1 /* 2 * Kernel Probes (KProbes) 3 * kernel/kprobes.c 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 18 * 19 * Copyright (C) IBM Corporation, 2002, 2004 20 * 21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 22 * Probes initial implementation (includes suggestions from 23 * Rusty Russell). 24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 25 * hlists and exceptions notifier as suggested by Andi Kleen. 26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 27 * interface to access function arguments. 28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 29 * exceptions notifier to be first on the priority list. 30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 32 * <prasanna@in.ibm.com> added function-return probes. 33 */ 34 #include <linux/kprobes.h> 35 #include <linux/hash.h> 36 #include <linux/init.h> 37 #include <linux/slab.h> 38 #include <linux/stddef.h> 39 #include <linux/module.h> 40 #include <linux/moduleloader.h> 41 #include <linux/kallsyms.h> 42 #include <linux/freezer.h> 43 #include <linux/seq_file.h> 44 #include <linux/debugfs.h> 45 #include <linux/sysctl.h> 46 #include <linux/kdebug.h> 47 #include <linux/memory.h> 48 #include <linux/ftrace.h> 49 #include <linux/cpu.h> 50 #include <linux/jump_label.h> 51 52 #include <asm-generic/sections.h> 53 #include <asm/cacheflush.h> 54 #include <asm/errno.h> 55 #include <asm/uaccess.h> 56 57 #define KPROBE_HASH_BITS 6 58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 59 60 61 /* 62 * Some oddball architectures like 64bit powerpc have function descriptors 63 * so this must be overridable. 64 */ 65 #ifndef kprobe_lookup_name 66 #define kprobe_lookup_name(name, addr) \ 67 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name))) 68 #endif 69 70 static int kprobes_initialized; 71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE]; 73 74 /* NOTE: change this value only with kprobe_mutex held */ 75 static bool kprobes_all_disarmed; 76 77 /* This protects kprobe_table and optimizing_list */ 78 static DEFINE_MUTEX(kprobe_mutex); 79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL; 80 static struct { 81 spinlock_t lock ____cacheline_aligned_in_smp; 82 } kretprobe_table_locks[KPROBE_TABLE_SIZE]; 83 84 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash) 85 { 86 return &(kretprobe_table_locks[hash].lock); 87 } 88 89 /* 90 * Normally, functions that we'd want to prohibit kprobes in, are marked 91 * __kprobes. But, there are cases where such functions already belong to 92 * a different section (__sched for preempt_schedule) 93 * 94 * For such cases, we now have a blacklist 95 */ 96 static struct kprobe_blackpoint kprobe_blacklist[] = { 97 {"preempt_schedule",}, 98 {"native_get_debugreg",}, 99 {"irq_entries_start",}, 100 {"common_interrupt",}, 101 {"mcount",}, /* mcount can be called from everywhere */ 102 {NULL} /* Terminator */ 103 }; 104 105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 106 /* 107 * kprobe->ainsn.insn points to the copy of the instruction to be 108 * single-stepped. x86_64, POWER4 and above have no-exec support and 109 * stepping on the instruction on a vmalloced/kmalloced/data page 110 * is a recipe for disaster 111 */ 112 struct kprobe_insn_page { 113 struct list_head list; 114 kprobe_opcode_t *insns; /* Page of instruction slots */ 115 int nused; 116 int ngarbage; 117 char slot_used[]; 118 }; 119 120 #define KPROBE_INSN_PAGE_SIZE(slots) \ 121 (offsetof(struct kprobe_insn_page, slot_used) + \ 122 (sizeof(char) * (slots))) 123 124 struct kprobe_insn_cache { 125 struct list_head pages; /* list of kprobe_insn_page */ 126 size_t insn_size; /* size of instruction slot */ 127 int nr_garbage; 128 }; 129 130 static int slots_per_page(struct kprobe_insn_cache *c) 131 { 132 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 133 } 134 135 enum kprobe_slot_state { 136 SLOT_CLEAN = 0, 137 SLOT_DIRTY = 1, 138 SLOT_USED = 2, 139 }; 140 141 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_slots */ 142 static struct kprobe_insn_cache kprobe_insn_slots = { 143 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 144 .insn_size = MAX_INSN_SIZE, 145 .nr_garbage = 0, 146 }; 147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c); 148 149 /** 150 * __get_insn_slot() - Find a slot on an executable page for an instruction. 151 * We allocate an executable page if there's no room on existing ones. 152 */ 153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c) 154 { 155 struct kprobe_insn_page *kip; 156 157 retry: 158 list_for_each_entry(kip, &c->pages, list) { 159 if (kip->nused < slots_per_page(c)) { 160 int i; 161 for (i = 0; i < slots_per_page(c); i++) { 162 if (kip->slot_used[i] == SLOT_CLEAN) { 163 kip->slot_used[i] = SLOT_USED; 164 kip->nused++; 165 return kip->insns + (i * c->insn_size); 166 } 167 } 168 /* kip->nused is broken. Fix it. */ 169 kip->nused = slots_per_page(c); 170 WARN_ON(1); 171 } 172 } 173 174 /* If there are any garbage slots, collect it and try again. */ 175 if (c->nr_garbage && collect_garbage_slots(c) == 0) 176 goto retry; 177 178 /* All out of space. Need to allocate a new page. */ 179 kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL); 180 if (!kip) 181 return NULL; 182 183 /* 184 * Use module_alloc so this page is within +/- 2GB of where the 185 * kernel image and loaded module images reside. This is required 186 * so x86_64 can correctly handle the %rip-relative fixups. 187 */ 188 kip->insns = module_alloc(PAGE_SIZE); 189 if (!kip->insns) { 190 kfree(kip); 191 return NULL; 192 } 193 INIT_LIST_HEAD(&kip->list); 194 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 195 kip->slot_used[0] = SLOT_USED; 196 kip->nused = 1; 197 kip->ngarbage = 0; 198 list_add(&kip->list, &c->pages); 199 return kip->insns; 200 } 201 202 203 kprobe_opcode_t __kprobes *get_insn_slot(void) 204 { 205 kprobe_opcode_t *ret = NULL; 206 207 mutex_lock(&kprobe_insn_mutex); 208 ret = __get_insn_slot(&kprobe_insn_slots); 209 mutex_unlock(&kprobe_insn_mutex); 210 211 return ret; 212 } 213 214 /* Return 1 if all garbages are collected, otherwise 0. */ 215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx) 216 { 217 kip->slot_used[idx] = SLOT_CLEAN; 218 kip->nused--; 219 if (kip->nused == 0) { 220 /* 221 * Page is no longer in use. Free it unless 222 * it's the last one. We keep the last one 223 * so as not to have to set it up again the 224 * next time somebody inserts a probe. 