xref: /linux/kernel/kprobes.c (revision 2504075d383fcefd746dac42a0cd1c3bdc006bd1)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 /* This protects kprobe_table and optimizing_list */
78 static DEFINE_MUTEX(kprobe_mutex);
79 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
80 static struct {
81 	spinlock_t lock ____cacheline_aligned_in_smp;
82 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
83 
84 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
85 {
86 	return &(kretprobe_table_locks[hash].lock);
87 }
88 
89 /*
90  * Normally, functions that we'd want to prohibit kprobes in, are marked
91  * __kprobes. But, there are cases where such functions already belong to
92  * a different section (__sched for preempt_schedule)
93  *
94  * For such cases, we now have a blacklist
95  */
96 static struct kprobe_blackpoint kprobe_blacklist[] = {
97 	{"preempt_schedule",},
98 	{"native_get_debugreg",},
99 	{"irq_entries_start",},
100 	{"common_interrupt",},
101 	{"mcount",},	/* mcount can be called from everywhere */
102 	{NULL}    /* Terminator */
103 };
104 
105 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
106 /*
107  * kprobe->ainsn.insn points to the copy of the instruction to be
108  * single-stepped. x86_64, POWER4 and above have no-exec support and
109  * stepping on the instruction on a vmalloced/kmalloced/data page
110  * is a recipe for disaster
111  */
112 struct kprobe_insn_page {
113 	struct list_head list;
114 	kprobe_opcode_t *insns;		/* Page of instruction slots */
115 	int nused;
116 	int ngarbage;
117 	char slot_used[];
118 };
119 
120 #define KPROBE_INSN_PAGE_SIZE(slots)			\
121 	(offsetof(struct kprobe_insn_page, slot_used) +	\
122 	 (sizeof(char) * (slots)))
123 
124 struct kprobe_insn_cache {
125 	struct list_head pages;	/* list of kprobe_insn_page */
126 	size_t insn_size;	/* size of instruction slot */
127 	int nr_garbage;
128 };
129 
130 static int slots_per_page(struct kprobe_insn_cache *c)
131 {
132 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
133 }
134 
135 enum kprobe_slot_state {
136 	SLOT_CLEAN = 0,
137 	SLOT_DIRTY = 1,
138 	SLOT_USED = 2,
139 };
140 
141 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
142 static struct kprobe_insn_cache kprobe_insn_slots = {
143 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
144 	.insn_size = MAX_INSN_SIZE,
145 	.nr_garbage = 0,
146 };
147 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
148 
149 /**
150  * __get_insn_slot() - Find a slot on an executable page for an instruction.
151  * We allocate an executable page if there's no room on existing ones.
152  */
153 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
154 {
155 	struct kprobe_insn_page *kip;
156 
157  retry:
158 	list_for_each_entry(kip, &c->pages, list) {
159 		if (kip->nused < slots_per_page(c)) {
160 			int i;
161 			for (i = 0; i < slots_per_page(c); i++) {
162 				if (kip->slot_used[i] == SLOT_CLEAN) {
163 					kip->slot_used[i] = SLOT_USED;
164 					kip->nused++;
165 					return kip->insns + (i * c->insn_size);
166 				}
167 			}
168 			/* kip->nused is broken. Fix it. */
169 			kip->nused = slots_per_page(c);
170 			WARN_ON(1);
171 		}
172 	}
173 
174 	/* If there are any garbage slots, collect it and try again. */
175 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
176 		goto retry;
177 
178 	/* All out of space.  Need to allocate a new page. */
179 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
180 	if (!kip)
181 		return NULL;
182 
183 	/*
184 	 * Use module_alloc so this page is within +/- 2GB of where the
185 	 * kernel image and loaded module images reside. This is required
186 	 * so x86_64 can correctly handle the %rip-relative fixups.
187 	 */
188 	kip->insns = module_alloc(PAGE_SIZE);
189 	if (!kip->insns) {
190 		kfree(kip);
191 		return NULL;
192 	}
193 	INIT_LIST_HEAD(&kip->list);
194 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
195 	kip->slot_used[0] = SLOT_USED;
196 	kip->nused = 1;
197 	kip->ngarbage = 0;
198 	list_add(&kip->list, &c->pages);
199 	return kip->insns;
200 }
201 
202 
203 kprobe_opcode_t __kprobes *get_insn_slot(void)
204 {
205 	kprobe_opcode_t *ret = NULL;
206 
207 	mutex_lock(&kprobe_insn_mutex);
208 	ret = __get_insn_slot(&kprobe_insn_slots);
209 	mutex_unlock(&kprobe_insn_mutex);
210 
211 	return ret;
212 }
213 
214 /* Return 1 if all garbages are collected, otherwise 0. */
215 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
216 {
217 	kip->slot_used[idx] = SLOT_CLEAN;
218 	kip->nused--;
219 	if (kip->nused == 0) {
220 		/*
221 		 * Page is no longer in use.  Free it unless
222 		 * it's the last one.  We keep the last one
223 		 * so as not to have to set it up again the
224 		 * next time somebody inserts a probe.
225 		 */
226 		if (!list_is_singular(&kip->list)) {
227 			list_del(&kip->list);
228 			module_free(NULL, kip->insns);
229 			kfree(kip);
230 		}
231 		return 1;
232 	}
233 	return 0;
234 }
235 
236 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
237 {
238 	struct kprobe_insn_page *kip, *next;
239 
240 	/* Ensure no-one is interrupted on the garbages */
241 	synchronize_sched();
242 
243 	list_for_each_entry_safe(kip, next, &c->pages, list) {
244 		int i;
245 		if (kip->ngarbage == 0)
246 			continue;
247 		kip->ngarbage = 0;	/* we will collect all garbages */
248 		for (i = 0; i < slots_per_page(c); i++) {
249 			if (kip->slot_used[i] == SLOT_DIRTY &&
250 			    collect_one_slot(kip, i))
251 				break;
252 		}
253 	}
254 	c->nr_garbage = 0;
255 	return 0;
256 }
257 
258 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
259 				       kprobe_opcode_t *slot, int dirty)
260 {
261 	struct kprobe_insn_page *kip;
262 
263 	list_for_each_entry(kip, &c->pages, list) {
264 		long idx = ((long)slot - (long)kip->insns) /
265 				(c->insn_size * sizeof(kprobe_opcode_t));
266 		if (idx >= 0 && idx < slots_per_page(c)) {
267 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
268 			if (dirty) {
269 				kip->slot_used[idx] = SLOT_DIRTY;
270 				kip->ngarbage++;
271 				if (++c->nr_garbage > slots_per_page(c))
272 					collect_garbage_slots(c);
273 			} else
274 				collect_one_slot(kip, idx);
275 			return;
276 		}
277 	}
278 	/* Could not free this slot. */
279 	WARN_ON(1);
280 }
281 
282 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
283 {
284 	mutex_lock(&kprobe_insn_mutex);
285 	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
286 	mutex_unlock(&kprobe_insn_mutex);
287 }
288 #ifdef CONFIG_OPTPROBES
289 /* For optimized_kprobe buffer */
290 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
291 static struct kprobe_insn_cache kprobe_optinsn_slots = {
292 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
293 	/* .insn_size is initialized later */
294 	.nr_garbage = 0,
295 };
296 /* Get a slot for optimized_kprobe buffer */
297 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
298 {
299 	kprobe_opcode_t *ret = NULL;
300 
301 	mutex_lock(&kprobe_optinsn_mutex);
302 	ret = __get_insn_slot(&kprobe_optinsn_slots);
303 	mutex_unlock(&kprobe_optinsn_mutex);
304 
305 	return ret;
306 }
307 
308 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
309 {
310 	mutex_lock(&kprobe_optinsn_mutex);
311 	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
312 	mutex_unlock(&kprobe_optinsn_mutex);
313 }
314 #endif
315 #endif
316 
317 /* We have preemption disabled.. so it is safe to use __ versions */
318 static inline void set_kprobe_instance(struct kprobe *kp)
319 {
320 	__get_cpu_var(kprobe_instance) = kp;
321 }
322 
323 static inline void reset_kprobe_instance(void)
324 {
325 	__get_cpu_var(kprobe_instance) = NULL;
326 }
327 
328 /*
329  * This routine is called either:
330  * 	- under the kprobe_mutex - during kprobe_[un]register()
331  * 				OR
332  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
333  */
334 struct kprobe __kprobes *get_kprobe(void *addr)
335 {
336 	struct hlist_head *head;
337 	struct hlist_node *node;
338 	struct kprobe *p;
339 
340 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
341 	hlist_for_each_entry_rcu(p, node, head, hlist) {
342 		if (p->addr == addr)
343 			return p;
344 	}
345 
346 	return NULL;
347 }
348 
349 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
350 
351 /* Return true if the kprobe is an aggregator */
352 static inline int kprobe_aggrprobe(struct kprobe *p)
353 {
354 	return p->pre_handler == aggr_pre_handler;
355 }
356 
357 /*
358  * Keep all fields in the kprobe consistent
359  */
360 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
361 {
362 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
363 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
364 }
365 
366 #ifdef CONFIG_OPTPROBES
367 /* NOTE: change this value only with kprobe_mutex held */
368 static bool kprobes_allow_optimization;
369 
370 /*
371  * Call all pre_handler on the list, but ignores its return value.
