xref: /linux/kernel/kprobes.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *		Probes initial implementation (includes suggestions from
10  *		Rusty Russell).
11  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *		hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *		interface to access function arguments.
15  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *		exceptions notifier to be first on the priority list.
17  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *		<prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
43 
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46 
47 
48 static int kprobes_initialized;
49 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
50 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
51 
52 /* NOTE: change this value only with kprobe_mutex held */
53 static bool kprobes_all_disarmed;
54 
55 /* This protects kprobe_table and optimizing_list */
56 static DEFINE_MUTEX(kprobe_mutex);
57 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
58 static struct {
59 	raw_spinlock_t lock ____cacheline_aligned_in_smp;
60 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
61 
62 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
63 					unsigned int __unused)
64 {
65 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
66 }
67 
68 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
69 {
70 	return &(kretprobe_table_locks[hash].lock);
71 }
72 
73 /* Blacklist -- list of struct kprobe_blacklist_entry */
74 static LIST_HEAD(kprobe_blacklist);
75 
76 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
77 /*
78  * kprobe->ainsn.insn points to the copy of the instruction to be
79  * single-stepped. x86_64, POWER4 and above have no-exec support and
80  * stepping on the instruction on a vmalloced/kmalloced/data page
81  * is a recipe for disaster
82  */
83 struct kprobe_insn_page {
84 	struct list_head list;
85 	kprobe_opcode_t *insns;		/* Page of instruction slots */
86 	struct kprobe_insn_cache *cache;
87 	int nused;
88 	int ngarbage;
89 	char slot_used[];
90 };
91 
92 #define KPROBE_INSN_PAGE_SIZE(slots)			\
93 	(offsetof(struct kprobe_insn_page, slot_used) +	\
94 	 (sizeof(char) * (slots)))
95 
96 static int slots_per_page(struct kprobe_insn_cache *c)
97 {
98 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
99 }
100 
101 enum kprobe_slot_state {
102 	SLOT_CLEAN = 0,
103 	SLOT_DIRTY = 1,
104 	SLOT_USED = 2,
105 };
106 
107 void __weak *alloc_insn_page(void)
108 {
109 	return module_alloc(PAGE_SIZE);
110 }
111 
112 void __weak free_insn_page(void *page)
113 {
114 	module_memfree(page);
115 }
116 
117 struct kprobe_insn_cache kprobe_insn_slots = {
118 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
119 	.alloc = alloc_insn_page,
120 	.free = free_insn_page,
121 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
122 	.insn_size = MAX_INSN_SIZE,
123 	.nr_garbage = 0,
124 };
125 static int collect_garbage_slots(struct kprobe_insn_cache *c);
126 
127 /**
128  * __get_insn_slot() - Find a slot on an executable page for an instruction.
129  * We allocate an executable page if there's no room on existing ones.
130  */
131 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
132 {
133 	struct kprobe_insn_page *kip;
134 	kprobe_opcode_t *slot = NULL;
135 
136 	/* Since the slot array is not protected by rcu, we need a mutex */
137 	mutex_lock(&c->mutex);
138  retry:
139 	rcu_read_lock();
140 	list_for_each_entry_rcu(kip, &c->pages, list) {
141 		if (kip->nused < slots_per_page(c)) {
142 			int i;
143 			for (i = 0; i < slots_per_page(c); i++) {
144 				if (kip->slot_used[i] == SLOT_CLEAN) {
145 					kip->slot_used[i] = SLOT_USED;
146 					kip->nused++;
147 					slot = kip->insns + (i * c->insn_size);
148 					rcu_read_unlock();
149 					goto out;
150 				}
151 			}
152 			/* kip->nused is broken. Fix it. */
153 			kip->nused = slots_per_page(c);
154 			WARN_ON(1);
155 		}
156 	}
157 	rcu_read_unlock();
158 
159 	/* If there are any garbage slots, collect it and try again. */
160 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
161 		goto retry;
162 
163 	/* All out of space.  Need to allocate a new page. */
164 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
165 	if (!kip)
166 		goto out;
167 
168 	/*
169 	 * Use module_alloc so this page is within +/- 2GB of where the
170 	 * kernel image and loaded module images reside. This is required
171 	 * so x86_64 can correctly handle the %rip-relative fixups.
172 	 */
173 	kip->insns = c->alloc();
174 	if (!kip->insns) {
175 		kfree(kip);
176 		goto out;
177 	}
178 	INIT_LIST_HEAD(&kip->list);
179 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
180 	kip->slot_used[0] = SLOT_USED;
181 	kip->nused = 1;
182 	kip->ngarbage = 0;
183 	kip->cache = c;
184 	list_add_rcu(&kip->list, &c->pages);
185 	slot = kip->insns;
186 out:
187 	mutex_unlock(&c->mutex);
188 	return slot;
189 }
190 
191 /* Return 1 if all garbages are collected, otherwise 0. */
192 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
193 {
194 	kip->slot_used[idx] = SLOT_CLEAN;
195 	kip->nused--;
196 	if (kip->nused == 0) {
197 		/*
198 		 * Page is no longer in use.  Free it unless
199 		 * it's the last one.  We keep the last one
200 		 * so as not to have to set it up again the
201 		 * next time somebody inserts a probe.
202 		 */
203 		if (!list_is_singular(&kip->list)) {
204 			list_del_rcu(&kip->list);
205 			synchronize_rcu();
206 			kip->cache->free(kip->insns);
207 			kfree(kip);
208 		}
209 		return 1;
210 	}
211 	return 0;
212 }
213 
214 static int collect_garbage_slots(struct kprobe_insn_cache *c)
215 {
216 	struct kprobe_insn_page *kip, *next;
217 
218 	/* Ensure no-one is interrupted on the garbages */
219 	synchronize_rcu();
220 
221 	list_for_each_entry_safe(kip, next, &c->pages, list) {
222 		int i;
223 		if (kip->ngarbage == 0)
224 			continue;
225 		kip->ngarbage = 0;	/* we will collect all garbages */
226 		for (i = 0; i < slots_per_page(c); i++) {
227 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
228 				break;
229 		}
230 	}
231 	c->nr_garbage = 0;
232 	return 0;
233 }
234 
235 void __free_insn_slot(struct kprobe_insn_cache *c,
236 		      kprobe_opcode_t *slot, int dirty)
237 {
238 	struct kprobe_insn_page *kip;
239 	long idx;
240 
241 	mutex_lock(&c->mutex);
242 	rcu_read_lock();
243 	list_for_each_entry_rcu(kip, &c->pages, list) {
244 		idx = ((long)slot - (long)kip->insns) /
245 			(c->insn_size * sizeof(kprobe_opcode_t));
246 		if (idx >= 0 && idx < slots_per_page(c))
247 			goto out;
248 	}
249 	/* Could not find this slot. */
250 	WARN_ON(1);
251 	kip = NULL;
252 out:
253 	rcu_read_unlock();
254 	/* Mark and sweep: this may sleep */
255 	if (kip) {
256 		/* Check double free */
257 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
258 		if (dirty) {
259 			kip->slot_used[idx] = SLOT_DIRTY;
260 			kip->ngarbage++;
261 			if (++c->nr_garbage > slots_per_page(c))
262 				collect_garbage_slots(c);
263 		} else {
264 			collect_one_slot(kip, idx);
265 		}
266 	}
267 	mutex_unlock(&c->mutex);
268 }
269 
270 /*
271  * Check given address is on the page of kprobe instruction slots.
272  * This will be used for checking whether the address on a stack
273  * is on a text area or not.
274  */
275 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
276 {
277 	struct kprobe_insn_page *kip;
278 	bool ret = false;
279 
280 	rcu_read_lock();
281 	list_for_each_entry_rcu(kip, &c->pages, list) {
282 		if (addr >= (unsigned long)kip->insns &&
283 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
284 			ret = true;
285 			break;
286 		}
287 	}
288 	rcu_read_unlock();
289 
290 	return ret;
291 }
292 
293 #ifdef CONFIG_OPTPROBES
294 /* For optimized_kprobe buffer */
295 struct kprobe_insn_cache kprobe_optinsn_slots = {
296 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
297 	.alloc = alloc_insn_page,
298 	.free = free_insn_page,
299 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
300 	/* .insn_size is initialized later */
301 	.nr_garbage = 0,
302 };
303 #endif
304 #endif
305 
306 /* We have preemption disabled.. so it is safe to use __ versions */
307 static inline void set_kprobe_instance(struct kprobe *kp)
308 {
309 	__this_cpu_write(kprobe_instance, kp);
310 }
311 
312 static inline void reset_kprobe_instance(void)
313 {
314 	__this_cpu_write(kprobe_instance, NULL);
315 }
316 
317 /*
318  * This routine is called either:
319  * 	- under the kprobe_mutex - during kprobe_[un]register()
320  * 				OR
321  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
322  */
323 struct kprobe *get_kprobe(void *addr)
324 {
325 	struct hlist_head *head;
326 	struct kprobe *p;
327 
328 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
329 	hlist_for_each_entry_rcu(p, head, hlist) {
330 		if (p->addr == addr)
331 			return p;
332 	}
333 
334 	return NULL;
335 }
336 NOKPROBE_SYMBOL(get_kprobe);
337 
338 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
339 
340 /* Return true if the kprobe is an aggregator */
341 static inline int kprobe_aggrprobe(struct kprobe *p)
342 {
343 	return p->pre_handler == aggr_pre_handler;
344 }
345 
346 /* Return true(!0) if the kprobe is unused */
347 static inline int kprobe_unused(struct kprobe *p)
348 {
349 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
350 	       list_empty(&p->list);
351 }
352 
353 /*
354  * Keep all fields in the kprobe consistent
355  */
356 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
357 {
358 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
359 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
360 }
361 
362 #ifdef CONFIG_OPTPROBES
363 /* NOTE: change this value only with kprobe_mutex held */
364 static bool kprobes_allow_optimization;
365 
366 /*
367  * Call all pre_handler on the list, but ignores its return value.
368  * This must be called from arch-dep optimized caller.
