimized_kprobe *op;
779 
780 	op = container_of(p, struct optimized_kprobe, kp);
781 	if (!list_empty(&op->list))
782 		/* Dequeue from the (un)optimization queue */
783 		list_del_init(&op->list);
784 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
785 
786 	if (kprobe_unused(p)) {
787 		/* Enqueue if it is unused */
788 		list_add(&op->list, &freeing_list);
789 		/*
790 		 * Remove unused probes from the hash list. After waiting
791 		 * for synchronization, this probe is reclaimed.
792 		 * (reclaiming is done by do_free_cleaned_kprobes().)
793 		 */
794 		hlist_del_rcu(&op->kp.hlist);
795 	}
796 
797 	/* Don't touch the code, because it is already freed. */
798 	arch_remove_optimized_kprobe(op);
799 }
800 
801 static inline
802 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
803 {
804 	if (!kprobe_ftrace(p))
805 		arch_prepare_optimized_kprobe(op, p);
806 }
807 
808 /* Try to prepare optimized instructions */
809 static void prepare_optimized_kprobe(struct kprobe *p)
810 {
811 	struct optimized_kprobe *op;
812 
813 	op = container_of(p, struct optimized_kprobe, kp);
814 	__prepare_optimized_kprobe(op, p);
815 }
816 
817 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
818 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
819 {
820 	struct optimized_kprobe *op;
821 
822 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
823 	if (!op)
824 		return NULL;
825 
826 	INIT_LIST_HEAD(&op->list);
827 	op->kp.addr = p->addr;
828 	__prepare_optimized_kprobe(op, p);
829 
830 	return &op->kp;
831 }
832 
833 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
834 
835 /*
836  * Prepare an optimized_kprobe and optimize it
837  * NOTE: p must be a normal registered kprobe
838  */
839 static void try_to_optimize_kprobe(struct kprobe *p)
840 {
841 	struct kprobe *ap;
842 	struct optimized_kprobe *op;
843 
844 	/* Impossible to optimize ftrace-based kprobe */
845 	if (kprobe_ftrace(p))
846 		return;
847 
848 	/* For preparing optimization, jump_label_text_reserved() is called */
849 	cpus_read_lock();
850 	jump_label_lock();
851 	mutex_lock(&text_mutex);
852 
853 	ap = alloc_aggr_kprobe(p);
854 	if (!ap)
855 		goto out;
856 
857 	op = container_of(ap, struct optimized_kprobe, kp);
858 	if (!arch_prepared_optinsn(&op->optinsn)) {
859 		/* If failed to setup optimizing, fallback to kprobe */
860 		arch_remove_optimized_kprobe(op);
861 		kfree(op);
862 		goto out;
863 	}
864 
865 	init_aggr_kprobe(ap, p);
866 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
867 
868 out:
869 	mutex_unlock(&text_mutex);
870 	jump_label_unlock();
871 	cpus_read_unlock();
872 }
873 
874 #ifdef CONFIG_SYSCTL
875 static void optimize_all_kprobes(void)
876 {
877 	struct hlist_head *head;
878 	struct kprobe *p;
879 	unsigned int i;
880 
881 	mutex_lock(&kprobe_mutex);
882 	/* If optimization is already allowed, just return */
883 	if (kprobes_allow_optimization)
884 		goto out;
885 
886 	cpus_read_lock();
887 	kprobes_allow_optimization = true;
888 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
889 		head = &kprobe_table[i];
890 		hlist_for_each_entry(p, head, hlist)
891 			if (!kprobe_disabled(p))
892 				optimize_kprobe(p);
893 	}
894 	cpus_read_unlock();
895 	printk(KERN_INFO "Kprobes globally optimized\n");
896 out:
897 	mutex_unlock(&kprobe_mutex);
898 }
899 
900 static void unoptimize_all_kprobes(void)
901 {
902 	struct hlist_head *head;
903 	struct kprobe *p;
904 	unsigned int i;
905 
906 	mutex_lock(&kprobe_mutex);
907 	/* If optimization is already prohibited, just return */
908 	if (!kprobes_allow_optimization) {
909 		mutex_unlock(&kprobe_mutex);
910 		return;
911 	}
912 
913 	cpus_read_lock();
914 	kprobes_allow_optimization = false;
915 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
916 		head = &kprobe_table[i];
917 		hlist_for_each_entry(p, head, hlist) {
918 			if (!kprobe_disabled(p))
919 				unoptimize_kprobe(p, false);
920 		}
921 	}
922 	cpus_read_unlock();
923 	mutex_unlock(&kprobe_mutex);
924 
925 	/* Wait for unoptimizing completion */
926 	wait_for_kprobe_optimizer();
927 	printk(KERN_INFO "Kprobes globally unoptimized\n");
928 }
929 
930 static DEFINE_MUTEX(kprobe_sysctl_mutex);
931 int sysctl_kprobes_optimization;
932 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
933 				      void *buffer, size_t *length,
934 				      loff_t *ppos)
935 {
936 	int ret;
937 
938 	mutex_lock(&kprobe_sysctl_mutex);
939 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
940 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
941 
942 	if (sysctl_kprobes_optimization)
943 		optimize_all_kprobes();
944 	else
945 		unoptimize_all_kprobes();
946 	mutex_unlock(&kprobe_sysctl_mutex);
947 
948 	return ret;
949 }
950 #endif /* CONFIG_SYSCTL */
951 
952 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
953 static void __arm_kprobe(struct kprobe *p)
954 {
955 	struct kprobe *_p;
956 
957 	/* Check collision with other optimized kprobes */
958 	_p = get_optimized_kprobe((unsigned long)p->addr);
959 	if (unlikely(_p))
960 		/* Fallback to unoptimized kprobe */
961 		unoptimize_kprobe(_p, true);
962 
963 	arch_arm_kprobe(p);
964 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
965 }
966 
967 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
968 static void __disarm_kprobe(struct kprobe *p, bool reopt)
969 {
970 	struct kprobe *_p;
971 
972 	/* Try to unoptimize */
973 	unoptimize_kprobe(p, kprobes_all_disarmed);
974 
975 	if (!kprobe_queued(p)) {
976 		arch_disarm_kprobe(p);
977 		/* If another kprobe was blocked, optimize it. */
978 		_p = get_optimized_kprobe((unsigned long)p->addr);
979 		if (unlikely(_p) && reopt)
980 			optimize_kprobe(_p);
981 	}
982 	/* TODO: reoptimize others after unoptimized this probe */
983 }
984 
985 #else /* !CONFIG_OPTPROBES */
986 
987 #define optimize_kprobe(p)			do {} while (0)
988 #define unoptimize_kprobe(p, f)			do {} while (0)
989 #define kill_optimized_kprobe(p)		do {} while (0)
990 #define prepare_optimized_kprobe(p)		do {} while (0)
991 #define try_to_optimize_kprobe(p)		do {} while (0)
992 #define __arm_kprobe(p)				arch_arm_kprobe(p)
993 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
994 #define kprobe_disarmed(p)			kprobe_disabled(p)
995 #define wait_for_kprobe_optimizer()		do {} while (0)
996 
997 static int reuse_unused_kprobe(struct kprobe *ap)
998 {
999 	/*
1000 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1001 	 * released at the same time that the last aggregated kprobe is
1002 	 * unregistered.
1003 	 * Thus there should be no chance to reuse unused kprobe.
1004 	 */
1005 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1006 	return -EINVAL;
1007 }
1008 
1009 static void free_aggr_kprobe(struct kprobe *p)
1010 {
1011 	arch_remove_kprobe(p);
1012 	kfree(p);
1013 }
1014 
1015 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1016 {
1017 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1018 }
1019 #endif /* CONFIG_OPTPROBES */
1020 
1021 #ifdef CONFIG_KPROBES_ON_FTRACE
1022 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1023 	.func = kprobe_ftrace_handler,
1024 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1025 };
1026 
1027 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1028 	.func = kprobe_ftrace_handler,
1029 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1030 };
1031 
1032 static int kprobe_ipmodify_enabled;
1033 static int kprobe_ftrace_enabled;
1034 
1035 /* Must ensure p->addr is really on ftrace */
1036 static int prepare_kprobe(struct kprobe *p)
1037 {
1038 	if (!kprobe_ftrace(p))
1039 		return arch_prepare_kprobe(p);
1040 
1041 	return arch_prepare_kprobe_ftrace(p);
1042 }
1043 
1044 /* Caller must lock kprobe_mutex */
1045 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1046 			       int *cnt)
1047 {
1048 	int ret = 0;
1049 
1050 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1051 	if (ret) {
1052 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1053 			 p->addr, ret);
1054 		return ret;
1055 	}
1056 
1057 	if (*cnt == 0) {
1058 		ret = register_ftrace_function(ops);
1059 		if (ret) {
1060 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1061 			goto err_ftrace;
1062 		}
1063 	}
1064 
1065 	(*cnt)++;
1066 	return ret;
1067 
1068 err_ftrace:
1069 	/*
1070 	 * At this point, sinec ops is not registered, we should be sefe from
1071 	 * registering empty filter.