372  * This must be called from arch-dep optimized caller.
373  */
374 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
375 {
376 	struct kprobe *kp;
377 
378 	list_for_each_entry_rcu(kp, &p->list, list) {
379 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
380 			set_kprobe_instance(kp);
381 			kp->pre_handler(kp, regs);
382 		}
383 		reset_kprobe_instance();
384 	}
385 }
386 
387 /* Return true(!0) if the kprobe is ready for optimization. */
388 static inline int kprobe_optready(struct kprobe *p)
389 {
390 	struct optimized_kprobe *op;
391 
392 	if (kprobe_aggrprobe(p)) {
393 		op = container_of(p, struct optimized_kprobe, kp);
394 		return arch_prepared_optinsn(&op->optinsn);
395 	}
396 
397 	return 0;
398 }
399 
400 /*
401  * Return an optimized kprobe whose optimizing code replaces
402  * instructions including addr (exclude breakpoint).
403  */
404 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
405 {
406 	int i;
407 	struct kprobe *p = NULL;
408 	struct optimized_kprobe *op;
409 
410 	/* Don't check i == 0, since that is a breakpoint case. */
411 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
412 		p = get_kprobe((void *)(addr - i));
413 
414 	if (p && kprobe_optready(p)) {
415 		op = container_of(p, struct optimized_kprobe, kp);
416 		if (arch_within_optimized_kprobe(op, addr))
417 			return p;
418 	}
419 
420 	return NULL;
421 }
422 
423 /* Optimization staging list, protected by kprobe_mutex */
424 static LIST_HEAD(optimizing_list);
425 
426 static void kprobe_optimizer(struct work_struct *work);
427 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
428 #define OPTIMIZE_DELAY 5
429 
430 /* Kprobe jump optimizer */
431 static __kprobes void kprobe_optimizer(struct work_struct *work)
432 {
433 	struct optimized_kprobe *op, *tmp;
434 
435 	/* Lock modules while optimizing kprobes */
436 	mutex_lock(&module_mutex);
437 	mutex_lock(&kprobe_mutex);
438 	if (kprobes_all_disarmed || !kprobes_allow_optimization)
439 		goto end;
440 
441 	/*
442 	 * Wait for quiesence period to ensure all running interrupts
443 	 * are done. Because optprobe may modify multiple instructions
444 	 * there is a chance that Nth instruction is interrupted. In that
445 	 * case, running interrupt can return to 2nd-Nth byte of jump
446 	 * instruction. This wait is for avoiding it.
447 	 */
448 	synchronize_sched();
449 
450 	/*
451 	 * The optimization/unoptimization refers online_cpus via
452 	 * stop_machine() and cpu-hotplug modifies online_cpus.
453 	 * And same time, text_mutex will be held in cpu-hotplug and here.
454 	 * This combination can cause a deadlock (cpu-hotplug try to lock
455 	 * text_mutex but stop_machine can not be done because online_cpus
456 	 * has been changed)
457 	 * To avoid this deadlock, we need to call get_online_cpus()
458 	 * for preventing cpu-hotplug outside of text_mutex locking.
459 	 */
460 	get_online_cpus();
461 	mutex_lock(&text_mutex);
462 	list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
463 		WARN_ON(kprobe_disabled(&op->kp));
464 		if (arch_optimize_kprobe(op) < 0)
465 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
466 		list_del_init(&op->list);
467 	}
468 	mutex_unlock(&text_mutex);
469 	put_online_cpus();
470 end:
471 	mutex_unlock(&kprobe_mutex);
472 	mutex_unlock(&module_mutex);
473 }
474 
475 /* Optimize kprobe if p is ready to be optimized */
476 static __kprobes void optimize_kprobe(struct kprobe *p)
477 {
478 	struct optimized_kprobe *op;
479 
480 	/* Check if the kprobe is disabled or not ready for optimization. */
481 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
482 	    (kprobe_disabled(p) || kprobes_all_disarmed))
483 		return;
484 
485 	/* Both of break_handler and post_handler are not supported. */
486 	if (p->break_handler || p->post_handler)
487 		return;
488 
489 	op = container_of(p, struct optimized_kprobe, kp);
490 
491 	/* Check there is no other kprobes at the optimized instructions */
492 	if (arch_check_optimized_kprobe(op) < 0)
493 		return;
494 
495 	/* Check if it is already optimized. */
496 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
497 		return;
498 
499 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
500 	list_add(&op->list, &optimizing_list);
501 	if (!delayed_work_pending(&optimizing_work))
502 		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
503 }
504 
505 /* Unoptimize a kprobe if p is optimized */
506 static __kprobes void unoptimize_kprobe(struct kprobe *p)
507 {
508 	struct optimized_kprobe *op;
509 
510 	if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
511 		op = container_of(p, struct optimized_kprobe, kp);
512 		if (!list_empty(&op->list))
513 			/* Dequeue from the optimization queue */
514 			list_del_init(&op->list);
515 		else
516 			/* Replace jump with break */
517 			arch_unoptimize_kprobe(op);
518 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
519 	}
520 }
521 
522 /* Remove optimized instructions */
523 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
524 {
525 	struct optimized_kprobe *op;
526 
527 	op = container_of(p, struct optimized_kprobe, kp);
528 	if (!list_empty(&op->list)) {
529 		/* Dequeue from the optimization queue */
530 		list_del_init(&op->list);
531 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
532 	}
533 	/* Don't unoptimize, because the target code will be freed. */
534 	arch_remove_optimized_kprobe(op);
535 }
536 
537 /* Try to prepare optimized instructions */
538 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
539 {
540 	struct optimized_kprobe *op;
541 
542 	op = container_of(p, struct optimized_kprobe, kp);
543 	arch_prepare_optimized_kprobe(op);
544 }
545 
546 /* Free optimized instructions and optimized_kprobe */
547 static __kprobes void free_aggr_kprobe(struct kprobe *p)
548 {
549 	struct optimized_kprobe *op;
550 
551 	op = container_of(p, struct optimized_kprobe, kp);
552 	arch_remove_optimized_kprobe(op);
553 	kfree(op);
554 }
555 
556 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
557 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
558 {
559 	struct optimized_kprobe *op;
560 
561 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
562 	if (!op)
563 		return NULL;
564 
565 	INIT_LIST_HEAD(&op->list);
566 	op->kp.addr = p->addr;
567 	arch_prepare_optimized_kprobe(op);
568 
569 	return &op->kp;
570 }
571 
572 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
573 
574 /*
575  * Prepare an optimized_kprobe and optimize it
576  * NOTE: p must be a normal registered kprobe
577  */
578 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
579 {
580 	struct kprobe *ap;
581 	struct optimized_kprobe *op;
582 
583 	ap = alloc_aggr_kprobe(p);
584 	if (!ap)
585 		return;
586 
587 	op = container_of(ap, struct optimized_kprobe, kp);
588 	if (!arch_prepared_optinsn(&op->optinsn)) {
589 		/* If failed to setup optimizing, fallback to kprobe */
590 		free_aggr_kprobe(ap);
591 		return;
592 	}
593 
594 	init_aggr_kprobe(ap, p);
595 	optimize_kprobe(ap);
596 }
597 
598 #ifdef CONFIG_SYSCTL
599 /* This should be called with kprobe_mutex locked */
600 static void __kprobes optimize_all_kprobes(void)
601 {
602 	struct hlist_head *head;
603 	struct hlist_node *node;
604 	struct kprobe *p;
605 	unsigned int i;
606 
607 	/* If optimization is already allowed, just return */
608 	if (kprobes_allow_optimization)
609 		return;
610 
611 	kprobes_allow_optimization = true;
612 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
613 		head = &kprobe_table[i];
614 		hlist_for_each_entry_rcu(p, node, head, hlist)
615 			if (!kprobe_disabled(p))
