1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Kernel Probes (KProbes) 4 * 5 * Copyright (C) IBM Corporation, 2002, 2004 6 * 7 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 8 * Probes initial implementation (includes suggestions from 9 * Rusty Russell). 10 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with 11 * hlists and exceptions notifier as suggested by Andi Kleen. 12 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 13 * interface to access function arguments. 14 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes 15 * exceptions notifier to be first on the priority list. 16 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston 17 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi 18 * <prasanna@in.ibm.com> added function-return probes. 19 */ 20 21 #define pr_fmt(fmt) "kprobes: " fmt 22 23 #include <linux/kprobes.h> 24 #include <linux/hash.h> 25 #include <linux/init.h> 26 #include <linux/slab.h> 27 #include <linux/stddef.h> 28 #include <linux/export.h> 29 #include <linux/kallsyms.h> 30 #include <linux/freezer.h> 31 #include <linux/seq_file.h> 32 #include <linux/debugfs.h> 33 #include <linux/sysctl.h> 34 #include <linux/kdebug.h> 35 #include <linux/memory.h> 36 #include <linux/ftrace.h> 37 #include <linux/cpu.h> 38 #include <linux/jump_label.h> 39 #include <linux/static_call.h> 40 #include <linux/perf_event.h> 41 #include <linux/execmem.h> 42 #include <linux/cleanup.h> 43 44 #include <asm/sections.h> 45 #include <asm/cacheflush.h> 46 #include <asm/errno.h> 47 #include <linux/uaccess.h> 48 49 #define KPROBE_HASH_BITS 6 50 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS) 51 52 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL) 53 #define kprobe_sysctls_init() do { } while (0) 54 #endif 55 56 static int kprobes_initialized; 57 /* kprobe_table can be accessed by 58 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held. 59 * Or 60 * - RCU hlist traversal under disabling preempt (breakpoint handlers) 61 */ 62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE]; 63 64 /* NOTE: change this value only with 'kprobe_mutex' held */ 65 static bool kprobes_all_disarmed; 66 67 /* This protects 'kprobe_table' and 'optimizing_list' */ 68 static DEFINE_MUTEX(kprobe_mutex); 69 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance); 70 71 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name, 72 unsigned int __unused) 73 { 74 return ((kprobe_opcode_t *)(kallsyms_lookup_name(name))); 75 } 76 77 /* 78 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where 79 * kprobes can not probe. 80 */ 81 static LIST_HEAD(kprobe_blacklist); 82 83 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 84 /* 85 * 'kprobe::ainsn.insn' points to the copy of the instruction to be 86 * single-stepped. x86_64, POWER4 and above have no-exec support and 87 * stepping on the instruction on a vmalloced/kmalloced/data page 88 * is a recipe for disaster 89 */ 90 struct kprobe_insn_page { 91 struct list_head list; 92 kprobe_opcode_t *insns; /* Page of instruction slots */ 93 struct kprobe_insn_cache *cache; 94 int nused; 95 int ngarbage; 96 char slot_used[]; 97 }; 98 99 static int slots_per_page(struct kprobe_insn_cache *c) 100 { 101 return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t)); 102 } 103 104 enum kprobe_slot_state { 105 SLOT_CLEAN = 0, 106 SLOT_DIRTY = 1, 107 SLOT_USED = 2, 108 }; 109 110 void __weak *alloc_insn_page(void) 111 { 112 /* 113 * Use execmem_alloc() so this page is within +/- 2GB of where the 114 * kernel image and loaded module images reside. This is required 115 * for most of the architectures. 116 * (e.g. x86-64 needs this to handle the %rip-relative fixups.) 117 */ 118 return execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE); 119 } 120 121 static void free_insn_page(void *page) 122 { 123 execmem_free(page); 124 } 125 126 struct kprobe_insn_cache kprobe_insn_slots = { 127 .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex), 128 .alloc = alloc_insn_page, 129 .free = free_insn_page, 130 .sym = KPROBE_INSN_PAGE_SYM, 131 .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages), 132 .insn_size = MAX_INSN_SIZE, 133 .nr_garbage = 0, 134 }; 135 static int collect_garbage_slots(struct kprobe_insn_cache *c); 136 137 /** 138 * __get_insn_slot - Find a slot on an executable page for an instruction. 139 * @c: Pointer to kprobe instruction cache 140 * 141 * Description: Locates available slot on existing executable pages, 142 * allocates an executable page if there's no room on existing ones. 143 * Return: Pointer to instruction slot on success, NULL on failure. 144 */ 145 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c) 146 { 147 struct kprobe_insn_page *kip; 148 149 /* Since the slot array is not protected by rcu, we need a mutex */ 150 guard(mutex)(&c->mutex); 151 do { 152 guard(rcu)(); 153 list_for_each_entry_rcu(kip, &c->pages, list) { 154 if (kip->nused < slots_per_page(c)) { 155 int i; 156 157 for (i = 0; i < slots_per_page(c); i++) { 158 if (kip->slot_used[i] == SLOT_CLEAN) { 159 kip->slot_used[i] = SLOT_USED; 160 kip->nused++; 161 return kip->insns + (i * c->insn_size); 162 } 163 } 164 /* kip->nused is broken. Fix it. */ 165 kip->nused = slots_per_page(c); 166 WARN_ON(1); 167 } 168 } 169 /* If there are any garbage slots, collect it and try again. */ 170 } while (c->nr_garbage && collect_garbage_slots(c) == 0); 171 172 /* All out of space. Need to allocate a new page. */ 173 kip = kmalloc(struct_size(kip, slot_used, slots_per_page(c)), GFP_KERNEL); 174 if (!kip) 175 return NULL; 176 177 kip->insns = c->alloc(); 178 if (!kip->insns) { 179 kfree(kip); 180 return NULL; 181 } 182 INIT_LIST_HEAD(&kip->list); 183 memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c)); 184 kip->slot_used[0] = SLOT_USED; 185 kip->nused = 1; 186 kip->ngarbage = 0; 187 kip->cache = c; 188 list_add_rcu(&kip->list, &c->pages); 189 190 /* Record the perf ksymbol register event after adding the page */ 191 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns, 192 PAGE_SIZE, false, c->sym); 193 194 return kip->insns; 195 } 196 197 /* Return true if all garbages are collected, otherwise false. */ 198 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx) 199 { 200 kip->slot_used[idx] = SLOT_CLEAN; 201 kip->nused--; 202 if (kip->nused != 0) 203 return false; 204 205 /* 206 * Page is no longer in use. Free it unless 207 * it's the last one. We keep the last one 208 * so as not to have to set it up again the 209 * next time somebody inserts a probe. 210 */ 211 if (!list_is_singular(&kip->list)) { 212 /* 213 * Record perf ksymbol unregister event before removing 214 * the page. 215 */ 216 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, 217 (unsigned long)kip->insns, PAGE_SIZE, true, 218 kip->cache->sym); 219 list_del_rcu(&kip->list); 220 synchronize_rcu(); 221 kip->cache->free(kip->insns); 222 kfree(kip); 223 } 224 return true; 225 } 226 227 static int collect_garbage_slots(struct kprobe_insn_cache *c) 228 { 229 struct kprobe_insn_page *kip, *next; 230 231 /* Ensure no-one is interrupted on the garbages */ 232 synchronize_rcu(); 233 234 list_for_each_entry_safe(kip, next, &c->pages, list) { 235 int i; 236 237 if (kip->ngarbage == 0) 238 continue; 239 kip->ngarbage = 0; /* we will collect all garbages */ 240 for (i = 0; i < slots_per_page(c); i++) { 241 if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i)) 242 break; 243 } 244 } 245 c->nr_garbage = 0; 246 return 0; 247 } 248 249 static long __find_insn_page(struct kprobe_insn_cache *c, 250 kprobe_opcode_t *slot, struct kprobe_insn_page **pkip) 251 { 252 struct kprobe_insn_page *kip = NULL; 253 long idx; 254 255 guard(rcu)(); 256 list_for_each_entry_rcu(kip, &c->pages, list) { 257 idx = ((long)slot - (long)kip->insns) / 258 (c->insn_size * sizeof(kprobe_opcode_t)); 259 if (idx >= 0 && idx < slots_per_page(c)) { 260 *pkip = kip; 261 return idx; 262 } 263 } 264 /* Could not find this slot. */ 265 WARN_ON(1); 266 *pkip = NULL; 267 return -1; 268 } 269 270 void __free_insn_slot(struct kprobe_insn_cache *c, 271 kprobe_opcode_t *slot, int dirty) 272 { 273 struct kprobe_insn_page *kip = NULL; 274 long idx; 275 276 guard(mutex)(&c->mutex); 277 idx = __find_insn_page(c, slot, &kip); 278 /* Mark and sweep: this may sleep */ 279 if (kip) { 280 /* Check double free */ 281 WARN_ON(kip->slot_used[idx] != SLOT_USED); 282 if (dirty) { 283 kip->slot_used[idx] = SLOT_DIRTY; 284 kip->ngarbage++; 285 if (++c->nr_garbage > slots_per_page(c)) 286 collect_garbage_slots(c); 287 } else { 288 collect_one_slot(kip, idx); 289 } 290 } 291 } 292 293 /* 294 * Check given address is on the page of kprobe instruction slots. 295 * This will be used for checking whether the address on a stack 296 * is on a text area or not. 297 */ 298 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr) 299 { 300 struct kprobe_insn_page *kip; 301 bool ret = false; 302 303 rcu_read_lock(); 304 list_for_each_entry_rcu(kip, &c->pages, list) { 305 if (addr >= (unsigned long)kip->insns && 306 addr < (unsigned long)kip->insns + PAGE_SIZE) { 307 ret = true; 308 break; 309 } 310 } 311 rcu_read_unlock(); 312 313 return ret; 314 } 315 316 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum, 317 unsigned long *value, char *type, char *sym) 318 { 319 struct kprobe_insn_page *kip; 320 int ret = -ERANGE; 321 322 rcu_read_lock(); 323 list_for_each_entry_rcu(kip, &c->pages, list) { 324 if ((*symnum)--) 325 continue; 326 strscpy(sym, c->sym, KSYM_NAME_LEN); 327 *type = 't'; 328 *value = (unsigned long)kip->insns; 329 ret = 0; 330 break; 331 } 332 rcu_read_unlock(); 333 334 return ret; 335 } 336 337 #ifdef CONFIG_OPTPROBES 338 void __weak *alloc_optinsn_page(void) 339 { 340 return alloc_insn_page(); 341 } 342 343 void __weak free_optinsn_page(void *page) 344 { 345 free_insn_page(page); 346 } 347 348 /* For optimized_kprobe buffer */ 349 struct kprobe_insn_cache kprobe_optinsn_slots = { 350 .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex), 351 .alloc = alloc_optinsn_page, 352 .free = free_optinsn_page, 353 .sym = KPROBE_OPTINSN_PAGE_SYM, 354 .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages), 355 /* .insn_size is initialized later */ 356 .nr_garbage = 0, 357 }; 358 #endif /* CONFIG_OPTPROBES */ 359 #endif /* __ARCH_WANT_KPROBES_INSN_SLOT */ 360 361 /* We have preemption disabled.. so it is safe to use __ versions */ 362 static inline void set_kprobe_instance(struct kprobe *kp) 363 { 364 __this_cpu_write(kprobe_instance, kp); 365 } 366 367 static inline void reset_kprobe_instance(void) 368 { 369 __this_cpu_write(kprobe_instance, NULL); 370 } 371 372 /* 373 * This routine is called either: 374 * - under the 'kprobe_mutex' - during kprobe_[un]register(). 