369  */
370 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
371 {
372 	struct kprobe *kp;
373 
374 	list_for_each_entry_rcu(kp, &p->list, list) {
375 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
376 			set_kprobe_instance(kp);
377 			kp->pre_handler(kp, regs);
378 		}
379 		reset_kprobe_instance();
380 	}
381 }
382 NOKPROBE_SYMBOL(opt_pre_handler);
383 
384 /* Free optimized instructions and optimized_kprobe */
385 static void free_aggr_kprobe(struct kprobe *p)
386 {
387 	struct optimized_kprobe *op;
388 
389 	op = container_of(p, struct optimized_kprobe, kp);
390 	arch_remove_optimized_kprobe(op);
391 	arch_remove_kprobe(p);
392 	kfree(op);
393 }
394 
395 /* Return true(!0) if the kprobe is ready for optimization. */
396 static inline int kprobe_optready(struct kprobe *p)
397 {
398 	struct optimized_kprobe *op;
399 
400 	if (kprobe_aggrprobe(p)) {
401 		op = container_of(p, struct optimized_kprobe, kp);
402 		return arch_prepared_optinsn(&op->optinsn);
403 	}
404 
405 	return 0;
406 }
407 
408 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
409 static inline int kprobe_disarmed(struct kprobe *p)
410 {
411 	struct optimized_kprobe *op;
412 
413 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
414 	if (!kprobe_aggrprobe(p))
415 		return kprobe_disabled(p);
416 
417 	op = container_of(p, struct optimized_kprobe, kp);
418 
419 	return kprobe_disabled(p) && list_empty(&op->list);
420 }
421 
422 /* Return true(!0) if the probe is queued on (un)optimizing lists */
423 static int kprobe_queued(struct kprobe *p)
424 {
425 	struct optimized_kprobe *op;
426 
427 	if (kprobe_aggrprobe(p)) {
428 		op = container_of(p, struct optimized_kprobe, kp);
429 		if (!list_empty(&op->list))
430 			return 1;
431 	}
432 	return 0;
433 }
434 
435 /*
436  * Return an optimized kprobe whose optimizing code replaces
437  * instructions including addr (exclude breakpoint).
438  */
439 static struct kprobe *get_optimized_kprobe(unsigned long addr)
440 {
441 	int i;
442 	struct kprobe *p = NULL;
443 	struct optimized_kprobe *op;
444 
445 	/* Don't check i == 0, since that is a breakpoint case. */
446 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
447 		p = get_kprobe((void *)(addr - i));
448 
449 	if (p && kprobe_optready(p)) {
450 		op = container_of(p, struct optimized_kprobe, kp);
451 		if (arch_within_optimized_kprobe(op, addr))
452 			return p;
453 	}
454 
455 	return NULL;
456 }
457 
458 /* Optimization staging list, protected by kprobe_mutex */
459 static LIST_HEAD(optimizing_list);
460 static LIST_HEAD(unoptimizing_list);
461 static LIST_HEAD(freeing_list);
462 
463 static void kprobe_optimizer(struct work_struct *work);
464 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
465 #define OPTIMIZE_DELAY 5
466 
467 /*
468  * Optimize (replace a breakpoint with a jump) kprobes listed on
469  * optimizing_list.
470  */
471 static void do_optimize_kprobes(void)
472 {
473 	lockdep_assert_held(&text_mutex);
474 	/*
475 	 * The optimization/unoptimization refers online_cpus via
476 	 * stop_machine() and cpu-hotplug modifies online_cpus.
477 	 * And same time, text_mutex will be held in cpu-hotplug and here.
478 	 * This combination can cause a deadlock (cpu-hotplug try to lock
479 	 * text_mutex but stop_machine can not be done because online_cpus
480 	 * has been changed)
481 	 * To avoid this deadlock, caller must have locked cpu hotplug
482 	 * for preventing cpu-hotplug outside of text_mutex locking.
483 	 */
484 	lockdep_assert_cpus_held();
485 
486 	/* Optimization never be done when disarmed */
487 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
488 	    list_empty(&optimizing_list))
489 		return;
490 
491 	arch_optimize_kprobes(&optimizing_list);
492 }
493 
494 /*
495  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
496  * if need) kprobes listed on unoptimizing_list.
497  */
498 static void do_unoptimize_kprobes(void)
499 {
500 	struct optimized_kprobe *op, *tmp;
501 
502 	lockdep_assert_held(&text_mutex);
503 	/* See comment in do_optimize_kprobes() */
504 	lockdep_assert_cpus_held();
505 
506 	/* Unoptimization must be done anytime */
507 	if (list_empty(&unoptimizing_list))
508 		return;
509 
510 	arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
511 	/* Loop free_list for disarming */
512 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
513 		/* Switching from detour code to origin */
514 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
515 		/* Disarm probes if marked disabled */
516 		if (kprobe_disabled(&op->kp))
517 			arch_disarm_kprobe(&op->kp);
518 		if (kprobe_unused(&op->kp)) {
519 			/*
520 			 * Remove unused probes from hash list. After waiting
521 			 * for synchronization, these probes are reclaimed.
522 			 * (reclaiming is done by do_free_cleaned_kprobes.)
523 			 */
524 			hlist_del_rcu(&op->kp.hlist);
525 		} else
526 			list_del_init(&op->list);
527 	}
528 }
529 
530 /* Reclaim all kprobes on the free_list */
531 static void do_free_cleaned_kprobes(void)
532 {
533 	struct optimized_kprobe *op, *tmp;
534 
535 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
536 		list_del_init(&op->list);
537 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
538 			/*
539 			 * This must not happen, but if there is a kprobe
540 			 * still in use, keep it on kprobes hash list.
541 			 */
542 			continue;
543 		}
544 		free_aggr_kprobe(&op->kp);
545 	}
546 }
547 
548 /* Start optimizer after OPTIMIZE_DELAY passed */
549 static void kick_kprobe_optimizer(void)
550 {
551 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
552 }
553 
554 /* Kprobe jump optimizer */
555 static void kprobe_optimizer(struct work_struct *work)
556 {
557 	mutex_lock(&kprobe_mutex);
558 	cpus_read_lock();
559 	mutex_lock(&text_mutex);
560 	/* Lock modules while optimizing kprobes */
561 	mutex_lock(&module_mutex);
562 
563 	/*
564 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
565 	 * kprobes before waiting for quiesence period.
566 	 */
567 	do_unoptimize_kprobes();
568 
569 	/*
570 	 * Step 2: Wait for quiesence period to ensure all potentially
571 	 * preempted tasks to have normally scheduled. Because optprobe
572 	 * may modify multiple instructions, there is a chance that Nth
573 	 * instruction is preempted. In that case, such tasks can return
574 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
575 	 * Note that on non-preemptive kernel, this is transparently converted
576 	 * to synchronoze_sched() to wait for all interrupts to have completed.
577 	 */
578 	synchronize_rcu_tasks();
579 
580 	/* Step 3: Optimize kprobes after quiesence period */
581 	do_optimize_kprobes();
582 
583 	/* Step 4: Free cleaned kprobes after quiesence period */
584 	do_free_cleaned_kprobes();
585 
586 	mutex_unlock(&module_mutex);
587 	mutex_unlock(&text_mutex);
588 	cpus_read_unlock();
589 	mutex_unlock(&kprobe_mutex);
590 
591 	/* Step 5: Kick optimizer again if needed */
592 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
593 		kick_kprobe_optimizer();
594 }
595 
596 /* Wait for completing optimization and unoptimization */
597 void wait_for_kprobe_optimizer(void)
598 {
599 	mutex_lock(&kprobe_mutex);
600 
601 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
602 		mutex_unlock(&kprobe_mutex);
603 
604 		/* this will also make optimizing_work execute immmediately */
605 		flush_delayed_work(&optimizing_work);
606 		/* @optimizing_work might not have been queued yet, relax */
607 		cpu_relax();
608 
609 		mutex_lock(&kprobe_mutex);
610 	}
611 
612 	mutex_unlock(&kprobe_mutex);
613 }
614 
615 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
616 {
617 	struct optimized_kprobe *_op;
618 
619 	list_for_each_entry(_op, &unoptimizing_list, list) {
620 		if (op == _op)
621 			return true;
622 	}
623 
624 	return false;
625 }
626 
627 /* Optimize kprobe if p is ready to be optimized */
628 static void optimize_kprobe(struct kprobe *p)
629 {
630 	struct optimized_kprobe *op;
631 
632 	/* Check if the kprobe is disabled or not ready for optimization. */
633 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
634 	    (kprobe_disabled(p) || kprobes_all_disarmed))
635 		return;
636 
637 	/* kprobes with post_handler can not be optimized */
638 	if (p->post_handler)
639 		return;
640 
641 	op = container_of(p, struct optimized_kprobe, kp);
642 
643 	/* Check there is no other kprobes at the optimized instructions */
644 	if (arch_check_optimized_kprobe(op) < 0)
645 		return;
646 
647 	/* Check if it is already optimized. */
648 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
649 		if (optprobe_queued_unopt(op)) {
650 			/* This is under unoptimizing. Just dequeue the probe */
651 			list_del_init(&op->list);
652 		}
653 		return;
654 	}
655 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
656 
657 	/* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
658 	if (WARN_ON_ONCE(!list_empty(&op->list)))
659 		return;
660 
661 	list_add(&op->list, &optimizing_list);
662 	kick_kprobe_optimizer();
663 }
664 
665 /* Short cut to direct unoptimizing */
666 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
667 {
668 	lockdep_assert_cpus_held();
669 	arch_unoptimize_kprobe(op);
670 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
671 	if (kprobe_disabled(&op->kp))
672 		arch_disarm_kprobe(&op->kp);
673 }
674 
675 /* Unoptimize a kprobe if p is optimized */
676 static void unoptimize_kprobe(struct kprobe *p, bool force)
677 {
678 	struct optimized_kprobe *op;
679 
680 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
681 		return; /* This is not an optprobe nor optimized */
682 
683 	op = container_of(p, struct optimized_kprobe, kp);
684 	if (!kprobe_optimized(p))
685 		return;
686 
687 	if (!list_empty(&op->list)) {
688 		if (optprobe_queued_unopt(op)) {
689 			/* Queued in unoptimizing queue */
690 			if (force) {
691 				/*
692 				 * Forcibly unoptimize the kprobe here, and queue it
693 				 * in the freeing list for release afterwards.