616 				optimize_kprobe(p);
617 	}
618 	printk(KERN_INFO "Kprobes globally optimized\n");
619 }
620 
621 /* This should be called with kprobe_mutex locked */
622 static void __kprobes unoptimize_all_kprobes(void)
623 {
624 	struct hlist_head *head;
625 	struct hlist_node *node;
626 	struct kprobe *p;
627 	unsigned int i;
628 
629 	/* If optimization is already prohibited, just return */
630 	if (!kprobes_allow_optimization)
631 		return;
632 
633 	kprobes_allow_optimization = false;
634 	printk(KERN_INFO "Kprobes globally unoptimized\n");
635 	get_online_cpus();	/* For avoiding text_mutex deadlock */
636 	mutex_lock(&text_mutex);
637 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
638 		head = &kprobe_table[i];
639 		hlist_for_each_entry_rcu(p, node, head, hlist) {
640 			if (!kprobe_disabled(p))
641 				unoptimize_kprobe(p);
642 		}
643 	}
644 
645 	mutex_unlock(&text_mutex);
646 	put_online_cpus();
647 	/* Allow all currently running kprobes to complete */
648 	synchronize_sched();
649 }
650 
651 int sysctl_kprobes_optimization;
652 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
653 				      void __user *buffer, size_t *length,
654 				      loff_t *ppos)
655 {
656 	int ret;
657 
658 	mutex_lock(&kprobe_mutex);
659 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
660 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
661 
662 	if (sysctl_kprobes_optimization)
663 		optimize_all_kprobes();
664 	else
665 		unoptimize_all_kprobes();
666 	mutex_unlock(&kprobe_mutex);
667 
668 	return ret;
669 }
670 #endif /* CONFIG_SYSCTL */
671 
672 static void __kprobes __arm_kprobe(struct kprobe *p)
673 {
674 	struct kprobe *old_p;
675 
676 	/* Check collision with other optimized kprobes */
677 	old_p = get_optimized_kprobe((unsigned long)p->addr);
678 	if (unlikely(old_p))
679 		unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
680 
681 	arch_arm_kprobe(p);
682 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
683 }
684 
685 static void __kprobes __disarm_kprobe(struct kprobe *p)
686 {
687 	struct kprobe *old_p;
688 
689 	unoptimize_kprobe(p);	/* Try to unoptimize */
690 	arch_disarm_kprobe(p);
691 
692 	/* If another kprobe was blocked, optimize it. */
693 	old_p = get_optimized_kprobe((unsigned long)p->addr);
694 	if (unlikely(old_p))
695 		optimize_kprobe(old_p);
696 }
697 
698 #else /* !CONFIG_OPTPROBES */
699 
700 #define optimize_kprobe(p)			do {} while (0)
701 #define unoptimize_kprobe(p)			do {} while (0)
702 #define kill_optimized_kprobe(p)		do {} while (0)
703 #define prepare_optimized_kprobe(p)		do {} while (0)
704 #define try_to_optimize_kprobe(p)		do {} while (0)
705 #define __arm_kprobe(p)				arch_arm_kprobe(p)
706 #define __disarm_kprobe(p)			arch_disarm_kprobe(p)
707 
708 static __kprobes void free_aggr_kprobe(struct kprobe *p)
709 {
710 	kfree(p);
711 }
712 
713 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
714 {
715 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
716 }
717 #endif /* CONFIG_OPTPROBES */
718 
719 /* Arm a kprobe with text_mutex */
720 static void __kprobes arm_kprobe(struct kprobe *kp)
721 {
722 	/*
723 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
724 	 * this doesn't cause deadlock on text_mutex. So, we don't
725 	 * need get_online_cpus().
726 	 */
727 	mutex_lock(&text_mutex);
728 	__arm_kprobe(kp);
729 	mutex_unlock(&text_mutex);
730 }
731 
732 /* Disarm a kprobe with text_mutex */
733 static void __kprobes disarm_kprobe(struct kprobe *kp)
734 {
735 	get_online_cpus();	/* For avoiding text_mutex deadlock */
736 	mutex_lock(&text_mutex);
737 	__disarm_kprobe(kp);
738 	mutex_unlock(&text_mutex);
739 	put_online_cpus();
740 }
741 
742 /*
743  * Aggregate handlers for multiple kprobes support - these handlers
744  * take care of invoking the individual kprobe handlers on p->list
745  */
746 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
747 {
748 	struct kprobe *kp;
749 
750 	list_for_each_entry_rcu(kp, &p->list, list) {
751 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
752 			set_kprobe_instance(kp);
753 			if (kp->pre_handler(kp, regs))
754 				return 1;
755 		}
756 		reset_kprobe_instance();
757 	}
758 	return 0;
759 }
760 
761 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
762 					unsigned long flags)
763 {
764 	struct kprobe *kp;
765 
766 	list_for_each_entry_rcu(kp, &p->list, list) {
767 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
768 			set_kprobe_instance(kp);
769 			kp->post_handler(kp, regs, flags);
770 			reset_kprobe_instance();
771 		}
772 	}
773 }
774 
775 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
776 					int trapnr)
777 {
778 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
779 
780 	/*
781 	 * if we faulted "during" the execution of a user specified
782 	 * probe handler, invoke just that probe's fault handler
783 	 */
784 	if (cur && cur->fault_handler) {
785 		if (cur->fault_handler(cur, regs, trapnr))
786 			return 1;
787 	}
788 	return 0;
789 }
790 
791 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
792 {
793 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
794 	int ret = 0;
795 
796 	if (cur && cur->break_handler) {
797 		if (cur->break_handler(cur, regs))
798 			ret = 1;
799 	}
800 	reset_kprobe_instance();
801 	return ret;
802 }
803 
804 /* Walks the list and increments nmissed count for multiprobe case */
805 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
806 {
807 	struct kprobe *kp;
808 	if (!kprobe_aggrprobe(p)) {
809 		p->nmissed++;
810 	} else {
811 		list_for_each_entry_rcu(kp, &p->list, list)
812 			kp->nmissed++;
813 	}
814 	return;
815 }
816 
817 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
818 				struct hlist_head *head)
819 {
820 	struct kretprobe *rp = ri->rp;
821 
822 	/* remove rp inst off the rprobe_inst_table */
823 	hlist_del(&ri->hlist);
824 	INIT_HLIST_NODE(&ri->hlist);
825 	if (likely(rp)) {
826 		spin_lock(&rp->lock);
827 		hlist_add_head(&ri->hlist, &rp->free_instances);
828 		spin_unlock(&rp->lock);
829 	} else
830 		/* Unregistering */
831 		hlist_add_head(&ri->hlist, head);
832 }
833 
834 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
835 			 struct hlist_head **head, unsigned long *flags)
836 __acquires(hlist_lock)
837 {
838 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
839 	spinlock_t *hlist_lock;
840 
841 	*head = &kretprobe_inst_table[hash];
842 	hlist_lock = kretprobe_table_lock_ptr(hash);
843 	spin_lock_irqsave(hlist_lock, *flags);
844 }
845 
846 static void __kprobes kretprobe_table_lock(unsigned long hash,
847 	unsigned long *flags)
848 __acquires(hlist_lock)
849 {
850 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
851 	spin_lock_irqsave(hlist_lock, *flags);
852 }
853 
854 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
855 	unsigned long *flags)
856 __releases(hlist_lock)
857 {
858 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
859 	spinlock_t *hlist_lock;
860 
861 	hlist_lock = kretprobe_table_lock_ptr(hash);
862 	spin_unlock_irqrestore(hlist_lock, *flags);
863 }
864 
865 static void __kprobes kretprobe_table_unlock(unsigned long hash,
866        unsigned long *flags)
867 __releases(hlist_lock)
868 {
869 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
870 	spin_unlock_irqrestore(hlist_lock, *flags);
871 }
872 
873 /*
874  * This function is called from finish_task_switch when task tk becomes dead,
875  * so that we can recycle any function-return probe instances associated
876  * with this task. These left over instances represent probed functions
877  * that have been called but will never return.