225 */ 226 if (!list_is_singular(&kip->list)) { 227 list_del(&kip->list); 228 module_free(NULL, kip->insns); 229 kfree(kip); 230 } 231 return 1; 232 } 233 return 0; 234 } 235 236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c) 237 { 238 struct kprobe_insn_page *kip, *next; 239 240 /* Ensure no-one is interrupted on the garbages */ 241 synchronize_sched(); 242 243 list_for_each_entry_safe(kip, next, &c->pages, list) { 244 int i; 245 if (kip->ngarbage == 0) 246 continue; 247 kip->ngarbage = 0; /* we will collect all garbages */ 248 for (i = 0; i < slots_per_page(c); i++) { 249 if (kip->slot_used[i] == SLOT_DIRTY && 250 collect_one_slot(kip, i)) 251 break; 252 } 253 } 254 c->nr_garbage = 0; 255 return 0; 256 } 257 258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c, 259 kprobe_opcode_t *slot, int dirty) 260 { 261 struct kprobe_insn_page *kip; 262 263 list_for_each_entry(kip, &c->pages, list) { 264 long idx = ((long)slot - (long)kip->insns) / 265 (c->insn_size * sizeof(kprobe_opcode_t)); 266 if (idx >= 0 && idx < slots_per_page(c)) { 267 WARN_ON(kip->slot_used[idx] != SLOT_USED); 268 if (dirty) { 269 kip->slot_used[idx] = SLOT_DIRTY; 270 kip->ngarbage++; 271 if (++c->nr_garbage > slots_per_page(c)) 272 collect_garbage_slots(c); 273 } else 274 collect_one_slot(kip, idx); 275 return; 276 } 277 } 278 /* Could not free this slot. */ 279 WARN_ON(1); 280 } 281 282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty) 283 { 284 mutex_lock(&kprobe_insn_mutex); 285 __free_insn_slot(&kprobe_insn_slots, slot, dirty); 286 mutex_unlock(&kprobe_insn_mutex); 287 } 288 #ifdef CONFIG_OPTPROBES 289 /* For optimized_kprobe buffer */ 290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */ 291 static struct kprobe_insn_cache kprobe_optinsn_slots = { 292 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 293 /* .insn_size is initialized later */ 294 .nr_garbage = 0, 295 }; 296 /* Get a slot for optimized_kprobe buffer */ 297 kprobe_opcode_t __kprobes *get_optinsn_slot(void) 298 { 299 kprobe_opcode_t *ret = NULL; 300 301 mutex_lock(&kprobe_optinsn_mutex); 302 ret = __get_insn_slot(&kprobe_optinsn_slots); 303 mutex_unlock(&kprobe_optinsn_mutex); 304 305 return ret; 306 } 307 308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty) 309 { 310 mutex_lock(&kprobe_optinsn_mutex); 311 __free_insn_slot(&kprobe_optinsn_slots, slot, dirty); 312 mutex_unlock(&kprobe_optinsn_mutex); 313 } 314 #endif 315 #endif 316 317 /* We have preemption disabled.. so it is safe to use __ versions */ 318 static inline void set_kprobe_instance(struct kprobe *kp) 319 { 320 __get_cpu_var(kprobe_instance) = kp; 321 } 322 323 static inline void reset_kprobe_instance(void) 324 { 325 __get_cpu_var(kprobe_instance) = NULL; 326 } 327 328 /* 329 * This routine is called either: 330 * - under the kprobe_mutex - during kprobe_[un]register() 331 * OR 332 * - with preemption disabled - from arch/xxx/kernel/kprobes.c 333 */ 334 struct kprobe __kprobes *get_kprobe(void *addr) 335 { 336 struct hlist_head *head; 337 struct hlist_node *node; 338 struct kprobe *p; 339 340 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 341 hlist_for_each_entry_rcu(p, node, head, hlist) { 342 if (p->addr == addr) 343 return p; 344 } 345 346 return NULL; 347 } 348 349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 350 351 /* Return true if the kprobe is an aggregator */ 352 static inline int kprobe_aggrprobe(struct kprobe *p) 353 { 354 return p->pre_handler == aggr_pre_handler; 355 } 356 357 /* 358 * Keep all fields in the kprobe consistent 359 */ 360 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p) 361 { 362 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t)); 363 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn)); 364 } 365 366 #ifdef CONFIG_OPTPROBES 367 /* NOTE: change this value only with kprobe_mutex held */ 368 static bool kprobes_allow_optimization; 369 370 /* 371 * Call all pre_handler on the list, but ignores its return value. 372 * This must be called from arch-dep optimized caller. 373 */ 374 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 375 { 376 struct kprobe *kp; 377 378 list_for_each_entry_rcu(kp, &p->list, list) { 379 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 380 set_kprobe_instance(kp); 381 kp->pre_handler(kp, regs); 382 } 383 reset_kprobe_instance(); 384 } 385 } 386 387 /* Return true(!0) if the kprobe is ready for optimization. */ 388 static inline int kprobe_optready(struct kprobe *p) 389 { 390 struct optimized_kprobe *op; 391 392 if (kprobe_aggrprobe(p)) { 393 op = container_of(p, struct optimized_kprobe, kp); 394 return arch_prepared_optinsn(&op->optinsn); 395 } 396 397 return 0; 398 } 399 400 /* 401 * Return an optimized kprobe whose optimizing code replaces 402 * instructions including addr (exclude breakpoint). 403 */ 404 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr) 405 { 406 int i; 407 struct kprobe *p = NULL; 408 struct optimized_kprobe *op; 409 410 /* Don't check i == 0, since that is a breakpoint case. */ 411 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++) 412 p = get_kprobe((void *)(addr - i)); 413 414 if (p && kprobe_optready(p)) { 415 op = container_of(p, struct optimized_kprobe, kp); 416 if (arch_within_optimized_kprobe(op, addr)) 417 return p; 418 } 419 420 return NULL; 421 } 422 423 /* Optimization staging list, protected by kprobe_mutex */ 424 static LIST_HEAD(optimizing_list); 425 426 static void kprobe_optimizer(struct work_struct *work); 427 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 428 #define OPTIMIZE_DELAY 5 429 430 /* Kprobe jump optimizer */ 431 static __kprobes void kprobe_optimizer(struct work_struct *work) 432 { 433 struct optimized_kprobe *op, *tmp; 434 435 /* Lock modules while optimizing kprobes */ 436 mutex_lock(&module_mutex); 437 mutex_lock(&kprobe_mutex); 438 if (kprobes_all_disarmed || !kprobes_allow_optimization) 439 goto end; 440 441 /* 442 * Wait for quiesence period to ensure all running interrupts 443 * are done. Because optprobe may modify multiple instructions 444 * there is a chance that Nth instruction is interrupted. In that 445 * case, running interrupt can return to 2nd-Nth byte of jump 446 * instruction. This wait is for avoiding it. 447 */ 448 synchronize_sched(); 449 450 /* 451 * The optimization/unoptimization refers online_cpus via 452 * stop_machine() and cpu-hotplug modifies online_cpus. 453 * And same time, text_mutex will be held in cpu-hotplug and here. 454 * This combination can cause a deadlock (cpu-hotplug try to lock 455 * text_mutex but stop_machine can not be done because online_cpus 456 * has been changed) 457 * To avoid this deadlock, we need to call get_online_cpus() 458 * for preventing cpu-hotplug outside of text_mutex locking. 