1072 	 */
1073 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1074 	return ret;
1075 }
1076 
1077 static int arm_kprobe_ftrace(struct kprobe *p)
1078 {
1079 	bool ipmodify = (p->post_handler != NULL);
1080 
1081 	return __arm_kprobe_ftrace(p,
1082 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1083 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1084 }
1085 
1086 /* Caller must lock kprobe_mutex */
1087 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1088 				  int *cnt)
1089 {
1090 	int ret = 0;
1091 
1092 	if (*cnt == 1) {
1093 		ret = unregister_ftrace_function(ops);
1094 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1095 			return ret;
1096 	}
1097 
1098 	(*cnt)--;
1099 
1100 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1102 		  p->addr, ret);
1103 	return ret;
1104 }
1105 
1106 static int disarm_kprobe_ftrace(struct kprobe *p)
1107 {
1108 	bool ipmodify = (p->post_handler != NULL);
1109 
1110 	return __disarm_kprobe_ftrace(p,
1111 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1112 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1113 }
1114 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1115 static inline int prepare_kprobe(struct kprobe *p)
1116 {
1117 	return arch_prepare_kprobe(p);
1118 }
1119 
1120 static inline int arm_kprobe_ftrace(struct kprobe *p)
1121 {
1122 	return -ENODEV;
1123 }
1124 
1125 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1126 {
1127 	return -ENODEV;
1128 }
1129 #endif
1130 
1131 /* Arm a kprobe with text_mutex */
1132 static int arm_kprobe(struct kprobe *kp)
1133 {
1134 	if (unlikely(kprobe_ftrace(kp)))
1135 		return arm_kprobe_ftrace(kp);
1136 
1137 	cpus_read_lock();
1138 	mutex_lock(&text_mutex);
1139 	__arm_kprobe(kp);
1140 	mutex_unlock(&text_mutex);
1141 	cpus_read_unlock();
1142 
1143 	return 0;
1144 }
1145 
1146 /* Disarm a kprobe with text_mutex */
1147 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1148 {
1149 	if (unlikely(kprobe_ftrace(kp)))
1150 		return disarm_kprobe_ftrace(kp);
1151 
1152 	cpus_read_lock();
1153 	mutex_lock(&text_mutex);
1154 	__disarm_kprobe(kp, reopt);
1155 	mutex_unlock(&text_mutex);
1156 	cpus_read_unlock();
1157 
1158 	return 0;
1159 }
1160 
1161 /*
1162  * Aggregate handlers for multiple kprobes support - these handlers
1163  * take care of invoking the individual kprobe handlers on p->list
1164  */
1165 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1166 {
1167 	struct kprobe *kp;
1168 
1169 	list_for_each_entry_rcu(kp, &p->list, list) {
1170 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1171 			set_kprobe_instance(kp);
1172 			if (kp->pre_handler(kp, regs))
1173 				return 1;
1174 		}
1175 		reset_kprobe_instance();
1176 	}
1177 	return 0;
1178 }
1179 NOKPROBE_SYMBOL(aggr_pre_handler);
1180 
1181 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1182 			      unsigned long flags)
1183 {
1184 	struct kprobe *kp;
1185 
1186 	list_for_each_entry_rcu(kp, &p->list, list) {
1187 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1188 			set_kprobe_instance(kp);
1189 			kp->post_handler(kp, regs, flags);
1190 			reset_kprobe_instance();
1191 		}
1192 	}
1193 }
1194 NOKPROBE_SYMBOL(aggr_post_handler);
1195 
1196 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1197 			      int trapnr)
1198 {
1199 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1200 
1201 	/*
1202 	 * if we faulted "during" the execution of a user specified
1203 	 * probe handler, invoke just that probe's fault handler
1204 	 */
1205 	if (cur && cur->fault_handler) {
1206 		if (cur->fault_handler(cur, regs, trapnr))
1207 			return 1;
1208 	}
1209 	return 0;
1210 }
1211 NOKPROBE_SYMBOL(aggr_fault_handler);
1212 
1213 /* Walks the list and increments nmissed count for multiprobe case */
1214 void kprobes_inc_nmissed_count(struct kprobe *p)
1215 {
1216 	struct kprobe *kp;
1217 	if (!kprobe_aggrprobe(p)) {
1218 		p->nmissed++;
1219 	} else {
1220 		list_for_each_entry_rcu(kp, &p->list, list)
1221 			kp->nmissed++;
1222 	}
1223 	return;
1224 }
1225 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1226 
1227 static void recycle_rp_inst(struct kretprobe_instance *ri)
1228 {
1229 	struct kretprobe *rp = ri->rp;
1230 
1231 	/* remove rp inst off the rprobe_inst_table */
1232 	hlist_del(&ri->hlist);
1233 	INIT_HLIST_NODE(&ri->hlist);
1234 	if (likely(rp)) {
1235 		raw_spin_lock(&rp->lock);
1236 		hlist_add_head(&ri->hlist, &rp->free_instances);
1237 		raw_spin_unlock(&rp->lock);
1238 	} else
1239 		kfree_rcu(ri, rcu);
1240 }
1241 NOKPROBE_SYMBOL(recycle_rp_inst);
1242 
1243 static void kretprobe_hash_lock(struct task_struct *tsk,
1244 			 struct hlist_head **head, unsigned long *flags)
1245 __acquires(hlist_lock)
1246 {
1247 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1248 	raw_spinlock_t *hlist_lock;
1249 
1250 	*head = &kretprobe_inst_table[hash];
1251 	hlist_lock = kretprobe_table_lock_ptr(hash);
1252 	raw_spin_lock_irqsave(hlist_lock, *flags);
1253 }
1254 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1255 
1256 static void kretprobe_table_lock(unsigned long hash,
1257 				 unsigned long *flags)
1258 __acquires(hlist_lock)
1259 {
1260 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1261 	raw_spin_lock_irqsave(hlist_lock, *flags);
1262 }
1263 NOKPROBE_SYMBOL(kretprobe_table_lock);
1264 
1265 static void kretprobe_hash_unlock(struct task_struct *tsk,
1266 			   unsigned long *flags)
1267 __releases(hlist_lock)
1268 {
1269 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1270 	raw_spinlock_t *hlist_lock;
1271 
1272 	hlist_lock = kretprobe_table_lock_ptr(hash);
1273 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1274 }
1275 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1276 
1277 static void kretprobe_table_unlock(unsigned long hash,
1278 				   unsigned long *flags)
1279 __releases(hlist_lock)
1280 {
1281 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1282 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1283 }
1284 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1285 
1286 static struct kprobe kprobe_busy = {
1287 	.addr = (void *) get_kprobe,
1288 };
1289 
1290 void kprobe_busy_begin(void)
1291 {
1292 	struct kprobe_ctlblk *kcb;
1293 
1294 	preempt_disable();
1295 	__this_cpu_write(current_kprobe, &kprobe_busy);
1296 	kcb = get_kprobe_ctlblk();
1297 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1298 }
1299 
1300 void kprobe_busy_end(void)
1301 {
1302 	__this_cpu_write(current_kprobe, NULL);
1303 	preempt_enable();
1304 }
1305 
1306 /*
1307  * This function is called from finish_task_switch when task tk becomes dead,
1308  * so that we can recycle any function-return probe instances associated
1309  * with this task. These left over instances represent probed functions
1310  * that have been called but will never return.