878  */
879 void __kprobes kprobe_flush_task(struct task_struct *tk)
880 {
881 	struct kretprobe_instance *ri;
882 	struct hlist_head *head, empty_rp;
883 	struct hlist_node *node, *tmp;
884 	unsigned long hash, flags = 0;
885 
886 	if (unlikely(!kprobes_initialized))
887 		/* Early boot.  kretprobe_table_locks not yet initialized. */
888 		return;
889 
890 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
891 	head = &kretprobe_inst_table[hash];
892 	kretprobe_table_lock(hash, &flags);
893 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
894 		if (ri->task == tk)
895 			recycle_rp_inst(ri, &empty_rp);
896 	}
897 	kretprobe_table_unlock(hash, &flags);
898 	INIT_HLIST_HEAD(&empty_rp);
899 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
900 		hlist_del(&ri->hlist);
901 		kfree(ri);
902 	}
903 }
904 
905 static inline void free_rp_inst(struct kretprobe *rp)
906 {
907 	struct kretprobe_instance *ri;
908 	struct hlist_node *pos, *next;
909 
910 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
911 		hlist_del(&ri->hlist);
912 		kfree(ri);
913 	}
914 }
915 
916 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
917 {
918 	unsigned long flags, hash;
919 	struct kretprobe_instance *ri;
920 	struct hlist_node *pos, *next;
921 	struct hlist_head *head;
922 
923 	/* No race here */
924 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
925 		kretprobe_table_lock(hash, &flags);
926 		head = &kretprobe_inst_table[hash];
927 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
928 			if (ri->rp == rp)
929 				ri->rp = NULL;
930 		}
931 		kretprobe_table_unlock(hash, &flags);
932 	}
933 	free_rp_inst(rp);
934 }
935 
936 /*
937 * Add the new probe to ap->list. Fail if this is the
938 * second jprobe at the address - two jprobes can't coexist
939 */
940 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
941 {
942 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
943 
944 	if (p->break_handler || p->post_handler)
945 		unoptimize_kprobe(ap);	/* Fall back to normal kprobe */
946 
947 	if (p->break_handler) {
948 		if (ap->break_handler)
949 			return -EEXIST;
950 		list_add_tail_rcu(&p->list, &ap->list);
951 		ap->break_handler = aggr_break_handler;
952 	} else
953 		list_add_rcu(&p->list, &ap->list);
954 	if (p->post_handler && !ap->post_handler)
955 		ap->post_handler = aggr_post_handler;
956 
957 	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
958 		ap->flags &= ~KPROBE_FLAG_DISABLED;
959 		if (!kprobes_all_disarmed)
960 			/* Arm the breakpoint again. */
961 			__arm_kprobe(ap);
962 	}
963 	return 0;
964 }
965 
966 /*
967  * Fill in the required fields of the "manager kprobe". Replace the
968  * earlier kprobe in the hlist with the manager kprobe
969  */
970 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
971 {
972 	/* Copy p's insn slot to ap */
973 	copy_kprobe(p, ap);
974 	flush_insn_slot(ap);
975 	ap->addr = p->addr;
976 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
977 	ap->pre_handler = aggr_pre_handler;
978 	ap->fault_handler = aggr_fault_handler;
979 	/* We don't care the kprobe which has gone. */
980 	if (p->post_handler && !kprobe_gone(p))
981 		ap->post_handler = aggr_post_handler;
982 	if (p->break_handler && !kprobe_gone(p))
983 		ap->break_handler = aggr_break_handler;
984 
985 	INIT_LIST_HEAD(&ap->list);
986 	INIT_HLIST_NODE(&ap->hlist);
987 
988 	list_add_rcu(&p->list, &ap->list);
989 	hlist_replace_rcu(&p->hlist, &ap->hlist);
990 }
991 
992 /*
993  * This is the second or subsequent kprobe at the address - handle
994  * the intricacies
995  */
996 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
997 					  struct kprobe *p)
998 {
999 	int ret = 0;
1000 	struct kprobe *ap = old_p;
1001 
1002 	if (!kprobe_aggrprobe(old_p)) {
1003 		/* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
1004 		ap = alloc_aggr_kprobe(old_p);
1005 		if (!ap)
1006 			return -ENOMEM;
1007 		init_aggr_kprobe(ap, old_p);
1008 	}
1009 
1010 	if (kprobe_gone(ap)) {
1011 		/*
1012 		 * Attempting to insert new probe at the same location that
1013 		 * had a probe in the module vaddr area which already
1014 		 * freed. So, the instruction slot has already been
1015 		 * released. We need a new slot for the new probe.
1016 		 */
1017 		ret = arch_prepare_kprobe(ap);
1018 		if (ret)
1019 			/*
1020 			 * Even if fail to allocate new slot, don't need to
1021 			 * free aggr_probe. It will be used next time, or
1022 			 * freed by unregister_kprobe.
1023 			 */
1024 			return ret;
1025 
1026 		/* Prepare optimized instructions if possible. */
1027 		prepare_optimized_kprobe(ap);
1028 
1029 		/*
1030 		 * Clear gone flag to prevent allocating new slot again, and
1031 		 * set disabled flag because it is not armed yet.
1032 		 */
1033 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1034 			    | KPROBE_FLAG_DISABLED;
1035 	}
1036 
1037 	/* Copy ap's insn slot to p */
1038 	copy_kprobe(ap, p);
1039 	return add_new_kprobe(ap, p);
1040 }
1041 
1042 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1043 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1044 {
1045 	struct kprobe *kp;
1046 
1047 	list_for_each_entry_rcu(kp, &p->list, list) {
1048 		if (!kprobe_disabled(kp))
1049 			/*
1050 			 * There is an active probe on the list.
1051 			 * We can't disable aggr_kprobe.
1052 			 */
1053 			return 0;
1054 	}
1055 	p->flags |= KPROBE_FLAG_DISABLED;
1056 	return 1;
1057 }
1058 
1059 static int __kprobes in_kprobes_functions(unsigned long addr)
1060 {
1061 	struct kprobe_blackpoint *kb;
1062 
1063 	if (addr >= (unsigned long)__kprobes_text_start &&
1064 	    addr < (unsigned long)__kprobes_text_end)
1065 		return -EINVAL;
1066 	/*
1067 	 * If there exists a kprobe_blacklist, verify and
1068 	 * fail any probe registration in the prohibited area
1069 	 */
1070 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1071 		if (kb->start_addr) {
1072 			if (addr >= kb->start_addr &&
1073 			    addr < (kb->start_addr + kb->range))
1074 				return -EINVAL;
1075 		}
1076 	}
1077 	return 0;
1078 }
1079 
1080 /*
1081  * If we have a symbol_name argument, look it up and add the offset field
1082  * to it. This way, we can specify a relative address to a symbol.