694 				 */
695 				force_unoptimize_kprobe(op);
696 				list_move(&op->list, &freeing_list);
697 			}
698 		} else {
699 			/* Dequeue from the optimizing queue */
700 			list_del_init(&op->list);
701 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
702 		}
703 		return;
704 	}
705 
706 	/* Optimized kprobe case */
707 	if (force) {
708 		/* Forcibly update the code: this is a special case */
709 		force_unoptimize_kprobe(op);
710 	} else {
711 		list_add(&op->list, &unoptimizing_list);
712 		kick_kprobe_optimizer();
713 	}
714 }
715 
716 /* Cancel unoptimizing for reusing */
717 static int reuse_unused_kprobe(struct kprobe *ap)
718 {
719 	struct optimized_kprobe *op;
720 
721 	/*
722 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
723 	 * there is still a relative jump) and disabled.
724 	 */
725 	op = container_of(ap, struct optimized_kprobe, kp);
726 	WARN_ON_ONCE(list_empty(&op->list));
727 	/* Enable the probe again */
728 	ap->flags &= ~KPROBE_FLAG_DISABLED;
729 	/* Optimize it again (remove from op->list) */
730 	if (!kprobe_optready(ap))
731 		return -EINVAL;
732 
733 	optimize_kprobe(ap);
734 	return 0;
735 }
736 
737 /* Remove optimized instructions */
738 static void kill_optimized_kprobe(struct kprobe *p)
739 {
740 	struct optimized_kprobe *op;
741 
742 	op = container_of(p, struct optimized_kprobe, kp);
743 	if (!list_empty(&op->list))
744 		/* Dequeue from the (un)optimization queue */
745 		list_del_init(&op->list);
746 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
747 
748 	if (kprobe_unused(p)) {
749 		/* Enqueue if it is unused */
750 		list_add(&op->list, &freeing_list);
751 		/*
752 		 * Remove unused probes from the hash list. After waiting
753 		 * for synchronization, this probe is reclaimed.
754 		 * (reclaiming is done by do_free_cleaned_kprobes().)
755 		 */
756 		hlist_del_rcu(&op->kp.hlist);
757 	}
758 
759 	/* Don't touch the code, because it is already freed. */
760 	arch_remove_optimized_kprobe(op);
761 }
762 
763 static inline
764 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
765 {
766 	if (!kprobe_ftrace(p))
767 		arch_prepare_optimized_kprobe(op, p);
768 }
769 
770 /* Try to prepare optimized instructions */
771 static void prepare_optimized_kprobe(struct kprobe *p)
772 {
773 	struct optimized_kprobe *op;
774 
775 	op = container_of(p, struct optimized_kprobe, kp);
776 	__prepare_optimized_kprobe(op, p);
777 }
778 
779 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
780 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
781 {
782 	struct optimized_kprobe *op;
783 
784 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
785 	if (!op)
786 		return NULL;
787 
788 	INIT_LIST_HEAD(&op->list);
789 	op->kp.addr = p->addr;
790 	__prepare_optimized_kprobe(op, p);
791 
792 	return &op->kp;
793 }
794 
795 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
796 
797 /*
798  * Prepare an optimized_kprobe and optimize it
799  * NOTE: p must be a normal registered kprobe
800  */
801 static void try_to_optimize_kprobe(struct kprobe *p)
802 {
803 	struct kprobe *ap;
804 	struct optimized_kprobe *op;
805 
806 	/* Impossible to optimize ftrace-based kprobe */
807 	if (kprobe_ftrace(p))
808 		return;
809 
810 	/* For preparing optimization, jump_label_text_reserved() is called */
811 	cpus_read_lock();
812 	jump_label_lock();
813 	mutex_lock(&text_mutex);
814 
815 	ap = alloc_aggr_kprobe(p);
816 	if (!ap)
817 		goto out;
818 
819 	op = container_of(ap, struct optimized_kprobe, kp);
820 	if (!arch_prepared_optinsn(&op->optinsn)) {
821 		/* If failed to setup optimizing, fallback to kprobe */
822 		arch_remove_optimized_kprobe(op);
823 		kfree(op);
824 		goto out;
825 	}
826 
827 	init_aggr_kprobe(ap, p);
828 	optimize_kprobe(ap);	/* This just kicks optimizer thread */
829 
830 out:
831 	mutex_unlock(&text_mutex);
832 	jump_label_unlock();
833 	cpus_read_unlock();
834 }
835 
836 #ifdef CONFIG_SYSCTL
837 static void optimize_all_kprobes(void)
838 {
839 	struct hlist_head *head;
840 	struct kprobe *p;
841 	unsigned int i;
842 
843 	mutex_lock(&kprobe_mutex);
844 	/* If optimization is already allowed, just return */
845 	if (kprobes_allow_optimization)
846 		goto out;
847 
848 	cpus_read_lock();
849 	kprobes_allow_optimization = true;
850 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
851 		head = &kprobe_table[i];
852 		hlist_for_each_entry_rcu(p, head, hlist)
853 			if (!kprobe_disabled(p))
854 				optimize_kprobe(p);
855 	}
856 	cpus_read_unlock();
857 	printk(KERN_INFO "Kprobes globally optimized\n");
858 out:
859 	mutex_unlock(&kprobe_mutex);
860 }
861 
862 static void unoptimize_all_kprobes(void)
863 {
864 	struct hlist_head *head;
865 	struct kprobe *p;
866 	unsigned int i;
867 
868 	mutex_lock(&kprobe_mutex);
869 	/* If optimization is already prohibited, just return */
870 	if (!kprobes_allow_optimization) {
871 		mutex_unlock(&kprobe_mutex);
872 		return;
873 	}
874 
875 	cpus_read_lock();
876 	kprobes_allow_optimization = false;
877 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
878 		head = &kprobe_table[i];
879 		hlist_for_each_entry_rcu(p, head, hlist) {
880 			if (!kprobe_disabled(p))
881 				unoptimize_kprobe(p, false);
882 		}
883 	}
884 	cpus_read_unlock();
885 	mutex_unlock(&kprobe_mutex);
886 
887 	/* Wait for unoptimizing completion */
888 	wait_for_kprobe_optimizer();
889 	printk(KERN_INFO "Kprobes globally unoptimized\n");
890 }
891 
892 static DEFINE_MUTEX(kprobe_sysctl_mutex);
893 int sysctl_kprobes_optimization;
894 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
895 				      void __user *buffer, size_t *length,
896 				      loff_t *ppos)
897 {
898 	int ret;
899 
900 	mutex_lock(&kprobe_sysctl_mutex);
901 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
902 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
903 
904 	if (sysctl_kprobes_optimization)
905 		optimize_all_kprobes();
906 	else
907 		unoptimize_all_kprobes();
908 	mutex_unlock(&kprobe_sysctl_mutex);
909 
910 	return ret;
911 }
912 #endif /* CONFIG_SYSCTL */
913 
914 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
915 static void __arm_kprobe(struct kprobe *p)
916 {
917 	struct kprobe *_p;
918 
919 	/* Check collision with other optimized kprobes */
920 	_p = get_optimized_kprobe((unsigned long)p->addr);
921 	if (unlikely(_p))
922 		/* Fallback to unoptimized kprobe */
923 		unoptimize_kprobe(_p, true);
924 
925 	arch_arm_kprobe(p);
926 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
927 }
928 
929 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
930 static void __disarm_kprobe(struct kprobe *p, bool reopt)
931 {
932 	struct kprobe *_p;
933 
934 	/* Try to unoptimize */
935 	unoptimize_kprobe(p, kprobes_all_disarmed);
936 
937 	if (!kprobe_queued(p)) {
938 		arch_disarm_kprobe(p);
939 		/* If another kprobe was blocked, optimize it. */
940 		_p = get_optimized_kprobe((unsigned long)p->addr);
941 		if (unlikely(_p) && reopt)
942 			optimize_kprobe(_p);
943 	}
944 	/* TODO: reoptimize others after unoptimized this probe */
945 }
946 
947 #else /* !CONFIG_OPTPROBES */
948 
949 #define optimize_kprobe(p)			do {} while (0)
950 #define unoptimize_kprobe(p, f)			do {} while (0)
951 #define kill_optimized_kprobe(p)		do {} while (0)
952 #define prepare_optimized_kprobe(p)		do {} while (0)
953 #define try_to_optimize_kprobe(p)		do {} while (0)
954 #define __arm_kprobe(p)				arch_arm_kprobe(p)
955 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
956 #define kprobe_disarmed(p)			kprobe_disabled(p)
957 #define wait_for_kprobe_optimizer()		do {} while (0)
958 
959 static int reuse_unused_kprobe(struct kprobe *ap)
960 {
961 	/*
962 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
963 	 * released at the same time that the last aggregated kprobe is
964 	 * unregistered.
965 	 * Thus there should be no chance to reuse unused kprobe.
966 	 */
967 	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
968 	return -EINVAL;
969 }
970 
971 static void free_aggr_kprobe(struct kprobe *p)
972 {
973 	arch_remove_kprobe(p);
974 	kfree(p);
975 }
976 
977 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
978 {
979 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
980 }
981 #endif /* CONFIG_OPTPROBES */
982 
983 #ifdef CONFIG_KPROBES_ON_FTRACE
984 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
985 	.func = kprobe_ftrace_handler,
986 	.flags = FTRACE_OPS_FL_SAVE_REGS,
987 };
988 
989 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
990 	.func = kprobe_ftrace_handler,
991 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
992 };
993 
994 static int kprobe_ipmodify_enabled;
995 static int kprobe_ftrace_enabled;
996 
997 /* Must ensure p->addr is really on ftrace */
998 static int prepare_kprobe(struct kprobe *p)
999 {
1000 	if (!kprobe_ftrace(p))
1001 		return arch_prepare_kprobe(p);
1002 
1003 	return arch_prepare_kprobe_ftrace(p);
1004 }
1005 
1006 /* Caller must lock kprobe_mutex */
1007 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1008 			       int *cnt)
1009 {
1010 	int ret = 0;
1011 
1012 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1013 	if (ret) {
1014 		pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1015 			 p->addr, ret);
1016 		return ret;
1017 	}
1018 
1019 	if (*cnt == 0) {
1020 		ret = register_ftrace_function(ops);
1021 		if (ret) {
1022 			pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1023 			goto err_ftrace;
1024 		}
1025 	}
1026 
1027 	(*cnt)++;
1028 	return ret;
1029 
1030 err_ftrace:
1031 	/*
1032 	 * At this point, sinec ops is not registered, we should be sefe from
1033 	 * registering empty filter.