459 */ 460 get_online_cpus(); 461 mutex_lock(&text_mutex); 462 list_for_each_entry_safe(op, tmp, &optimizing_list, list) { 463 WARN_ON(kprobe_disabled(&op->kp)); 464 if (arch_optimize_kprobe(op) < 0) 465 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 466 list_del_init(&op->list); 467 } 468 mutex_unlock(&text_mutex); 469 put_online_cpus(); 470 end: 471 mutex_unlock(&kprobe_mutex); 472 mutex_unlock(&module_mutex); 473 } 474 475 /* Optimize kprobe if p is ready to be optimized */ 476 static __kprobes void optimize_kprobe(struct kprobe *p) 477 { 478 struct optimized_kprobe *op; 479 480 /* Check if the kprobe is disabled or not ready for optimization. */ 481 if (!kprobe_optready(p) || !kprobes_allow_optimization || 482 (kprobe_disabled(p) || kprobes_all_disarmed)) 483 return; 484 485 /* Both of break_handler and post_handler are not supported. */ 486 if (p->break_handler || p->post_handler) 487 return; 488 489 op = container_of(p, struct optimized_kprobe, kp); 490 491 /* Check there is no other kprobes at the optimized instructions */ 492 if (arch_check_optimized_kprobe(op) < 0) 493 return; 494 495 /* Check if it is already optimized. */ 496 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) 497 return; 498 499 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 500 list_add(&op->list, &optimizing_list); 501 if (!delayed_work_pending(&optimizing_work)) 502 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 503 } 504 505 /* Unoptimize a kprobe if p is optimized */ 506 static __kprobes void unoptimize_kprobe(struct kprobe *p) 507 { 508 struct optimized_kprobe *op; 509 510 if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) { 511 op = container_of(p, struct optimized_kprobe, kp); 512 if (!list_empty(&op->list)) 513 /* Dequeue from the optimization queue */ 514 list_del_init(&op->list); 515 else 516 /* Replace jump with break */ 517 arch_unoptimize_kprobe(op); 518 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 519 } 520 } 521 522 /* Remove optimized instructions */ 523 static void __kprobes kill_optimized_kprobe(struct kprobe *p) 524 { 525 struct optimized_kprobe *op; 526 527 op = container_of(p, struct optimized_kprobe, kp); 528 if (!list_empty(&op->list)) { 529 /* Dequeue from the optimization queue */ 530 list_del_init(&op->list); 531 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 532 } 533 /* Don't unoptimize, because the target code will be freed. */ 534 arch_remove_optimized_kprobe(op); 535 } 536 537 /* Try to prepare optimized instructions */ 538 static __kprobes void prepare_optimized_kprobe(struct kprobe *p) 539 { 540 struct optimized_kprobe *op; 541 542 op = container_of(p, struct optimized_kprobe, kp); 543 arch_prepare_optimized_kprobe(op); 544 } 545 546 /* Free optimized instructions and optimized_kprobe */ 547 static __kprobes void free_aggr_kprobe(struct kprobe *p) 548 { 549 struct optimized_kprobe *op; 550 551 op = container_of(p, struct optimized_kprobe, kp); 552 arch_remove_optimized_kprobe(op); 553 kfree(op); 554 } 555 556 /* Allocate new optimized_kprobe and try to prepare optimized instructions */ 557 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 558 { 559 struct optimized_kprobe *op; 560 561 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 562 if (!op) 563 return NULL; 564 565 INIT_LIST_HEAD(&op->list); 566 op->kp.addr = p->addr; 567 arch_prepare_optimized_kprobe(op); 568 569 return &op->kp; 570 } 571 572 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 573 574 /* 575 * Prepare an optimized_kprobe and optimize it 576 * NOTE: p must be a normal registered kprobe 577 */ 578 static __kprobes void try_to_optimize_kprobe(struct kprobe *p) 579 { 580 struct kprobe *ap; 581 struct optimized_kprobe *op; 582 583 ap = alloc_aggr_kprobe(p); 584 if (!ap) 585 return; 586 587 op = container_of(ap, struct optimized_kprobe, kp); 588 if (!arch_prepared_optinsn(&op->optinsn)) { 589 /* If failed to setup optimizing, fallback to kprobe */ 590 free_aggr_kprobe(ap); 591 return; 592 } 593 594 init_aggr_kprobe(ap, p); 595 optimize_kprobe(ap); 596 } 597 598 #ifdef CONFIG_SYSCTL 599 /* This should be called with kprobe_mutex locked */ 600 static void __kprobes optimize_all_kprobes(void) 601 { 602 struct hlist_head *head; 603 struct hlist_node *node; 604 struct kprobe *p; 605 unsigned int i; 606 607 /* If optimization is already allowed, just return */ 608 if (kprobes_allow_optimization) 609 return; 610 611 kprobes_allow_optimization = true; 612 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 613 head = &kprobe_table[i]; 614 hlist_for_each_entry_rcu(p, node, head, hlist) 615 if (!kprobe_disabled(p)) 616 optimize_kprobe(p); 617 } 618 printk(KERN_INFO "Kprobes globally optimized\n"); 619 } 620 621 /* This should be called with kprobe_mutex locked */ 622 static void __kprobes unoptimize_all_kprobes(void) 623 { 624 struct hlist_head *head; 625 struct hlist_node *node; 626 struct kprobe *p; 627 unsigned int i; 628 629 /* If optimization is already prohibited, just return */ 630 if (!kprobes_allow_optimization) 631 return; 632 633 kprobes_allow_optimization = false; 634 printk(KERN_INFO "Kprobes globally unoptimized\n"); 635 get_online_cpus(); /* For avoiding text_mutex deadlock */ 636 mutex_lock(&text_mutex); 637 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 638 head = &kprobe_table[i]; 639 hlist_for_each_entry_rcu(p, node, head, hlist) { 640 if (!kprobe_disabled(p)) 641 unoptimize_kprobe(p); 642 } 643 } 644 645 mutex_unlock(&text_mutex); 646 put_online_cpus(); 647 /* Allow all currently running kprobes to complete */ 648 synchronize_sched(); 649 } 650 651 int sysctl_kprobes_optimization; 652 int proc_kprobes_optimization_handler(struct ctl_table *table, int write, 653 void __user *buffer, size_t *length, 654 loff_t *ppos) 655 { 656 int ret; 657 658 mutex_lock(&kprobe_mutex); 659 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 660 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 661 662 if (sysctl_kprobes_optimization) 663 optimize_all_kprobes(); 664 else 665 unoptimize_all_kprobes(); 666 mutex_unlock(&kprobe_mutex); 667 668 return ret; 669 } 670 #endif /* CONFIG_SYSCTL */ 671 672 static void __kprobes __arm_kprobe(struct kprobe *p) 673 { 674 struct kprobe *old_p; 675 676 /* Check collision with other optimized kprobes */ 677 old_p = get_optimized_kprobe((unsigned long)p->addr); 678 if (unlikely(old_p)) 679 unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */ 680 681 arch_arm_kprobe(p); 682 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 683 } 684 685 static void __kprobes __disarm_kprobe(struct kprobe *p) 686 { 687 struct kprobe *old_p; 688 689 unoptimize_kprobe(p); /* Try to unoptimize */ 690 arch_disarm_kprobe(p); 691 692 /* If another kprobe was blocked, optimize it. */ 693 old_p = get_optimized_kprobe((unsigned long)p->addr); 694 if (unlikely(old_p)) 695 optimize_kprobe(old_p); 696 } 697 698 #else /* !CONFIG_OPTPROBES */ 699 700 #define optimize_kprobe(p) do {} while (0) 701 #define unoptimize_kprobe(p) do {} while (0) 702 #define kill_optimized_kprobe(p) do {} while (0) 703 #define prepare_optimized_kprobe(p) do {} while (0) 704 #define try_to_optimize_kprobe(p) do {} while (0) 705 #define __arm_kprobe(p) arch_arm_kprobe(p) 706 #define __disarm_kprobe(p) arch_disarm_kprobe(p) 707 708 static __kprobes void free_aggr_kprobe(struct kprobe *p) 709 { 710 kfree(p); 711 } 712 713 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 714 { 715 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 716 } 717 #endif /* CONFIG_OPTPROBES */ 718 719 /* Arm a kprobe with text_mutex */ 720 static void __kprobes arm_kprobe(struct kprobe *kp) 721 { 722 /* 723 * Here, since __arm_kprobe() doesn't use stop_machine(), 724 * this doesn't cause deadlock on text_mutex. So, we don't 725 * need get_online_cpus(). 