1083  */
1084 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1085 {
1086 	kprobe_opcode_t *addr = p->addr;
1087 	if (p->symbol_name) {
1088 		if (addr)
1089 			return NULL;
1090 		kprobe_lookup_name(p->symbol_name, addr);
1091 	}
1092 
1093 	if (!addr)
1094 		return NULL;
1095 	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1096 }
1097 
1098 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1099 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1100 {
1101 	struct kprobe *old_p, *list_p;
1102 
1103 	old_p = get_kprobe(p->addr);
1104 	if (unlikely(!old_p))
1105 		return NULL;
1106 
1107 	if (p != old_p) {
1108 		list_for_each_entry_rcu(list_p, &old_p->list, list)
1109 			if (list_p == p)
1110 			/* kprobe p is a valid probe */
1111 				goto valid;
1112 		return NULL;
1113 	}
1114 valid:
1115 	return old_p;
1116 }
1117 
1118 /* Return error if the kprobe is being re-registered */
1119 static inline int check_kprobe_rereg(struct kprobe *p)
1120 {
1121 	int ret = 0;
1122 	struct kprobe *old_p;
1123 
1124 	mutex_lock(&kprobe_mutex);
1125 	old_p = __get_valid_kprobe(p);
1126 	if (old_p)
1127 		ret = -EINVAL;
1128 	mutex_unlock(&kprobe_mutex);
1129 	return ret;
1130 }
1131 
1132 int __kprobes register_kprobe(struct kprobe *p)
1133 {
1134 	int ret = 0;
1135 	struct kprobe *old_p;
1136 	struct module *probed_mod;
1137 	kprobe_opcode_t *addr;
1138 
1139 	addr = kprobe_addr(p);
1140 	if (!addr)
1141 		return -EINVAL;
1142 	p->addr = addr;
1143 
1144 	ret = check_kprobe_rereg(p);
1145 	if (ret)
1146 		return ret;
1147 
1148 	preempt_disable();
1149 	if (!kernel_text_address((unsigned long) p->addr) ||
1150 	    in_kprobes_functions((unsigned long) p->addr) ||
1151 	    ftrace_text_reserved(p->addr, p->addr) ||
1152 	    jump_label_text_reserved(p->addr, p->addr)) {
1153 		preempt_enable();
1154 		return -EINVAL;
1155 	}
1156 
1157 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1158 	p->flags &= KPROBE_FLAG_DISABLED;
1159 
1160 	/*
1161 	 * Check if are we probing a module.
1162 	 */
1163 	probed_mod = __module_text_address((unsigned long) p->addr);
1164 	if (probed_mod) {
1165 		/*
1166 		 * We must hold a refcount of the probed module while updating
1167 		 * its code to prohibit unexpected unloading.
1168 		 */
1169 		if (unlikely(!try_module_get(probed_mod))) {
1170 			preempt_enable();
1171 			return -EINVAL;
1172 		}
1173 		/*
1174 		 * If the module freed .init.text, we couldn't insert
1175 		 * kprobes in there.
1176 		 */
1177 		if (within_module_init((unsigned long)p->addr, probed_mod) &&
1178 		    probed_mod->state != MODULE_STATE_COMING) {
1179 			module_put(probed_mod);
1180 			preempt_enable();
1181 			return -EINVAL;
1182 		}
1183 	}
1184 	preempt_enable();
1185 
1186 	p->nmissed = 0;
1187 	INIT_LIST_HEAD(&p->list);
1188 	mutex_lock(&kprobe_mutex);
1189 
1190 	get_online_cpus();	/* For avoiding text_mutex deadlock. */
1191 	mutex_lock(&text_mutex);
1192 
1193 	old_p = get_kprobe(p->addr);
1194 	if (old_p) {
1195 		/* Since this may unoptimize old_p, locking text_mutex. */
1196 		ret = register_aggr_kprobe(old_p, p);
1197 		goto out;
1198 	}
1199 
1200 	ret = arch_prepare_kprobe(p);
1201 	if (ret)
1202 		goto out;
1203 
1204 	INIT_HLIST_NODE(&p->hlist);
1205 	hlist_add_head_rcu(&p->hlist,
1206 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1207 
1208 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1209 		__arm_kprobe(p);
1210 
1211 	/* Try to optimize kprobe */
1212 	try_to_optimize_kprobe(p);
1213 
1214 out:
1215 	mutex_unlock(&text_mutex);
1216 	put_online_cpus();
1217 	mutex_unlock(&kprobe_mutex);
1218 
1219 	if (probed_mod)
1220 		module_put(probed_mod);
1221 
1222 	return ret;
1223 }
1224 EXPORT_SYMBOL_GPL(register_kprobe);
1225 
1226 /*
1227  * Unregister a kprobe without a scheduler synchronization.
1228  */
1229 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1230 {
1231 	struct kprobe *old_p, *list_p;
1232 
1233 	old_p = __get_valid_kprobe(p);
1234 	if (old_p == NULL)
1235 		return -EINVAL;
1236 
1237 	if (old_p == p ||
1238 	    (kprobe_aggrprobe(old_p) &&
1239 	     list_is_singular(&old_p->list))) {
1240 		/*
1241 		 * Only probe on the hash list. Disarm only if kprobes are
1242 		 * enabled and not gone - otherwise, the breakpoint would
1243 		 * already have been removed. We save on flushing icache.
1244 		 */
1245 		if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1246 			disarm_kprobe(old_p);
1247 		hlist_del_rcu(&old_p->hlist);
1248 	} else {
1249 		if (p->break_handler && !kprobe_gone(p))
1250 			old_p->break_handler = NULL;
1251 		if (p->post_handler && !kprobe_gone(p)) {
1252 			list_for_each_entry_rcu(list_p, &old_p->list, list) {
1253 				if ((list_p != p) && (list_p->post_handler))
1254 					goto noclean;
1255 			}
1256 			old_p->post_handler = NULL;
1257 		}
1258 noclean:
1259 		list_del_rcu(&p->list);
1260 		if (!kprobe_disabled(old_p)) {
1261 			try_to_disable_aggr_kprobe(old_p);
1262 			if (!kprobes_all_disarmed) {
1263 				if (kprobe_disabled(old_p))
1264 					disarm_kprobe(old_p);
1265 				else
1266 					/* Try to optimize this probe again */
1267 					optimize_kprobe(old_p);
1268 			}
1269 		}
1270 	}
1271 	return 0;
1272 }
1273 
1274 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1275 {
1276 	struct kprobe *old_p;
1277 
1278 	if (list_empty(&p->list))
1279 		arch_remove_kprobe(p);
1280 	else if (list_is_singular(&p->list)) {
1281 		/* "p" is the last child of an aggr_kprobe */
1282 		old_p = list_entry(p->list.next, struct kprobe, list);
1283 		list_del(&p->list);
1284 		arch_remove_kprobe(old_p);
1285 		free_aggr_kprobe(old_p);
1286 	}
1287 }
1288 
1289 int __kprobes register_kprobes(struct kprobe **kps, int num)
1290 {
1291 	int i, ret = 0;
1292 
1293 	if (num <= 0)
1294 		return -EINVAL;
1295 	for (i = 0; i < num; i++) {
1296 		ret = register_kprobe(kps[i]);
1297 		if (ret < 0) {
1298 			if (i > 0)
1299 				unregister_kprobes(kps, i);
1300 			break;
1301 		}
1302 	}
1303 	return ret;
1304 }
1305 EXPORT_SYMBOL_GPL(register_kprobes);
1306 
1307 void __kprobes unregister_kprobe(struct kprobe *p)
1308 {
1309 	unregister_kprobes(&p, 1);
1310 }
1311 EXPORT_SYMBOL_GPL(unregister_kprobe);
1312 
1313 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1314 {
1315 	int i;
1316 
1317 	if (num <= 0)
1318 		return;
1319 	mutex_lock(&kprobe_mutex);
1320 	for (i = 0; i < num; i++)
1321 		if (__unregister_kprobe_top(kps[i]) < 0)
1322 			kps[i]->addr = NULL;
1323 	mutex_unlock(&kprobe_mutex);
1324 
1325 	synchronize_sched();
1326 	for (i = 0; i < num; i++)
1327 		if (kps[i]->addr)
1328 			__unregister_kprobe_bottom(kps[i]);
1329 }
1330 EXPORT_SYMBOL_GPL(unregister_kprobes);
1331 
1332 static struct notifier_block kprobe_exceptions_nb = {
1333 	.notifier_call = kprobe_exceptions_notify,
1334 	.priority = 0x7fffffff /* we need to be notified first */
1335 };
1336 