1311  */
1312 void kprobe_flush_task(struct task_struct *tk)
1313 {
1314 	struct kretprobe_instance *ri;
1315 	struct hlist_head *head;
1316 	struct hlist_node *tmp;
1317 	unsigned long hash, flags = 0;
1318 
1319 	if (unlikely(!kprobes_initialized))
1320 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1321 		return;
1322 
1323 	kprobe_busy_begin();
1324 
1325 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1326 	head = &kretprobe_inst_table[hash];
1327 	kretprobe_table_lock(hash, &flags);
1328 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1329 		if (ri->task == tk)
1330 			recycle_rp_inst(ri);
1331 	}
1332 	kretprobe_table_unlock(hash, &flags);
1333 
1334 	kprobe_busy_end();
1335 }
1336 NOKPROBE_SYMBOL(kprobe_flush_task);
1337 
1338 static inline void free_rp_inst(struct kretprobe *rp)
1339 {
1340 	struct kretprobe_instance *ri;
1341 	struct hlist_node *next;
1342 
1343 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1344 		hlist_del(&ri->hlist);
1345 		kfree(ri);
1346 	}
1347 }
1348 
1349 static void cleanup_rp_inst(struct kretprobe *rp)
1350 {
1351 	unsigned long flags, hash;
1352 	struct kretprobe_instance *ri;
1353 	struct hlist_node *next;
1354 	struct hlist_head *head;
1355 
1356 	/* To avoid recursive kretprobe by NMI, set kprobe busy here */
1357 	kprobe_busy_begin();
1358 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1359 		kretprobe_table_lock(hash, &flags);
1360 		head = &kretprobe_inst_table[hash];
1361 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1362 			if (ri->rp == rp)
1363 				ri->rp = NULL;
1364 		}
1365 		kretprobe_table_unlock(hash, &flags);
1366 	}
1367 	kprobe_busy_end();
1368 
1369 	free_rp_inst(rp);
1370 }
1371 NOKPROBE_SYMBOL(cleanup_rp_inst);
1372 
1373 /* Add the new probe to ap->list */
1374 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1375 {
1376 	if (p->post_handler)
1377 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1378 
1379 	list_add_rcu(&p->list, &ap->list);
1380 	if (p->post_handler && !ap->post_handler)
1381 		ap->post_handler = aggr_post_handler;
1382 
1383 	return 0;
1384 }
1385 
1386 /*
1387  * Fill in the required fields of the "manager kprobe". Replace the
1388  * earlier kprobe in the hlist with the manager kprobe
1389  */
1390 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1391 {
1392 	/* Copy p's insn slot to ap */
1393 	copy_kprobe(p, ap);
1394 	flush_insn_slot(ap);
1395 	ap->addr = p->addr;
1396 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1397 	ap->pre_handler = aggr_pre_handler;
1398 	ap->fault_handler = aggr_fault_handler;
1399 	/* We don't care the kprobe which has gone. */
1400 	if (p->post_handler && !kprobe_gone(p))
1401 		ap->post_handler = aggr_post_handler;
1402 
1403 	INIT_LIST_HEAD(&ap->list);
1404 	INIT_HLIST_NODE(&ap->hlist);
1405 
1406 	list_add_rcu(&p->list, &ap->list);
1407 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1408 }
1409 
1410 /*
1411  * This is the second or subsequent kprobe at the address - handle
1412  * the intricacies
1413  */
1414 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1415 {
1416 	int ret = 0;
1417 	struct kprobe *ap = orig_p;
1418 
1419 	cpus_read_lock();
1420 
1421 	/* For preparing optimization, jump_label_text_reserved() is called */
1422 	jump_label_lock();
1423 	mutex_lock(&text_mutex);
1424 
1425 	if (!kprobe_aggrprobe(orig_p)) {
1426 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1427 		ap = alloc_aggr_kprobe(orig_p);
1428 		if (!ap) {
1429 			ret = -ENOMEM;
1430 			goto out;
1431 		}
1432 		init_aggr_kprobe(ap, orig_p);
1433 	} else if (kprobe_unused(ap)) {
1434 		/* This probe is going to die. Rescue it */
1435 		ret = reuse_unused_kprobe(ap);
1436 		if (ret)
1437 			goto out;
1438 	}
1439 
1440 	if (kprobe_gone(ap)) {
1441 		/*
1442 		 * Attempting to insert new probe at the same location that
1443 		 * had a probe in the module vaddr area which already
1444 		 * freed. So, the instruction slot has already been
1445 		 * released. We need a new slot for the new probe.
1446 		 */
1447 		ret = arch_prepare_kprobe(ap);
1448 		if (ret)
1449 			/*
1450 			 * Even if fail to allocate new slot, don't need to
1451 			 * free aggr_probe. It will be used next time, or
1452 			 * freed by unregister_kprobe.
1453 			 */
1454 			goto out;
1455 
1456 		/* Prepare optimized instructions if possible. */
1457 		prepare_optimized_kprobe(ap);
1458 
1459 		/*
1460 		 * Clear gone flag to prevent allocating new slot again, and
1461 		 * set disabled flag because it is not armed yet.
1462 		 */
1463 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1464 			    | KPROBE_FLAG_DISABLED;
1465 	}
1466 
1467 	/* Copy ap's insn slot to p */
1468 	copy_kprobe(ap, p);
1469 	ret = add_new_kprobe(ap, p);
1470 
1471 out:
1472 	mutex_unlock(&text_mutex);
1473 	jump_label_unlock();
1474 	cpus_read_unlock();
1475 
1476 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1477 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1478 		if (!kprobes_all_disarmed) {
1479 			/* Arm the breakpoint again. */
1480 			ret = arm_kprobe(ap);
1481 			if (ret) {
1482 				ap->flags |= KPROBE_FLAG_DISABLED;
1483 				list_del_rcu(&p->list);
1484 				synchronize_rcu();
1485 			}
1486 		}
1487 	}
1488 	return ret;
1489 }
1490 
1491 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1492 {
1493 	/* The __kprobes marked functions and entry code must not be probed */
1494 	return addr >= (unsigned long)__kprobes_text_start &&
1495 	       addr < (unsigned long)__kprobes_text_end;
1496 }
1497 
1498 static bool __within_kprobe_blacklist(unsigned long addr)
1499 {
1500 	struct kprobe_blacklist_entry *ent;
1501 
1502 	if (arch_within_kprobe_blacklist(addr))
1503 		return true;
1504 	/*
1505 	 * If there exists a kprobe_blacklist, verify and
1506 	 * fail any probe registration in the prohibited area
1507 	 */
1508 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1509 		if (addr >= ent->start_addr && addr < ent->end_addr)
1510 			return true;
1511 	}
1512 	return false;
1513 }
1514 
1515 bool within_kprobe_blacklist(unsigned long addr)
1516 {
1517 	char symname[KSYM_NAME_LEN], *p;
1518 
1519 	if (__within_kprobe_blacklist(addr))
1520 		return true;
1521 
1522 	/* Check if the address is on a suffixed-symbol */
1523 	if (!lookup_symbol_name(addr, symname)) {
1524 		p = strchr(symname, '.');
1525 		if (!p)
1526 			return false;
1527 		*p = '\0';
1528 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1529 		if (addr)
1530 			return __within_kprobe_blacklist(addr);
1531 	}
1532 	return false;
1533 }
1534 
1535 /*
1536  * If we have a symbol_name argument, look it up and add the offset field
1537  * to it. This way, we can specify a relative address to a symbol.
1538  * This returns encoded errors if it fails to look up symbol or invalid
1539  * combination of parameters.
1540  */
1541 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1542 			const char *symbol_name, unsigned int offset)
1543 {
1544 	if ((symbol_name && addr) || (!symbol_name && !addr))
1545 		goto invalid;
1546 
1547 	if (symbol_name) {
1548 		addr = kprobe_lookup_name(symbol_name, offset);
1549 		if (!addr)
1550 			return ERR_PTR(-ENOENT);
1551 	}
1552 
1553 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1554 	if (addr)
1555 		return addr;
1556 
1557 invalid:
1558 	return ERR_PTR(-EINVAL);
1559 }
1560 
1561 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1562 {
1563 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1564 }
1565 
1566 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1567 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1568 {
1569 	struct kprobe *ap, *list_p;
1570 
1571 	lockdep_assert_held(&kprobe_mutex);
1572 
1573 	ap = get_kprobe(p->addr);
1574 	if (unlikely(!ap))
1575 		return NULL;
1576 
1577 	if (p != ap) {
1578 		list_for_each_entry(list_p, &ap->list, list)
1579 			if (list_p == p)
1580 			/* kprobe p is a valid probe */
1581 				goto valid;
1582 		return NULL;
1583 	}
1584 valid:
1585 	return ap;
1586 }
1587 
1588 /* Return error if the kprobe is being re-registered */
1589 static inline int check_kprobe_rereg(struct kprobe *p)
1590 {
1591 	int ret = 0;
1592 
1593 	mutex_lock(&kprobe_mutex);
1594 	if (__get_valid_kprobe(p))
1595 		ret = -EINVAL;
1596 	mutex_unlock(&kprobe_mutex);
1597 
1598 	return ret;
1599 }
1600 
1601 int __weak arch_check_ftrace_location(struct kprobe *p)
1602 {
1603 	unsigned long ftrace_addr;
1604 
1605 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1606 	if (ftrace_addr) {
1607 #ifdef CONFIG_KPROBES_ON_FTRACE
1608 		/* Given address is not on the instruction boundary */
1609 		if ((unsigned long)p->addr != ftrace_addr)
1610 			return -EILSEQ;
1611 		p->flags |= KPROBE_FLAG_FTRACE;
1612 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1613 		return -EINVAL;
1614 #endif
1615 	}
1616 	return 0;
1617 }
1618 
1619 static int check_kprobe_address_safe(struct kprobe *p,
1620 				     struct module **probed_mod)
1621 {
1622 	int ret;
1623 
1624 	ret = arch_check_ftrace_location(p);
1625 	if (ret)
1626 		return ret;
1627 	jump_label_lock();
1628 	preempt_disable();
1629 
1630 	/* Ensure it is not in reserved area nor out of text */
1631 	if (!kernel_text_address((unsigned long) p->addr) ||
1632 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1633 	    jump_label_text_reserved(p->addr, p->addr) ||
1634 	    static_call_text_reserved(p->addr, p->addr) ||
1635 	    find_bug((unsigned long)p->addr)) {
1636 		ret = -EINVAL;
1637 		goto out;
1638 	}
1639 
1640 	/* Check if are we probing a module */
1641 	*probed_mod = __module_text_address((unsigned long) p->addr);
1642 	if (*probed_mod) {
1643 		/*
1644 		 * We must hold a refcount of the probed module while updating
1645 		 * its code to prohibit unexpected unloading.