375 * OR 376 * - with preemption disabled - from architecture specific code. 377 */ 378 struct kprobe *get_kprobe(void *addr) 379 { 380 struct hlist_head *head; 381 struct kprobe *p; 382 383 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)]; 384 hlist_for_each_entry_rcu(p, head, hlist, 385 lockdep_is_held(&kprobe_mutex)) { 386 if (p->addr == addr) 387 return p; 388 } 389 390 return NULL; 391 } 392 NOKPROBE_SYMBOL(get_kprobe); 393 394 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs); 395 396 /* Return true if 'p' is an aggregator */ 397 static inline bool kprobe_aggrprobe(struct kprobe *p) 398 { 399 return p->pre_handler == aggr_pre_handler; 400 } 401 402 /* Return true if 'p' is unused */ 403 static inline bool kprobe_unused(struct kprobe *p) 404 { 405 return kprobe_aggrprobe(p) && kprobe_disabled(p) && 406 list_empty(&p->list); 407 } 408 409 /* Keep all fields in the kprobe consistent. */ 410 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p) 411 { 412 memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t)); 413 memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn)); 414 } 415 416 #ifdef CONFIG_OPTPROBES 417 /* NOTE: This is protected by 'kprobe_mutex'. */ 418 static bool kprobes_allow_optimization; 419 420 /* 421 * Call all 'kprobe::pre_handler' on the list, but ignores its return value. 422 * This must be called from arch-dep optimized caller. 423 */ 424 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs) 425 { 426 struct kprobe *kp; 427 428 list_for_each_entry_rcu(kp, &p->list, list) { 429 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 430 set_kprobe_instance(kp); 431 kp->pre_handler(kp, regs); 432 } 433 reset_kprobe_instance(); 434 } 435 } 436 NOKPROBE_SYMBOL(opt_pre_handler); 437 438 /* Free optimized instructions and optimized_kprobe */ 439 static void free_aggr_kprobe(struct kprobe *p) 440 { 441 struct optimized_kprobe *op; 442 443 op = container_of(p, struct optimized_kprobe, kp); 444 arch_remove_optimized_kprobe(op); 445 arch_remove_kprobe(p); 446 kfree(op); 447 } 448 449 /* Return true if the kprobe is ready for optimization. */ 450 static inline int kprobe_optready(struct kprobe *p) 451 { 452 struct optimized_kprobe *op; 453 454 if (kprobe_aggrprobe(p)) { 455 op = container_of(p, struct optimized_kprobe, kp); 456 return arch_prepared_optinsn(&op->optinsn); 457 } 458 459 return 0; 460 } 461 462 /* Return true if the kprobe is disarmed. Note: p must be on hash list */ 463 bool kprobe_disarmed(struct kprobe *p) 464 { 465 struct optimized_kprobe *op; 466 467 /* If kprobe is not aggr/opt probe, just return kprobe is disabled */ 468 if (!kprobe_aggrprobe(p)) 469 return kprobe_disabled(p); 470 471 op = container_of(p, struct optimized_kprobe, kp); 472 473 return kprobe_disabled(p) && list_empty(&op->list); 474 } 475 476 /* Return true if the probe is queued on (un)optimizing lists */ 477 static bool kprobe_queued(struct kprobe *p) 478 { 479 struct optimized_kprobe *op; 480 481 if (kprobe_aggrprobe(p)) { 482 op = container_of(p, struct optimized_kprobe, kp); 483 if (!list_empty(&op->list)) 484 return true; 485 } 486 return false; 487 } 488 489 /* 490 * Return an optimized kprobe whose optimizing code replaces 491 * instructions including 'addr' (exclude breakpoint). 492 */ 493 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr) 494 { 495 int i; 496 struct kprobe *p = NULL; 497 struct optimized_kprobe *op; 498 499 /* Don't check i == 0, since that is a breakpoint case. */ 500 for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++) 501 p = get_kprobe(addr - i); 502 503 if (p && kprobe_optready(p)) { 504 op = container_of(p, struct optimized_kprobe, kp); 505 if (arch_within_optimized_kprobe(op, addr)) 506 return p; 507 } 508 509 return NULL; 510 } 511 512 /* Optimization staging list, protected by 'kprobe_mutex' */ 513 static LIST_HEAD(optimizing_list); 514 static LIST_HEAD(unoptimizing_list); 515 static LIST_HEAD(freeing_list); 516 517 static void kprobe_optimizer(struct work_struct *work); 518 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer); 519 #define OPTIMIZE_DELAY 5 520 521 /* 522 * Optimize (replace a breakpoint with a jump) kprobes listed on 523 * 'optimizing_list'. 524 */ 525 static void do_optimize_kprobes(void) 526 { 527 lockdep_assert_held(&text_mutex); 528 /* 529 * The optimization/unoptimization refers 'online_cpus' via 530 * stop_machine() and cpu-hotplug modifies the 'online_cpus'. 531 * And same time, 'text_mutex' will be held in cpu-hotplug and here. 532 * This combination can cause a deadlock (cpu-hotplug tries to lock 533 * 'text_mutex' but stop_machine() can not be done because 534 * the 'online_cpus' has been changed) 535 * To avoid this deadlock, caller must have locked cpu-hotplug 536 * for preventing cpu-hotplug outside of 'text_mutex' locking. 537 */ 538 lockdep_assert_cpus_held(); 539 540 /* Optimization never be done when disarmed */ 541 if (kprobes_all_disarmed || !kprobes_allow_optimization || 542 list_empty(&optimizing_list)) 543 return; 544 545 arch_optimize_kprobes(&optimizing_list); 546 } 547 548 /* 549 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint 550 * if need) kprobes listed on 'unoptimizing_list'. 551 */ 552 static void do_unoptimize_kprobes(void) 553 { 554 struct optimized_kprobe *op, *tmp; 555 556 lockdep_assert_held(&text_mutex); 557 /* See comment in do_optimize_kprobes() */ 558 lockdep_assert_cpus_held(); 559 560 if (!list_empty(&unoptimizing_list)) 561 arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list); 562 563 /* Loop on 'freeing_list' for disarming and removing from kprobe hash list */ 564 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 565 /* Switching from detour code to origin */ 566 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 567 /* Disarm probes if marked disabled and not gone */ 568 if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp)) 569 arch_disarm_kprobe(&op->kp); 570 if (kprobe_unused(&op->kp)) { 571 /* 572 * Remove unused probes from hash list. After waiting 573 * for synchronization, these probes are reclaimed. 574 * (reclaiming is done by do_free_cleaned_kprobes().) 575 */ 576 hlist_del_rcu(&op->kp.hlist); 577 } else 578 list_del_init(&op->list); 579 } 580 } 581 582 /* Reclaim all kprobes on the 'freeing_list' */ 583 static void do_free_cleaned_kprobes(void) 584 { 585 struct optimized_kprobe *op, *tmp; 586 587 list_for_each_entry_safe(op, tmp, &freeing_list, list) { 588 list_del_init(&op->list); 589 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) { 590 /* 591 * This must not happen, but if there is a kprobe 592 * still in use, keep it on kprobes hash list. 593 */ 594 continue; 595 } 596 free_aggr_kprobe(&op->kp); 597 } 598 } 599 600 /* Start optimizer after OPTIMIZE_DELAY passed */ 601 static void kick_kprobe_optimizer(void) 602 { 603 schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY); 604 } 605 606 /* Kprobe jump optimizer */ 607 static void kprobe_optimizer(struct work_struct *work) 608 { 609 guard(mutex)(&kprobe_mutex); 610 611 scoped_guard(cpus_read_lock) { 612 guard(mutex)(&text_mutex); 613 614 /* 615 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed) 616 * kprobes before waiting for quiesence period. 617 */ 618 do_unoptimize_kprobes(); 619 620 /* 621 * Step 2: Wait for quiesence period to ensure all potentially 622 * preempted tasks to have normally scheduled. Because optprobe 623 * may modify multiple instructions, there is a chance that Nth 624 * instruction is preempted. In that case, such tasks can return 625 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it. 626 * Note that on non-preemptive kernel, this is transparently converted 627 * to synchronoze_sched() to wait for all interrupts to have completed. 628 */ 629 synchronize_rcu_tasks(); 630 631 /* Step 3: Optimize kprobes after quiesence period */ 632 do_optimize_kprobes(); 633 634 /* Step 4: Free cleaned kprobes after quiesence period */ 635 do_free_cleaned_kprobes(); 636 } 637 638 /* Step 5: Kick optimizer again if needed */ 639 if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) 640 kick_kprobe_optimizer(); 641 } 642 643 static void wait_for_kprobe_optimizer_locked(void) 644 { 645 lockdep_assert_held(&kprobe_mutex); 646 647 while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) { 648 mutex_unlock(&kprobe_mutex); 649 650 /* This will also make 'optimizing_work' execute immmediately */ 651 flush_delayed_work(&optimizing_work); 652 /* 'optimizing_work' might not have been queued yet, relax */ 653 cpu_relax(); 654 655 mutex_lock(&kprobe_mutex); 656 } 657 } 658 659 /* Wait for completing optimization and unoptimization */ 660 void wait_for_kprobe_optimizer(void) 661 { 662 guard(mutex)(&kprobe_mutex); 663 664 wait_for_kprobe_optimizer_locked(); 665 } 666 667 bool optprobe_queued_unopt(struct optimized_kprobe *op) 668 { 669 struct optimized_kprobe *_op; 670 671 list_for_each_entry(_op, &unoptimizing_list, list) { 672 if (op == _op) 673 return true; 674 } 675 676 return false; 677 } 678 679 /* Optimize kprobe if p is ready to be optimized */ 680 static void optimize_kprobe(struct kprobe *p) 681 { 682 struct optimized_kprobe *op; 683 684 /* Check if the kprobe is disabled or not ready for optimization. */ 685 if (!kprobe_optready(p) || !kprobes_allow_optimization || 686 (kprobe_disabled(p) || kprobes_all_disarmed)) 687 return; 688 689 /* kprobes with 'post_handler' can not be optimized */ 690 if (p->post_handler) 691 return; 692 693 op = container_of(p, struct optimized_kprobe, kp); 694 695 /* Check there is no other kprobes at the optimized instructions */ 696 if (arch_check_optimized_kprobe(op) < 0) 697 return; 698 699 /* Check if it is already optimized. */ 700 if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) { 701 if (optprobe_queued_unopt(op)) { 702 /* This is under unoptimizing. Just dequeue the probe */ 703 list_del_init(&op->list); 704 } 705 return; 706 } 707 op->kp.flags |= KPROBE_FLAG_OPTIMIZED; 708 709 /* 710 * On the 'unoptimizing_list' and 'optimizing_list', 711 * 'op' must have OPTIMIZED flag 712 */ 713 if (WARN_ON_ONCE(!list_empty(&op->list))) 714 return; 715 716 list_add(&op->list, &optimizing_list); 717 kick_kprobe_optimizer(); 718 } 719 720 /* Short cut to direct unoptimizing */ 721 static void force_unoptimize_kprobe(struct optimized_kprobe *op) 722 { 723 lockdep_assert_cpus_held(); 724 arch_unoptimize_kprobe(op); 725 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 726 } 727 728 /* Unoptimize a kprobe if p is optimized */ 729 static void unoptimize_kprobe(struct kprobe *p, bool force) 730 { 731 struct optimized_kprobe *op; 732 733 if (!kprobe_aggrprobe(p) || kprobe_disarmed(p)) 734 return; /* This is not an optprobe nor optimized */ 735 736 op = container_of(p, struct optimized_kprobe, kp); 737 if (!kprobe_optimized(p)) 738 return; 739 740 if (!list_empty(&op->list)) { 741 if (optprobe_queued_unopt(op)) { 742 /* Queued in unoptimizing queue */ 743 if (force) { 744 /* 745 * Forcibly unoptimize the kprobe here, and queue it 746 * in the freeing list for release afterwards. 