1034 	 */
1035 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1036 	return ret;
1037 }
1038 
1039 static int arm_kprobe_ftrace(struct kprobe *p)
1040 {
1041 	bool ipmodify = (p->post_handler != NULL);
1042 
1043 	return __arm_kprobe_ftrace(p,
1044 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1045 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1046 }
1047 
1048 /* Caller must lock kprobe_mutex */
1049 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1050 				  int *cnt)
1051 {
1052 	int ret = 0;
1053 
1054 	if (*cnt == 1) {
1055 		ret = unregister_ftrace_function(ops);
1056 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1057 			return ret;
1058 	}
1059 
1060 	(*cnt)--;
1061 
1062 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1063 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1064 		  p->addr, ret);
1065 	return ret;
1066 }
1067 
1068 static int disarm_kprobe_ftrace(struct kprobe *p)
1069 {
1070 	bool ipmodify = (p->post_handler != NULL);
1071 
1072 	return __disarm_kprobe_ftrace(p,
1073 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1074 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1075 }
1076 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1077 #define prepare_kprobe(p)	arch_prepare_kprobe(p)
1078 #define arm_kprobe_ftrace(p)	(-ENODEV)
1079 #define disarm_kprobe_ftrace(p)	(-ENODEV)
1080 #endif
1081 
1082 /* Arm a kprobe with text_mutex */
1083 static int arm_kprobe(struct kprobe *kp)
1084 {
1085 	if (unlikely(kprobe_ftrace(kp)))
1086 		return arm_kprobe_ftrace(kp);
1087 
1088 	cpus_read_lock();
1089 	mutex_lock(&text_mutex);
1090 	__arm_kprobe(kp);
1091 	mutex_unlock(&text_mutex);
1092 	cpus_read_unlock();
1093 
1094 	return 0;
1095 }
1096 
1097 /* Disarm a kprobe with text_mutex */
1098 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1099 {
1100 	if (unlikely(kprobe_ftrace(kp)))
1101 		return disarm_kprobe_ftrace(kp);
1102 
1103 	cpus_read_lock();
1104 	mutex_lock(&text_mutex);
1105 	__disarm_kprobe(kp, reopt);
1106 	mutex_unlock(&text_mutex);
1107 	cpus_read_unlock();
1108 
1109 	return 0;
1110 }
1111 
1112 /*
1113  * Aggregate handlers for multiple kprobes support - these handlers
1114  * take care of invoking the individual kprobe handlers on p->list
1115  */
1116 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1117 {
1118 	struct kprobe *kp;
1119 
1120 	list_for_each_entry_rcu(kp, &p->list, list) {
1121 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1122 			set_kprobe_instance(kp);
1123 			if (kp->pre_handler(kp, regs))
1124 				return 1;
1125 		}
1126 		reset_kprobe_instance();
1127 	}
1128 	return 0;
1129 }
1130 NOKPROBE_SYMBOL(aggr_pre_handler);
1131 
1132 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1133 			      unsigned long flags)
1134 {
1135 	struct kprobe *kp;
1136 
1137 	list_for_each_entry_rcu(kp, &p->list, list) {
1138 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1139 			set_kprobe_instance(kp);
1140 			kp->post_handler(kp, regs, flags);
1141 			reset_kprobe_instance();
1142 		}
1143 	}
1144 }
1145 NOKPROBE_SYMBOL(aggr_post_handler);
1146 
1147 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1148 			      int trapnr)
1149 {
1150 	struct kprobe *cur = __this_cpu_read(kprobe_instance);
1151 
1152 	/*
1153 	 * if we faulted "during" the execution of a user specified
1154 	 * probe handler, invoke just that probe's fault handler
1155 	 */
1156 	if (cur && cur->fault_handler) {
1157 		if (cur->fault_handler(cur, regs, trapnr))
1158 			return 1;
1159 	}
1160 	return 0;
1161 }
1162 NOKPROBE_SYMBOL(aggr_fault_handler);
1163 
1164 /* Walks the list and increments nmissed count for multiprobe case */
1165 void kprobes_inc_nmissed_count(struct kprobe *p)
1166 {
1167 	struct kprobe *kp;
1168 	if (!kprobe_aggrprobe(p)) {
1169 		p->nmissed++;
1170 	} else {
1171 		list_for_each_entry_rcu(kp, &p->list, list)
1172 			kp->nmissed++;
1173 	}
1174 	return;
1175 }
1176 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1177 
1178 void recycle_rp_inst(struct kretprobe_instance *ri,
1179 		     struct hlist_head *head)
1180 {
1181 	struct kretprobe *rp = ri->rp;
1182 
1183 	/* remove rp inst off the rprobe_inst_table */
1184 	hlist_del(&ri->hlist);
1185 	INIT_HLIST_NODE(&ri->hlist);
1186 	if (likely(rp)) {
1187 		raw_spin_lock(&rp->lock);
1188 		hlist_add_head(&ri->hlist, &rp->free_instances);
1189 		raw_spin_unlock(&rp->lock);
1190 	} else
1191 		/* Unregistering */
1192 		hlist_add_head(&ri->hlist, head);
1193 }
1194 NOKPROBE_SYMBOL(recycle_rp_inst);
1195 
1196 void kretprobe_hash_lock(struct task_struct *tsk,
1197 			 struct hlist_head **head, unsigned long *flags)
1198 __acquires(hlist_lock)
1199 {
1200 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1201 	raw_spinlock_t *hlist_lock;
1202 
1203 	*head = &kretprobe_inst_table[hash];
1204 	hlist_lock = kretprobe_table_lock_ptr(hash);
1205 	raw_spin_lock_irqsave(hlist_lock, *flags);
1206 }
1207 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1208 
1209 static void kretprobe_table_lock(unsigned long hash,
1210 				 unsigned long *flags)
1211 __acquires(hlist_lock)
1212 {
1213 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1214 	raw_spin_lock_irqsave(hlist_lock, *flags);
1215 }
1216 NOKPROBE_SYMBOL(kretprobe_table_lock);
1217 
1218 void kretprobe_hash_unlock(struct task_struct *tsk,
1219 			   unsigned long *flags)
1220 __releases(hlist_lock)
1221 {
1222 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1223 	raw_spinlock_t *hlist_lock;
1224 
1225 	hlist_lock = kretprobe_table_lock_ptr(hash);
1226 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1227 }
1228 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1229 
1230 static void kretprobe_table_unlock(unsigned long hash,
1231 				   unsigned long *flags)
1232 __releases(hlist_lock)
1233 {
1234 	raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1235 	raw_spin_unlock_irqrestore(hlist_lock, *flags);
1236 }
1237 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1238 
1239 /*
1240  * This function is called from finish_task_switch when task tk becomes dead,
1241  * so that we can recycle any function-return probe instances associated
1242  * with this task. These left over instances represent probed functions
1243  * that have been called but will never return.
1244  */
1245 void kprobe_flush_task(struct task_struct *tk)
1246 {
1247 	struct kretprobe_instance *ri;
1248 	struct hlist_head *head, empty_rp;
1249 	struct hlist_node *tmp;
1250 	unsigned long hash, flags = 0;
1251 
1252 	if (unlikely(!kprobes_initialized))
1253 		/* Early boot.  kretprobe_table_locks not yet initialized. */
1254 		return;
1255 
1256 	INIT_HLIST_HEAD(&empty_rp);
1257 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1258 	head = &kretprobe_inst_table[hash];
1259 	kretprobe_table_lock(hash, &flags);
1260 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1261 		if (ri->task == tk)
1262 			recycle_rp_inst(ri, &empty_rp);
1263 	}
1264 	kretprobe_table_unlock(hash, &flags);
1265 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1266 		hlist_del(&ri->hlist);
1267 		kfree(ri);
1268 	}
1269 }
1270 NOKPROBE_SYMBOL(kprobe_flush_task);
1271 
1272 static inline void free_rp_inst(struct kretprobe *rp)
1273 {
1274 	struct kretprobe_instance *ri;
1275 	struct hlist_node *next;
1276 
1277 	hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1278 		hlist_del(&ri->hlist);
1279 		kfree(ri);
1280 	}
1281 }
1282 
1283 static void cleanup_rp_inst(struct kretprobe *rp)
1284 {
1285 	unsigned long flags, hash;
1286 	struct kretprobe_instance *ri;
1287 	struct hlist_node *next;
1288 	struct hlist_head *head;
1289 
1290 	/* No race here */
1291 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1292 		kretprobe_table_lock(hash, &flags);
1293 		head = &kretprobe_inst_table[hash];
1294 		hlist_for_each_entry_safe(ri, next, head, hlist) {
1295 			if (ri->rp == rp)
1296 				ri->rp = NULL;
1297 		}
1298 		kretprobe_table_unlock(hash, &flags);
1299 	}
1300 	free_rp_inst(rp);
1301 }
1302 NOKPROBE_SYMBOL(cleanup_rp_inst);
1303 
1304 /* Add the new probe to ap->list */
1305 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1306 {
1307 	if (p->post_handler)
1308 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1309 
1310 	list_add_rcu(&p->list, &ap->list);
1311 	if (p->post_handler && !ap->post_handler)
1312 		ap->post_handler = aggr_post_handler;
1313 
1314 	return 0;
1315 }
1316 
1317 /*
1318  * Fill in the required fields of the "manager kprobe". Replace the
1319  * earlier kprobe in the hlist with the manager kprobe
1320  */
1321 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1322 {
1323 	/* Copy p's insn slot to ap */
1324 	copy_kprobe(p, ap);
1325 	flush_insn_slot(ap);
1326 	ap->addr = p->addr;
1327 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1328 	ap->pre_handler = aggr_pre_handler;
1329 	ap->fault_handler = aggr_fault_handler;
1330 	/* We don't care the kprobe which has gone. */
1331 	if (p->post_handler && !kprobe_gone(p))
1332 		ap->post_handler = aggr_post_handler;
1333 
1334 	INIT_LIST_HEAD(&ap->list);
1335 	INIT_HLIST_NODE(&ap->hlist);
1336 
1337 	list_add_rcu(&p->list, &ap->list);
1338 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1339 }
1340 
1341 /*
1342  * This is the second or subsequent kprobe at the address - handle
1343  * the intricacies
1344  */
1345 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1346 {
1347 	int ret = 0;
1348 	struct kprobe *ap = orig_p;
1349 
1350 	cpus_read_lock();
1351 
1352 	/* For preparing optimization, jump_label_text_reserved() is called */
1353 	jump_label_lock();
1354 	mutex_lock(&text_mutex);
1355 
1356 	if (!kprobe_aggrprobe(orig_p)) {
1357 		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1358 		ap = alloc_aggr_kprobe(orig_p);
1359 		if (!ap) {
1360 			ret = -ENOMEM;
1361 			goto out;
1362 		}
1363 		init_aggr_kprobe(ap, orig_p);
1364 	} else if (kprobe_unused(ap)) {
1365 		/* This probe is going to die. Rescue it */
1366 		ret = reuse_unused_kprobe(ap);
1367 		if (ret)
1368 			goto out;
1369 	}
1370 
1371 	if (kprobe_gone(ap)) {
1372 		/*
1373 		 * Attempting to insert new probe at the same location that
1374 		 * had a probe in the module vaddr area which already
1375 		 * freed. So, the instruction slot has already been
1376 		 * released. We need a new slot for the new probe.