1646 		 */
1647 		if (unlikely(!try_module_get(*probed_mod))) {
1648 			ret = -ENOENT;
1649 			goto out;
1650 		}
1651 
1652 		/*
1653 		 * If the module freed .init.text, we couldn't insert
1654 		 * kprobes in there.
1655 		 */
1656 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1657 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1658 			module_put(*probed_mod);
1659 			*probed_mod = NULL;
1660 			ret = -ENOENT;
1661 		}
1662 	}
1663 out:
1664 	preempt_enable();
1665 	jump_label_unlock();
1666 
1667 	return ret;
1668 }
1669 
1670 int register_kprobe(struct kprobe *p)
1671 {
1672 	int ret;
1673 	struct kprobe *old_p;
1674 	struct module *probed_mod;
1675 	kprobe_opcode_t *addr;
1676 
1677 	/* Adjust probe address from symbol */
1678 	addr = kprobe_addr(p);
1679 	if (IS_ERR(addr))
1680 		return PTR_ERR(addr);
1681 	p->addr = addr;
1682 
1683 	ret = check_kprobe_rereg(p);
1684 	if (ret)
1685 		return ret;
1686 
1687 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1688 	p->flags &= KPROBE_FLAG_DISABLED;
1689 	p->nmissed = 0;
1690 	INIT_LIST_HEAD(&p->list);
1691 
1692 	ret = check_kprobe_address_safe(p, &probed_mod);
1693 	if (ret)
1694 		return ret;
1695 
1696 	mutex_lock(&kprobe_mutex);
1697 
1698 	old_p = get_kprobe(p->addr);
1699 	if (old_p) {
1700 		/* Since this may unoptimize old_p, locking text_mutex. */
1701 		ret = register_aggr_kprobe(old_p, p);
1702 		goto out;
1703 	}
1704 
1705 	cpus_read_lock();
1706 	/* Prevent text modification */
1707 	mutex_lock(&text_mutex);
1708 	ret = prepare_kprobe(p);
1709 	mutex_unlock(&text_mutex);
1710 	cpus_read_unlock();
1711 	if (ret)
1712 		goto out;
1713 
1714 	INIT_HLIST_NODE(&p->hlist);
1715 	hlist_add_head_rcu(&p->hlist,
1716 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1717 
1718 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1719 		ret = arm_kprobe(p);
1720 		if (ret) {
1721 			hlist_del_rcu(&p->hlist);
1722 			synchronize_rcu();
1723 			goto out;
1724 		}
1725 	}
1726 
1727 	/* Try to optimize kprobe */
1728 	try_to_optimize_kprobe(p);
1729 out:
1730 	mutex_unlock(&kprobe_mutex);
1731 
1732 	if (probed_mod)
1733 		module_put(probed_mod);
1734 
1735 	return ret;
1736 }
1737 EXPORT_SYMBOL_GPL(register_kprobe);
1738 
1739 /* Check if all probes on the aggrprobe are disabled */
1740 static int aggr_kprobe_disabled(struct kprobe *ap)
1741 {
1742 	struct kprobe *kp;
1743 
1744 	lockdep_assert_held(&kprobe_mutex);
1745 
1746 	list_for_each_entry(kp, &ap->list, list)
1747 		if (!kprobe_disabled(kp))
1748 			/*
1749 			 * There is an active probe on the list.
1750 			 * We can't disable this ap.
1751 			 */
1752 			return 0;
1753 
1754 	return 1;
1755 }
1756 
1757 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1758 static struct kprobe *__disable_kprobe(struct kprobe *p)
1759 {
1760 	struct kprobe *orig_p;
1761 	int ret;
1762 
1763 	/* Get an original kprobe for return */
1764 	orig_p = __get_valid_kprobe(p);
1765 	if (unlikely(orig_p == NULL))
1766 		return ERR_PTR(-EINVAL);
1767 
1768 	if (!kprobe_disabled(p)) {
1769 		/* Disable probe if it is a child probe */
1770 		if (p != orig_p)
1771 			p->flags |= KPROBE_FLAG_DISABLED;
1772 
1773 		/* Try to disarm and disable this/parent probe */
1774 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1775 			/*
1776 			 * If kprobes_all_disarmed is set, orig_p
1777 			 * should have already been disarmed, so
1778 			 * skip unneed disarming process.
1779 			 */
1780 			if (!kprobes_all_disarmed) {
1781 				ret = disarm_kprobe(orig_p, true);
1782 				if (ret) {
1783 					p->flags &= ~KPROBE_FLAG_DISABLED;
1784 					return ERR_PTR(ret);
1785 				}
1786 			}
1787 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1788 		}
1789 	}
1790 
1791 	return orig_p;
1792 }
1793 
1794 /*
1795  * Unregister a kprobe without a scheduler synchronization.
1796  */
1797 static int __unregister_kprobe_top(struct kprobe *p)
1798 {
1799 	struct kprobe *ap, *list_p;
1800 
1801 	/* Disable kprobe. This will disarm it if needed. */
1802 	ap = __disable_kprobe(p);
1803 	if (IS_ERR(ap))
1804 		return PTR_ERR(ap);
1805 
1806 	if (ap == p)
1807 		/*
1808 		 * This probe is an independent(and non-optimized) kprobe
1809 		 * (not an aggrprobe). Remove from the hash list.
1810 		 */
1811 		goto disarmed;
1812 
1813 	/* Following process expects this probe is an aggrprobe */
1814 	WARN_ON(!kprobe_aggrprobe(ap));
1815 
1816 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1817 		/*
1818 		 * !disarmed could be happen if the probe is under delayed
1819 		 * unoptimizing.
1820 		 */
1821 		goto disarmed;
1822 	else {
1823 		/* If disabling probe has special handlers, update aggrprobe */
1824 		if (p->post_handler && !kprobe_gone(p)) {
1825 			list_for_each_entry(list_p, &ap->list, list) {
1826 				if ((list_p != p) && (list_p->post_handler))
1827 					goto noclean;
1828 			}
1829 			ap->post_handler = NULL;
1830 		}
1831 noclean:
1832 		/*
1833 		 * Remove from the aggrprobe: this path will do nothing in
1834 		 * __unregister_kprobe_bottom().
1835 		 */
1836 		list_del_rcu(&p->list);
1837 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1838 			/*
1839 			 * Try to optimize this probe again, because post
1840 			 * handler may have been changed.