726 */ 727 mutex_lock(&text_mutex); 728 __arm_kprobe(kp); 729 mutex_unlock(&text_mutex); 730 } 731 732 /* Disarm a kprobe with text_mutex */ 733 static void __kprobes disarm_kprobe(struct kprobe *kp) 734 { 735 get_online_cpus(); /* For avoiding text_mutex deadlock */ 736 mutex_lock(&text_mutex); 737 __disarm_kprobe(kp); 738 mutex_unlock(&text_mutex); 739 put_online_cpus(); 740 } 741 742 /* 743 * Aggregate handlers for multiple kprobes support - these handlers 744 * take care of invoking the individual kprobe handlers on p->list 745 */ 746 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 747 { 748 struct kprobe *kp; 749 750 list_for_each_entry_rcu(kp, &p->list, list) { 751 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 752 set_kprobe_instance(kp); 753 if (kp->pre_handler(kp, regs)) 754 return 1; 755 } 756 reset_kprobe_instance(); 757 } 758 return 0; 759 } 760 761 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 762 unsigned long flags) 763 { 764 struct kprobe *kp; 765 766 list_for_each_entry_rcu(kp, &p->list, list) { 767 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 768 set_kprobe_instance(kp); 769 kp->post_handler(kp, regs, flags); 770 reset_kprobe_instance(); 771 } 772 } 773 } 774 775 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs, 776 int trapnr) 777 { 778 struct kprobe *cur = __get_cpu_var(kprobe_instance); 779 780 /* 781 * if we faulted "during" the execution of a user specified 782 * probe handler, invoke just that probe's fault handler 783 */ 784 if (cur && cur->fault_handler) { 785 if (cur->fault_handler(cur, regs, trapnr)) 786 return 1; 787 } 788 return 0; 789 } 790 791 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs) 792 { 793 struct kprobe *cur = __get_cpu_var(kprobe_instance); 794 int ret = 0; 795 796 if (cur && cur->break_handler) { 797 if (cur->break_handler(cur, regs)) 798 ret = 1; 799 } 800 reset_kprobe_instance(); 801 return ret; 802 } 803 804 /* Walks the list and increments nmissed count for multiprobe case */ 805 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p) 806 { 807 struct kprobe *kp; 808 if (!kprobe_aggrprobe(p)) { 809 p->nmissed++; 810 } else { 811 list_for_each_entry_rcu(kp, &p->list, list) 812 kp->nmissed++; 813 } 814 return; 815 } 816 817 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri, 818 struct hlist_head *head) 819 { 820 struct kretprobe *rp = ri->rp; 821 822 /* remove rp inst off the rprobe_inst_table */ 823 hlist_del(&ri->hlist); 824 INIT_HLIST_NODE(&ri->hlist); 825 if (likely(rp)) { 826 spin_lock(&rp->lock); 827 hlist_add_head(&ri->hlist, &rp->free_instances); 828 spin_unlock(&rp->lock); 829 } else 830 /* Unregistering */ 831 hlist_add_head(&ri->hlist, head); 832 } 833 834 void __kprobes kretprobe_hash_lock(struct task_struct *tsk, 835 struct hlist_head **head, unsigned long *flags) 836 __acquires(hlist_lock) 837 { 838 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 839 spinlock_t *hlist_lock; 840 841 *head = &kretprobe_inst_table[hash]; 842 hlist_lock = kretprobe_table_lock_ptr(hash); 843 spin_lock_irqsave(hlist_lock, *flags); 844 } 845 846 static void __kprobes kretprobe_table_lock(unsigned long hash, 847 unsigned long *flags) 848 __acquires(hlist_lock) 849 { 850 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 851 spin_lock_irqsave(hlist_lock, *flags); 852 } 853 854 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk, 855 unsigned long *flags) 856 __releases(hlist_lock) 857 { 858 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS); 859 spinlock_t *hlist_lock; 860 861 hlist_lock = kretprobe_table_lock_ptr(hash); 862 spin_unlock_irqrestore(hlist_lock, *flags); 863 } 864 865 static void __kprobes kretprobe_table_unlock(unsigned long hash, 866 unsigned long *flags) 867 __releases(hlist_lock) 868 { 869 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash); 870 spin_unlock_irqrestore(hlist_lock, *flags); 871 } 872 873 /* 874 * This function is called from finish_task_switch when task tk becomes dead, 875 * so that we can recycle any function-return probe instances associated 876 * with this task. These left over instances represent probed functions 877 * that have been called but will never return. 878 */ 879 void __kprobes kprobe_flush_task(struct task_struct *tk) 880 { 881 struct kretprobe_instance *ri; 882 struct hlist_head *head, empty_rp; 883 struct hlist_node *node, *tmp; 884 unsigned long hash, flags = 0; 885 886 if (unlikely(!kprobes_initialized)) 887 /* Early boot. kretprobe_table_locks not yet initialized. */ 888 return; 889 890 hash = hash_ptr(tk, KPROBE_HASH_BITS); 891 head = &kretprobe_inst_table[hash]; 892 kretprobe_table_lock(hash, &flags); 893 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 894 if (ri->task == tk) 895 recycle_rp_inst(ri, &empty_rp); 896 } 897 kretprobe_table_unlock(hash, &flags); 898 INIT_HLIST_HEAD(&empty_rp); 899 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 900 hlist_del(&ri->hlist); 901 kfree(ri); 902 } 903 } 904 905 static inline void free_rp_inst(struct kretprobe *rp) 906 { 907 struct kretprobe_instance *ri; 908 struct hlist_node *pos, *next; 909 910 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) { 911 hlist_del(&ri->hlist); 912 kfree(ri); 913 } 914 } 915 916 static void __kprobes cleanup_rp_inst(struct kretprobe *rp) 917 { 918 unsigned long flags, hash; 919 struct kretprobe_instance *ri; 920 struct hlist_node *pos, *next; 921 struct hlist_head *head; 922 923 /* No race here */ 924 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) { 925 kretprobe_table_lock(hash, &flags); 926 head = &kretprobe_inst_table[hash]; 927 hlist_for_each_entry_safe(ri, pos, next, head, hlist) { 928 if (ri->rp == rp) 929 ri->rp = NULL; 930 } 931 kretprobe_table_unlock(hash, &flags); 932 } 933 free_rp_inst(rp); 934 } 935 936 /* 937 * Add the new probe to ap->list. Fail if this is the 938 * second jprobe at the address - two jprobes can't coexist 939 */ 940 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p) 941 { 942 BUG_ON(kprobe_gone(ap) || kprobe_gone(p)); 943 944 if (p->break_handler || p->post_handler) 945 unoptimize_kprobe(ap); /* Fall back to normal kprobe */ 946 947 if (p->break_handler) { 948 if (ap->break_handler) 949 return -EEXIST; 950 list_add_tail_rcu(&p->list, &ap->list); 951 ap->break_handler = aggr_break_handler; 952 } else 953 list_add_rcu(&p->list, &ap->list); 954 if (p->post_handler && !ap->post_handler) 955 ap->post_handler = aggr_post_handler; 956 957 if (kprobe_disabled(ap) && !kprobe_disabled(p)) { 958 ap->flags &= ~KPROBE_FLAG_DISABLED; 959 if (!kprobes_all_disarmed) 960 /* Arm the breakpoint again. */ 961 __arm_kprobe(ap); 962 } 963 return 0; 964 } 965 966 /* 967 * Fill in the required fields of the "manager kprobe". Replace the 968 * earlier kprobe in the hlist with the manager kprobe 969 */ 970 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 971 { 972 /* Copy p's insn slot to ap */ 973 copy_kprobe(p, ap); 974 flush_insn_slot(ap); 975 ap->addr = p->addr; 976 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 977 ap->pre_handler = aggr_pre_handler; 978 ap->fault_handler = aggr_fault_handler; 979 /* We don't care the kprobe which has gone. */ 980 if (p->post_handler && !kprobe_gone(p)) 981 ap->post_handler = aggr_post_handler; 982 if (p->break_handler && !kprobe_gone(p)) 983 ap->break_handler = aggr_break_handler; 984 985 INIT_LIST_HEAD(&ap->list); 986 INIT_HLIST_NODE(&ap->hlist); 987 988 list_add_rcu(&p->list, &ap->list); 989 hlist_replace_rcu(&p->hlist, &ap->hlist); 990 } 991 992 /* 993 * This is the second or subsequent kprobe at the address - handle 994 * the intricacies 995 */ 996 static int __kprobes register_aggr_kprobe(struct kprobe *old_p, 997 struct kprobe *p) 998 { 999 int ret = 0; 1000 struct kprobe *ap = old_p; 1001 1002 if (!kprobe_aggrprobe(old_p)) { 1003 /* If old_p is not an aggr_kprobe, create new aggr_kprobe. */ 1004 ap = alloc_aggr_kprobe(old_p); 1005 if (!ap) 1006 return -ENOMEM; 1007 init_aggr_kprobe(ap, old_p); 1008 } 1009 1010 if (kprobe_gone(ap)) { 1011 /* 1012 * Attempting to insert new probe at the same location that 1013 * had a probe in the module vaddr area which already 1014 * freed. So, the instruction slot has already been 1015 * released. We need a new slot for the new probe. 