1377 		 */
1378 		ret = arch_prepare_kprobe(ap);
1379 		if (ret)
1380 			/*
1381 			 * Even if fail to allocate new slot, don't need to
1382 			 * free aggr_probe. It will be used next time, or
1383 			 * freed by unregister_kprobe.
1384 			 */
1385 			goto out;
1386 
1387 		/* Prepare optimized instructions if possible. */
1388 		prepare_optimized_kprobe(ap);
1389 
1390 		/*
1391 		 * Clear gone flag to prevent allocating new slot again, and
1392 		 * set disabled flag because it is not armed yet.
1393 		 */
1394 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1395 			    | KPROBE_FLAG_DISABLED;
1396 	}
1397 
1398 	/* Copy ap's insn slot to p */
1399 	copy_kprobe(ap, p);
1400 	ret = add_new_kprobe(ap, p);
1401 
1402 out:
1403 	mutex_unlock(&text_mutex);
1404 	jump_label_unlock();
1405 	cpus_read_unlock();
1406 
1407 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1408 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1409 		if (!kprobes_all_disarmed) {
1410 			/* Arm the breakpoint again. */
1411 			ret = arm_kprobe(ap);
1412 			if (ret) {
1413 				ap->flags |= KPROBE_FLAG_DISABLED;
1414 				list_del_rcu(&p->list);
1415 				synchronize_rcu();
1416 			}
1417 		}
1418 	}
1419 	return ret;
1420 }
1421 
1422 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1423 {
1424 	/* The __kprobes marked functions and entry code must not be probed */
1425 	return addr >= (unsigned long)__kprobes_text_start &&
1426 	       addr < (unsigned long)__kprobes_text_end;
1427 }
1428 
1429 static bool __within_kprobe_blacklist(unsigned long addr)
1430 {
1431 	struct kprobe_blacklist_entry *ent;
1432 
1433 	if (arch_within_kprobe_blacklist(addr))
1434 		return true;
1435 	/*
1436 	 * If there exists a kprobe_blacklist, verify and
1437 	 * fail any probe registration in the prohibited area
1438 	 */
1439 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1440 		if (addr >= ent->start_addr && addr < ent->end_addr)
1441 			return true;
1442 	}
1443 	return false;
1444 }
1445 
1446 bool within_kprobe_blacklist(unsigned long addr)
1447 {
1448 	char symname[KSYM_NAME_LEN], *p;
1449 
1450 	if (__within_kprobe_blacklist(addr))
1451 		return true;
1452 
1453 	/* Check if the address is on a suffixed-symbol */
1454 	if (!lookup_symbol_name(addr, symname)) {
1455 		p = strchr(symname, '.');
1456 		if (!p)
1457 			return false;
1458 		*p = '\0';
1459 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1460 		if (addr)
1461 			return __within_kprobe_blacklist(addr);
1462 	}
1463 	return false;
1464 }
1465 
1466 /*
1467  * If we have a symbol_name argument, look it up and add the offset field
1468  * to it. This way, we can specify a relative address to a symbol.
1469  * This returns encoded errors if it fails to look up symbol or invalid
1470  * combination of parameters.
1471  */
1472 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1473 			const char *symbol_name, unsigned int offset)
1474 {
1475 	if ((symbol_name && addr) || (!symbol_name && !addr))
1476 		goto invalid;
1477 
1478 	if (symbol_name) {
1479 		addr = kprobe_lookup_name(symbol_name, offset);
1480 		if (!addr)
1481 			return ERR_PTR(-ENOENT);
1482 	}
1483 
1484 	addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1485 	if (addr)
1486 		return addr;
1487 
1488 invalid:
1489 	return ERR_PTR(-EINVAL);
1490 }
1491 
1492 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1493 {
1494 	return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1495 }
1496 
1497 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1498 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1499 {
1500 	struct kprobe *ap, *list_p;
1501 
1502 	ap = get_kprobe(p->addr);
1503 	if (unlikely(!ap))
1504 		return NULL;
1505 
1506 	if (p != ap) {
1507 		list_for_each_entry_rcu(list_p, &ap->list, list)
1508 			if (list_p == p)
1509 			/* kprobe p is a valid probe */
1510 				goto valid;
1511 		return NULL;
1512 	}
1513 valid:
1514 	return ap;
1515 }
1516 
1517 /* Return error if the kprobe is being re-registered */
1518 static inline int check_kprobe_rereg(struct kprobe *p)
1519 {
1520 	int ret = 0;
1521 
1522 	mutex_lock(&kprobe_mutex);
1523 	if (__get_valid_kprobe(p))
1524 		ret = -EINVAL;
1525 	mutex_unlock(&kprobe_mutex);
1526 
1527 	return ret;
1528 }
1529 
1530 int __weak arch_check_ftrace_location(struct kprobe *p)
1531 {
1532 	unsigned long ftrace_addr;
1533 
1534 	ftrace_addr = ftrace_location((unsigned long)p->addr);
1535 	if (ftrace_addr) {
1536 #ifdef CONFIG_KPROBES_ON_FTRACE
1537 		/* Given address is not on the instruction boundary */
1538 		if ((unsigned long)p->addr != ftrace_addr)
1539 			return -EILSEQ;
1540 		p->flags |= KPROBE_FLAG_FTRACE;
1541 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1542 		return -EINVAL;
1543 #endif
1544 	}
1545 	return 0;
1546 }
1547 
1548 static int check_kprobe_address_safe(struct kprobe *p,
1549 				     struct module **probed_mod)
1550 {
1551 	int ret;
1552 
1553 	ret = arch_check_ftrace_location(p);
1554 	if (ret)
1555 		return ret;
1556 	jump_label_lock();
1557 	preempt_disable();
1558 
1559 	/* Ensure it is not in reserved area nor out of text */
1560 	if (!kernel_text_address((unsigned long) p->addr) ||
1561 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1562 	    jump_label_text_reserved(p->addr, p->addr) ||
1563 	    find_bug((unsigned long)p->addr)) {
1564 		ret = -EINVAL;
1565 		goto out;
1566 	}
1567 
1568 	/* Check if are we probing a module */
1569 	*probed_mod = __module_text_address((unsigned long) p->addr);
1570 	if (*probed_mod) {
1571 		/*
1572 		 * We must hold a refcount of the probed module while updating
1573 		 * its code to prohibit unexpected unloading.
1574 		 */
1575 		if (unlikely(!try_module_get(*probed_mod))) {
1576 			ret = -ENOENT;
1577 			goto out;
1578 		}
1579 
1580 		/*
1581 		 * If the module freed .init.text, we couldn't insert
1582 		 * kprobes in there.
1583 		 */
1584 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1585 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1586 			module_put(*probed_mod);
1587 			*probed_mod = NULL;
1588 			ret = -ENOENT;
1589 		}
1590 	}
1591 out:
1592 	preempt_enable();
1593 	jump_label_unlock();
1594 
1595 	return ret;
1596 }
1597 
1598 int register_kprobe(struct kprobe *p)
1599 {
1600 	int ret;
1601 	struct kprobe *old_p;
1602 	struct module *probed_mod;
1603 	kprobe_opcode_t *addr;
1604 
1605 	/* Adjust probe address from symbol */
1606 	addr = kprobe_addr(p);
1607 	if (IS_ERR(addr))
1608 		return PTR_ERR(addr);
1609 	p->addr = addr;
1610 
1611 	ret = check_kprobe_rereg(p);
1612 	if (ret)
1613 		return ret;
1614 
1615 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1616 	p->flags &= KPROBE_FLAG_DISABLED;
1617 	p->nmissed = 0;
1618 	INIT_LIST_HEAD(&p->list);
1619 
1620 	ret = check_kprobe_address_safe(p, &probed_mod);
1621 	if (ret)
1622 		return ret;
1623 
1624 	mutex_lock(&kprobe_mutex);
1625 
1626 	old_p = get_kprobe(p->addr);
1627 	if (old_p) {
1628 		/* Since this may unoptimize old_p, locking text_mutex. */
1629 		ret = register_aggr_kprobe(old_p, p);
1630 		goto out;
1631 	}
1632 
1633 	cpus_read_lock();
1634 	/* Prevent text modification */
1635 	mutex_lock(&text_mutex);
1636 	ret = prepare_kprobe(p);
1637 	mutex_unlock(&text_mutex);
1638 	cpus_read_unlock();
1639 	if (ret)
1640 		goto out;
1641 
1642 	INIT_HLIST_NODE(&p->hlist);
1643 	hlist_add_head_rcu(&p->hlist,
1644 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1645 
1646 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1647 		ret = arm_kprobe(p);
1648 		if (ret) {
1649 			hlist_del_rcu(&p->hlist);
1650 			synchronize_rcu();
1651 			goto out;
1652 		}
1653 	}
1654 
1655 	/* Try to optimize kprobe */
1656 	try_to_optimize_kprobe(p);
1657 out:
1658 	mutex_unlock(&kprobe_mutex);
1659 
1660 	if (probed_mod)
1661 		module_put(probed_mod);
1662 
1663 	return ret;
1664 }
1665 EXPORT_SYMBOL_GPL(register_kprobe);
1666 
1667 /* Check if all probes on the aggrprobe are disabled */
1668 static int aggr_kprobe_disabled(struct kprobe *ap)
1669 {
1670 	struct kprobe *kp;
1671 
1672 	list_for_each_entry_rcu(kp, &ap->list, list)
1673 		if (!kprobe_disabled(kp))
1674 			/*
1675 			 * There is an active probe on the list.