1841 			 */
1842 			optimize_kprobe(ap);
1843 	}
1844 	return 0;
1845 
1846 disarmed:
1847 	hlist_del_rcu(&ap->hlist);
1848 	return 0;
1849 }
1850 
1851 static void __unregister_kprobe_bottom(struct kprobe *p)
1852 {
1853 	struct kprobe *ap;
1854 
1855 	if (list_empty(&p->list))
1856 		/* This is an independent kprobe */
1857 		arch_remove_kprobe(p);
1858 	else if (list_is_singular(&p->list)) {
1859 		/* This is the last child of an aggrprobe */
1860 		ap = list_entry(p->list.next, struct kprobe, list);
1861 		list_del(&p->list);
1862 		free_aggr_kprobe(ap);
1863 	}
1864 	/* Otherwise, do nothing. */
1865 }
1866 
1867 int register_kprobes(struct kprobe **kps, int num)
1868 {
1869 	int i, ret = 0;
1870 
1871 	if (num <= 0)
1872 		return -EINVAL;
1873 	for (i = 0; i < num; i++) {
1874 		ret = register_kprobe(kps[i]);
1875 		if (ret < 0) {
1876 			if (i > 0)
1877 				unregister_kprobes(kps, i);
1878 			break;
1879 		}
1880 	}
1881 	return ret;
1882 }
1883 EXPORT_SYMBOL_GPL(register_kprobes);
1884 
1885 void unregister_kprobe(struct kprobe *p)
1886 {
1887 	unregister_kprobes(&p, 1);
1888 }
1889 EXPORT_SYMBOL_GPL(unregister_kprobe);
1890 
1891 void unregister_kprobes(struct kprobe **kps, int num)
1892 {
1893 	int i;
1894 
1895 	if (num <= 0)
1896 		return;
1897 	mutex_lock(&kprobe_mutex);
1898 	for (i = 0; i < num; i++)
1899 		if (__unregister_kprobe_top(kps[i]) < 0)
1900 			kps[i]->addr = NULL;
1901 	mutex_unlock(&kprobe_mutex);
1902 
1903 	synchronize_rcu();
1904 	for (i = 0; i < num; i++)
1905 		if (kps[i]->addr)
1906 			__unregister_kprobe_bottom(kps[i]);
1907 }
1908 EXPORT_SYMBOL_GPL(unregister_kprobes);
1909 
1910 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1911 					unsigned long val, void *data)
1912 {
1913 	return NOTIFY_DONE;
1914 }
1915 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1916 
1917 static struct notifier_block kprobe_exceptions_nb = {
1918 	.notifier_call = kprobe_exceptions_notify,
1919 	.priority = 0x7fffffff /* we need to be notified first */
1920 };
1921 
1922 unsigned long __weak arch_deref_entry_point(void *entry)
1923 {
1924 	return (unsigned long)entry;
1925 }
1926 
1927 #ifdef CONFIG_KRETPROBES
1928 
1929 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1930 					     void *trampoline_address,
1931 					     void *frame_pointer)
1932 {
1933 	struct kretprobe_instance *ri = NULL, *last = NULL;
1934 	struct hlist_head *head;
1935 	struct hlist_node *tmp;
1936 	unsigned long flags;
1937 	kprobe_opcode_t *correct_ret_addr = NULL;
1938 	bool skipped = false;
1939 
1940 	kretprobe_hash_lock(current, &head, &flags);
1941 
1942 	/*
1943 	 * It is possible to have multiple instances associated with a given
1944 	 * task either because multiple functions in the call path have
1945 	 * return probes installed on them, and/or more than one
1946 	 * return probe was registered for a target function.
1947 	 *
1948 	 * We can handle this because:
1949 	 *     - instances are always pushed into the head of the list
1950 	 *     - when multiple return probes are registered for the same
1951 	 *	 function, the (chronologically) first instance's ret_addr
1952 	 *	 will be the real return address, and all the rest will
1953 	 *	 point to kretprobe_trampoline.
1954 	 */
1955 	hlist_for_each_entry(ri, head, hlist) {
1956 		if (ri->task != current)
1957 			/* another task is sharing our hash bucket */
1958 			continue;
1959 		/*
1960 		 * Return probes must be pushed on this hash list correct
1961 		 * order (same as return order) so that it can be popped
1962 		 * correctly. However, if we find it is pushed it incorrect
1963 		 * order, this means we find a function which should not be
1964 		 * probed, because the wrong order entry is pushed on the
1965 		 * path of processing other kretprobe itself.
1966 		 */
1967 		if (ri->fp != frame_pointer) {
1968 			if (!skipped)
1969 				pr_warn("kretprobe is stacked incorrectly. Trying to fixup.\n");
1970 			skipped = true;
1971 			continue;
1972 		}
1973 
1974 		correct_ret_addr = ri->ret_addr;
1975 		if (skipped)
1976 			pr_warn("%ps must be blacklisted because of incorrect kretprobe order\n",
1977 				ri->rp->kp.addr);
1978 
1979 		if (correct_ret_addr != trampoline_address)
1980 			/*
1981 			 * This is the real return address. Any other
1982 			 * instances associated with this task are for
1983 			 * other calls deeper on the call stack
1984 			 */
1985 			break;
1986 	}
1987 
1988 	BUG_ON(!correct_ret_addr || (correct_ret_addr == trampoline_address));
1989 	last = ri;
1990 
1991 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1992 		if (ri->task != current)
1993 			/* another task is sharing our hash bucket */
1994 			continue;
1995 		if (ri->fp != frame_pointer)
1996 			continue;
1997 
1998 		if (ri->rp && ri->rp->handler) {
1999 			struct kprobe *prev = kprobe_running();
2000 
2001 			__this_cpu_write(current_kprobe, &ri->rp->kp);
2002 			ri->ret_addr = correct_ret_addr;
2003 			ri->rp->handler(ri, regs);
2004 			__this_cpu_write(current_kprobe, prev);
2005 		}
2006 
2007 		recycle_rp_inst(ri);
2008 
2009 		if (ri == last)
2010 			break;
2011 	}
2012 
2013 	kretprobe_hash_unlock(current, &flags);
2014 
2015 	return (unsigned long)correct_ret_addr;
2016 }
2017 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2018 
2019 /*
2020  * This kprobe pre_handler is registered with every kretprobe. When probe
2021  * hits it will set up the return probe.
2022  */
2023 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2024 {
2025 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2026 	unsigned long hash, flags = 0;
2027 	struct kretprobe_instance *ri;
2028 
2029 	/* TODO: consider to only swap the RA after the last pre_handler fired */
2030 	hash = hash_ptr(current, KPROBE_HASH_BITS);
2031 	raw_spin_lock_irqsave(&rp->lock, flags);
2032 	if (!hlist_empty(&rp->free_instances)) {
2033 		ri = hlist_entry(rp->free_instances.first,
2034 				struct kretprobe_instance, hlist);
2035 		hlist_del(&ri->hlist);
2036 		raw_spin_unlock_irqrestore(&rp->lock, flags);
2037 
2038 		ri->rp = rp;
2039 		ri->task = current;
2040 
2041 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2042 			raw_spin_lock_irqsave(&rp->lock, flags);
2043 			hlist_add_head(&ri->hlist, &rp->free_instances);
2044 			raw_spin_unlock_irqrestore(&rp->lock, flags);
2045 			return 0;
2046 		}
2047 
2048 		arch_prepare_kretprobe(ri, regs);
2049 
2050 		/* XXX(hch): why is there no hlist_move_head? */
2051 		INIT_HLIST_NODE(&ri->hlist);
2052 		kretprobe_table_lock(hash, &flags);
2053 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
2054 		kretprobe_table_unlock(hash, &flags);
2055 	} else {
2056 		rp->nmissed++;
2057 		raw_spin_unlock_irqrestore(&rp->lock, flags);
2058 	}
2059 	return 0;
2060 }
2061 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2062 
2063 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
2064 {
2065 	return !offset;
2066 }
2067 
2068 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2069 {
2070 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
2071 
2072 	if (IS_ERR(kp_addr))
2073 		return false;
2074 
2075 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
2076 						!arch_kprobe_on_func_entry(offset))
2077 		return false;
2078 
2079 	return true;
2080 }
2081 
2082 int register_kretprobe(struct kretprobe *rp)
2083 {
2084 	int ret = 0;
2085 	struct kretprobe_instance *inst;
2086 	int i;
2087 	void *addr;
2088 
2089 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
2090 		return -EINVAL;
2091 
2092 	if (kretprobe_blacklist_size) {
2093 		addr = kprobe_addr(&rp->kp);
2094 		if (IS_ERR(addr))
2095 			return PTR_ERR(addr);
2096 
2097 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2098 			if (kretprobe_blacklist[i].addr == addr)
2099 				return -EINVAL;
2100 		}
2101 	}
2102 
2103 	rp->kp.pre_handler = pre_handler_kretprobe;
2104 	rp->kp.post_handler = NULL;