1016 */ 1017 ret = arch_prepare_kprobe(ap); 1018 if (ret) 1019 /* 1020 * Even if fail to allocate new slot, don't need to 1021 * free aggr_probe. It will be used next time, or 1022 * freed by unregister_kprobe. 1023 */ 1024 return ret; 1025 1026 /* Prepare optimized instructions if possible. */ 1027 prepare_optimized_kprobe(ap); 1028 1029 /* 1030 * Clear gone flag to prevent allocating new slot again, and 1031 * set disabled flag because it is not armed yet. 1032 */ 1033 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1034 | KPROBE_FLAG_DISABLED; 1035 } 1036 1037 /* Copy ap's insn slot to p */ 1038 copy_kprobe(ap, p); 1039 return add_new_kprobe(ap, p); 1040 } 1041 1042 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/ 1043 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p) 1044 { 1045 struct kprobe *kp; 1046 1047 list_for_each_entry_rcu(kp, &p->list, list) { 1048 if (!kprobe_disabled(kp)) 1049 /* 1050 * There is an active probe on the list. 1051 * We can't disable aggr_kprobe. 1052 */ 1053 return 0; 1054 } 1055 p->flags |= KPROBE_FLAG_DISABLED; 1056 return 1; 1057 } 1058 1059 static int __kprobes in_kprobes_functions(unsigned long addr) 1060 { 1061 struct kprobe_blackpoint *kb; 1062 1063 if (addr >= (unsigned long)__kprobes_text_start && 1064 addr < (unsigned long)__kprobes_text_end) 1065 return -EINVAL; 1066 /* 1067 * If there exists a kprobe_blacklist, verify and 1068 * fail any probe registration in the prohibited area 1069 */ 1070 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1071 if (kb->start_addr) { 1072 if (addr >= kb->start_addr && 1073 addr < (kb->start_addr + kb->range)) 1074 return -EINVAL; 1075 } 1076 } 1077 return 0; 1078 } 1079 1080 /* 1081 * If we have a symbol_name argument, look it up and add the offset field 1082 * to it. This way, we can specify a relative address to a symbol. 1083 */ 1084 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p) 1085 { 1086 kprobe_opcode_t *addr = p->addr; 1087 if (p->symbol_name) { 1088 if (addr) 1089 return NULL; 1090 kprobe_lookup_name(p->symbol_name, addr); 1091 } 1092 1093 if (!addr) 1094 return NULL; 1095 return (kprobe_opcode_t *)(((char *)addr) + p->offset); 1096 } 1097 1098 /* Check passed kprobe is valid and return kprobe in kprobe_table. */ 1099 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p) 1100 { 1101 struct kprobe *old_p, *list_p; 1102 1103 old_p = get_kprobe(p->addr); 1104 if (unlikely(!old_p)) 1105 return NULL; 1106 1107 if (p != old_p) { 1108 list_for_each_entry_rcu(list_p, &old_p->list, list) 1109 if (list_p == p) 1110 /* kprobe p is a valid probe */ 1111 goto valid; 1112 return NULL; 1113 } 1114 valid: 1115 return old_p; 1116 } 1117 1118 /* Return error if the kprobe is being re-registered */ 1119 static inline int check_kprobe_rereg(struct kprobe *p) 1120 { 1121 int ret = 0; 1122 struct kprobe *old_p; 1123 1124 mutex_lock(&kprobe_mutex); 1125 old_p = __get_valid_kprobe(p); 1126 if (old_p) 1127 ret = -EINVAL; 1128 mutex_unlock(&kprobe_mutex); 1129 return ret; 1130 } 1131 1132 int __kprobes register_kprobe(struct kprobe *p) 1133 { 1134 int ret = 0; 1135 struct kprobe *old_p; 1136 struct module *probed_mod; 1137 kprobe_opcode_t *addr; 1138 1139 addr = kprobe_addr(p); 1140 if (!addr) 1141 return -EINVAL; 1142 p->addr = addr; 1143 1144 ret = check_kprobe_rereg(p); 1145 if (ret) 1146 return ret; 1147 1148 preempt_disable(); 1149 if (!kernel_text_address((unsigned long) p->addr) || 1150 in_kprobes_functions((unsigned long) p->addr) || 1151 ftrace_text_reserved(p->addr, p->addr) || 1152 jump_label_text_reserved(p->addr, p->addr)) { 1153 preempt_enable(); 1154 return -EINVAL; 1155 } 1156 1157 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1158 p->flags &= KPROBE_FLAG_DISABLED; 1159 1160 /* 1161 * Check if are we probing a module. 1162 */ 1163 probed_mod = __module_text_address((unsigned long) p->addr); 1164 if (probed_mod) { 1165 /* 1166 * We must hold a refcount of the probed module while updating 1167 * its code to prohibit unexpected unloading. 1168 */ 1169 if (unlikely(!try_module_get(probed_mod))) { 1170 preempt_enable(); 1171 return -EINVAL; 1172 } 1173 /* 1174 * If the module freed .init.text, we couldn't insert 1175 * kprobes in there. 1176 */ 1177 if (within_module_init((unsigned long)p->addr, probed_mod) && 1178 probed_mod->state != MODULE_STATE_COMING) { 1179 module_put(probed_mod); 1180 preempt_enable(); 1181 return -EINVAL; 1182 } 1183 } 1184 preempt_enable(); 1185 1186 p->nmissed = 0; 1187 INIT_LIST_HEAD(&p->list); 1188 mutex_lock(&kprobe_mutex); 1189 1190 get_online_cpus(); /* For avoiding text_mutex deadlock. */ 1191 mutex_lock(&text_mutex); 1192 1193 old_p = get_kprobe(p->addr); 1194 if (old_p) { 1195 /* Since this may unoptimize old_p, locking text_mutex. */ 1196 ret = register_aggr_kprobe(old_p, p); 1197 goto out; 1198 } 1199 1200 ret = arch_prepare_kprobe(p); 1201 if (ret) 1202 goto out; 1203 1204 INIT_HLIST_NODE(&p->hlist); 1205 hlist_add_head_rcu(&p->hlist, 1206 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1207 1208 if (!kprobes_all_disarmed && !kprobe_disabled(p)) 1209 __arm_kprobe(p); 1210 1211 /* Try to optimize kprobe */ 1212 try_to_optimize_kprobe(p); 1213 1214 out: 1215 mutex_unlock(&text_mutex); 1216 put_online_cpus(); 1217 mutex_unlock(&kprobe_mutex); 1218 1219 if (probed_mod) 1220 module_put(probed_mod); 1221 1222 return ret; 1223 } 1224 EXPORT_SYMBOL_GPL(register_kprobe); 1225 1226 /* 1227 * Unregister a kprobe without a scheduler synchronization. 1228 */ 1229 static int __kprobes __unregister_kprobe_top(struct kprobe *p) 1230 { 1231 struct kprobe *old_p, *list_p; 1232 1233 old_p = __get_valid_kprobe(p); 1234 if (old_p == NULL) 1235 return -EINVAL; 1236 1237 if (old_p == p || 1238 (kprobe_aggrprobe(old_p) && 1239 list_is_singular(&old_p->list))) { 1240 /* 1241 * Only probe on the hash list. Disarm only if kprobes are 1242 * enabled and not gone - otherwise, the breakpoint would 1243 * already have been removed. We save on flushing icache. 