1676 			 * We can't disable this ap.
1677 			 */
1678 			return 0;
1679 
1680 	return 1;
1681 }
1682 
1683 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1684 static struct kprobe *__disable_kprobe(struct kprobe *p)
1685 {
1686 	struct kprobe *orig_p;
1687 	int ret;
1688 
1689 	/* Get an original kprobe for return */
1690 	orig_p = __get_valid_kprobe(p);
1691 	if (unlikely(orig_p == NULL))
1692 		return ERR_PTR(-EINVAL);
1693 
1694 	if (!kprobe_disabled(p)) {
1695 		/* Disable probe if it is a child probe */
1696 		if (p != orig_p)
1697 			p->flags |= KPROBE_FLAG_DISABLED;
1698 
1699 		/* Try to disarm and disable this/parent probe */
1700 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1701 			/*
1702 			 * If kprobes_all_disarmed is set, orig_p
1703 			 * should have already been disarmed, so
1704 			 * skip unneed disarming process.
1705 			 */
1706 			if (!kprobes_all_disarmed) {
1707 				ret = disarm_kprobe(orig_p, true);
1708 				if (ret) {
1709 					p->flags &= ~KPROBE_FLAG_DISABLED;
1710 					return ERR_PTR(ret);
1711 				}
1712 			}
1713 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1714 		}
1715 	}
1716 
1717 	return orig_p;
1718 }
1719 
1720 /*
1721  * Unregister a kprobe without a scheduler synchronization.
1722  */
1723 static int __unregister_kprobe_top(struct kprobe *p)
1724 {
1725 	struct kprobe *ap, *list_p;
1726 
1727 	/* Disable kprobe. This will disarm it if needed. */
1728 	ap = __disable_kprobe(p);
1729 	if (IS_ERR(ap))
1730 		return PTR_ERR(ap);
1731 
1732 	if (ap == p)
1733 		/*
1734 		 * This probe is an independent(and non-optimized) kprobe
1735 		 * (not an aggrprobe). Remove from the hash list.
1736 		 */
1737 		goto disarmed;
1738 
1739 	/* Following process expects this probe is an aggrprobe */
1740 	WARN_ON(!kprobe_aggrprobe(ap));
1741 
1742 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1743 		/*
1744 		 * !disarmed could be happen if the probe is under delayed
1745 		 * unoptimizing.
1746 		 */
1747 		goto disarmed;
1748 	else {
1749 		/* If disabling probe has special handlers, update aggrprobe */
1750 		if (p->post_handler && !kprobe_gone(p)) {
1751 			list_for_each_entry_rcu(list_p, &ap->list, list) {
1752 				if ((list_p != p) && (list_p->post_handler))
1753 					goto noclean;
1754 			}
1755 			ap->post_handler = NULL;
1756 		}
1757 noclean:
1758 		/*
1759 		 * Remove from the aggrprobe: this path will do nothing in
1760 		 * __unregister_kprobe_bottom().
1761 		 */
1762 		list_del_rcu(&p->list);
1763 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1764 			/*
1765 			 * Try to optimize this probe again, because post
1766 			 * handler may have been changed.
1767 			 */
1768 			optimize_kprobe(ap);
1769 	}
1770 	return 0;
1771 
1772 disarmed:
1773 	hlist_del_rcu(&ap->hlist);
1774 	return 0;
1775 }
1776 
1777 static void __unregister_kprobe_bottom(struct kprobe *p)
1778 {
1779 	struct kprobe *ap;
1780 
1781 	if (list_empty(&p->list))
1782 		/* This is an independent kprobe */
1783 		arch_remove_kprobe(p);
1784 	else if (list_is_singular(&p->list)) {
1785 		/* This is the last child of an aggrprobe */
1786 		ap = list_entry(p->list.next, struct kprobe, list);
1787 		list_del(&p->list);
1788 		free_aggr_kprobe(ap);
1789 	}
1790 	/* Otherwise, do nothing. */
1791 }
1792 
1793 int register_kprobes(struct kprobe **kps, int num)
1794 {
1795 	int i, ret = 0;
1796 
1797 	if (num <= 0)
1798 		return -EINVAL;
1799 	for (i = 0; i < num; i++) {
1800 		ret = register_kprobe(kps[i]);
1801 		if (ret < 0) {
1802 			if (i > 0)
1803 				unregister_kprobes(kps, i);
1804 			break;
1805 		}
1806 	}
1807 	return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(register_kprobes);
1810 
1811 void unregister_kprobe(struct kprobe *p)
1812 {
1813 	unregister_kprobes(&p, 1);
1814 }
1815 EXPORT_SYMBOL_GPL(unregister_kprobe);
1816 
1817 void unregister_kprobes(struct kprobe **kps, int num)
1818 {
1819 	int i;
1820 
1821 	if (num <= 0)
1822 		return;
1823 	mutex_lock(&kprobe_mutex);
1824 	for (i = 0; i < num; i++)
1825 		if (__unregister_kprobe_top(kps[i]) < 0)
1826 			kps[i]->addr = NULL;
1827 	mutex_unlock(&kprobe_mutex);
1828 
1829 	synchronize_rcu();
1830 	for (i = 0; i < num; i++)
1831 		if (kps[i]->addr)
1832 			__unregister_kprobe_bottom(kps[i]);
1833 }
1834 EXPORT_SYMBOL_GPL(unregister_kprobes);
1835 
1836 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1837 					unsigned long val, void *data)
1838 {
1839 	return NOTIFY_DONE;
1840 }
1841 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1842 
1843 static struct notifier_block kprobe_exceptions_nb = {
1844 	.notifier_call = kprobe_exceptions_notify,
1845 	.priority = 0x7fffffff /* we need to be notified first */
1846 };
1847 
1848 unsigned long __weak arch_deref_entry_point(void *entry)
1849 {
1850 	return (unsigned long)entry;
1851 }
1852 
1853 #ifdef CONFIG_KRETPROBES
1854 /*
1855  * This kprobe pre_handler is registered with every kretprobe. When probe
1856  * hits it will set up the return probe.
1857  */
1858 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1859 {
1860 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1861 	unsigned long hash, flags = 0;
1862 	struct kretprobe_instance *ri;
1863 
1864 	/*
1865 	 * To avoid deadlocks, prohibit return probing in NMI contexts,
1866 	 * just skip the probe and increase the (inexact) 'nmissed'
1867 	 * statistical counter, so that the user is informed that
1868 	 * something happened:
1869 	 */
1870 	if (unlikely(in_nmi())) {
1871 		rp->nmissed++;
1872 		return 0;
1873 	}
1874 
1875 	/* TODO: consider to only swap the RA after the last pre_handler fired */
1876 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1877 	raw_spin_lock_irqsave(&rp->lock, flags);
1878 	if (!hlist_empty(&rp->free_instances)) {
1879 		ri = hlist_entry(rp->free_instances.first,
1880 				struct kretprobe_instance, hlist);
1881 		hlist_del(&ri->hlist);
1882 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1883 
1884 		ri->rp = rp;
1885 		ri->task = current;
1886 
1887 		if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1888 			raw_spin_lock_irqsave(&rp->lock, flags);
1889 			hlist_add_head(&ri->hlist, &rp->free_instances);
1890 			raw_spin_unlock_irqrestore(&rp->lock, flags);
1891 			return 0;
1892 		}
1893 
1894 		arch_prepare_kretprobe(ri, regs);
1895 
1896 		/* XXX(hch): why is there no hlist_move_head? */
1897 		INIT_HLIST_NODE(&ri->hlist);
1898 		kretprobe_table_lock(hash, &flags);
1899 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1900 		kretprobe_table_unlock(hash, &flags);
1901 	} else {
1902 		rp->nmissed++;
1903 		raw_spin_unlock_irqrestore(&rp->lock, flags);
1904 	}
1905 	return 0;
1906 }
1907 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1908 
1909 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1910 {
1911 	return !offset;
1912 }
1913 
1914 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1915 {
1916 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1917 
1918 	if (IS_ERR(kp_addr))
1919 		return false;
1920 
1921 	if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1922 						!arch_kprobe_on_func_entry(offset))
1923 		return false;
1924 
1925 	return true;
1926 }
1927 
1928 int register_kretprobe(struct kretprobe *rp)
1929 {
1930 	int ret = 0;
1931 	struct kretprobe_instance *inst;
1932 	int i;
1933 	void *addr;
1934 
1935 	if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1936 		return -EINVAL;
1937 
1938 	if (kretprobe_blacklist_size) {
1939 		addr = kprobe_addr(&rp->kp);
1940 		if (IS_ERR(addr))
1941 			return PTR_ERR(addr);
1942 
1943 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1944 			if (kretprobe_blacklist[i].addr == addr)
1945 				return -EINVAL;
1946 		}
1947 	}
1948 
1949 	rp->kp.pre_handler = pre_handler_kretprobe;
1950 	rp->kp.post_handler = NULL;
1951 	rp->kp.fault_handler = NULL;
1952 
1953 	/* Pre-allocate memory for max kretprobe instances */
1954 	if (rp->maxactive <= 0) {
1955 #ifdef CONFIG_PREEMPTION
1956 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1957 #else
1958 		rp->maxactive = num_possible_cpus();
1959 #endif
1960 	}
1961 	raw_spin_lock_init(&rp->lock);
1962 	INIT_HLIST_HEAD(&rp->free_instances);
1963 	for (i = 0; i < rp->maxactive; i++) {
1964 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1965 			       rp->data_size, GFP_KERNEL);