747 */ 748 force_unoptimize_kprobe(op); 749 list_move(&op->list, &freeing_list); 750 } 751 } else { 752 /* Dequeue from the optimizing queue */ 753 list_del_init(&op->list); 754 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 755 } 756 return; 757 } 758 759 /* Optimized kprobe case */ 760 if (force) { 761 /* Forcibly update the code: this is a special case */ 762 force_unoptimize_kprobe(op); 763 } else { 764 list_add(&op->list, &unoptimizing_list); 765 kick_kprobe_optimizer(); 766 } 767 } 768 769 /* Cancel unoptimizing for reusing */ 770 static int reuse_unused_kprobe(struct kprobe *ap) 771 { 772 struct optimized_kprobe *op; 773 774 /* 775 * Unused kprobe MUST be on the way of delayed unoptimizing (means 776 * there is still a relative jump) and disabled. 777 */ 778 op = container_of(ap, struct optimized_kprobe, kp); 779 WARN_ON_ONCE(list_empty(&op->list)); 780 /* Enable the probe again */ 781 ap->flags &= ~KPROBE_FLAG_DISABLED; 782 /* Optimize it again. (remove from 'op->list') */ 783 if (!kprobe_optready(ap)) 784 return -EINVAL; 785 786 optimize_kprobe(ap); 787 return 0; 788 } 789 790 /* Remove optimized instructions */ 791 static void kill_optimized_kprobe(struct kprobe *p) 792 { 793 struct optimized_kprobe *op; 794 795 op = container_of(p, struct optimized_kprobe, kp); 796 if (!list_empty(&op->list)) 797 /* Dequeue from the (un)optimization queue */ 798 list_del_init(&op->list); 799 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED; 800 801 if (kprobe_unused(p)) { 802 /* 803 * Unused kprobe is on unoptimizing or freeing list. We move it 804 * to freeing_list and let the kprobe_optimizer() remove it from 805 * the kprobe hash list and free it. 806 */ 807 if (optprobe_queued_unopt(op)) 808 list_move(&op->list, &freeing_list); 809 } 810 811 /* Don't touch the code, because it is already freed. */ 812 arch_remove_optimized_kprobe(op); 813 } 814 815 static inline 816 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p) 817 { 818 if (!kprobe_ftrace(p)) 819 arch_prepare_optimized_kprobe(op, p); 820 } 821 822 /* Try to prepare optimized instructions */ 823 static void prepare_optimized_kprobe(struct kprobe *p) 824 { 825 struct optimized_kprobe *op; 826 827 op = container_of(p, struct optimized_kprobe, kp); 828 __prepare_optimized_kprobe(op, p); 829 } 830 831 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */ 832 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 833 { 834 struct optimized_kprobe *op; 835 836 op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL); 837 if (!op) 838 return NULL; 839 840 INIT_LIST_HEAD(&op->list); 841 op->kp.addr = p->addr; 842 __prepare_optimized_kprobe(op, p); 843 844 return &op->kp; 845 } 846 847 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p); 848 849 /* 850 * Prepare an optimized_kprobe and optimize it. 851 * NOTE: 'p' must be a normal registered kprobe. 852 */ 853 static void try_to_optimize_kprobe(struct kprobe *p) 854 { 855 struct kprobe *ap; 856 struct optimized_kprobe *op; 857 858 /* Impossible to optimize ftrace-based kprobe. */ 859 if (kprobe_ftrace(p)) 860 return; 861 862 /* For preparing optimization, jump_label_text_reserved() is called. */ 863 guard(cpus_read_lock)(); 864 guard(jump_label_lock)(); 865 guard(mutex)(&text_mutex); 866 867 ap = alloc_aggr_kprobe(p); 868 if (!ap) 869 return; 870 871 op = container_of(ap, struct optimized_kprobe, kp); 872 if (!arch_prepared_optinsn(&op->optinsn)) { 873 /* If failed to setup optimizing, fallback to kprobe. */ 874 arch_remove_optimized_kprobe(op); 875 kfree(op); 876 return; 877 } 878 879 init_aggr_kprobe(ap, p); 880 optimize_kprobe(ap); /* This just kicks optimizer thread. */ 881 } 882 883 static void optimize_all_kprobes(void) 884 { 885 struct hlist_head *head; 886 struct kprobe *p; 887 unsigned int i; 888 889 guard(mutex)(&kprobe_mutex); 890 /* If optimization is already allowed, just return. */ 891 if (kprobes_allow_optimization) 892 return; 893 894 cpus_read_lock(); 895 kprobes_allow_optimization = true; 896 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 897 head = &kprobe_table[i]; 898 hlist_for_each_entry(p, head, hlist) 899 if (!kprobe_disabled(p)) 900 optimize_kprobe(p); 901 } 902 cpus_read_unlock(); 903 pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n"); 904 } 905 906 #ifdef CONFIG_SYSCTL 907 static void unoptimize_all_kprobes(void) 908 { 909 struct hlist_head *head; 910 struct kprobe *p; 911 unsigned int i; 912 913 guard(mutex)(&kprobe_mutex); 914 /* If optimization is already prohibited, just return. */ 915 if (!kprobes_allow_optimization) 916 return; 917 918 cpus_read_lock(); 919 kprobes_allow_optimization = false; 920 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 921 head = &kprobe_table[i]; 922 hlist_for_each_entry(p, head, hlist) { 923 if (!kprobe_disabled(p)) 924 unoptimize_kprobe(p, false); 925 } 926 } 927 cpus_read_unlock(); 928 /* Wait for unoptimizing completion. */ 929 wait_for_kprobe_optimizer_locked(); 930 pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n"); 931 } 932 933 static DEFINE_MUTEX(kprobe_sysctl_mutex); 934 static int sysctl_kprobes_optimization; 935 static int proc_kprobes_optimization_handler(const struct ctl_table *table, 936 int write, void *buffer, 937 size_t *length, loff_t *ppos) 938 { 939 int ret; 940 941 guard(mutex)(&kprobe_sysctl_mutex); 942 sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0; 943 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 944 945 if (sysctl_kprobes_optimization) 946 optimize_all_kprobes(); 947 else 948 unoptimize_all_kprobes(); 949 950 return ret; 951 } 952 953 static const struct ctl_table kprobe_sysctls[] = { 954 { 955 .procname = "kprobes-optimization", 956 .data = &sysctl_kprobes_optimization, 957 .maxlen = sizeof(int), 958 .mode = 0644, 959 .proc_handler = proc_kprobes_optimization_handler, 960 .extra1 = SYSCTL_ZERO, 961 .extra2 = SYSCTL_ONE, 962 }, 963 }; 964 965 static void __init kprobe_sysctls_init(void) 966 { 967 register_sysctl_init("debug", kprobe_sysctls); 968 } 969 #endif /* CONFIG_SYSCTL */ 970 971 /* Put a breakpoint for a probe. */ 972 static void __arm_kprobe(struct kprobe *p) 973 { 974 struct kprobe *_p; 975 976 lockdep_assert_held(&text_mutex); 977 978 /* Find the overlapping optimized kprobes. */ 979 _p = get_optimized_kprobe(p->addr); 980 if (unlikely(_p)) 981 /* Fallback to unoptimized kprobe */ 982 unoptimize_kprobe(_p, true); 983 984 arch_arm_kprobe(p); 985 optimize_kprobe(p); /* Try to optimize (add kprobe to a list) */ 986 } 987 988 /* Remove the breakpoint of a probe. */ 989 static void __disarm_kprobe(struct kprobe *p, bool reopt) 990 { 991 struct kprobe *_p; 992 993 lockdep_assert_held(&text_mutex); 994 995 /* Try to unoptimize */ 996 unoptimize_kprobe(p, kprobes_all_disarmed); 997 998 if (!kprobe_queued(p)) { 999 arch_disarm_kprobe(p); 1000 /* If another kprobe was blocked, re-optimize it. */ 1001 _p = get_optimized_kprobe(p->addr); 1002 if (unlikely(_p) && reopt) 1003 optimize_kprobe(_p); 1004 } 1005 /* 1006 * TODO: Since unoptimization and real disarming will be done by 1007 * the worker thread, we can not check whether another probe are 1008 * unoptimized because of this probe here. It should be re-optimized 1009 * by the worker thread. 1010 */ 1011 } 1012 1013 #else /* !CONFIG_OPTPROBES */ 1014 1015 #define optimize_kprobe(p) do {} while (0) 1016 #define unoptimize_kprobe(p, f) do {} while (0) 1017 #define kill_optimized_kprobe(p) do {} while (0) 1018 #define prepare_optimized_kprobe(p) do {} while (0) 1019 #define try_to_optimize_kprobe(p) do {} while (0) 1020 #define __arm_kprobe(p) arch_arm_kprobe(p) 1021 #define __disarm_kprobe(p, o) arch_disarm_kprobe(p) 1022 #define kprobe_disarmed(p) kprobe_disabled(p) 1023 #define wait_for_kprobe_optimizer_locked() \ 1024 lockdep_assert_held(&kprobe_mutex) 1025 1026 static int reuse_unused_kprobe(struct kprobe *ap) 1027 { 1028 /* 1029 * If the optimized kprobe is NOT supported, the aggr kprobe is 1030 * released at the same time that the last aggregated kprobe is 1031 * unregistered. 1032 * Thus there should be no chance to reuse unused kprobe. 1033 */ 1034 WARN_ON_ONCE(1); 1035 return -EINVAL; 1036 } 1037 1038 static void free_aggr_kprobe(struct kprobe *p) 1039 { 1040 arch_remove_kprobe(p); 1041 kfree(p); 1042 } 1043 1044 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p) 1045 { 1046 return kzalloc(sizeof(struct kprobe), GFP_KERNEL); 1047 } 1048 #endif /* CONFIG_OPTPROBES */ 1049 1050 #ifdef CONFIG_KPROBES_ON_FTRACE 1051 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = { 1052 .func = kprobe_ftrace_handler, 1053 .flags = FTRACE_OPS_FL_SAVE_REGS, 1054 }; 1055 1056 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = { 1057 .func = kprobe_ftrace_handler, 1058 .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY, 1059 }; 1060 1061 static int kprobe_ipmodify_enabled; 1062 static int kprobe_ftrace_enabled; 1063 bool kprobe_ftrace_disabled; 1064 1065 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1066 int *cnt) 1067 { 1068 int ret; 1069 1070 lockdep_assert_held(&kprobe_mutex); 1071 1072 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0); 1073 if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret)) 1074 return ret; 1075 1076 if (*cnt == 0) { 1077 ret = register_ftrace_function(ops); 1078 if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret)) { 1079 /* 1080 * At this point, sinec ops is not registered, we should be sefe from 1081 * registering empty filter. 