1244 */ 1245 if (!kprobes_all_disarmed && !kprobe_disabled(old_p)) 1246 disarm_kprobe(old_p); 1247 hlist_del_rcu(&old_p->hlist); 1248 } else { 1249 if (p->break_handler && !kprobe_gone(p)) 1250 old_p->break_handler = NULL; 1251 if (p->post_handler && !kprobe_gone(p)) { 1252 list_for_each_entry_rcu(list_p, &old_p->list, list) { 1253 if ((list_p != p) && (list_p->post_handler)) 1254 goto noclean; 1255 } 1256 old_p->post_handler = NULL; 1257 } 1258 noclean: 1259 list_del_rcu(&p->list); 1260 if (!kprobe_disabled(old_p)) { 1261 try_to_disable_aggr_kprobe(old_p); 1262 if (!kprobes_all_disarmed) { 1263 if (kprobe_disabled(old_p)) 1264 disarm_kprobe(old_p); 1265 else 1266 /* Try to optimize this probe again */ 1267 optimize_kprobe(old_p); 1268 } 1269 } 1270 } 1271 return 0; 1272 } 1273 1274 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p) 1275 { 1276 struct kprobe *old_p; 1277 1278 if (list_empty(&p->list)) 1279 arch_remove_kprobe(p); 1280 else if (list_is_singular(&p->list)) { 1281 /* "p" is the last child of an aggr_kprobe */ 1282 old_p = list_entry(p->list.next, struct kprobe, list); 1283 list_del(&p->list); 1284 arch_remove_kprobe(old_p); 1285 free_aggr_kprobe(old_p); 1286 } 1287 } 1288 1289 int __kprobes register_kprobes(struct kprobe **kps, int num) 1290 { 1291 int i, ret = 0; 1292 1293 if (num <= 0) 1294 return -EINVAL; 1295 for (i = 0; i < num; i++) { 1296 ret = register_kprobe(kps[i]); 1297 if (ret < 0) { 1298 if (i > 0) 1299 unregister_kprobes(kps, i); 1300 break; 1301 } 1302 } 1303 return ret; 1304 } 1305 EXPORT_SYMBOL_GPL(register_kprobes); 1306 1307 void __kprobes unregister_kprobe(struct kprobe *p) 1308 { 1309 unregister_kprobes(&p, 1); 1310 } 1311 EXPORT_SYMBOL_GPL(unregister_kprobe); 1312 1313 void __kprobes unregister_kprobes(struct kprobe **kps, int num) 1314 { 1315 int i; 1316 1317 if (num <= 0) 1318 return; 1319 mutex_lock(&kprobe_mutex); 1320 for (i = 0; i < num; i++) 1321 if (__unregister_kprobe_top(kps[i]) < 0) 1322 kps[i]->addr = NULL; 1323 mutex_unlock(&kprobe_mutex); 1324 1325 synchronize_sched(); 1326 for (i = 0; i < num; i++) 1327 if (kps[i]->addr) 1328 __unregister_kprobe_bottom(kps[i]); 1329 } 1330 EXPORT_SYMBOL_GPL(unregister_kprobes); 1331 1332 static struct notifier_block kprobe_exceptions_nb = { 1333 .notifier_call = kprobe_exceptions_notify, 1334 .priority = 0x7fffffff /* we need to be notified first */ 1335 }; 1336 1337 unsigned long __weak arch_deref_entry_point(void *entry) 1338 { 1339 return (unsigned long)entry; 1340 } 1341 1342 int __kprobes register_jprobes(struct jprobe **jps, int num) 1343 { 1344 struct jprobe *jp; 1345 int ret = 0, i; 1346 1347 if (num <= 0) 1348 return -EINVAL; 1349 for (i = 0; i < num; i++) { 1350 unsigned long addr, offset; 1351 jp = jps[i]; 1352 addr = arch_deref_entry_point(jp->entry); 1353 1354 /* Verify probepoint is a function entry point */ 1355 if (kallsyms_lookup_size_offset(addr, NULL, &offset) && 1356 offset == 0) { 1357 jp->kp.pre_handler = setjmp_pre_handler; 1358 jp->kp.break_handler = longjmp_break_handler; 1359 ret = register_kprobe(&jp->kp); 1360 } else 1361 ret = -EINVAL; 1362 1363 if (ret < 0) { 1364 if (i > 0) 1365 unregister_jprobes(jps, i); 1366 break; 1367 } 1368 } 1369 return ret; 1370 } 1371 EXPORT_SYMBOL_GPL(register_jprobes); 1372 1373 int __kprobes register_jprobe(struct jprobe *jp) 1374 { 1375 return register_jprobes(&jp, 1); 1376 } 1377 EXPORT_SYMBOL_GPL(register_jprobe); 1378 1379 void __kprobes unregister_jprobe(struct jprobe *jp) 1380 { 1381 unregister_jprobes(&jp, 1); 1382 } 1383 EXPORT_SYMBOL_GPL(unregister_jprobe); 1384 1385 void __kprobes unregister_jprobes(struct jprobe **jps, int num) 1386 { 1387 int i; 1388 1389 if (num <= 0) 1390 return; 1391 mutex_lock(&kprobe_mutex); 1392 for (i = 0; i < num; i++) 1393 if (__unregister_kprobe_top(&jps[i]->kp) < 0) 1394 jps[i]->kp.addr = NULL; 1395 mutex_unlock(&kprobe_mutex); 1396 1397 synchronize_sched(); 1398 for (i = 0; i < num; i++) { 1399 if (jps[i]->kp.addr) 1400 __unregister_kprobe_bottom(&jps[i]->kp); 1401 } 1402 } 1403 EXPORT_SYMBOL_GPL(unregister_jprobes); 1404 1405 #ifdef CONFIG_KRETPROBES 1406 /* 1407 * This kprobe pre_handler is registered with every kretprobe. When probe 1408 * hits it will set up the return probe. 1409 */ 1410 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1411 struct pt_regs *regs) 1412 { 1413 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 1414 unsigned long hash, flags = 0; 1415 struct kretprobe_instance *ri; 1416 1417 /*TODO: consider to only swap the RA after the last pre_handler fired */ 1418 hash = hash_ptr(current, KPROBE_HASH_BITS); 1419 spin_lock_irqsave(&rp->lock, flags); 1420 if (!hlist_empty(&rp->free_instances)) { 1421 ri = hlist_entry(rp->free_instances.first, 1422 struct kretprobe_instance, hlist); 1423 hlist_del(&ri->hlist); 1424 spin_unlock_irqrestore(&rp->lock, flags); 1425 1426 ri->rp = rp; 1427 ri->task = current; 1428 1429 if (rp->entry_handler && rp->entry_handler(ri, regs)) 1430 return 0; 1431 1432 arch_prepare_kretprobe(ri, regs); 1433 1434 /* XXX(hch): why is there no hlist_move_head? */ 1435 INIT_HLIST_NODE(&ri->hlist); 1436 kretprobe_table_lock(hash, &flags); 1437 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]); 1438 kretprobe_table_unlock(hash, &flags); 1439 } else { 1440 rp->nmissed++; 1441 spin_unlock_irqrestore(&rp->lock, flags); 1442 } 1443 return 0; 1444 } 1445 1446 int __kprobes register_kretprobe(struct kretprobe *rp) 1447 { 1448 int ret = 0; 1449 struct kretprobe_instance *inst; 1450 int i; 1451 void *addr; 1452 1453 if (kretprobe_blacklist_size) { 1454 addr = kprobe_addr(&rp->kp); 1455 if (!addr) 1456 return -EINVAL; 1457 1458 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1459 if (kretprobe_blacklist[i].addr == addr) 1460 return -EINVAL; 1461 } 1462 } 1463 1464 rp->kp.pre_handler = pre_handler_kretprobe; 1465 rp->kp.post_handler = NULL; 1466 rp->kp.fault_handler = NULL; 1467 rp->kp.break_handler = NULL; 1468 1469 /* Pre-allocate memory for max kretprobe instances */ 1470 if (rp->maxactive <= 0) { 1471 #ifdef CONFIG_PREEMPT 1472 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 1473 #else 1474 rp->maxactive = num_possible_cpus(); 1475 #endif 1476 } 1477 spin_lock_init(&rp->lock); 1478 INIT_HLIST_HEAD(&rp->free_instances); 1479 for (i = 0; i < rp->maxactive; i++) { 1480 inst = kmalloc(sizeof(struct kretprobe_instance) + 1481 rp->data_size, GFP_KERNEL); 1482 if (inst == NULL) { 1483 free_rp_inst(rp); 1484 return -ENOMEM; 1485 } 1486 INIT_HLIST_NODE(&inst->hlist); 1487 hlist_add_head(&inst->hlist, &rp->free_instances); 1488 } 1489 1490 rp->nmissed = 0; 1491 /* Establish function entry probe point */ 1492 ret = register_kprobe(&rp->kp); 1493 if (ret != 0) 1494 free_rp_inst(rp); 1495 return ret; 1496 } 1497 EXPORT_SYMBOL_GPL(register_kretprobe); 1498 1499 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1500 { 1501 int ret = 0, i; 1502 1503 if (num <= 0) 1504 return -EINVAL; 1505 for (i = 0; i < num; i++) { 1506 ret = register_kretprobe(rps[i]); 1507 if (ret < 0) { 1508 if (i > 0) 1509 unregister_kretprobes(rps, i); 1510 break; 1511 } 1512 } 1513 return ret; 1514 } 1515 EXPORT_SYMBOL_GPL(register_kretprobes); 1516 1517 