1966 		if (inst == NULL) {
1967 			free_rp_inst(rp);
1968 			return -ENOMEM;
1969 		}
1970 		INIT_HLIST_NODE(&inst->hlist);
1971 		hlist_add_head(&inst->hlist, &rp->free_instances);
1972 	}
1973 
1974 	rp->nmissed = 0;
1975 	/* Establish function entry probe point */
1976 	ret = register_kprobe(&rp->kp);
1977 	if (ret != 0)
1978 		free_rp_inst(rp);
1979 	return ret;
1980 }
1981 EXPORT_SYMBOL_GPL(register_kretprobe);
1982 
1983 int register_kretprobes(struct kretprobe **rps, int num)
1984 {
1985 	int ret = 0, i;
1986 
1987 	if (num <= 0)
1988 		return -EINVAL;
1989 	for (i = 0; i < num; i++) {
1990 		ret = register_kretprobe(rps[i]);
1991 		if (ret < 0) {
1992 			if (i > 0)
1993 				unregister_kretprobes(rps, i);
1994 			break;
1995 		}
1996 	}
1997 	return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(register_kretprobes);
2000 
2001 void unregister_kretprobe(struct kretprobe *rp)
2002 {
2003 	unregister_kretprobes(&rp, 1);
2004 }
2005 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2006 
2007 void unregister_kretprobes(struct kretprobe **rps, int num)
2008 {
2009 	int i;
2010 
2011 	if (num <= 0)
2012 		return;
2013 	mutex_lock(&kprobe_mutex);
2014 	for (i = 0; i < num; i++)
2015 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2016 			rps[i]->kp.addr = NULL;
2017 	mutex_unlock(&kprobe_mutex);
2018 
2019 	synchronize_rcu();
2020 	for (i = 0; i < num; i++) {
2021 		if (rps[i]->kp.addr) {
2022 			__unregister_kprobe_bottom(&rps[i]->kp);
2023 			cleanup_rp_inst(rps[i]);
2024 		}
2025 	}
2026 }
2027 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2028 
2029 #else /* CONFIG_KRETPROBES */
2030 int register_kretprobe(struct kretprobe *rp)
2031 {
2032 	return -ENOSYS;
2033 }
2034 EXPORT_SYMBOL_GPL(register_kretprobe);
2035 
2036 int register_kretprobes(struct kretprobe **rps, int num)
2037 {
2038 	return -ENOSYS;
2039 }
2040 EXPORT_SYMBOL_GPL(register_kretprobes);
2041 
2042 void unregister_kretprobe(struct kretprobe *rp)
2043 {
2044 }
2045 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2046 
2047 void unregister_kretprobes(struct kretprobe **rps, int num)
2048 {
2049 }
2050 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2051 
2052 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2053 {
2054 	return 0;
2055 }
2056 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2057 
2058 #endif /* CONFIG_KRETPROBES */
2059 
2060 /* Set the kprobe gone and remove its instruction buffer. */
2061 static void kill_kprobe(struct kprobe *p)
2062 {
2063 	struct kprobe *kp;
2064 
2065 	p->flags |= KPROBE_FLAG_GONE;
2066 	if (kprobe_aggrprobe(p)) {
2067 		/*
2068 		 * If this is an aggr_kprobe, we have to list all the
2069 		 * chained probes and mark them GONE.
2070 		 */
2071 		list_for_each_entry_rcu(kp, &p->list, list)
2072 			kp->flags |= KPROBE_FLAG_GONE;
2073 		p->post_handler = NULL;
2074 		kill_optimized_kprobe(p);
2075 	}
2076 	/*
2077 	 * Here, we can remove insn_slot safely, because no thread calls
2078 	 * the original probed function (which will be freed soon) any more.
2079 	 */
2080 	arch_remove_kprobe(p);
2081 }
2082 
2083 /* Disable one kprobe */
2084 int disable_kprobe(struct kprobe *kp)
2085 {
2086 	int ret = 0;
2087 	struct kprobe *p;
2088 
2089 	mutex_lock(&kprobe_mutex);
2090 
2091 	/* Disable this kprobe */
2092 	p = __disable_kprobe(kp);
2093 	if (IS_ERR(p))
2094 		ret = PTR_ERR(p);
2095 
2096 	mutex_unlock(&kprobe_mutex);
2097 	return ret;
2098 }
2099 EXPORT_SYMBOL_GPL(disable_kprobe);
2100 
2101 /* Enable one kprobe */
2102 int enable_kprobe(struct kprobe *kp)
2103 {
2104 	int ret = 0;
2105 	struct kprobe *p;
2106 
2107 	mutex_lock(&kprobe_mutex);
2108 
2109 	/* Check whether specified probe is valid. */
2110 	p = __get_valid_kprobe(kp);
2111 	if (unlikely(p == NULL)) {
2112 		ret = -EINVAL;
2113 		goto out;
2114 	}
2115 
2116 	if (kprobe_gone(kp)) {
2117 		/* This kprobe has gone, we couldn't enable it. */
2118 		ret = -EINVAL;
2119 		goto out;
2120 	}
2121 
2122 	if (p != kp)
2123 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2124 
2125 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2126 		p->flags &= ~KPROBE_FLAG_DISABLED;
2127 		ret = arm_kprobe(p);
2128 		if (ret)
2129 			p->flags |= KPROBE_FLAG_DISABLED;
2130 	}
2131 out:
2132 	mutex_unlock(&kprobe_mutex);
2133 	return ret;
2134 }
2135 EXPORT_SYMBOL_GPL(enable_kprobe);
2136 
2137 /* Caller must NOT call this in usual path. This is only for critical case */
2138 void dump_kprobe(struct kprobe *kp)
2139 {
2140 	pr_err("Dumping kprobe:\n");
2141 	pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2142 	       kp->symbol_name, kp->offset, kp->addr);
2143 }
2144 NOKPROBE_SYMBOL(dump_kprobe);
2145 
2146 int kprobe_add_ksym_blacklist(unsigned long entry)
2147 {
2148 	struct kprobe_blacklist_entry *ent;
2149 	unsigned long offset = 0, size = 0;
2150 
2151 	if (!kernel_text_address(entry) ||
2152 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2153 		return -EINVAL;
2154 
2155 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2156 	if (!ent)
2157 		return -ENOMEM;
2158 	ent->start_addr = entry;
2159 	ent->end_addr = entry + size;
2160 	INIT_LIST_HEAD(&ent->list);
2161 	list_add_tail(&ent->list, &kprobe_blacklist);
2162 
2163 	return (int)size;
2164 }
2165 
2166 /* Add all symbols in given area into kprobe blacklist */
2167 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2168 {
2169 	unsigned long entry;
2170 	int ret = 0;
2171 
2172 	for (entry = start; entry < end; entry += ret) {
2173 		ret = kprobe_add_ksym_blacklist(entry);
2174 		if (ret < 0)
2175 			return ret;
2176 		if (ret == 0)	/* In case of alias symbol */
2177 			ret = 1;
2178 	}
2179 	return 0;
2180 }
2181 
2182 int __init __weak arch_populate_kprobe_blacklist(void)
2183 {
2184 	return 0;
2185 }
2186 
2187 /*
2188  * Lookup and populate the kprobe_blacklist.
2189  *
2190  * Unlike the kretprobe blacklist, we'll need to determine
2191  * the range of addresses that belong to the said functions,
2192  * since a kprobe need not necessarily be at the beginning
2193  * of a function.
2194  */
2195 static int __init populate_kprobe_blacklist(unsigned long *start,
2196 					     unsigned long *end)
2197 {
2198 	unsigned long entry;
2199 	unsigned long *iter;
2200 	int ret;
2201 
2202 	for (iter = start; iter < end; iter++) {
2203 		entry = arch_deref_entry_point((void *)*iter);
2204 		ret = kprobe_add_ksym_blacklist(entry);
2205 		if (ret == -EINVAL)
2206 			continue;
2207 		if (ret < 0)
2208 			return ret;
2209 	}
2210 
2211 	/* Symbols in __kprobes_text are blacklisted */
2212 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2213 					(unsigned long)__kprobes_text_end);
2214 
2215 	return ret ? : arch_populate_kprobe_blacklist();
2216 }
2217 
2218 /* Module notifier call back, checking kprobes on the module */
2219 static int kprobes_module_callback(struct notifier_block *nb,
2220 				   unsigned long val, void *data)
2221 {
2222 	struct module *mod = data;
2223 	struct hlist_head *head;
2224 	struct kprobe *p;
2225 	unsigned int i;
2226 	int checkcore = (val == MODULE_STATE_GOING);
2227 
2228 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2229 		return NOTIFY_DONE;
2230 
2231 	/*
2232 	 * When MODULE_STATE_GOING was notified, both of module .text and
2233 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
2234 	 * notified, only .init.text section would be freed. We need to
2235 	 * disable kprobes which have been inserted in the sections.
2236 	 */
2237 	mutex_lock(&kprobe_mutex);
2238 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2239 		head = &kprobe_table[i];
2240 		hlist_for_each_entry_rcu(p, head, hlist)
2241 			if (within_module_init((unsigned long)p->addr, mod) ||
2242 			    (checkcore &&
2243 			     within_module_core((unsigned long)p->addr, mod))) {
2244 				/*
2245 				 * The vaddr this probe is installed will soon
2246 				 * be vfreed buy not synced to disk. Hence,
2247 				 * disarming the breakpoint isn't needed.
2248 				 *
2249 				 * Note, this will also move any optimized probes
2250 				 * that are pending to be removed from their
2251 				 * corresponding lists to the freeing_list and
2252 				 * will not be touched by the delayed
2253 				 * kprobe_optimizer work handler.