2105 	rp->kp.fault_handler = NULL;
2106 
2107 	/* Pre-allocate memory for max kretprobe instances */
2108 	if (rp->maxactive <= 0) {
2109 #ifdef CONFIG_PREEMPTION
2110 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2111 #else
2112 		rp->maxactive = num_possible_cpus();
2113 #endif
2114 	}
2115 	raw_spin_lock_init(&rp->lock);
2116 	INIT_HLIST_HEAD(&rp->free_instances);
2117 	for (i = 0; i < rp->maxactive; i++) {
2118 		inst = kmalloc(sizeof(struct kretprobe_instance) +
2119 			       rp->data_size, GFP_KERNEL);
2120 		if (inst == NULL) {
2121 			free_rp_inst(rp);
2122 			return -ENOMEM;
2123 		}
2124 		INIT_HLIST_NODE(&inst->hlist);
2125 		hlist_add_head(&inst->hlist, &rp->free_instances);
2126 	}
2127 
2128 	rp->nmissed = 0;
2129 	/* Establish function entry probe point */
2130 	ret = register_kprobe(&rp->kp);
2131 	if (ret != 0)
2132 		free_rp_inst(rp);
2133 	return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(register_kretprobe);
2136 
2137 int register_kretprobes(struct kretprobe **rps, int num)
2138 {
2139 	int ret = 0, i;
2140 
2141 	if (num <= 0)
2142 		return -EINVAL;
2143 	for (i = 0; i < num; i++) {
2144 		ret = register_kretprobe(rps[i]);
2145 		if (ret < 0) {
2146 			if (i > 0)
2147 				unregister_kretprobes(rps, i);
2148 			break;
2149 		}
2150 	}
2151 	return ret;
2152 }
2153 EXPORT_SYMBOL_GPL(register_kretprobes);
2154 
2155 void unregister_kretprobe(struct kretprobe *rp)
2156 {
2157 	unregister_kretprobes(&rp, 1);
2158 }
2159 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2160 
2161 void unregister_kretprobes(struct kretprobe **rps, int num)
2162 {
2163 	int i;
2164 
2165 	if (num <= 0)
2166 		return;
2167 	mutex_lock(&kprobe_mutex);
2168 	for (i = 0; i < num; i++)
2169 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2170 			rps[i]->kp.addr = NULL;
2171 	mutex_unlock(&kprobe_mutex);
2172 
2173 	synchronize_rcu();
2174 	for (i = 0; i < num; i++) {
2175 		if (rps[i]->kp.addr) {
2176 			__unregister_kprobe_bottom(&rps[i]->kp);
2177 			cleanup_rp_inst(rps[i]);
2178 		}
2179 	}
2180 }
2181 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2182 
2183 #else /* CONFIG_KRETPROBES */
2184 int register_kretprobe(struct kretprobe *rp)
2185 {
2186 	return -ENOSYS;
2187 }
2188 EXPORT_SYMBOL_GPL(register_kretprobe);
2189 
2190 int register_kretprobes(struct kretprobe **rps, int num)
2191 {
2192 	return -ENOSYS;
2193 }
2194 EXPORT_SYMBOL_GPL(register_kretprobes);
2195 
2196 void unregister_kretprobe(struct kretprobe *rp)
2197 {
2198 }
2199 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2200 
2201 void unregister_kretprobes(struct kretprobe **rps, int num)
2202 {
2203 }
2204 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2205 
2206 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2207 {
2208 	return 0;
2209 }
2210 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2211 
2212 #endif /* CONFIG_KRETPROBES */
2213 
2214 /* Set the kprobe gone and remove its instruction buffer. */
2215 static void kill_kprobe(struct kprobe *p)
2216 {
2217 	struct kprobe *kp;
2218 
2219 	lockdep_assert_held(&kprobe_mutex);
2220 
2221 	if (WARN_ON_ONCE(kprobe_gone(p)))
2222 		return;
2223 
2224 	p->flags |= KPROBE_FLAG_GONE;
2225 	if (kprobe_aggrprobe(p)) {
2226 		/*
2227 		 * If this is an aggr_kprobe, we have to list all the
2228 		 * chained probes and mark them GONE.
2229 		 */
2230 		list_for_each_entry(kp, &p->list, list)
2231 			kp->flags |= KPROBE_FLAG_GONE;
2232 		p->post_handler = NULL;
2233 		kill_optimized_kprobe(p);
2234 	}
2235 	/*
2236 	 * Here, we can remove insn_slot safely, because no thread calls
2237 	 * the original probed function (which will be freed soon) any more.
2238 	 */
2239 	arch_remove_kprobe(p);
2240 
2241 	/*
2242 	 * The module is going away. We should disarm the kprobe which
2243 	 * is using ftrace, because ftrace framework is still available at
2244 	 * MODULE_STATE_GOING notification.
2245 	 */
2246 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2247 		disarm_kprobe_ftrace(p);
2248 }
2249 
2250 /* Disable one kprobe */
2251 int disable_kprobe(struct kprobe *kp)
2252 {
2253 	int ret = 0;
2254 	struct kprobe *p;
2255 
2256 	mutex_lock(&kprobe_mutex);
2257 
2258 	/* Disable this kprobe */
2259 	p = __disable_kprobe(kp);
2260 	if (IS_ERR(p))
2261 		ret = PTR_ERR(p);
2262 
2263 	mutex_unlock(&kprobe_mutex);
2264 	return ret;
2265 }
2266 EXPORT_SYMBOL_GPL(disable_kprobe);
2267 
2268 /* Enable one kprobe */
2269 int enable_kprobe(struct kprobe *kp)
2270 {
2271 	int ret = 0;
2272 	struct kprobe *p;
2273 
2274 	mutex_lock(&kprobe_mutex);
2275 
2276 	/* Check whether specified probe is valid. */
2277 	p = __get_valid_kprobe(kp);
2278 	if (unlikely(p == NULL)) {
2279 		ret = -EINVAL;
2280 		goto out;
2281 	}
2282 
2283 	if (kprobe_gone(kp)) {
2284 		/* This kprobe has gone, we couldn't enable it. */
2285 		ret = -EINVAL;
2286 		goto out;
2287 	}
2288 
2289 	if (p != kp)
2290 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2291 
2292 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2293 		p->flags &= ~KPROBE_FLAG_DISABLED;
2294 		ret = arm_kprobe(p);
2295 		if (ret)
2296 			p->flags |= KPROBE_FLAG_DISABLED;
2297 	}
2298 out:
2299 	mutex_unlock(&kprobe_mutex);
2300 	return ret;
2301 }
2302 EXPORT_SYMBOL_GPL(enable_kprobe);
2303 
2304 /* Caller must NOT call this in usual path. This is only for critical case */
2305 void dump_kprobe(struct kprobe *kp)
2306 {
2307 	pr_err("Dumping kprobe:\n");
2308 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2309 	       kp->symbol_name, kp->offset, kp->addr);
2310 }
2311 NOKPROBE_SYMBOL(dump_kprobe);
2312 
2313 int kprobe_add_ksym_blacklist(unsigned long entry)
2314 {
2315 	struct kprobe_blacklist_entry *ent;
2316 	unsigned long offset = 0, size = 0;
2317 
2318 	if (!kernel_text_address(entry) ||
2319 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2320 		return -EINVAL;
2321 
2322 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2323 	if (!ent)
2324 		return -ENOMEM;
2325 	ent->start_addr = entry;
2326 	ent->end_addr = entry + size;
2327 	INIT_LIST_HEAD(&ent->list);
2328 	list_add_tail(&ent->list, &kprobe_blacklist);
2329 
2330 	return (int)size;
2331 }
2332 
2333 /* Add all symbols in given area into kprobe blacklist */
2334 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2335 {
2336 	unsigned long entry;
2337 	int ret = 0;
2338 
2339 	for (entry = start; entry < end; entry += ret) {
2340 		ret = kprobe_add_ksym_blacklist(entry);
2341 		if (ret < 0)
2342 			return ret;
2343 		if (ret == 0)	/* In case of alias symbol */
2344 			ret = 1;
2345 	}
2346 	return 0;
2347 }
2348 
2349 /* Remove all symbols in given area from kprobe blacklist */
2350 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2351 {
2352 	struct kprobe_blacklist_entry *ent, *n;
2353 
2354 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2355 		if (ent->start_addr < start || ent->start_addr >= end)
2356 			continue;
2357 		list_del(&ent->list);
2358 		kfree(ent);
2359 	}
2360 }
2361 
2362 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2363 {
2364 	kprobe_remove_area_blacklist(entry, entry + 1);
2365 }
2366 
2367 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2368 				   char *type, char *sym)
2369 {
2370 	return -ERANGE;
2371 }
2372 
2373 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2374 		       char *sym)
2375 {
2376 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2377 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2378 		return 0;
2379 #ifdef CONFIG_OPTPROBES
2380 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2381 		return 0;
2382 #endif
2383 #endif
2384 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2385 		return 0;
2386 	return -ERANGE;
2387 }
2388 
2389 int __init __weak arch_populate_kprobe_blacklist(void)
2390 {
2391 	return 0;
2392 }
2393 
2394 /*
2395  * Lookup and populate the kprobe_blacklist.