1082 */ 1083 ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1084 return ret; 1085 } 1086 } 1087 1088 (*cnt)++; 1089 return ret; 1090 } 1091 1092 static int arm_kprobe_ftrace(struct kprobe *p) 1093 { 1094 bool ipmodify = (p->post_handler != NULL); 1095 1096 return __arm_kprobe_ftrace(p, 1097 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1098 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1099 } 1100 1101 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops, 1102 int *cnt) 1103 { 1104 int ret; 1105 1106 lockdep_assert_held(&kprobe_mutex); 1107 1108 if (*cnt == 1) { 1109 ret = unregister_ftrace_function(ops); 1110 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret)) 1111 return ret; 1112 } 1113 1114 (*cnt)--; 1115 1116 ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0); 1117 WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n", 1118 p->addr, ret); 1119 return ret; 1120 } 1121 1122 static int disarm_kprobe_ftrace(struct kprobe *p) 1123 { 1124 bool ipmodify = (p->post_handler != NULL); 1125 1126 return __disarm_kprobe_ftrace(p, 1127 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops, 1128 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled); 1129 } 1130 1131 void kprobe_ftrace_kill(void) 1132 { 1133 kprobe_ftrace_disabled = true; 1134 } 1135 #else /* !CONFIG_KPROBES_ON_FTRACE */ 1136 static inline int arm_kprobe_ftrace(struct kprobe *p) 1137 { 1138 return -ENODEV; 1139 } 1140 1141 static inline int disarm_kprobe_ftrace(struct kprobe *p) 1142 { 1143 return -ENODEV; 1144 } 1145 #endif 1146 1147 static int prepare_kprobe(struct kprobe *p) 1148 { 1149 /* Must ensure p->addr is really on ftrace */ 1150 if (kprobe_ftrace(p)) 1151 return arch_prepare_kprobe_ftrace(p); 1152 1153 return arch_prepare_kprobe(p); 1154 } 1155 1156 static int arm_kprobe(struct kprobe *kp) 1157 { 1158 if (unlikely(kprobe_ftrace(kp))) 1159 return arm_kprobe_ftrace(kp); 1160 1161 guard(cpus_read_lock)(); 1162 guard(mutex)(&text_mutex); 1163 __arm_kprobe(kp); 1164 return 0; 1165 } 1166 1167 static int disarm_kprobe(struct kprobe *kp, bool reopt) 1168 { 1169 if (unlikely(kprobe_ftrace(kp))) 1170 return disarm_kprobe_ftrace(kp); 1171 1172 guard(cpus_read_lock)(); 1173 guard(mutex)(&text_mutex); 1174 __disarm_kprobe(kp, reopt); 1175 return 0; 1176 } 1177 1178 /* 1179 * Aggregate handlers for multiple kprobes support - these handlers 1180 * take care of invoking the individual kprobe handlers on p->list 1181 */ 1182 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs) 1183 { 1184 struct kprobe *kp; 1185 1186 list_for_each_entry_rcu(kp, &p->list, list) { 1187 if (kp->pre_handler && likely(!kprobe_disabled(kp))) { 1188 set_kprobe_instance(kp); 1189 if (kp->pre_handler(kp, regs)) 1190 return 1; 1191 } 1192 reset_kprobe_instance(); 1193 } 1194 return 0; 1195 } 1196 NOKPROBE_SYMBOL(aggr_pre_handler); 1197 1198 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs, 1199 unsigned long flags) 1200 { 1201 struct kprobe *kp; 1202 1203 list_for_each_entry_rcu(kp, &p->list, list) { 1204 if (kp->post_handler && likely(!kprobe_disabled(kp))) { 1205 set_kprobe_instance(kp); 1206 kp->post_handler(kp, regs, flags); 1207 reset_kprobe_instance(); 1208 } 1209 } 1210 } 1211 NOKPROBE_SYMBOL(aggr_post_handler); 1212 1213 /* Walks the list and increments 'nmissed' if 'p' has child probes. */ 1214 void kprobes_inc_nmissed_count(struct kprobe *p) 1215 { 1216 struct kprobe *kp; 1217 1218 if (!kprobe_aggrprobe(p)) { 1219 p->nmissed++; 1220 } else { 1221 list_for_each_entry_rcu(kp, &p->list, list) 1222 kp->nmissed++; 1223 } 1224 } 1225 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count); 1226 1227 static struct kprobe kprobe_busy = { 1228 .addr = (void *) get_kprobe, 1229 }; 1230 1231 void kprobe_busy_begin(void) 1232 { 1233 struct kprobe_ctlblk *kcb; 1234 1235 preempt_disable(); 1236 __this_cpu_write(current_kprobe, &kprobe_busy); 1237 kcb = get_kprobe_ctlblk(); 1238 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 1239 } 1240 1241 void kprobe_busy_end(void) 1242 { 1243 __this_cpu_write(current_kprobe, NULL); 1244 preempt_enable(); 1245 } 1246 1247 /* Add the new probe to 'ap->list'. */ 1248 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p) 1249 { 1250 if (p->post_handler) 1251 unoptimize_kprobe(ap, true); /* Fall back to normal kprobe */ 1252 1253 list_add_rcu(&p->list, &ap->list); 1254 if (p->post_handler && !ap->post_handler) 1255 ap->post_handler = aggr_post_handler; 1256 1257 return 0; 1258 } 1259 1260 /* 1261 * Fill in the required fields of the aggregator kprobe. Replace the 1262 * earlier kprobe in the hlist with the aggregator kprobe. 1263 */ 1264 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p) 1265 { 1266 /* Copy the insn slot of 'p' to 'ap'. */ 1267 copy_kprobe(p, ap); 1268 flush_insn_slot(ap); 1269 ap->addr = p->addr; 1270 ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED; 1271 ap->pre_handler = aggr_pre_handler; 1272 /* We don't care the kprobe which has gone. */ 1273 if (p->post_handler && !kprobe_gone(p)) 1274 ap->post_handler = aggr_post_handler; 1275 1276 INIT_LIST_HEAD(&ap->list); 1277 INIT_HLIST_NODE(&ap->hlist); 1278 1279 list_add_rcu(&p->list, &ap->list); 1280 hlist_replace_rcu(&p->hlist, &ap->hlist); 1281 } 1282 1283 /* 1284 * This registers the second or subsequent kprobe at the same address. 1285 */ 1286 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p) 1287 { 1288 int ret = 0; 1289 struct kprobe *ap = orig_p; 1290 1291 scoped_guard(cpus_read_lock) { 1292 /* For preparing optimization, jump_label_text_reserved() is called */ 1293 guard(jump_label_lock)(); 1294 guard(mutex)(&text_mutex); 1295 1296 if (!kprobe_aggrprobe(orig_p)) { 1297 /* If 'orig_p' is not an 'aggr_kprobe', create new one. */ 1298 ap = alloc_aggr_kprobe(orig_p); 1299 if (!ap) 1300 return -ENOMEM; 1301 init_aggr_kprobe(ap, orig_p); 1302 } else if (kprobe_unused(ap)) { 1303 /* This probe is going to die. Rescue it */ 1304 ret = reuse_unused_kprobe(ap); 1305 if (ret) 1306 return ret; 1307 } 1308 1309 if (kprobe_gone(ap)) { 1310 /* 1311 * Attempting to insert new probe at the same location that 1312 * had a probe in the module vaddr area which already 1313 * freed. So, the instruction slot has already been 1314 * released. We need a new slot for the new probe. 1315 */ 1316 ret = arch_prepare_kprobe(ap); 1317 if (ret) 1318 /* 1319 * Even if fail to allocate new slot, don't need to 1320 * free the 'ap'. It will be used next time, or 1321 * freed by unregister_kprobe(). 1322 */ 1323 return ret; 1324 1325 /* Prepare optimized instructions if possible. */ 1326 prepare_optimized_kprobe(ap); 1327 1328 /* 1329 * Clear gone flag to prevent allocating new slot again, and 1330 * set disabled flag because it is not armed yet. 1331 */ 1332 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE) 1333 | KPROBE_FLAG_DISABLED; 1334 } 1335 1336 /* Copy the insn slot of 'p' to 'ap'. */ 1337 copy_kprobe(ap, p); 1338 ret = add_new_kprobe(ap, p); 1339 } 1340 1341 if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) { 1342 ap->flags &= ~KPROBE_FLAG_DISABLED; 1343 if (!kprobes_all_disarmed) { 1344 /* Arm the breakpoint again. */ 1345 ret = arm_kprobe(ap); 1346 if (ret) { 1347 ap->flags |= KPROBE_FLAG_DISABLED; 1348 list_del_rcu(&p->list); 1349 synchronize_rcu(); 1350 } 1351 } 1352 } 1353 return ret; 1354 } 1355 1356 bool __weak arch_within_kprobe_blacklist(unsigned long addr) 1357 { 1358 /* The '__kprobes' functions and entry code must not be probed. */ 1359 return addr >= (unsigned long)__kprobes_text_start && 1360 addr < (unsigned long)__kprobes_text_end; 1361 } 1362 1363 static bool __within_kprobe_blacklist(unsigned long addr) 1364 { 1365 struct kprobe_blacklist_entry *ent; 1366 1367 if (arch_within_kprobe_blacklist(addr)) 1368 return true; 1369 /* 1370 * If 'kprobe_blacklist' is defined, check the address and 1371 * reject any probe registration in the prohibited area. 1372 */ 1373 list_for_each_entry(ent, &kprobe_blacklist, list) { 1374 if (addr >= ent->start_addr && addr < ent->end_addr) 1375 return true; 1376 } 1377 return false; 1378 } 1379 1380 bool within_kprobe_blacklist(unsigned long addr) 1381 { 1382 char symname[KSYM_NAME_LEN], *p; 1383 1384 if (__within_kprobe_blacklist(addr)) 1385 return true; 1386 1387 /* Check if the address is on a suffixed-symbol */ 1388 if (!lookup_symbol_name(addr, symname)) { 1389 p = strchr(symname, '.'); 1390 if (!p) 1391 return false; 1392 *p = '\0'; 1393 addr = (unsigned long)kprobe_lookup_name(symname, 0); 1394 if (addr) 1395 return __within_kprobe_blacklist(addr); 1396 } 1397 return false; 1398 } 1399 1400 /* 1401 * arch_adjust_kprobe_addr - adjust the address 1402 * @addr: symbol base address 1403 * @offset: offset within the symbol 1404 * @on_func_entry: was this @addr+@offset on the function entry 1405 * 1406 * Typically returns @addr + @offset, except for special cases where the 1407 * function might be prefixed by a CFI landing pad, in that case any offset 1408 * inside the landing pad is mapped to the first 'real' instruction of the 1409 * symbol. 1410 * 1411 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C 1412 * instruction at +0. 1413 */ 1414 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr, 1415 unsigned long offset, 1416 bool *on_func_entry) 1417 { 1418 *on_func_entry = !offset; 1419 return (kprobe_opcode_t *)(addr + offset); 1420 } 1421 1422 /* 1423 * If 'symbol_name' is specified, look it up and add the 'offset' 1424 * to it. This way, we can specify a relative address to a symbol. 1425 * This returns encoded errors if it fails to look up symbol or invalid 1426 * combination of parameters. 1427 */ 1428 static kprobe_opcode_t * 1429 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name, 1430 unsigned long offset, bool *on_func_entry) 1431 { 1432 if ((symbol_name && addr) || (!symbol_name && !addr)) 1433 return ERR_PTR(-EINVAL); 1434 1435 if (symbol_name) { 1436 /* 1437 * Input: @sym + @offset 1438 * Output: @addr + @offset 1439 * 1440 * NOTE: kprobe_lookup_name() does *NOT* fold the offset 1441 * argument into it's output! 1442 */ 1443 addr = kprobe_lookup_name(symbol_name, offset); 1444 if (!addr) 1445 return ERR_PTR(-ENOENT); 1446 } 1447 1448 /* 1449 * So here we have @addr + @offset, displace it into a new 1450 * @addr' + @offset' where @addr' is the symbol start address. 1451 */ 1452 addr = (void *)addr + offset; 1453 if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset)) 1454 return ERR_PTR(-ENOENT); 1455 addr = (void *)addr - offset; 1456 1457 /* 1458 * Then ask the architecture to re-combine them, taking care of 1459 * magical function entry details while telling us if this was indeed 1460 * at the start of the function. 1461 */ 1462 addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry); 1463 if (!addr) 1464 return ERR_PTR(-EINVAL); 1465 1466 return addr; 1467 } 1468 1469 static kprobe_opcode_t *kprobe_addr(struct kprobe *p) 1470 { 1471 bool on_func_entry; 1472 1473 return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); 1474 } 1475 1476 /* 1477 * Check the 'p' is valid and return the aggregator kprobe 1478 * at the same address. 