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1518 { 1519 unregister_kretprobes(&rp, 1); 1520 } 1521 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1522 1523 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1524 { 1525 int i; 1526 1527 if (num <= 0) 1528 return; 1529 mutex_lock(&kprobe_mutex); 1530 for (i = 0; i < num; i++) 1531 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 1532 rps[i]->kp.addr = NULL; 1533 mutex_unlock(&kprobe_mutex); 1534 1535 synchronize_sched(); 1536 for (i = 0; i < num; i++) { 1537 if (rps[i]->kp.addr) { 1538 __unregister_kprobe_bottom(&rps[i]->kp); 1539 cleanup_rp_inst(rps[i]); 1540 } 1541 } 1542 } 1543 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1544 1545 #else /* CONFIG_KRETPROBES */ 1546 int __kprobes register_kretprobe(struct kretprobe *rp) 1547 { 1548 return -ENOSYS; 1549 } 1550 EXPORT_SYMBOL_GPL(register_kretprobe); 1551 1552 int __kprobes register_kretprobes(struct kretprobe **rps, int num) 1553 { 1554 return -ENOSYS; 1555 } 1556 EXPORT_SYMBOL_GPL(register_kretprobes); 1557 1558 void __kprobes unregister_kretprobe(struct kretprobe *rp) 1559 { 1560 } 1561 EXPORT_SYMBOL_GPL(unregister_kretprobe); 1562 1563 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num) 1564 { 1565 } 1566 EXPORT_SYMBOL_GPL(unregister_kretprobes); 1567 1568 static int __kprobes pre_handler_kretprobe(struct kprobe *p, 1569 struct pt_regs *regs) 1570 { 1571 return 0; 1572 } 1573 1574 #endif /* CONFIG_KRETPROBES */ 1575 1576 /* Set the kprobe gone and remove its instruction buffer. */ 1577 static void __kprobes kill_kprobe(struct kprobe *p) 1578 { 1579 struct kprobe *kp; 1580 1581 p->flags |= KPROBE_FLAG_GONE; 1582 if (kprobe_aggrprobe(p)) { 1583 /* 1584 * If this is an aggr_kprobe, we have to list all the 1585 * chained probes and mark them GONE. 1586 */ 1587 list_for_each_entry_rcu(kp, &p->list, list) 1588 kp->flags |= KPROBE_FLAG_GONE; 1589 p->post_handler = NULL; 1590 p->break_handler = NULL; 1591 kill_optimized_kprobe(p); 1592 } 1593 /* 1594 * Here, we can remove insn_slot safely, because no thread calls 1595 * the original probed function (which will be freed soon) any more. 1596 */ 1597 arch_remove_kprobe(p); 1598 } 1599 1600 /* Disable one kprobe */ 1601 int __kprobes disable_kprobe(struct kprobe *kp) 1602 { 1603 int ret = 0; 1604 struct kprobe *p; 1605 1606 mutex_lock(&kprobe_mutex); 1607 1608 /* Check whether specified probe is valid. */ 1609 p = __get_valid_kprobe(kp); 1610 if (unlikely(p == NULL)) { 1611 ret = -EINVAL; 1612 goto out; 1613 } 1614 1615 /* If the probe is already disabled (or gone), just return */ 1616 if (kprobe_disabled(kp)) 1617 goto out; 1618 1619 kp->flags |= KPROBE_FLAG_DISABLED; 1620 if (p != kp) 1621 /* When kp != p, p is always enabled. */ 1622 try_to_disable_aggr_kprobe(p); 1623 1624 if (!kprobes_all_disarmed && kprobe_disabled(p)) 1625 disarm_kprobe(p); 1626 out: 1627 mutex_unlock(&kprobe_mutex); 1628 return ret; 1629 } 1630 EXPORT_SYMBOL_GPL(disable_kprobe); 1631 1632 /* Enable one kprobe */ 1633 int __kprobes enable_kprobe(struct kprobe *kp) 1634 { 1635 int ret = 0; 1636 struct kprobe *p; 1637 1638 mutex_lock(&kprobe_mutex); 1639 1640 /* Check whether specified probe is valid. */ 1641 p = __get_valid_kprobe(kp); 1642 if (unlikely(p == NULL)) { 1643 ret = -EINVAL; 1644 goto out; 1645 } 1646 1647 if (kprobe_gone(kp)) { 1648 /* This kprobe has gone, we couldn't enable it. */ 1649 ret = -EINVAL; 1650 goto out; 1651 } 1652 1653 if (p != kp) 1654 kp->flags &= ~KPROBE_FLAG_DISABLED; 1655 1656 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 1657 p->flags &= ~KPROBE_FLAG_DISABLED; 1658 arm_kprobe(p); 1659 } 1660 out: 1661 mutex_unlock(&kprobe_mutex); 1662 return ret; 1663 } 1664 EXPORT_SYMBOL_GPL(enable_kprobe); 1665 1666 void __kprobes dump_kprobe(struct kprobe *kp) 1667 { 1668 printk(KERN_WARNING "Dumping kprobe:\n"); 1669 printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n", 1670 kp->symbol_name, kp->addr, kp->offset); 1671 } 1672 1673 /* Module notifier call back, checking kprobes on the module */ 1674 static int __kprobes kprobes_module_callback(struct notifier_block *nb, 1675 unsigned long val, void *data) 1676 { 1677 struct module *mod = data; 1678 struct hlist_head *head; 1679 struct hlist_node *node; 1680 struct kprobe *p; 1681 unsigned int i; 1682 int checkcore = (val == MODULE_STATE_GOING); 1683 1684 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 1685 return NOTIFY_DONE; 1686 1687 /* 1688 * When MODULE_STATE_GOING was notified, both of module .text and 1689 * .init.text sections would be freed. When MODULE_STATE_LIVE was 1690 * notified, only .init.text section would be freed. We need to 1691 * disable kprobes which have been inserted in the sections. 1692 */ 1693 mutex_lock(&kprobe_mutex); 1694 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1695 head = &kprobe_table[i]; 1696 hlist_for_each_entry_rcu(p, node, head, hlist) 1697 if (within_module_init((unsigned long)p->addr, mod) || 1698 (checkcore && 1699 within_module_core((unsigned long)p->addr, mod))) { 1700 /* 1701 * The vaddr this probe is installed will soon 1702 * be vfreed buy not synced to disk. Hence, 1703 * disarming the breakpoint isn't needed. 1704 */ 1705 kill_kprobe(p); 1706 } 1707 } 1708 mutex_unlock(&kprobe_mutex); 1709 return NOTIFY_DONE; 1710 } 1711 1712 static struct notifier_block kprobe_module_nb = { 1713 .notifier_call = kprobes_module_callback, 1714 .priority = 0 1715 }; 1716 1717 static int __init init_kprobes(void) 1718 { 1719 int i, err = 0; 1720 unsigned long offset = 0, size = 0; 1721 char *modname, namebuf[128]; 1722 const char *symbol_name; 1723 void *addr; 1724 struct kprobe_blackpoint *kb; 1725 1726 /* FIXME allocate the probe table, currently defined statically */ 1727 /* initialize all list heads */ 1728 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1729 INIT_HLIST_HEAD(&kprobe_table[i]); 1730 INIT_HLIST_HEAD(&kretprobe_inst_table[i]); 1731 spin_lock_init(&(kretprobe_table_locks[i].lock)); 1732 } 1733 1734 /* 1735 * Lookup and populate the kprobe_blacklist. 1736 * 1737 * Unlike the kretprobe blacklist, we'll need to determine 1738 * the range of addresses that belong to the said functions, 1739 * since a kprobe need not necessarily be at the beginning 1740 * of a function. 