2396  *
2397  * Unlike the kretprobe blacklist, we'll need to determine
2398  * the range of addresses that belong to the said functions,
2399  * since a kprobe need not necessarily be at the beginning
2400  * of a function.
2401  */
2402 static int __init populate_kprobe_blacklist(unsigned long *start,
2403 					     unsigned long *end)
2404 {
2405 	unsigned long entry;
2406 	unsigned long *iter;
2407 	int ret;
2408 
2409 	for (iter = start; iter < end; iter++) {
2410 		entry = arch_deref_entry_point((void *)*iter);
2411 		ret = kprobe_add_ksym_blacklist(entry);
2412 		if (ret == -EINVAL)
2413 			continue;
2414 		if (ret < 0)
2415 			return ret;
2416 	}
2417 
2418 	/* Symbols in __kprobes_text are blacklisted */
2419 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2420 					(unsigned long)__kprobes_text_end);
2421 	if (ret)
2422 		return ret;
2423 
2424 	/* Symbols in noinstr section are blacklisted */
2425 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2426 					(unsigned long)__noinstr_text_end);
2427 
2428 	return ret ? : arch_populate_kprobe_blacklist();
2429 }
2430 
2431 static void add_module_kprobe_blacklist(struct module *mod)
2432 {
2433 	unsigned long start, end;
2434 	int i;
2435 
2436 	if (mod->kprobe_blacklist) {
2437 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2438 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2439 	}
2440 
2441 	start = (unsigned long)mod->kprobes_text_start;
2442 	if (start) {
2443 		end = start + mod->kprobes_text_size;
2444 		kprobe_add_area_blacklist(start, end);
2445 	}
2446 
2447 	start = (unsigned long)mod->noinstr_text_start;
2448 	if (start) {
2449 		end = start + mod->noinstr_text_size;
2450 		kprobe_add_area_blacklist(start, end);
2451 	}
2452 }
2453 
2454 static void remove_module_kprobe_blacklist(struct module *mod)
2455 {
2456 	unsigned long start, end;
2457 	int i;
2458 
2459 	if (mod->kprobe_blacklist) {
2460 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2461 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2462 	}
2463 
2464 	start = (unsigned long)mod->kprobes_text_start;
2465 	if (start) {
2466 		end = start + mod->kprobes_text_size;
2467 		kprobe_remove_area_blacklist(start, end);
2468 	}
2469 
2470 	start = (unsigned long)mod->noinstr_text_start;
2471 	if (start) {
2472 		end = start + mod->noinstr_text_size;
2473 		kprobe_remove_area_blacklist(start, end);
2474 	}
2475 }
2476 
2477 /* Module notifier call back, checking kprobes on the module */
2478 static int kprobes_module_callback(struct notifier_block *nb,
2479 				   unsigned long val, void *data)
2480 {
2481 	struct module *mod = data;
2482 	struct hlist_head *head;
2483 	struct kprobe *p;
2484 	unsigned int i;
2485 	int checkcore = (val == MODULE_STATE_GOING);
2486 
2487 	if (val == MODULE_STATE_COMING) {
2488 		mutex_lock(&kprobe_mutex);
2489 		add_module_kprobe_blacklist(mod);
2490 		mutex_unlock(&kprobe_mutex);
2491 	}
2492 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2493 		return NOTIFY_DONE;
2494 
2495 	/*
2496 	 * When MODULE_STATE_GOING was notified, both of module .text and
2497 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2498 	 * notified, only .init.text section would be freed. We need to
2499 	 * disable kprobes which have been inserted in the sections.
2500 	 */
2501 	mutex_lock(&kprobe_mutex);
2502 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2503 		head = &kprobe_table[i];
2504 		hlist_for_each_entry(p, head, hlist) {
2505 			if (kprobe_gone(p))
2506 				continue;
2507 
2508 			if (within_module_init((unsigned long)p->addr, mod) ||
2509 			    (checkcore &&
2510 			     within_module_core((unsigned long)p->addr, mod))) {
2511 				/*
2512 				 * The vaddr this probe is installed will soon
2513 				 * be vfreed buy not synced to disk. Hence,
2514 				 * disarming the breakpoint isn't needed.
2515 				 *
2516 				 * Note, this will also move any optimized probes
2517 				 * that are pending to be removed from their
2518 				 * corresponding lists to the freeing_list and
2519 				 * will not be touched by the delayed
2520 				 * kprobe_optimizer work handler.
2521 				 */
2522 				kill_kprobe(p);
2523 			}
2524 		}
2525 	}
2526 	if (val == MODULE_STATE_GOING)
2527 		remove_module_kprobe_blacklist(mod);
2528 	mutex_unlock(&kprobe_mutex);
2529 	return NOTIFY_DONE;
2530 }
2531 
2532 static struct notifier_block kprobe_module_nb = {
2533 	.notifier_call = kprobes_module_callback,
2534 	.priority = 0
2535 };
2536 
2537 /* Markers of _kprobe_blacklist section */
2538 extern unsigned long __start_kprobe_blacklist[];
2539 extern unsigned long __stop_kprobe_blacklist[];
2540 
2541 void kprobe_free_init_mem(void)
2542 {
2543 	void *start = (void *)(&__init_begin);
2544 	void *end = (void *)(&__init_end);
2545 	struct hlist_head *head;
2546 	struct kprobe *p;
2547 	int i;
2548 
2549 	mutex_lock(&kprobe_mutex);
2550 
2551 	/* Kill all kprobes on initmem */
2552 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2553 		head = &kprobe_table[i];
2554 		hlist_for_each_entry(p, head, hlist) {
2555 			if (start <= (void *)p->addr && (void *)p->addr < end)
2556 				kill_kprobe(p);
2557 		}
2558 	}
2559 
2560 	mutex_unlock(&kprobe_mutex);
2561 }
2562 
2563 static int __init init_kprobes(void)
2564 {
2565 	int i, err = 0;
2566 
2567 	/* FIXME allocate the probe table, currently defined statically */
2568 	/* initialize all list heads */
2569 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2570 		INIT_HLIST_HEAD(&kprobe_table[i]);
2571 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2572 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2573 	}
2574 
2575 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2576 					__stop_kprobe_blacklist);
2577 	if (err) {
2578 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2579 		pr_err("Please take care of using kprobes.\n");
2580 	}
2581 
2582 	if (kretprobe_blacklist_size) {
2583 		/* lookup the function address from its name */
2584 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2585 			kretprobe_blacklist[i].addr =
2586 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2587 			if (!kretprobe_blacklist[i].addr)
2588 				printk("kretprobe: lookup failed: %s\n",
2589 				       kretprobe_blacklist[i].name);
2590 		}
2591 	}
2592 
2593 #if defined(CONFIG_OPTPROBES)
2594 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2595 	/* Init kprobe_optinsn_slots */
2596 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2597 #endif
2598 	/* By default, kprobes can be optimized */
2599 	kprobes_allow_optimization = true;
2600 #endif
2601 
2602 	/* By default, kprobes are armed */
2603 	kprobes_all_disarmed = false;
2604 
2605 	err = arch_init_kprobes();
2606 	if (!err)
2607 		err = register_die_notifier(&kprobe_exceptions_nb);
2608 	if (!err)
2609 		err = register_module_notifier(&kprobe_module_nb);
2610 
2611 	kprobes_initialized = (err == 0);
2612 
2613 	if (!err)
2614 		init_test_probes();
2615 	return err;
2616 }
2617 early_initcall(init_kprobes);
2618 
2619 #ifdef CONFIG_DEBUG_FS
2620 static void report_probe(struct seq_file *pi, struct kprobe *p,
2621 		const char *sym, int offset, char *modname, struct kprobe *pp)
2622 {
2623 	char *kprobe_type;
2624 	void *addr = p->addr;
2625 
2626 	if (p->pre_handler == pre_handler_kretprobe)
2627 		kprobe_type = "r";
2628 	else
2629 		kprobe_type = "k";
2630 
2631 	if (!kallsyms_show_value(pi->file->f_cred))
2632 		addr = NULL;
2633 
2634 	if (sym)
2635 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2636 			addr, kprobe_type, sym, offset,