1479 */ 1480 static struct kprobe *__get_valid_kprobe(struct kprobe *p) 1481 { 1482 struct kprobe *ap, *list_p; 1483 1484 lockdep_assert_held(&kprobe_mutex); 1485 1486 ap = get_kprobe(p->addr); 1487 if (unlikely(!ap)) 1488 return NULL; 1489 1490 if (p == ap) 1491 return ap; 1492 1493 list_for_each_entry(list_p, &ap->list, list) 1494 if (list_p == p) 1495 /* kprobe p is a valid probe */ 1496 return ap; 1497 1498 return NULL; 1499 } 1500 1501 /* 1502 * Warn and return error if the kprobe is being re-registered since 1503 * there must be a software bug. 1504 */ 1505 static inline int warn_kprobe_rereg(struct kprobe *p) 1506 { 1507 guard(mutex)(&kprobe_mutex); 1508 1509 if (WARN_ON_ONCE(__get_valid_kprobe(p))) 1510 return -EINVAL; 1511 1512 return 0; 1513 } 1514 1515 static int check_ftrace_location(struct kprobe *p) 1516 { 1517 unsigned long addr = (unsigned long)p->addr; 1518 1519 if (ftrace_location(addr) == addr) { 1520 #ifdef CONFIG_KPROBES_ON_FTRACE 1521 p->flags |= KPROBE_FLAG_FTRACE; 1522 #else 1523 return -EINVAL; 1524 #endif 1525 } 1526 return 0; 1527 } 1528 1529 static bool is_cfi_preamble_symbol(unsigned long addr) 1530 { 1531 char symbuf[KSYM_NAME_LEN]; 1532 1533 if (lookup_symbol_name(addr, symbuf)) 1534 return false; 1535 1536 return str_has_prefix(symbuf, "__cfi_") || 1537 str_has_prefix(symbuf, "__pfx_"); 1538 } 1539 1540 static int check_kprobe_address_safe(struct kprobe *p, 1541 struct module **probed_mod) 1542 { 1543 int ret; 1544 1545 ret = check_ftrace_location(p); 1546 if (ret) 1547 return ret; 1548 1549 guard(jump_label_lock)(); 1550 1551 /* Ensure the address is in a text area, and find a module if exists. */ 1552 *probed_mod = NULL; 1553 if (!core_kernel_text((unsigned long) p->addr)) { 1554 guard(rcu)(); 1555 *probed_mod = __module_text_address((unsigned long) p->addr); 1556 if (!(*probed_mod)) 1557 return -EINVAL; 1558 1559 /* 1560 * We must hold a refcount of the probed module while updating 1561 * its code to prohibit unexpected unloading. 1562 */ 1563 if (unlikely(!try_module_get(*probed_mod))) 1564 return -ENOENT; 1565 } 1566 /* Ensure it is not in reserved area. */ 1567 if (in_gate_area_no_mm((unsigned long) p->addr) || 1568 within_kprobe_blacklist((unsigned long) p->addr) || 1569 jump_label_text_reserved(p->addr, p->addr) || 1570 static_call_text_reserved(p->addr, p->addr) || 1571 find_bug((unsigned long)p->addr) || 1572 is_cfi_preamble_symbol((unsigned long)p->addr)) { 1573 module_put(*probed_mod); 1574 return -EINVAL; 1575 } 1576 1577 /* Get module refcount and reject __init functions for loaded modules. */ 1578 if (IS_ENABLED(CONFIG_MODULES) && *probed_mod) { 1579 /* 1580 * If the module freed '.init.text', we couldn't insert 1581 * kprobes in there. 1582 */ 1583 if (within_module_init((unsigned long)p->addr, *probed_mod) && 1584 !module_is_coming(*probed_mod)) { 1585 module_put(*probed_mod); 1586 return -ENOENT; 1587 } 1588 } 1589 1590 return 0; 1591 } 1592 1593 static int __register_kprobe(struct kprobe *p) 1594 { 1595 int ret; 1596 struct kprobe *old_p; 1597 1598 guard(mutex)(&kprobe_mutex); 1599 1600 old_p = get_kprobe(p->addr); 1601 if (old_p) 1602 /* Since this may unoptimize 'old_p', locking 'text_mutex'. */ 1603 return register_aggr_kprobe(old_p, p); 1604 1605 scoped_guard(cpus_read_lock) { 1606 /* Prevent text modification */ 1607 guard(mutex)(&text_mutex); 1608 ret = prepare_kprobe(p); 1609 if (ret) 1610 return ret; 1611 } 1612 1613 INIT_HLIST_NODE(&p->hlist); 1614 hlist_add_head_rcu(&p->hlist, 1615 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]); 1616 1617 if (!kprobes_all_disarmed && !kprobe_disabled(p)) { 1618 ret = arm_kprobe(p); 1619 if (ret) { 1620 hlist_del_rcu(&p->hlist); 1621 synchronize_rcu(); 1622 } 1623 } 1624 1625 /* Try to optimize kprobe */ 1626 try_to_optimize_kprobe(p); 1627 return 0; 1628 } 1629 1630 int register_kprobe(struct kprobe *p) 1631 { 1632 int ret; 1633 struct module *probed_mod; 1634 kprobe_opcode_t *addr; 1635 bool on_func_entry; 1636 1637 /* Canonicalize probe address from symbol */ 1638 addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry); 1639 if (IS_ERR(addr)) 1640 return PTR_ERR(addr); 1641 p->addr = addr; 1642 1643 ret = warn_kprobe_rereg(p); 1644 if (ret) 1645 return ret; 1646 1647 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */ 1648 p->flags &= KPROBE_FLAG_DISABLED; 1649 if (on_func_entry) 1650 p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY; 1651 p->nmissed = 0; 1652 INIT_LIST_HEAD(&p->list); 1653 1654 ret = check_kprobe_address_safe(p, &probed_mod); 1655 if (ret) 1656 return ret; 1657 1658 ret = __register_kprobe(p); 1659 1660 if (probed_mod) 1661 module_put(probed_mod); 1662 1663 return ret; 1664 } 1665 EXPORT_SYMBOL_GPL(register_kprobe); 1666 1667 /* Check if all probes on the 'ap' are disabled. */ 1668 static bool aggr_kprobe_disabled(struct kprobe *ap) 1669 { 1670 struct kprobe *kp; 1671 1672 lockdep_assert_held(&kprobe_mutex); 1673 1674 list_for_each_entry(kp, &ap->list, list) 1675 if (!kprobe_disabled(kp)) 1676 /* 1677 * Since there is an active probe on the list, 1678 * we can't disable this 'ap'. 1679 */ 1680 return false; 1681 1682 return true; 1683 } 1684 1685 static struct kprobe *__disable_kprobe(struct kprobe *p) 1686 { 1687 struct kprobe *orig_p; 1688 int ret; 1689 1690 lockdep_assert_held(&kprobe_mutex); 1691 1692 /* Get an original kprobe for return */ 1693 orig_p = __get_valid_kprobe(p); 1694 if (unlikely(orig_p == NULL)) 1695 return ERR_PTR(-EINVAL); 1696 1697 if (kprobe_disabled(p)) 1698 return orig_p; 1699 1700 /* Disable probe if it is a child probe */ 1701 if (p != orig_p) 1702 p->flags |= KPROBE_FLAG_DISABLED; 1703 1704 /* Try to disarm and disable this/parent probe */ 1705 if (p == orig_p || aggr_kprobe_disabled(orig_p)) { 1706 /* 1707 * Don't be lazy here. Even if 'kprobes_all_disarmed' 1708 * is false, 'orig_p' might not have been armed yet. 1709 * Note arm_all_kprobes() __tries__ to arm all kprobes 1710 * on the best effort basis. 1711 */ 1712 if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) { 1713 ret = disarm_kprobe(orig_p, true); 1714 if (ret) { 1715 p->flags &= ~KPROBE_FLAG_DISABLED; 1716 return ERR_PTR(ret); 1717 } 1718 } 1719 orig_p->flags |= KPROBE_FLAG_DISABLED; 1720 } 1721 1722 return orig_p; 1723 } 1724 1725 /* 1726 * Unregister a kprobe without a scheduler synchronization. 1727 */ 1728 static int __unregister_kprobe_top(struct kprobe *p) 1729 { 1730 struct kprobe *ap, *list_p; 1731 1732 /* Disable kprobe. This will disarm it if needed. */ 1733 ap = __disable_kprobe(p); 1734 if (IS_ERR(ap)) 1735 return PTR_ERR(ap); 1736 1737 WARN_ON(ap != p && !kprobe_aggrprobe(ap)); 1738 1739 /* 1740 * If the probe is an independent(and non-optimized) kprobe 1741 * (not an aggrprobe), the last kprobe on the aggrprobe, or 1742 * kprobe is already disarmed, just remove from the hash list. 1743 */ 1744 if (ap == p || 1745 (list_is_singular(&ap->list) && kprobe_disarmed(ap))) { 1746 /* 1747 * !disarmed could be happen if the probe is under delayed 1748 * unoptimizing. 1749 */ 1750 hlist_del_rcu(&ap->hlist); 1751 return 0; 1752 } 1753 1754 /* If disabling probe has special handlers, update aggrprobe */ 1755 if (p->post_handler && !kprobe_gone(p)) { 1756 list_for_each_entry(list_p, &ap->list, list) { 1757 if ((list_p != p) && (list_p->post_handler)) 1758 break; 1759 } 1760 /* No other probe has post_handler */ 1761 if (list_entry_is_head(list_p, &ap->list, list)) { 1762 /* 1763 * For the kprobe-on-ftrace case, we keep the 1764 * post_handler setting to identify this aggrprobe 1765 * armed with kprobe_ipmodify_ops. 1766 */ 1767 if (!kprobe_ftrace(ap)) 1768 ap->post_handler = NULL; 1769 } 1770 } 1771 1772 /* 1773 * Remove from the aggrprobe: this path will do nothing in 1774 * __unregister_kprobe_bottom(). 1775 */ 1776 list_del_rcu(&p->list); 1777 if (!kprobe_disabled(ap) && !kprobes_all_disarmed) 1778 /* 1779 * Try to optimize this probe again, because post 1780 * handler may have been changed. 1781 */ 1782 optimize_kprobe(ap); 1783 return 0; 1784 1785 } 1786 1787 static void __unregister_kprobe_bottom(struct kprobe *p) 1788 { 1789 struct kprobe *ap; 1790 1791 if (list_empty(&p->list)) 1792 /* This is an independent kprobe */ 1793 arch_remove_kprobe(p); 1794 else if (list_is_singular(&p->list)) { 1795 /* This is the last child of an aggrprobe */ 1796 ap = list_entry(p->list.next, struct kprobe, list); 1797 list_del(&p->list); 1798 free_aggr_kprobe(ap); 1799 } 1800 /* Otherwise, do nothing. */ 1801 } 1802 1803 int register_kprobes(struct kprobe **kps, int num) 1804 { 1805 int i, ret = 0; 1806 1807 if (num <= 0) 1808 return -EINVAL; 1809 for (i = 0; i < num; i++) { 1810 ret = register_kprobe(kps[i]); 1811 if (ret < 0) { 1812 if (i > 0) 1813 unregister_kprobes(kps, i); 1814 break; 1815 } 1816 } 1817 return ret; 1818 } 1819 EXPORT_SYMBOL_GPL(register_kprobes); 1820 1821 void unregister_kprobe(struct kprobe *p) 1822 { 1823 unregister_kprobes(&p, 1); 1824 } 1825 EXPORT_SYMBOL_GPL(unregister_kprobe); 1826 1827 void unregister_kprobes(struct kprobe **kps, int num) 1828 { 1829 int i; 1830 1831 if (num <= 0) 1832 return; 1833 scoped_guard(mutex, &kprobe_mutex) { 1834 for (i = 0; i < num; i++) 1835 if (__unregister_kprobe_top(kps[i]) < 0) 1836 kps[i]->addr = NULL; 1837 } 1838 synchronize_rcu(); 1839 for (i = 0; i < num; i++) 1840 if (kps[i]->addr) 1841 __unregister_kprobe_bottom(kps[i]); 1842 } 1843 EXPORT_SYMBOL_GPL(unregister_kprobes); 1844 1845 int __weak kprobe_exceptions_notify(struct notifier_block *self, 1846 unsigned long val, void *data) 1847 { 1848 return NOTIFY_DONE; 1849 } 1850 NOKPROBE_SYMBOL(kprobe_exceptions_notify); 1851 1852 static struct notifier_block kprobe_exceptions_nb = { 1853 .notifier_call = kprobe_exceptions_notify, 1854 .priority = 0x7fffffff /* we need to be notified first */ 1855 }; 1856 1857 #ifdef CONFIG_KRETPROBES 1858 1859 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK) 1860 1861 /* callbacks for objpool of kretprobe instances */ 1862 static int kretprobe_init_inst(void *nod, void *context) 1863 { 1864 struct kretprobe_instance *ri = nod; 1865 1866 ri->rph = context; 1867 return 0; 1868 } 1869 static int kretprobe_fini_pool(struct objpool_head *head, void *context) 1870 { 1871 kfree(context); 1872 return 0; 1873 } 1874 1875 static void free_rp_inst_rcu(struct rcu_head *head) 1876 { 1877 struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu); 1878 struct kretprobe_holder *rph = ri->rph; 1879 1880 objpool_drop(ri, &rph->pool); 1881 } 1882 NOKPROBE_SYMBOL(free_rp_inst_rcu); 1883 1884 static void recycle_rp_inst(struct kretprobe_instance *ri) 1885 { 1886 struct kretprobe *rp = get_kretprobe(ri); 1887 1888 if (likely(rp)) 1889 objpool_push(ri, &rp->rph->pool); 1890 else 1891 call_rcu(&ri->rcu, free_rp_inst_rcu); 1892 } 1893 NOKPROBE_SYMBOL(recycle_rp_inst); 1894 1895 /* 1896 * This function is called from delayed_put_task_struct() when a task is 1897 * dead and cleaned up to recycle any kretprobe instances associated with 1898 * this task. These left over instances represent probed functions that 1899 * have been called but will never return. 