1337 unsigned long __weak arch_deref_entry_point(void *entry)
1338 {
1339 	return (unsigned long)entry;
1340 }
1341 
1342 int __kprobes register_jprobes(struct jprobe **jps, int num)
1343 {
1344 	struct jprobe *jp;
1345 	int ret = 0, i;
1346 
1347 	if (num <= 0)
1348 		return -EINVAL;
1349 	for (i = 0; i < num; i++) {
1350 		unsigned long addr, offset;
1351 		jp = jps[i];
1352 		addr = arch_deref_entry_point(jp->entry);
1353 
1354 		/* Verify probepoint is a function entry point */
1355 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1356 		    offset == 0) {
1357 			jp->kp.pre_handler = setjmp_pre_handler;
1358 			jp->kp.break_handler = longjmp_break_handler;
1359 			ret = register_kprobe(&jp->kp);
1360 		} else
1361 			ret = -EINVAL;
1362 
1363 		if (ret < 0) {
1364 			if (i > 0)
1365 				unregister_jprobes(jps, i);
1366 			break;
1367 		}
1368 	}
1369 	return ret;
1370 }
1371 EXPORT_SYMBOL_GPL(register_jprobes);
1372 
1373 int __kprobes register_jprobe(struct jprobe *jp)
1374 {
1375 	return register_jprobes(&jp, 1);
1376 }
1377 EXPORT_SYMBOL_GPL(register_jprobe);
1378 
1379 void __kprobes unregister_jprobe(struct jprobe *jp)
1380 {
1381 	unregister_jprobes(&jp, 1);
1382 }
1383 EXPORT_SYMBOL_GPL(unregister_jprobe);
1384 
1385 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1386 {
1387 	int i;
1388 
1389 	if (num <= 0)
1390 		return;
1391 	mutex_lock(&kprobe_mutex);
1392 	for (i = 0; i < num; i++)
1393 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1394 			jps[i]->kp.addr = NULL;
1395 	mutex_unlock(&kprobe_mutex);
1396 
1397 	synchronize_sched();
1398 	for (i = 0; i < num; i++) {
1399 		if (jps[i]->kp.addr)
1400 			__unregister_kprobe_bottom(&jps[i]->kp);
1401 	}
1402 }
1403 EXPORT_SYMBOL_GPL(unregister_jprobes);
1404 
1405 #ifdef CONFIG_KRETPROBES
1406 /*
1407  * This kprobe pre_handler is registered with every kretprobe. When probe
1408  * hits it will set up the return probe.
1409  */
1410 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1411 					   struct pt_regs *regs)
1412 {
1413 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1414 	unsigned long hash, flags = 0;
1415 	struct kretprobe_instance *ri;
1416 
1417 	/*TODO: consider to only swap the RA after the last pre_handler fired */
1418 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1419 	spin_lock_irqsave(&rp->lock, flags);
1420 	if (!hlist_empty(&rp->free_instances)) {
1421 		ri = hlist_entry(rp->free_instances.first,
1422 				struct kretprobe_instance, hlist);
1423 		hlist_del(&ri->hlist);
1424 		spin_unlock_irqrestore(&rp->lock, flags);
1425 
1426 		ri->rp = rp;
1427 		ri->task = current;
1428 
1429 		if (rp->entry_handler && rp->entry_handler(ri, regs))
1430 			return 0;
1431 
1432 		arch_prepare_kretprobe(ri, regs);
1433 
1434 		/* XXX(hch): why is there no hlist_move_head? */
1435 		INIT_HLIST_NODE(&ri->hlist);
1436 		kretprobe_table_lock(hash, &flags);
1437 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1438 		kretprobe_table_unlock(hash, &flags);
1439 	} else {
1440 		rp->nmissed++;
1441 		spin_unlock_irqrestore(&rp->lock, flags);
1442 	}
1443 	return 0;
1444 }
1445 
1446 int __kprobes register_kretprobe(struct kretprobe *rp)
1447 {
1448 	int ret = 0;
1449 	struct kretprobe_instance *inst;
1450 	int i;
1451 	void *addr;
1452 
1453 	if (kretprobe_blacklist_size) {
1454 		addr = kprobe_addr(&rp->kp);
1455 		if (!addr)
1456 			return -EINVAL;
1457 
1458 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1459 			if (kretprobe_blacklist[i].addr == addr)
1460 				return -EINVAL;
1461 		}
1462 	}
1463 
1464 	rp->kp.pre_handler = pre_handler_kretprobe;
1465 	rp->kp.post_handler = NULL;
1466 	rp->kp.fault_handler = NULL;
1467 	rp->kp.break_handler = NULL;
1468 
1469 	/* Pre-allocate memory for max kretprobe instances */
1470 	if (rp->maxactive <= 0) {
1471 #ifdef CONFIG_PREEMPT
1472 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1473 #else
1474 		rp->maxactive = num_possible_cpus();
1475 #endif
1476 	}
1477 	spin_lock_init(&rp->lock);
1478 	INIT_HLIST_HEAD(&rp->free_instances);
1479 	for (i = 0; i < rp->maxactive; i++) {
1480 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1481 			       rp->data_size, GFP_KERNEL);
1482 		if (inst == NULL) {
1483 			free_rp_inst(rp);
1484 			return -ENOMEM;
1485 		}
1486 		INIT_HLIST_NODE(&inst->hlist);
1487 		hlist_add_head(&inst->hlist, &rp->free_instances);
1488 	}
1489 
1490 	rp->nmissed = 0;
1491 	/* Establish function entry probe point */
1492 	ret = register_kprobe(&rp->kp);
1493 	if (ret != 0)
1494 		free_rp_inst(rp);
1495 	return ret;
1496 }
1497 EXPORT_SYMBOL_GPL(register_kretprobe);
1498 
1499 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1500 {
1501 	int ret = 0, i;
1502 
1503 	if (num <= 0)
1504 		return -EINVAL;
1505 	for (i = 0; i < num; i++) {
1506 		ret = register_kretprobe(rps[i]);
1507 		if (ret < 0) {
1508 			if (i > 0)
1509 				unregister_kretprobes(rps, i);
1510 			break;
1511 		}
1512 	}
1513 	return ret;
1514 }
1515 EXPORT_SYMBOL_GPL(register_kretprobes);
1516 
1517 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1518 {
1519 	unregister_kretprobes(&rp, 1);
1520 }
1521 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1522 
1523 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1524 {
1525 	int i;
1526 
1527 	if (num <= 0)
1528 		return;
1529 	mutex_lock(&kprobe_mutex);
1530 	for (i = 0; i < num; i++)
1531 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1532 			rps[i]->kp.addr = NULL;
1533 	mutex_unlock(&kprobe_mutex);
1534 
1535 	synchronize_sched();
1536 	for (i = 0; i < num; i++) {
1537 		if (rps[i]->kp.addr) {
1538 			__unregister_kprobe_bottom(&rps[i]->kp);
1539 			cleanup_rp_inst(rps[i]);
1540 		}
1541 	}
1542 }
1543 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1544 
1545 #else /* CONFIG_KRETPROBES */
1546 int __kprobes register_kretprobe(struct kretprobe *rp)
1547 {
1548 	return -ENOSYS;
1549 }
1550 EXPORT_SYMBOL_GPL(register_kretprobe);
1551 
1552 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1553 {
1554 	return -ENOSYS;
1555 }
1556 EXPORT_SYMBOL_GPL(register_kretprobes);
1557 
1558 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1559 {
1560 }
1561 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1562 
1563 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1564 {
1565 }
1566 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1567 
1568 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1569 					   struct pt_regs *regs)
1570 {
1571 	return 0;
1572 }
1573 
1574 #endif /* CONFIG_KRETPROBES */
1575 
1576 /* Set the kprobe gone and remove its instruction buffer. */
1577 static void __kprobes kill_kprobe(struct kprobe *p)
1578 {
1579 	struct kprobe *kp;
1580 
1581 	p->flags |= KPROBE_FLAG_GONE;
1582 	if (kprobe_aggrprobe(p)) {
1583 		/*
1584 		 * If this is an aggr_kprobe, we have to list all the
1585 		 * chained probes and mark them GONE.