2637 			(modname ? modname : " "));
2638 	else	/* try to use %pS */
2639 		seq_printf(pi, "%px  %s  %pS ",
2640 			addr, kprobe_type, p->addr);
2641 
2642 	if (!pp)
2643 		pp = p;
2644 	seq_printf(pi, "%s%s%s%s\n",
2645 		(kprobe_gone(p) ? "[GONE]" : ""),
2646 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2647 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2648 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2649 }
2650 
2651 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2652 {
2653 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2654 }
2655 
2656 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2657 {
2658 	(*pos)++;
2659 	if (*pos >= KPROBE_TABLE_SIZE)
2660 		return NULL;
2661 	return pos;
2662 }
2663 
2664 static void kprobe_seq_stop(struct seq_file *f, void *v)
2665 {
2666 	/* Nothing to do */
2667 }
2668 
2669 static int show_kprobe_addr(struct seq_file *pi, void *v)
2670 {
2671 	struct hlist_head *head;
2672 	struct kprobe *p, *kp;
2673 	const char *sym = NULL;
2674 	unsigned int i = *(loff_t *) v;
2675 	unsigned long offset = 0;
2676 	char *modname, namebuf[KSYM_NAME_LEN];
2677 
2678 	head = &kprobe_table[i];
2679 	preempt_disable();
2680 	hlist_for_each_entry_rcu(p, head, hlist) {
2681 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2682 					&offset, &modname, namebuf);
2683 		if (kprobe_aggrprobe(p)) {
2684 			list_for_each_entry_rcu(kp, &p->list, list)
2685 				report_probe(pi, kp, sym, offset, modname, p);
2686 		} else
2687 			report_probe(pi, p, sym, offset, modname, NULL);
2688 	}
2689 	preempt_enable();
2690 	return 0;
2691 }
2692 
2693 static const struct seq_operations kprobes_sops = {
2694 	.start = kprobe_seq_start,
2695 	.next  = kprobe_seq_next,
2696 	.stop  = kprobe_seq_stop,
2697 	.show  = show_kprobe_addr
2698 };
2699 
2700 DEFINE_SEQ_ATTRIBUTE(kprobes);
2701 
2702 /* kprobes/blacklist -- shows which functions can not be probed */
2703 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2704 {
2705 	mutex_lock(&kprobe_mutex);
2706 	return seq_list_start(&kprobe_blacklist, *pos);
2707 }
2708 
2709 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2710 {
2711 	return seq_list_next(v, &kprobe_blacklist, pos);
2712 }
2713 
2714 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2715 {
2716 	struct kprobe_blacklist_entry *ent =
2717 		list_entry(v, struct kprobe_blacklist_entry, list);
2718 
2719 	/*
2720 	 * If /proc/kallsyms is not showing kernel address, we won't
2721 	 * show them here either.
2722 	 */
2723 	if (!kallsyms_show_value(m->file->f_cred))
2724 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2725 			   (void *)ent->start_addr);
2726 	else
2727 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2728 			   (void *)ent->end_addr, (void *)ent->start_addr);
2729 	return 0;
2730 }
2731 
2732 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2733 {
2734 	mutex_unlock(&kprobe_mutex);
2735 }
2736 
2737 static const struct seq_operations kprobe_blacklist_sops = {
2738 	.start = kprobe_blacklist_seq_start,
2739 	.next  = kprobe_blacklist_seq_next,
2740 	.stop  = kprobe_blacklist_seq_stop,
2741 	.show  = kprobe_blacklist_seq_show,
2742 };
2743 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2744 
2745 static int arm_all_kprobes(void)
2746 {
2747 	struct hlist_head *head;
2748 	struct kprobe *p;
2749 	unsigned int i, total = 0, errors = 0;
2750 	int err, ret = 0;
2751 
2752 	mutex_lock(&kprobe_mutex);
2753 
2754 	/* If kprobes are armed, just return */
2755 	if (!kprobes_all_disarmed)
2756 		goto already_enabled;
2757 
2758 	/*
2759 	 * optimize_kprobe() called by arm_kprobe() checks
2760 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2761 	 * arm_kprobe.
2762 	 */
2763 	kprobes_all_disarmed = false;
2764 	/* Arming kprobes doesn't optimize kprobe itself */
2765 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2766 		head = &kprobe_table[i];
2767 		/* Arm all kprobes on a best-effort basis */
2768 		hlist_for_each_entry(p, head, hlist) {
2769 			if (!kprobe_disabled(p)) {
2770 				err = arm_kprobe(p);
2771 				if (err)  {
2772 					errors++;
2773 					ret = err;
2774 				}
2775 				total++;
2776 			}
2777 		}
2778 	}
2779 
2780 	if (errors)
2781 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2782 			errors, total);
2783 	else
2784 		pr_info("Kprobes globally enabled\n");
2785 
2786 already_enabled:
2787 	mutex_unlock(&kprobe_mutex);
2788 	return ret;
2789 }
2790 
2791 static int disarm_all_kprobes(void)
2792 {
2793 	struct hlist_head *head;
2794 	struct kprobe *p;
2795 	unsigned int i, total = 0, errors = 0;
2796 	int err, ret = 0;
2797 
2798 	mutex_lock(&kprobe_mutex);
2799 
2800 	/* If kprobes are already disarmed, just return */
2801 	if (kprobes_all_disarmed) {
2802 		mutex_unlock(&kprobe_mutex);
2803 		return 0;
2804 	}
2805 
2806 	kprobes_all_disarmed = true;
2807 
2808 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2809 		head = &kprobe_table[i];
2810 		/* Disarm all kprobes on a best-effort basis */
2811 		hlist_for_each_entry(p, head, hlist) {
2812 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2813 				err = disarm_kprobe(p, false);
2814 				if (err) {
2815 					errors++;
2816 					ret = err;
2817 				}
2818 				total++;
2819 			}
2820 		}
2821 	}
2822 
2823 	if (errors)
2824 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2825 			errors, total);
2826 	else
2827 		pr_info("Kprobes globally disabled\n");
2828 
2829 	mutex_unlock(&kprobe_mutex);
2830 
2831 	/* Wait for disarming all kprobes by optimizer */
2832 	wait_for_kprobe_optimizer();
2833 
2834 	return ret;
2835 }
2836 
2837 /*
2838  * XXX: The debugfs bool file interface doesn't allow for callbacks
2839  * when the bool state is switched. We can reuse that facility when
2840  * available
2841  */
2842 static ssize_t read_enabled_file_bool(struct file *file,
2843 	       char __user *user_buf, size_t count, loff_t *ppos)
2844 {
2845 	char buf[3];
2846 
2847 	if (!kprobes_all_disarmed)
2848 		buf[0] = '1';
2849 	else
2850 		buf[0] = '0';
2851 	buf[1] = '\n';
2852 	buf[2] = 0x00;
2853 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2854 }
2855 
2856 static ssize_t write_enabled_file_bool(struct file *file,
2857 	       const char __user *user_buf, size_t count, loff_t *ppos)
2858 {
2859 	char buf[32];
2860 	size_t buf_size;
2861 	int ret = 0;
2862 
2863 	buf_size = min(count, (sizeof(buf)-1));
2864 	if (copy_from_user(buf, user_buf, buf_size))
2865 		return -EFAULT;
2866 
2867 	buf[buf_size] = '\0';
2868 	switch (buf[0]) {
2869 	case 'y':
2870 	case 'Y':
2871 	case '1':
2872 		ret = arm_all_kprobes();
2873 		break;
2874 	case 'n':
2875 	case 'N':
2876 	case '0':
2877 		ret = disarm_all_kprobes();
2878 		break;
2879 	default:
2880 		return -EINVAL;
2881 	}
2882 
2883 	if (ret)
2884 		return ret;
2885 
2886 	return count;
2887 }
2888 
2889 static const struct file_operations fops_kp = {
2890 	.read =         read_enabled_file_bool,
2891 	.write =        write_enabled_file_bool,
2892 	.llseek =	default_llseek,
2893 };
2894 
2895 static int __init debugfs_kprobe_init(void)
2896 {
2897 	struct dentry *dir;
2898 	unsigned int value = 1;
2899 
2900 	dir = debugfs_create_dir("kprobes", NULL);
2901 
2902 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2903 
2904 	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2905 
2906 	debugfs_create_file("blacklist", 0400, dir, NULL,
2907 			    &kprobe_blacklist_fops);
2908 
2909 	return 0;
2910 }
2911 
2912 late_initcall(debugfs_kprobe_init);
2913 #endif /* CONFIG_DEBUG_FS */
2914