1900 */ 1901 void kprobe_flush_task(struct task_struct *tk) 1902 { 1903 struct kretprobe_instance *ri; 1904 struct llist_node *node; 1905 1906 /* Early boot, not yet initialized. */ 1907 if (unlikely(!kprobes_initialized)) 1908 return; 1909 1910 kprobe_busy_begin(); 1911 1912 node = __llist_del_all(&tk->kretprobe_instances); 1913 while (node) { 1914 ri = container_of(node, struct kretprobe_instance, llist); 1915 node = node->next; 1916 1917 recycle_rp_inst(ri); 1918 } 1919 1920 kprobe_busy_end(); 1921 } 1922 NOKPROBE_SYMBOL(kprobe_flush_task); 1923 1924 static inline void free_rp_inst(struct kretprobe *rp) 1925 { 1926 struct kretprobe_holder *rph = rp->rph; 1927 1928 if (!rph) 1929 return; 1930 rp->rph = NULL; 1931 objpool_fini(&rph->pool); 1932 } 1933 1934 /* This assumes the 'tsk' is the current task or the is not running. */ 1935 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk, 1936 struct llist_node **cur) 1937 { 1938 struct kretprobe_instance *ri = NULL; 1939 struct llist_node *node = *cur; 1940 1941 if (!node) 1942 node = tsk->kretprobe_instances.first; 1943 else 1944 node = node->next; 1945 1946 while (node) { 1947 ri = container_of(node, struct kretprobe_instance, llist); 1948 if (ri->ret_addr != kretprobe_trampoline_addr()) { 1949 *cur = node; 1950 return ri->ret_addr; 1951 } 1952 node = node->next; 1953 } 1954 return NULL; 1955 } 1956 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr); 1957 1958 /** 1959 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe 1960 * @tsk: Target task 1961 * @fp: A frame pointer 1962 * @cur: a storage of the loop cursor llist_node pointer for next call 1963 * 1964 * Find the correct return address modified by a kretprobe on @tsk in unsigned 1965 * long type. If it finds the return address, this returns that address value, 1966 * or this returns 0. 1967 * The @tsk must be 'current' or a task which is not running. @fp is a hint 1968 * to get the currect return address - which is compared with the 1969 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the 1970 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the 1971 * first call, but '@cur' itself must NOT NULL. 1972 */ 1973 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp, 1974 struct llist_node **cur) 1975 { 1976 struct kretprobe_instance *ri; 1977 kprobe_opcode_t *ret; 1978 1979 if (WARN_ON_ONCE(!cur)) 1980 return 0; 1981 1982 do { 1983 ret = __kretprobe_find_ret_addr(tsk, cur); 1984 if (!ret) 1985 break; 1986 ri = container_of(*cur, struct kretprobe_instance, llist); 1987 } while (ri->fp != fp); 1988 1989 return (unsigned long)ret; 1990 } 1991 NOKPROBE_SYMBOL(kretprobe_find_ret_addr); 1992 1993 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs, 1994 kprobe_opcode_t *correct_ret_addr) 1995 { 1996 /* 1997 * Do nothing by default. Please fill this to update the fake return 1998 * address on the stack with the correct one on each arch if possible. 1999 */ 2000 } 2001 2002 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs, 2003 void *frame_pointer) 2004 { 2005 struct kretprobe_instance *ri = NULL; 2006 struct llist_node *first, *node = NULL; 2007 kprobe_opcode_t *correct_ret_addr; 2008 struct kretprobe *rp; 2009 2010 /* Find correct address and all nodes for this frame. */ 2011 correct_ret_addr = __kretprobe_find_ret_addr(current, &node); 2012 if (!correct_ret_addr) { 2013 pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n"); 2014 BUG_ON(1); 2015 } 2016 2017 /* 2018 * Set the return address as the instruction pointer, because if the 2019 * user handler calls stack_trace_save_regs() with this 'regs', 2020 * the stack trace will start from the instruction pointer. 2021 */ 2022 instruction_pointer_set(regs, (unsigned long)correct_ret_addr); 2023 2024 /* Run the user handler of the nodes. */ 2025 first = current->kretprobe_instances.first; 2026 while (first) { 2027 ri = container_of(first, struct kretprobe_instance, llist); 2028 2029 if (WARN_ON_ONCE(ri->fp != frame_pointer)) 2030 break; 2031 2032 rp = get_kretprobe(ri); 2033 if (rp && rp->handler) { 2034 struct kprobe *prev = kprobe_running(); 2035 2036 __this_cpu_write(current_kprobe, &rp->kp); 2037 ri->ret_addr = correct_ret_addr; 2038 rp->handler(ri, regs); 2039 __this_cpu_write(current_kprobe, prev); 2040 } 2041 if (first == node) 2042 break; 2043 2044 first = first->next; 2045 } 2046 2047 arch_kretprobe_fixup_return(regs, correct_ret_addr); 2048 2049 /* Unlink all nodes for this frame. */ 2050 first = current->kretprobe_instances.first; 2051 current->kretprobe_instances.first = node->next; 2052 node->next = NULL; 2053 2054 /* Recycle free instances. */ 2055 while (first) { 2056 ri = container_of(first, struct kretprobe_instance, llist); 2057 first = first->next; 2058 2059 recycle_rp_inst(ri); 2060 } 2061 2062 return (unsigned long)correct_ret_addr; 2063 } 2064 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler) 2065 2066 /* 2067 * This kprobe pre_handler is registered with every kretprobe. When probe 2068 * hits it will set up the return probe. 2069 */ 2070 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2071 { 2072 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 2073 struct kretprobe_holder *rph = rp->rph; 2074 struct kretprobe_instance *ri; 2075 2076 ri = objpool_pop(&rph->pool); 2077 if (!ri) { 2078 rp->nmissed++; 2079 return 0; 2080 } 2081 2082 if (rp->entry_handler && rp->entry_handler(ri, regs)) { 2083 objpool_push(ri, &rph->pool); 2084 return 0; 2085 } 2086 2087 arch_prepare_kretprobe(ri, regs); 2088 2089 __llist_add(&ri->llist, ¤t->kretprobe_instances); 2090 2091 return 0; 2092 } 2093 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2094 #else /* CONFIG_KRETPROBE_ON_RETHOOK */ 2095 /* 2096 * This kprobe pre_handler is registered with every kretprobe. When probe 2097 * hits it will set up the return probe. 2098 */ 2099 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2100 { 2101 struct kretprobe *rp = container_of(p, struct kretprobe, kp); 2102 struct kretprobe_instance *ri; 2103 struct rethook_node *rhn; 2104 2105 rhn = rethook_try_get(rp->rh); 2106 if (!rhn) { 2107 rp->nmissed++; 2108 return 0; 2109 } 2110 2111 ri = container_of(rhn, struct kretprobe_instance, node); 2112 2113 if (rp->entry_handler && rp->entry_handler(ri, regs)) 2114 rethook_recycle(rhn); 2115 else 2116 rethook_hook(rhn, regs, kprobe_ftrace(p)); 2117 2118 return 0; 2119 } 2120 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2121 2122 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data, 2123 unsigned long ret_addr, 2124 struct pt_regs *regs) 2125 { 2126 struct kretprobe *rp = (struct kretprobe *)data; 2127 struct kretprobe_instance *ri; 2128 struct kprobe_ctlblk *kcb; 2129 2130 /* The data must NOT be null. This means rethook data structure is broken. */ 2131 if (WARN_ON_ONCE(!data) || !rp->handler) 2132 return; 2133 2134 __this_cpu_write(current_kprobe, &rp->kp); 2135 kcb = get_kprobe_ctlblk(); 2136 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 2137 2138 ri = container_of(rh, struct kretprobe_instance, node); 2139 rp->handler(ri, regs); 2140 2141 __this_cpu_write(current_kprobe, NULL); 2142 } 2143 NOKPROBE_SYMBOL(kretprobe_rethook_handler); 2144 2145 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */ 2146 2147 /** 2148 * kprobe_on_func_entry() -- check whether given address is function entry 2149 * @addr: Target address 2150 * @sym: Target symbol name 2151 * @offset: The offset from the symbol or the address 2152 * 2153 * This checks whether the given @addr+@offset or @sym+@offset is on the 2154 * function entry address or not. 2155 * This returns 0 if it is the function entry, or -EINVAL if it is not. 2156 * And also it returns -ENOENT if it fails the symbol or address lookup. 2157 * Caller must pass @addr or @sym (either one must be NULL), or this 2158 * returns -EINVAL. 2159 */ 2160 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset) 2161 { 2162 bool on_func_entry; 2163 kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry); 2164 2165 if (IS_ERR(kp_addr)) 2166 return PTR_ERR(kp_addr); 2167 2168 if (!on_func_entry) 2169 return -EINVAL; 2170 2171 return 0; 2172 } 2173 2174 int register_kretprobe(struct kretprobe *rp) 2175 { 2176 int ret; 2177 int i; 2178 void *addr; 2179 2180 ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset); 2181 if (ret) 2182 return ret; 2183 2184 /* If only 'rp->kp.addr' is specified, check reregistering kprobes */ 2185 if (rp->kp.addr && warn_kprobe_rereg(&rp->kp)) 2186 return -EINVAL; 2187 2188 if (kretprobe_blacklist_size) { 2189 addr = kprobe_addr(&rp->kp); 2190 if (IS_ERR(addr)) 2191 return PTR_ERR(addr); 2192 2193 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2194 if (kretprobe_blacklist[i].addr == addr) 2195 return -EINVAL; 2196 } 2197 } 2198 2199 if (rp->data_size > KRETPROBE_MAX_DATA_SIZE) 2200 return -E2BIG; 2201 2202 rp->kp.pre_handler = pre_handler_kretprobe; 2203 rp->kp.post_handler = NULL; 2204 2205 /* Pre-allocate memory for max kretprobe instances */ 2206 if (rp->maxactive <= 0) 2207 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus()); 2208 2209 #ifdef CONFIG_KRETPROBE_ON_RETHOOK 2210 rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler, 2211 sizeof(struct kretprobe_instance) + 2212 rp->data_size, rp->maxactive); 2213 if (IS_ERR(rp->rh)) 2214 return PTR_ERR(rp->rh); 2215 2216 rp->nmissed = 0; 2217 /* Establish function entry probe point */ 2218 ret = register_kprobe(&rp->kp); 2219 if (ret != 0) { 2220 rethook_free(rp->rh); 2221 rp->rh = NULL; 2222 } 2223 #else /* !CONFIG_KRETPROBE_ON_RETHOOK */ 2224 rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL); 2225 if (!rp->rph) 2226 return -ENOMEM; 2227 2228 if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size + 2229 sizeof(struct kretprobe_instance), GFP_KERNEL, 2230 rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) { 2231 kfree(rp->rph); 2232 