1741 */ 1742 for (kb = kprobe_blacklist; kb->name != NULL; kb++) { 1743 kprobe_lookup_name(kb->name, addr); 1744 if (!addr) 1745 continue; 1746 1747 kb->start_addr = (unsigned long)addr; 1748 symbol_name = kallsyms_lookup(kb->start_addr, 1749 &size, &offset, &modname, namebuf); 1750 if (!symbol_name) 1751 kb->range = 0; 1752 else 1753 kb->range = size; 1754 } 1755 1756 if (kretprobe_blacklist_size) { 1757 /* lookup the function address from its name */ 1758 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 1759 kprobe_lookup_name(kretprobe_blacklist[i].name, 1760 kretprobe_blacklist[i].addr); 1761 if (!kretprobe_blacklist[i].addr) 1762 printk("kretprobe: lookup failed: %s\n", 1763 kretprobe_blacklist[i].name); 1764 } 1765 } 1766 1767 #if defined(CONFIG_OPTPROBES) 1768 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT) 1769 /* Init kprobe_optinsn_slots */ 1770 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 1771 #endif 1772 /* By default, kprobes can be optimized */ 1773 kprobes_allow_optimization = true; 1774 #endif 1775 1776 /* By default, kprobes are armed */ 1777 kprobes_all_disarmed = false; 1778 1779 err = arch_init_kprobes(); 1780 if (!err) 1781 err = register_die_notifier(&kprobe_exceptions_nb); 1782 if (!err) 1783 err = register_module_notifier(&kprobe_module_nb); 1784 1785 kprobes_initialized = (err == 0); 1786 1787 if (!err) 1788 init_test_probes(); 1789 return err; 1790 } 1791 1792 #ifdef CONFIG_DEBUG_FS 1793 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p, 1794 const char *sym, int offset, char *modname, struct kprobe *pp) 1795 { 1796 char *kprobe_type; 1797 1798 if (p->pre_handler == pre_handler_kretprobe) 1799 kprobe_type = "r"; 1800 else if (p->pre_handler == setjmp_pre_handler) 1801 kprobe_type = "j"; 1802 else 1803 kprobe_type = "k"; 1804 1805 if (sym) 1806 seq_printf(pi, "%p %s %s+0x%x %s ", 1807 p->addr, kprobe_type, sym, offset, 1808 (modname ? modname : " ")); 1809 else 1810 seq_printf(pi, "%p %s %p ", 1811 p->addr, kprobe_type, p->addr); 1812 1813 if (!pp) 1814 pp = p; 1815 seq_printf(pi, "%s%s%s\n", 1816 (kprobe_gone(p) ? "[GONE]" : ""), 1817 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 1818 (kprobe_optimized(pp) ? "[OPTIMIZED]" : "")); 1819 } 1820 1821 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos) 1822 { 1823 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 1824 } 1825 1826 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 1827 { 1828 (*pos)++; 1829 if (*pos >= KPROBE_TABLE_SIZE) 1830 return NULL; 1831 return pos; 1832 } 1833 1834 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v) 1835 { 1836 /* Nothing to do */ 1837 } 1838 1839 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v) 1840 { 1841 struct hlist_head *head; 1842 struct hlist_node *node; 1843 struct kprobe *p, *kp; 1844 const char *sym = NULL; 1845 unsigned int i = *(loff_t *) v; 1846 unsigned long offset = 0; 1847 char *modname, namebuf[128]; 1848 1849 head = &kprobe_table[i]; 1850 preempt_disable(); 1851 hlist_for_each_entry_rcu(p, node, head, hlist) { 1852 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 1853 &offset, &modname, namebuf); 1854 if (kprobe_aggrprobe(p)) { 1855 list_for_each_entry_rcu(kp, &p->list, list) 1856 report_probe(pi, kp, sym, offset, modname, p); 1857 } else 1858 report_probe(pi, p, sym, offset, modname, NULL); 1859 } 1860 preempt_enable(); 1861 return 0; 1862 } 1863 1864 static const struct seq_operations kprobes_seq_ops = { 1865 .start = kprobe_seq_start, 1866 .next = kprobe_seq_next, 1867 .stop = kprobe_seq_stop, 1868 .show = show_kprobe_addr 1869 }; 1870 1871 static int __kprobes kprobes_open(struct inode *inode, struct file *filp) 1872 { 1873 return seq_open(filp, &kprobes_seq_ops); 1874 } 1875 1876 static const struct file_operations debugfs_kprobes_operations = { 1877 .open = kprobes_open, 1878 .read = seq_read, 1879 .llseek = seq_lseek, 1880 .release = seq_release, 1881 }; 1882 1883 static void __kprobes arm_all_kprobes(void) 1884 { 1885 struct hlist_head *head; 1886 struct hlist_node *node; 1887 struct kprobe *p; 1888 unsigned int i; 1889 1890 mutex_lock(&kprobe_mutex); 1891 1892 /* If kprobes are armed, just return */ 1893 if (!kprobes_all_disarmed) 1894 goto already_enabled; 1895 1896 /* Arming kprobes doesn't optimize kprobe itself */ 1897 mutex_lock(&text_mutex); 1898 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1899 head = &kprobe_table[i]; 1900 hlist_for_each_entry_rcu(p, node, head, hlist) 1901 if (!kprobe_disabled(p)) 1902 __arm_kprobe(p); 1903 } 1904 mutex_unlock(&text_mutex); 1905 1906 kprobes_all_disarmed = false; 1907 printk(KERN_INFO "Kprobes globally enabled\n"); 1908 1909 already_enabled: 1910 mutex_unlock(&kprobe_mutex); 1911 return; 1912 } 1913 1914 static void __kprobes disarm_all_kprobes(void) 1915 { 1916 struct hlist_head *head; 1917 struct hlist_node *node; 1918 struct kprobe *p; 1919 unsigned int i; 1920 1921 mutex_lock(&kprobe_mutex); 1922 1923 /* If kprobes are already disarmed, just return */ 1924 if (kprobes_all_disarmed) 1925 goto already_disabled; 1926 1927 kprobes_all_disarmed = true; 1928 printk(KERN_INFO "Kprobes globally disabled\n"); 1929 1930 /* 1931 * Here we call get_online_cpus() for avoiding text_mutex deadlock, 1932 * because disarming may also unoptimize kprobes. 1933 */ 1934 get_online_cpus(); 1935 mutex_lock(&text_mutex); 1936 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 1937 head = &kprobe_table[i]; 1938 hlist_for_each_entry_rcu(p, node, head, hlist) { 1939 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) 1940 __disarm_kprobe(p); 1941 } 1942 } 1943 1944 mutex_unlock(&text_mutex); 1945 put_online_cpus(); 1946 mutex_unlock(&kprobe_mutex); 1947 /* Allow all currently running kprobes to complete */ 1948 synchronize_sched(); 1949 return; 1950 1951 already_disabled: 1952 mutex_unlock(&kprobe_mutex); 1953 return; 1954 } 1955 1956 /* 1957 * XXX: The debugfs bool file interface doesn't allow for callbacks 1958 * when the bool state is switched. We can reuse that facility when 1959 * available 1960 */ 1961 static ssize_t read_enabled_file_bool(struct file *file, 1962 char __user *user_buf, size_t count, loff_t *ppos) 1963 { 1964 char buf[3]; 1965 1966 if (!kprobes_all_disarmed) 1967 buf[0] = '1'; 1968 else 1969 buf[0] = '0'; 1970 buf[1] = '\n'; 1971 buf[2] = 0x00; 1972 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 1973 } 1974 1975 static ssize_t write_enabled_file_bool(struct file *file, 1976 const char __user *user_buf, size_t count, loff_t *ppos) 1977 { 1978 char buf[32]; 1979 int buf_size; 1980 1981 buf_size = min(count, (sizeof(buf)-1)); 1982 if (copy_from_user(buf, user_buf, buf_size)) 1983 return -EFAULT; 1984 1985 switch (buf[0]) { 1986 case 'y': 1987 case 'Y': 1988 case '1': 1989 arm_all_kprobes(); 1990 break; 1991 case 'n': 1992 case 'N': 1993 case '0': 1994 disarm_all_kprobes(); 1995 break; 1996 } 1997 1998 return count; 1999 } 2000 2001 static const struct file_operations fops_kp = { 2002 .read = read_enabled_file_bool, 2003 .write = write_enabled_file_bool, 2004 .llseek = default_llseek, 2005 }; 2006 2007 static int __kprobes debugfs_kprobe_init(void) 2008 { 2009 struct dentry *dir, *file; 2010 unsigned int value = 1; 2011 2012 dir = debugfs_create_dir("kprobes", NULL); 2013 if (!dir) 2014 return -ENOMEM; 2015 2016 file = debugfs_create_file("list", 0444, dir, NULL, 2017 &debugfs_kprobes_operations); 2018 if (!file) { 2019 debugfs_remove(dir); 2020 return -ENOMEM; 2021 } 2022 2023 file = debugfs_create_file("enabled", 0600, dir, 2024 &value, &fops_kp); 2025 if (!file) { 2026 debugfs_remove(dir); 2027 return -ENOMEM; 2028 } 2029 2030 return 0; 2031 } 2032 2033 late_initcall(debugfs_kprobe_init); 2034 #endif /* CONFIG_DEBUG_FS */ 2035 2036 module_init(init_kprobes); 2037 2038 /* defined in arch/.../kernel/kprobes.c */ 2039 EXPORT_SYMBOL_GPL(jprobe_return); 2040