1586 		 */
1587 		list_for_each_entry_rcu(kp, &p->list, list)
1588 			kp->flags |= KPROBE_FLAG_GONE;
1589 		p->post_handler = NULL;
1590 		p->break_handler = NULL;
1591 		kill_optimized_kprobe(p);
1592 	}
1593 	/*
1594 	 * Here, we can remove insn_slot safely, because no thread calls
1595 	 * the original probed function (which will be freed soon) any more.
1596 	 */
1597 	arch_remove_kprobe(p);
1598 }
1599 
1600 /* Disable one kprobe */
1601 int __kprobes disable_kprobe(struct kprobe *kp)
1602 {
1603 	int ret = 0;
1604 	struct kprobe *p;
1605 
1606 	mutex_lock(&kprobe_mutex);
1607 
1608 	/* Check whether specified probe is valid. */
1609 	p = __get_valid_kprobe(kp);
1610 	if (unlikely(p == NULL)) {
1611 		ret = -EINVAL;
1612 		goto out;
1613 	}
1614 
1615 	/* If the probe is already disabled (or gone), just return */
1616 	if (kprobe_disabled(kp))
1617 		goto out;
1618 
1619 	kp->flags |= KPROBE_FLAG_DISABLED;
1620 	if (p != kp)
1621 		/* When kp != p, p is always enabled. */
1622 		try_to_disable_aggr_kprobe(p);
1623 
1624 	if (!kprobes_all_disarmed && kprobe_disabled(p))
1625 		disarm_kprobe(p);
1626 out:
1627 	mutex_unlock(&kprobe_mutex);
1628 	return ret;
1629 }
1630 EXPORT_SYMBOL_GPL(disable_kprobe);
1631 
1632 /* Enable one kprobe */
1633 int __kprobes enable_kprobe(struct kprobe *kp)
1634 {
1635 	int ret = 0;
1636 	struct kprobe *p;
1637 
1638 	mutex_lock(&kprobe_mutex);
1639 
1640 	/* Check whether specified probe is valid. */
1641 	p = __get_valid_kprobe(kp);
1642 	if (unlikely(p == NULL)) {
1643 		ret = -EINVAL;
1644 		goto out;
1645 	}
1646 
1647 	if (kprobe_gone(kp)) {
1648 		/* This kprobe has gone, we couldn't enable it. */
1649 		ret = -EINVAL;
1650 		goto out;
1651 	}
1652 
1653 	if (p != kp)
1654 		kp->flags &= ~KPROBE_FLAG_DISABLED;
1655 
1656 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1657 		p->flags &= ~KPROBE_FLAG_DISABLED;
1658 		arm_kprobe(p);
1659 	}
1660 out:
1661 	mutex_unlock(&kprobe_mutex);
1662 	return ret;
1663 }
1664 EXPORT_SYMBOL_GPL(enable_kprobe);
1665 
1666 void __kprobes dump_kprobe(struct kprobe *kp)
1667 {
1668 	printk(KERN_WARNING "Dumping kprobe:\n");
1669 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1670 	       kp->symbol_name, kp->addr, kp->offset);
1671 }
1672 
1673 /* Module notifier call back, checking kprobes on the module */
1674 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1675 					     unsigned long val, void *data)
1676 {
1677 	struct module *mod = data;
1678 	struct hlist_head *head;
1679 	struct hlist_node *node;
1680 	struct kprobe *p;
1681 	unsigned int i;
1682 	int checkcore = (val == MODULE_STATE_GOING);
1683 
1684 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1685 		return NOTIFY_DONE;
1686 
1687 	/*
1688 	 * When MODULE_STATE_GOING was notified, both of module .text and
1689 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1690 	 * notified, only .init.text section would be freed. We need to
1691 	 * disable kprobes which have been inserted in the sections.
1692 	 */
1693 	mutex_lock(&kprobe_mutex);
1694 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1695 		head = &kprobe_table[i];
1696 		hlist_for_each_entry_rcu(p, node, head, hlist)
1697 			if (within_module_init((unsigned long)p->addr, mod) ||
1698 			    (checkcore &&
1699 			     within_module_core((unsigned long)p->addr, mod))) {
1700 				/*
1701 				 * The vaddr this probe is installed will soon
1702 				 * be vfreed buy not synced to disk. Hence,
1703 				 * disarming the breakpoint isn't needed.
1704 				 */
1705 				kill_kprobe(p);
1706 			}
1707 	}
1708 	mutex_unlock(&kprobe_mutex);
1709 	return NOTIFY_DONE;
1710 }
1711 
1712 static struct notifier_block kprobe_module_nb = {
1713 	.notifier_call = kprobes_module_callback,
1714 	.priority = 0
1715 };
1716 
1717 static int __init init_kprobes(void)
1718 {
1719 	int i, err = 0;
1720 	unsigned long offset = 0, size = 0;
1721 	char *modname, namebuf[128];
1722 	const char *symbol_name;
1723 	void *addr;
1724 	struct kprobe_blackpoint *kb;
1725 
1726 	/* FIXME allocate the probe table, currently defined statically */
1727 	/* initialize all list heads */
1728 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1729 		INIT_HLIST_HEAD(&kprobe_table[i]);
1730 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1731 		spin_lock_init(&(kretprobe_table_locks[i].lock));
1732 	}
1733 
1734 	/*
1735 	 * Lookup and populate the kprobe_blacklist.
1736 	 *
1737 	 * Unlike the kretprobe blacklist, we'll need to determine
1738 	 * the range of addresses that belong to the said functions,
1739 	 * since a kprobe need not necessarily be at the beginning
1740 	 * of a function.