rp->rph = NULL; 2233 return -ENOMEM; 2234 } 2235 rcu_assign_pointer(rp->rph->rp, rp); 2236 rp->nmissed = 0; 2237 /* Establish function entry probe point */ 2238 ret = register_kprobe(&rp->kp); 2239 if (ret != 0) 2240 free_rp_inst(rp); 2241 #endif 2242 return ret; 2243 } 2244 EXPORT_SYMBOL_GPL(register_kretprobe); 2245 2246 int register_kretprobes(struct kretprobe **rps, int num) 2247 { 2248 int ret = 0, i; 2249 2250 if (num <= 0) 2251 return -EINVAL; 2252 for (i = 0; i < num; i++) { 2253 ret = register_kretprobe(rps[i]); 2254 if (ret < 0) { 2255 if (i > 0) 2256 unregister_kretprobes(rps, i); 2257 break; 2258 } 2259 } 2260 return ret; 2261 } 2262 EXPORT_SYMBOL_GPL(register_kretprobes); 2263 2264 void unregister_kretprobe(struct kretprobe *rp) 2265 { 2266 unregister_kretprobes(&rp, 1); 2267 } 2268 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2269 2270 void unregister_kretprobes(struct kretprobe **rps, int num) 2271 { 2272 int i; 2273 2274 if (num <= 0) 2275 return; 2276 for (i = 0; i < num; i++) { 2277 guard(mutex)(&kprobe_mutex); 2278 2279 if (__unregister_kprobe_top(&rps[i]->kp) < 0) 2280 rps[i]->kp.addr = NULL; 2281 #ifdef CONFIG_KRETPROBE_ON_RETHOOK 2282 rethook_free(rps[i]->rh); 2283 #else 2284 rcu_assign_pointer(rps[i]->rph->rp, NULL); 2285 #endif 2286 } 2287 2288 synchronize_rcu(); 2289 for (i = 0; i < num; i++) { 2290 if (rps[i]->kp.addr) { 2291 __unregister_kprobe_bottom(&rps[i]->kp); 2292 #ifndef CONFIG_KRETPROBE_ON_RETHOOK 2293 free_rp_inst(rps[i]); 2294 #endif 2295 } 2296 } 2297 } 2298 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2299 2300 #else /* CONFIG_KRETPROBES */ 2301 int register_kretprobe(struct kretprobe *rp) 2302 { 2303 return -EOPNOTSUPP; 2304 } 2305 EXPORT_SYMBOL_GPL(register_kretprobe); 2306 2307 int register_kretprobes(struct kretprobe **rps, int num) 2308 { 2309 return -EOPNOTSUPP; 2310 } 2311 EXPORT_SYMBOL_GPL(register_kretprobes); 2312 2313 void unregister_kretprobe(struct kretprobe *rp) 2314 { 2315 } 2316 EXPORT_SYMBOL_GPL(unregister_kretprobe); 2317 2318 void unregister_kretprobes(struct kretprobe **rps, int num) 2319 { 2320 } 2321 EXPORT_SYMBOL_GPL(unregister_kretprobes); 2322 2323 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs) 2324 { 2325 return 0; 2326 } 2327 NOKPROBE_SYMBOL(pre_handler_kretprobe); 2328 2329 #endif /* CONFIG_KRETPROBES */ 2330 2331 /* Set the kprobe gone and remove its instruction buffer. */ 2332 static void kill_kprobe(struct kprobe *p) 2333 { 2334 struct kprobe *kp; 2335 2336 lockdep_assert_held(&kprobe_mutex); 2337 2338 /* 2339 * The module is going away. We should disarm the kprobe which 2340 * is using ftrace, because ftrace framework is still available at 2341 * 'MODULE_STATE_GOING' notification. 2342 */ 2343 if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed) 2344 disarm_kprobe_ftrace(p); 2345 2346 p->flags |= KPROBE_FLAG_GONE; 2347 if (kprobe_aggrprobe(p)) { 2348 /* 2349 * If this is an aggr_kprobe, we have to list all the 2350 * chained probes and mark them GONE. 2351 */ 2352 list_for_each_entry(kp, &p->list, list) 2353 kp->flags |= KPROBE_FLAG_GONE; 2354 p->post_handler = NULL; 2355 kill_optimized_kprobe(p); 2356 } 2357 /* 2358 * Here, we can remove insn_slot safely, because no thread calls 2359 * the original probed function (which will be freed soon) any more. 2360 */ 2361 arch_remove_kprobe(p); 2362 } 2363 2364 /* Disable one kprobe */ 2365 int disable_kprobe(struct kprobe *kp) 2366 { 2367 struct kprobe *p; 2368 2369 guard(mutex)(&kprobe_mutex); 2370 2371 /* Disable this kprobe */ 2372 p = __disable_kprobe(kp); 2373 2374 return IS_ERR(p) ? PTR_ERR(p) : 0; 2375 } 2376 EXPORT_SYMBOL_GPL(disable_kprobe); 2377 2378 /* Enable one kprobe */ 2379 int enable_kprobe(struct kprobe *kp) 2380 { 2381 int ret = 0; 2382 struct kprobe *p; 2383 2384 guard(mutex)(&kprobe_mutex); 2385 2386 /* Check whether specified probe is valid. */ 2387 p = __get_valid_kprobe(kp); 2388 if (unlikely(p == NULL)) 2389 return -EINVAL; 2390 2391 if (kprobe_gone(kp)) 2392 /* This kprobe has gone, we couldn't enable it. */ 2393 return -EINVAL; 2394 2395 if (p != kp) 2396 kp->flags &= ~KPROBE_FLAG_DISABLED; 2397 2398 if (!kprobes_all_disarmed && kprobe_disabled(p)) { 2399 p->flags &= ~KPROBE_FLAG_DISABLED; 2400 ret = arm_kprobe(p); 2401 if (ret) { 2402 p->flags |= KPROBE_FLAG_DISABLED; 2403 if (p != kp) 2404 kp->flags |= KPROBE_FLAG_DISABLED; 2405 } 2406 } 2407 return ret; 2408 } 2409 EXPORT_SYMBOL_GPL(enable_kprobe); 2410 2411 /* Caller must NOT call this in usual path. This is only for critical case */ 2412 void dump_kprobe(struct kprobe *kp) 2413 { 2414 pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n", 2415 kp->symbol_name, kp->offset, kp->addr); 2416 } 2417 NOKPROBE_SYMBOL(dump_kprobe); 2418 2419 int kprobe_add_ksym_blacklist(unsigned long entry) 2420 { 2421 struct kprobe_blacklist_entry *ent; 2422 unsigned long offset = 0, size = 0; 2423 2424 if (!kernel_text_address(entry) || 2425 !kallsyms_lookup_size_offset(entry, &size, &offset)) 2426 return -EINVAL; 2427 2428 ent = kmalloc(sizeof(*ent), GFP_KERNEL); 2429 if (!ent) 2430 return -ENOMEM; 2431 ent->start_addr = entry; 2432 ent->end_addr = entry + size; 2433 INIT_LIST_HEAD(&ent->list); 2434 list_add_tail(&ent->list, &kprobe_blacklist); 2435 2436 return (int)size; 2437 } 2438 2439 /* Add all symbols in given area into kprobe blacklist */ 2440 int kprobe_add_area_blacklist(unsigned long start, unsigned long end) 2441 { 2442 unsigned long entry; 2443 int ret = 0; 2444 2445 for (entry = start; entry < end; entry += ret) { 2446 ret = kprobe_add_ksym_blacklist(entry); 2447 if (ret < 0) 2448 return ret; 2449 if (ret == 0) /* In case of alias symbol */ 2450 ret = 1; 2451 } 2452 return 0; 2453 } 2454 2455 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value, 2456 char *type, char *sym) 2457 { 2458 return -ERANGE; 2459 } 2460 2461 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 2462 char *sym) 2463 { 2464 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT 2465 if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym)) 2466 return 0; 2467 #ifdef CONFIG_OPTPROBES 2468 if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym)) 2469 return 0; 2470 #endif 2471 #endif 2472 if (!arch_kprobe_get_kallsym(&symnum, value, type, sym)) 2473 return 0; 2474 return -ERANGE; 2475 } 2476 2477 int __init __weak arch_populate_kprobe_blacklist(void) 2478 { 2479 return 0; 2480 } 2481 2482 /* 2483 * Lookup and populate the kprobe_blacklist. 2484 * 2485 * Unlike the kretprobe blacklist, we'll need to determine 2486 * the range of addresses that belong to the said functions, 2487 * since a kprobe need not necessarily be at the beginning 2488 * of a function. 2489 */ 2490 static int __init populate_kprobe_blacklist(unsigned long *start, 2491 unsigned long *end) 2492 { 2493 unsigned long entry; 2494 unsigned long *iter; 2495 int ret; 2496 2497 for (iter = start; iter < end; iter++) { 2498 entry = (unsigned long)dereference_symbol_descriptor((void *)*iter); 2499 ret = kprobe_add_ksym_blacklist(entry); 2500 if (ret == -EINVAL) 2501 continue; 2502 if (ret < 0) 2503 return ret; 2504 } 2505 2506 /* Symbols in '__kprobes_text' are blacklisted */ 2507 ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start, 2508 (unsigned long)__kprobes_text_end); 2509 if (ret) 2510 return ret; 2511 2512 /* Symbols in 'noinstr' section are blacklisted */ 2513 ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start, 2514 (unsigned long)__noinstr_text_end); 2515 2516 return ret ? : arch_populate_kprobe_blacklist(); 2517 } 2518 2519 #ifdef CONFIG_MODULES 2520 /* Remove all symbols in given area from kprobe blacklist */ 2521 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end) 2522 { 2523 struct kprobe_blacklist_entry *ent, *n; 2524 2525 list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) { 2526 if (ent->start_addr < start || ent->start_addr >= end) 2527 continue; 2528 list_del(&ent->list); 2529 kfree(ent); 2530 } 2531 } 2532 2533 static void kprobe_remove_ksym_blacklist(unsigned long entry) 2534 { 2535 kprobe_remove_area_blacklist(entry, entry + 1); 2536 } 2537 2538 static void add_module_kprobe_blacklist(struct module *mod) 2539 { 2540 unsigned long start, end; 2541 int i; 2542 2543 if (mod->kprobe_blacklist) { 2544 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2545 kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]); 2546 } 2547 2548 start = (unsigned long)mod->kprobes_text_start; 2549 if (start) { 2550 end = start + mod->kprobes_text_size; 2551 kprobe_add_area_blacklist(start, end); 2552 } 2553 2554 start = (unsigned long)mod->noinstr_text_start; 2555 if (start) { 2556 end = start + mod->noinstr_text_size; 2557 kprobe_add_area_blacklist(start, end); 2558 } 2559 } 2560 2561 static void remove_module_kprobe_blacklist(struct module *mod) 2562 { 2563 unsigned long start, end; 2564 int i; 2565 2566 if (mod->kprobe_blacklist) { 2567 for (i = 0; i < mod->num_kprobe_blacklist; i++) 2568 kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]); 2569 } 2570 2571 start = (unsigned long)mod->kprobes_text_start; 2572 if (start) { 2573 end = start + mod->kprobes_text_size; 2574 kprobe_remove_area_blacklist(start, end); 2575 } 2576 2577 start = (unsigned long)mod->noinstr_text_start; 2578 if (start) { 2579 end = start + mod->noinstr_text_size; 2580 kprobe_remove_area_blacklist(start, end); 2581 } 2582 } 2583 2584 /* Module notifier call back, checking kprobes on the module */ 2585 static int kprobes_module_callback(struct notifier_block *nb, 2586 unsigned long val, void *data) 2587 { 2588 struct module *mod = data; 2589 struct hlist_head *head; 2590 struct kprobe *p; 2591 unsigned int i; 2592 int checkcore = (val == MODULE_STATE_GOING); 2593 2594 guard(mutex)(&kprobe_mutex); 2595 2596 if (val == MODULE_STATE_COMING) 2597 add_module_kprobe_blacklist(mod); 2598 2599 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE) 2600 return NOTIFY_DONE; 2601 2602 /* 2603 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and 2604 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was 2605 * notified, only '.init.text' section would be freed. We need to 2606 * disable kprobes which have been inserted in the sections. 2607 */ 2608 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2609 head = &kprobe_table[i]; 2610 hlist_for_each_entry(p, head, hlist) 2611 if (within_module_init((unsigned long)p->addr, mod) || 2612 (checkcore && 2613 within_module_core((unsigned long)p->addr, mod))) { 2614 /* 2615 * The vaddr this probe is installed will soon 2616 * be vfreed buy not synced to disk. Hence, 2617 * disarming the breakpoint isn't needed. 