1741 	 */
1742 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1743 		kprobe_lookup_name(kb->name, addr);
1744 		if (!addr)
1745 			continue;
1746 
1747 		kb->start_addr = (unsigned long)addr;
1748 		symbol_name = kallsyms_lookup(kb->start_addr,
1749 				&size, &offset, &modname, namebuf);
1750 		if (!symbol_name)
1751 			kb->range = 0;
1752 		else
1753 			kb->range = size;
1754 	}
1755 
1756 	if (kretprobe_blacklist_size) {
1757 		/* lookup the function address from its name */
1758 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1759 			kprobe_lookup_name(kretprobe_blacklist[i].name,
1760 					   kretprobe_blacklist[i].addr);
1761 			if (!kretprobe_blacklist[i].addr)
1762 				printk("kretprobe: lookup failed: %s\n",
1763 				       kretprobe_blacklist[i].name);
1764 		}
1765 	}
1766 
1767 #if defined(CONFIG_OPTPROBES)
1768 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1769 	/* Init kprobe_optinsn_slots */
1770 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1771 #endif
1772 	/* By default, kprobes can be optimized */
1773 	kprobes_allow_optimization = true;
1774 #endif
1775 
1776 	/* By default, kprobes are armed */
1777 	kprobes_all_disarmed = false;
1778 
1779 	err = arch_init_kprobes();
1780 	if (!err)
1781 		err = register_die_notifier(&kprobe_exceptions_nb);
1782 	if (!err)
1783 		err = register_module_notifier(&kprobe_module_nb);
1784 
1785 	kprobes_initialized = (err == 0);
1786 
1787 	if (!err)
1788 		init_test_probes();
1789 	return err;
1790 }
1791 
1792 #ifdef CONFIG_DEBUG_FS
1793 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1794 		const char *sym, int offset, char *modname, struct kprobe *pp)
1795 {
1796 	char *kprobe_type;
1797 
1798 	if (p->pre_handler == pre_handler_kretprobe)
1799 		kprobe_type = "r";
1800 	else if (p->pre_handler == setjmp_pre_handler)
1801 		kprobe_type = "j";
1802 	else
1803 		kprobe_type = "k";
1804 
1805 	if (sym)
1806 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
1807 			p->addr, kprobe_type, sym, offset,
1808 			(modname ? modname : " "));
1809 	else
1810 		seq_printf(pi, "%p  %s  %p ",
1811 			p->addr, kprobe_type, p->addr);
1812 
1813 	if (!pp)
1814 		pp = p;
1815 	seq_printf(pi, "%s%s%s\n",
1816 		(kprobe_gone(p) ? "[GONE]" : ""),
1817 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
1818 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1819 }
1820 
1821 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1822 {
1823 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1824 }
1825 
1826 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1827 {
1828 	(*pos)++;
1829 	if (*pos >= KPROBE_TABLE_SIZE)
1830 		return NULL;
1831 	return pos;
1832 }
1833 
1834 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1835 {
1836 	/* Nothing to do */
1837 }
1838 
1839 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1840 {
1841 	struct hlist_head *head;
1842 	struct hlist_node *node;
1843 	struct kprobe *p, *kp;
1844 	const char *sym = NULL;
1845 	unsigned int i = *(loff_t *) v;
1846 	unsigned long offset = 0;
1847 	char *modname, namebuf[128];
1848 
1849 	head = &kprobe_table[i];
1850 	preempt_disable();
1851 	hlist_for_each_entry_rcu(p, node, head, hlist) {
1852 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1853 					&offset, &modname, namebuf);
1854 		if (kprobe_aggrprobe(p)) {
1855 			list_for_each_entry_rcu(kp, &p->list, list)
1856 				report_probe(pi, kp, sym, offset, modname, p);
1857 		} else
1858 			report_probe(pi, p, sym, offset, modname, NULL);
1859 	}
1860 	preempt_enable();
1861 	return 0;
1862 }
1863 
1864 static const struct seq_operations kprobes_seq_ops = {
1865 	.start = kprobe_seq_start,
1866 	.next  = kprobe_seq_next,
1867 	.stop  = kprobe_seq_stop,
1868 	.show  = show_kprobe_addr
1869 };
1870 
1871 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1872 {
1873 	return seq_open(filp, &kprobes_seq_ops);
1874 }
1875 
1876 static const struct file_operations debugfs_kprobes_operations = {
1877 	.open           = kprobes_open,
1878 	.read           = seq_read,
1879 	.llseek         = seq_lseek,
1880 	.release        = seq_release,
1881 };
1882 
1883 static void __kprobes arm_all_kprobes(void)
1884 {
1885 	struct hlist_head *head;
1886 	struct hlist_node *node;
1887 	struct kprobe *p;
1888 	unsigned int i;
1889 
1890 	mutex_lock(&kprobe_mutex);
1891 
1892 	/* If kprobes are armed, just return */
1893 	if (!kprobes_all_disarmed)
1894 		goto already_enabled;
1895 
1896 	/* Arming kprobes doesn't optimize kprobe itself */
1897 	mutex_lock(&text_mutex);
1898 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1899 		head = &kprobe_table[i];
1900 		hlist_for_each_entry_rcu(p, node, head, hlist)
1901 			if (!kprobe_disabled(p))
1902 				__arm_kprobe(p);
1903 	}
1904 	mutex_unlock(&text_mutex);
1905 
1906 	kprobes_all_disarmed = false;
1907 	printk(KERN_INFO "Kprobes globally enabled\n");
1908 
1909 already_enabled:
1910 	mutex_unlock(&kprobe_mutex);
1911 	return;
1912 }
1913 
1914 static void __kprobes disarm_all_kprobes(void)
1915 {
1916 	struct hlist_head *head;
1917 	struct hlist_node *node;
1918 	struct kprobe *p;
1919 	unsigned int i;
1920 
1921 	mutex_lock(&kprobe_mutex);
1922 
1923 	/* If kprobes are already disarmed, just return */
1924 	if (kprobes_all_disarmed)
1925 		goto already_disabled;
1926 
1927 	kprobes_all_disarmed = true;
1928 	printk(KERN_INFO "Kprobes globally disabled\n");
1929 
1930 	/*
1931 	 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1932 	 * because disarming may also unoptimize kprobes.
1933 	 */
1934 	get_online_cpus();
1935 	mutex_lock(&text_mutex);
1936 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1937 		head = &kprobe_table[i];
1938 		hlist_for_each_entry_rcu(p, node, head, hlist) {
1939 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1940 				__disarm_kprobe(p);
1941 		}
1942 	}
1943 
1944 	mutex_unlock(&text_mutex);
1945 	put_online_cpus();
1946 	mutex_unlock(&kprobe_mutex);
1947 	/* Allow all currently running kprobes to complete */
1948 	synchronize_sched();
1949 	return;
1950 
1951 already_disabled:
1952 	mutex_unlock(&kprobe_mutex);
1953 	return;
1954 }
1955 
1956 /*
1957  * XXX: The debugfs bool file interface doesn't allow for callbacks
1958  * when the bool state is switched. We can reuse that facility when
1959  * available
1960  */
1961 static ssize_t read_enabled_file_bool(struct file *file,
1962 	       char __user *user_buf, size_t count, loff_t *ppos)
1963 {
1964 	char buf[3];
1965 
1966 	if (!kprobes_all_disarmed)
1967 		buf[0] = '1';
1968 	else
1969 		buf[0] = '0';
1970 	buf[1] = '\n';
1971 	buf[2] = 0x00;
1972 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1973 }
1974 
1975 static ssize_t write_enabled_file_bool(struct file *file,
1976 	       const char __user *user_buf, size_t count, loff_t *ppos)
1977 {
1978 	char buf[32];
1979 	int buf_size;
1980 
1981 	buf_size = min(count, (sizeof(buf)-1));
1982 	if (copy_from_user(buf, user_buf, buf_size))
1983 		return -EFAULT;
1984 
1985 	switch (buf[0]) {
1986 	case 'y':
1987 	case 'Y':
1988 	case '1':
1989 		arm_all_kprobes();
1990 		break;
1991 	case 'n':
1992 	case 'N':
1993 	case '0':
1994 		disarm_all_kprobes();
1995 		break;
1996 	}
1997 
1998 	return count;
1999 }
2000 
2001 static const struct file_operations fops_kp = {
2002 	.read =         read_enabled_file_bool,
2003 	.write =        write_enabled_file_bool,
2004 	.llseek =	default_llseek,
2005 };
2006 
2007 static int __kprobes debugfs_kprobe_init(void)
2008 {
2009 	struct dentry *dir, *file;
2010 	unsigned int value = 1;
2011 
2012 	dir = debugfs_create_dir("kprobes", NULL);
2013 	if (!dir)
2014 		return -ENOMEM;
2015 
2016 	file = debugfs_create_file("list", 0444, dir, NULL,
2017 				&debugfs_kprobes_operations);
2018 	if (!file) {
2019 		debugfs_remove(dir);
2020 		return -ENOMEM;
2021 	}
2022 
2023 	file = debugfs_create_file("enabled", 0600, dir,
2024 					&value, &fops_kp);
2025 	if (!file) {
2026 		debugfs_remove(dir);
2027 		return -ENOMEM;
2028 	}
2029 
2030 	return 0;
2031 }
2032 
2033 late_initcall(debugfs_kprobe_init);
2034 #endif /* CONFIG_DEBUG_FS */
2035 
2036 module_init(init_kprobes);
2037 
2038 /* defined in arch/.../kernel/kprobes.c */
2039 EXPORT_SYMBOL_GPL(jprobe_return);
2040