2618 * 2619 * Note, this will also move any optimized probes 2620 * that are pending to be removed from their 2621 * corresponding lists to the 'freeing_list' and 2622 * will not be touched by the delayed 2623 * kprobe_optimizer() work handler. 2624 */ 2625 kill_kprobe(p); 2626 } 2627 } 2628 if (val == MODULE_STATE_GOING) 2629 remove_module_kprobe_blacklist(mod); 2630 return NOTIFY_DONE; 2631 } 2632 2633 static struct notifier_block kprobe_module_nb = { 2634 .notifier_call = kprobes_module_callback, 2635 .priority = 0 2636 }; 2637 2638 static int kprobe_register_module_notifier(void) 2639 { 2640 return register_module_notifier(&kprobe_module_nb); 2641 } 2642 #else 2643 static int kprobe_register_module_notifier(void) 2644 { 2645 return 0; 2646 } 2647 #endif /* CONFIG_MODULES */ 2648 2649 void kprobe_free_init_mem(void) 2650 { 2651 void *start = (void *)(&__init_begin); 2652 void *end = (void *)(&__init_end); 2653 struct hlist_head *head; 2654 struct kprobe *p; 2655 int i; 2656 2657 guard(mutex)(&kprobe_mutex); 2658 2659 /* Kill all kprobes on initmem because the target code has been freed. */ 2660 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2661 head = &kprobe_table[i]; 2662 hlist_for_each_entry(p, head, hlist) { 2663 if (start <= (void *)p->addr && (void *)p->addr < end) 2664 kill_kprobe(p); 2665 } 2666 } 2667 } 2668 2669 static int __init init_kprobes(void) 2670 { 2671 int i, err; 2672 2673 /* FIXME allocate the probe table, currently defined statically */ 2674 /* initialize all list heads */ 2675 for (i = 0; i < KPROBE_TABLE_SIZE; i++) 2676 INIT_HLIST_HEAD(&kprobe_table[i]); 2677 2678 err = populate_kprobe_blacklist(__start_kprobe_blacklist, 2679 __stop_kprobe_blacklist); 2680 if (err) 2681 pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err); 2682 2683 if (kretprobe_blacklist_size) { 2684 /* lookup the function address from its name */ 2685 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) { 2686 kretprobe_blacklist[i].addr = 2687 kprobe_lookup_name(kretprobe_blacklist[i].name, 0); 2688 if (!kretprobe_blacklist[i].addr) 2689 pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n", 2690 kretprobe_blacklist[i].name); 2691 } 2692 } 2693 2694 /* By default, kprobes are armed */ 2695 kprobes_all_disarmed = false; 2696 2697 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT) 2698 /* Init 'kprobe_optinsn_slots' for allocation */ 2699 kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE; 2700 #endif 2701 2702 err = arch_init_kprobes(); 2703 if (!err) 2704 err = register_die_notifier(&kprobe_exceptions_nb); 2705 if (!err) 2706 err = kprobe_register_module_notifier(); 2707 2708 kprobes_initialized = (err == 0); 2709 kprobe_sysctls_init(); 2710 return err; 2711 } 2712 early_initcall(init_kprobes); 2713 2714 #if defined(CONFIG_OPTPROBES) 2715 static int __init init_optprobes(void) 2716 { 2717 /* 2718 * Enable kprobe optimization - this kicks the optimizer which 2719 * depends on synchronize_rcu_tasks() and ksoftirqd, that is 2720 * not spawned in early initcall. So delay the optimization. 2721 */ 2722 optimize_all_kprobes(); 2723 2724 return 0; 2725 } 2726 subsys_initcall(init_optprobes); 2727 #endif 2728 2729 #ifdef CONFIG_DEBUG_FS 2730 static void report_probe(struct seq_file *pi, struct kprobe *p, 2731 const char *sym, int offset, char *modname, struct kprobe *pp) 2732 { 2733 char *kprobe_type; 2734 void *addr = p->addr; 2735 2736 if (p->pre_handler == pre_handler_kretprobe) 2737 kprobe_type = "r"; 2738 else 2739 kprobe_type = "k"; 2740 2741 if (!kallsyms_show_value(pi->file->f_cred)) 2742 addr = NULL; 2743 2744 if (sym) 2745 seq_printf(pi, "%px %s %s+0x%x %s ", 2746 addr, kprobe_type, sym, offset, 2747 (modname ? modname : " ")); 2748 else /* try to use %pS */ 2749 seq_printf(pi, "%px %s %pS ", 2750 addr, kprobe_type, p->addr); 2751 2752 if (!pp) 2753 pp = p; 2754 seq_printf(pi, "%s%s%s%s\n", 2755 (kprobe_gone(p) ? "[GONE]" : ""), 2756 ((kprobe_disabled(p) && !kprobe_gone(p)) ? "[DISABLED]" : ""), 2757 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""), 2758 (kprobe_ftrace(pp) ? "[FTRACE]" : "")); 2759 } 2760 2761 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos) 2762 { 2763 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL; 2764 } 2765 2766 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos) 2767 { 2768 (*pos)++; 2769 if (*pos >= KPROBE_TABLE_SIZE) 2770 return NULL; 2771 return pos; 2772 } 2773 2774 static void kprobe_seq_stop(struct seq_file *f, void *v) 2775 { 2776 /* Nothing to do */ 2777 } 2778 2779 static int show_kprobe_addr(struct seq_file *pi, void *v) 2780 { 2781 struct hlist_head *head; 2782 struct kprobe *p, *kp; 2783 const char *sym; 2784 unsigned int i = *(loff_t *) v; 2785 unsigned long offset = 0; 2786 char *modname, namebuf[KSYM_NAME_LEN]; 2787 2788 head = &kprobe_table[i]; 2789 preempt_disable(); 2790 hlist_for_each_entry_rcu(p, head, hlist) { 2791 sym = kallsyms_lookup((unsigned long)p->addr, NULL, 2792 &offset, &modname, namebuf); 2793 if (kprobe_aggrprobe(p)) { 2794 list_for_each_entry_rcu(kp, &p->list, list) 2795 report_probe(pi, kp, sym, offset, modname, p); 2796 } else 2797 report_probe(pi, p, sym, offset, modname, NULL); 2798 } 2799 preempt_enable(); 2800 return 0; 2801 } 2802 2803 static const struct seq_operations kprobes_sops = { 2804 .start = kprobe_seq_start, 2805 .next = kprobe_seq_next, 2806 .stop = kprobe_seq_stop, 2807 .show = show_kprobe_addr 2808 }; 2809 2810 DEFINE_SEQ_ATTRIBUTE(kprobes); 2811 2812 /* kprobes/blacklist -- shows which functions can not be probed */ 2813 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos) 2814 { 2815 mutex_lock(&kprobe_mutex); 2816 return seq_list_start(&kprobe_blacklist, *pos); 2817 } 2818 2819 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos) 2820 { 2821 return seq_list_next(v, &kprobe_blacklist, pos); 2822 } 2823 2824 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v) 2825 { 2826 struct kprobe_blacklist_entry *ent = 2827 list_entry(v, struct kprobe_blacklist_entry, list); 2828 2829 /* 2830 * If '/proc/kallsyms' is not showing kernel address, we won't 2831 * show them here either. 2832 */ 2833 if (!kallsyms_show_value(m->file->f_cred)) 2834 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL, 2835 (void *)ent->start_addr); 2836 else 2837 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr, 2838 (void *)ent->end_addr, (void *)ent->start_addr); 2839 return 0; 2840 } 2841 2842 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v) 2843 { 2844 mutex_unlock(&kprobe_mutex); 2845 } 2846 2847 static const struct seq_operations kprobe_blacklist_sops = { 2848 .start = kprobe_blacklist_seq_start, 2849 .next = kprobe_blacklist_seq_next, 2850 .stop = kprobe_blacklist_seq_stop, 2851 .show = kprobe_blacklist_seq_show, 2852 }; 2853 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist); 2854 2855 static int arm_all_kprobes(void) 2856 { 2857 struct hlist_head *head; 2858 struct kprobe *p; 2859 unsigned int i, total = 0, errors = 0; 2860 int err, ret = 0; 2861 2862 guard(mutex)(&kprobe_mutex); 2863 2864 /* If kprobes are armed, just return */ 2865 if (!kprobes_all_disarmed) 2866 return 0; 2867 2868 /* 2869 * optimize_kprobe() called by arm_kprobe() checks 2870 * kprobes_all_disarmed, so set kprobes_all_disarmed before 2871 * arm_kprobe. 2872 */ 2873 kprobes_all_disarmed = false; 2874 /* Arming kprobes doesn't optimize kprobe itself */ 2875 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2876 head = &kprobe_table[i]; 2877 /* Arm all kprobes on a best-effort basis */ 2878 hlist_for_each_entry(p, head, hlist) { 2879 if (!kprobe_disabled(p)) { 2880 err = arm_kprobe(p); 2881 if (err) { 2882 errors++; 2883 ret = err; 2884 } 2885 total++; 2886 } 2887 } 2888 } 2889 2890 if (errors) 2891 pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n", 2892 errors, total); 2893 else 2894 pr_info("Kprobes globally enabled\n"); 2895 2896 return ret; 2897 } 2898 2899 static int disarm_all_kprobes(void) 2900 { 2901 struct hlist_head *head; 2902 struct kprobe *p; 2903 unsigned int i, total = 0, errors = 0; 2904 int err, ret = 0; 2905 2906 guard(mutex)(&kprobe_mutex); 2907 2908 /* If kprobes are already disarmed, just return */ 2909 if (kprobes_all_disarmed) 2910 return 0; 2911 2912 kprobes_all_disarmed = true; 2913 2914 for (i = 0; i < KPROBE_TABLE_SIZE; i++) { 2915 head = &kprobe_table[i]; 2916 /* Disarm all kprobes on a best-effort basis */ 2917 hlist_for_each_entry(p, head, hlist) { 2918 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) { 2919 err = disarm_kprobe(p, false); 2920 if (err) { 2921 errors++; 2922 ret = err; 2923 } 2924 total++; 2925 } 2926 } 2927 } 2928 2929 if (errors) 2930 pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n", 2931 errors, total); 2932 else 2933 pr_info("Kprobes globally disabled\n"); 2934 2935 /* Wait for disarming all kprobes by optimizer */ 2936 wait_for_kprobe_optimizer_locked(); 2937 return ret; 2938 } 2939 2940 /* 2941 * XXX: The debugfs bool file interface doesn't allow for callbacks 2942 * when the bool state is switched. We can reuse that facility when 2943 * available 2944 */ 2945 static ssize_t read_enabled_file_bool(struct file *file, 2946 char __user *user_buf, size_t count, loff_t *ppos) 2947 { 2948 char buf[3]; 2949 2950 if (!kprobes_all_disarmed) 2951 buf[0] = '1'; 2952 else 2953 buf[0] = '0'; 2954 buf[1] = '\n'; 2955 buf[2] = 0x00; 2956 return simple_read_from_buffer(user_buf, count, ppos, buf, 2); 2957 } 2958 2959 static ssize_t write_enabled_file_bool(struct file *file, 2960 const char __user *user_buf, size_t count, loff_t *ppos) 2961 { 2962 bool enable; 2963 int ret; 2964 2965 ret = kstrtobool_from_user(user_buf, count, &enable); 2966 if (ret) 2967 return ret; 2968 2969 ret = enable ? arm_all_kprobes() : disarm_all_kprobes(); 2970 if (ret) 2971 return ret; 2972 2973 return count; 2974 } 2975 2976 static const struct file_operations fops_kp = { 2977 .read = read_enabled_file_bool, 2978 .write = write_enabled_file_bool, 2979 .llseek = default_llseek, 2980 }; 2981 2982 static int __init debugfs_kprobe_init(void) 2983 { 2984 struct dentry *dir; 2985 2986 dir = debugfs_create_dir("kprobes", NULL); 2987 2988 debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops); 2989 2990 debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp); 2991 2992 debugfs_create_file("blacklist", 0400, dir, NULL, 2993 &kprobe_blacklist_fops); 2994 2995 return 0; 2996 } 2997 2998 late_initcall(debugfs_kprobe_init); 2999 #endif /* CONFIG_DEBUG_FS */ 3000