2254 				 */
2255 				kill_kprobe(p);
2256 			}
2257 	}
2258 	mutex_unlock(&kprobe_mutex);
2259 	return NOTIFY_DONE;
2260 }
2261 
2262 static struct notifier_block kprobe_module_nb = {
2263 	.notifier_call = kprobes_module_callback,
2264 	.priority = 0
2265 };
2266 
2267 /* Markers of _kprobe_blacklist section */
2268 extern unsigned long __start_kprobe_blacklist[];
2269 extern unsigned long __stop_kprobe_blacklist[];
2270 
2271 static int __init init_kprobes(void)
2272 {
2273 	int i, err = 0;
2274 
2275 	/* FIXME allocate the probe table, currently defined statically */
2276 	/* initialize all list heads */
2277 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2278 		INIT_HLIST_HEAD(&kprobe_table[i]);
2279 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2280 		raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2281 	}
2282 
2283 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2284 					__stop_kprobe_blacklist);
2285 	if (err) {
2286 		pr_err("kprobes: failed to populate blacklist: %d\n", err);
2287 		pr_err("Please take care of using kprobes.\n");
2288 	}
2289 
2290 	if (kretprobe_blacklist_size) {
2291 		/* lookup the function address from its name */
2292 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2293 			kretprobe_blacklist[i].addr =
2294 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2295 			if (!kretprobe_blacklist[i].addr)
2296 				printk("kretprobe: lookup failed: %s\n",
2297 				       kretprobe_blacklist[i].name);
2298 		}
2299 	}
2300 
2301 #if defined(CONFIG_OPTPROBES)
2302 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2303 	/* Init kprobe_optinsn_slots */
2304 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2305 #endif
2306 	/* By default, kprobes can be optimized */
2307 	kprobes_allow_optimization = true;
2308 #endif
2309 
2310 	/* By default, kprobes are armed */
2311 	kprobes_all_disarmed = false;
2312 
2313 	err = arch_init_kprobes();
2314 	if (!err)
2315 		err = register_die_notifier(&kprobe_exceptions_nb);
2316 	if (!err)
2317 		err = register_module_notifier(&kprobe_module_nb);
2318 
2319 	kprobes_initialized = (err == 0);
2320 
2321 	if (!err)
2322 		init_test_probes();
2323 	return err;
2324 }
2325 subsys_initcall(init_kprobes);
2326 
2327 #ifdef CONFIG_DEBUG_FS
2328 static void report_probe(struct seq_file *pi, struct kprobe *p,
2329 		const char *sym, int offset, char *modname, struct kprobe *pp)
2330 {
2331 	char *kprobe_type;
2332 	void *addr = p->addr;
2333 
2334 	if (p->pre_handler == pre_handler_kretprobe)
2335 		kprobe_type = "r";
2336 	else
2337 		kprobe_type = "k";
2338 
2339 	if (!kallsyms_show_value())
2340 		addr = NULL;
2341 
2342 	if (sym)
2343 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2344 			addr, kprobe_type, sym, offset,
2345 			(modname ? modname : " "));
2346 	else	/* try to use %pS */
2347 		seq_printf(pi, "%px  %s  %pS ",
2348 			addr, kprobe_type, p->addr);
2349 
2350 	if (!pp)
2351 		pp = p;
2352 	seq_printf(pi, "%s%s%s%s\n",
2353 		(kprobe_gone(p) ? "[GONE]" : ""),
2354 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2355 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2356 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2357 }
2358 
2359 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2360 {
2361 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2362 }
2363 
2364 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2365 {
2366 	(*pos)++;
2367 	if (*pos >= KPROBE_TABLE_SIZE)
2368 		return NULL;
2369 	return pos;
2370 }
2371 
2372 static void kprobe_seq_stop(struct seq_file *f, void *v)
2373 {
2374 	/* Nothing to do */
2375 }
2376 
2377 static int show_kprobe_addr(struct seq_file *pi, void *v)
2378 {
2379 	struct hlist_head *head;
2380 	struct kprobe *p, *kp;
2381 	const char *sym = NULL;
2382 	unsigned int i = *(loff_t *) v;
2383 	unsigned long offset = 0;
2384 	char *modname, namebuf[KSYM_NAME_LEN];
2385 
2386 	head = &kprobe_table[i];
2387 	preempt_disable();
2388 	hlist_for_each_entry_rcu(p, head, hlist) {
2389 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2390 					&offset, &modname, namebuf);
2391 		if (kprobe_aggrprobe(p)) {
2392 			list_for_each_entry_rcu(kp, &p->list, list)
2393 				report_probe(pi, kp, sym, offset, modname, p);
2394 		} else
2395 			report_probe(pi, p, sym, offset, modname, NULL);
2396 	}
2397 	preempt_enable();
2398 	return 0;
2399 }
2400 
2401 static const struct seq_operations kprobes_seq_ops = {
2402 	.start = kprobe_seq_start,
2403 	.next  = kprobe_seq_next,
2404 	.stop  = kprobe_seq_stop,
2405 	.show  = show_kprobe_addr
2406 };
2407 
2408 static int kprobes_open(struct inode *inode, struct file *filp)
2409 {
2410 	return seq_open(filp, &kprobes_seq_ops);
2411 }
2412 
2413 static const struct file_operations debugfs_kprobes_operations = {
2414 	.open           = kprobes_open,
2415 	.read           = seq_read,
2416 	.llseek         = seq_lseek,
2417 	.release        = seq_release,
2418 };
2419 
2420 /* kprobes/blacklist -- shows which functions can not be probed */
2421 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2422 {
2423 	return seq_list_start(&kprobe_blacklist, *pos);
2424 }
2425 
2426 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2427 {
2428 	return seq_list_next(v, &kprobe_blacklist, pos);
2429 }
2430 
2431 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2432 {
2433 	struct kprobe_blacklist_entry *ent =
2434 		list_entry(v, struct kprobe_blacklist_entry, list);
2435 
2436 	/*
2437 	 * If /proc/kallsyms is not showing kernel address, we won't
2438 	 * show them here either.
2439 	 */
2440 	if (!kallsyms_show_value())
2441 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2442 			   (void *)ent->start_addr);
2443 	else
2444 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2445 			   (void *)ent->end_addr, (void *)ent->start_addr);
2446 	return 0;
2447 }
2448 
2449 static const struct seq_operations kprobe_blacklist_seq_ops = {
2450 	.start = kprobe_blacklist_seq_start,
2451 	.next  = kprobe_blacklist_seq_next,
2452 	.stop  = kprobe_seq_stop,	/* Reuse void function */
2453 	.show  = kprobe_blacklist_seq_show,
2454 };
2455 
2456 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2457 {
2458 	return seq_open(filp, &kprobe_blacklist_seq_ops);
2459 }
2460 
2461 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2462 	.open           = kprobe_blacklist_open,
2463 	.read           = seq_read,
2464 	.llseek         = seq_lseek,
2465 	.release        = seq_release,
2466 };
2467 
2468 static int arm_all_kprobes(void)
2469 {
2470 	struct hlist_head *head;
2471 	struct kprobe *p;
2472 	unsigned int i, total = 0, errors = 0;
2473 	int err, ret = 0;
2474 
2475 	mutex_lock(&kprobe_mutex);
2476 
2477 	/* If kprobes are armed, just return */
2478 	if (!kprobes_all_disarmed)
2479 		goto already_enabled;
2480 
2481 	/*
2482 	 * optimize_kprobe() called by arm_kprobe() checks
2483 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2484 	 * arm_kprobe.
2485 	 */
2486 	kprobes_all_disarmed = false;
2487 	/* Arming kprobes doesn't optimize kprobe itself */
2488 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2489 		head = &kprobe_table[i];
2490 		/* Arm all kprobes on a best-effort basis */
2491 		hlist_for_each_entry_rcu(p, head, hlist) {
2492 			if (!kprobe_disabled(p)) {
2493 				err = arm_kprobe(p);
2494 				if (err)  {
2495 					errors++;
2496 					ret = err;
2497 				}
2498 				total++;
2499 			}
2500 		}
2501 	}
2502 
2503 	if (errors)
2504 		pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2505 			errors, total);
2506 	else
2507 		pr_info("Kprobes globally enabled\n");
2508 
2509 already_enabled:
2510 	mutex_unlock(&kprobe_mutex);
2511 	return ret;
2512 }
2513 
2514 static int disarm_all_kprobes(void)
2515 {
2516 	struct hlist_head *head;
2517 	struct kprobe *p;
2518 	unsigned int i, total = 0, errors = 0;
2519 	int err, ret = 0;
2520 
2521 	mutex_lock(&kprobe_mutex);
2522 
2523 	/* If kprobes are already disarmed, just return */
2524 	if (kprobes_all_disarmed) {
2525 		mutex_unlock(&kprobe_mutex);
2526 		return 0;
2527 	}
2528 
2529 	kprobes_all_disarmed = true;
2530 
2531 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2532 		head = &kprobe_table[i];
2533 		/* Disarm all kprobes on a best-effort basis */
2534 		hlist_for_each_entry_rcu(p, head, hlist) {
2535 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2536 				err = disarm_kprobe(p, false);
2537 				if (err) {
2538 					errors++;
2539 					ret = err;
2540 				}
2541 				total++;
2542 			}
2543 		}
2544 	}
2545 
2546 	if (errors)
2547 		pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2548 			errors, total);
2549 	else
2550 		pr_info("Kprobes globally disabled\n");
2551 
2552 	mutex_unlock(&kprobe_mutex);
2553 
2554 	/* Wait for disarming all kprobes by optimizer */
2555 	wait_for_kprobe_optimizer();
2556 
2557 	return ret;
2558 }
2559 
2560 /*
2561  * XXX: The debugfs bool file interface doesn't allow for callbacks
2562  * when the bool state is switched. We can reuse that facility when
2563  * available
2564  */
2565 static ssize_t read_enabled_file_bool(struct file *file,
2566 	       char __user *user_buf, size_t count, loff_t *ppos)
2567 {
2568 	char buf[3];
2569 
2570 	if (!kprobes_all_disarmed)
2571 		buf[0] = '1';
2572 	else
2573 		buf[0] = '0';
2574 	buf[1] = '\n';
2575 	buf[2] = 0x00;
2576 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2577 }
2578 
2579 static ssize_t write_enabled_file_bool(struct file *file,
2580 	       const char __user *user_buf, size_t count, loff_t *ppos)
2581 {
2582 	char buf[32];
2583 	size_t buf_size;
2584 	int ret = 0;
2585 
2586 	buf_size = min(count, (sizeof(buf)-1));
2587 	if (copy_from_user(buf, user_buf, buf_size))
2588 		return -EFAULT;
2589 
2590 	buf[buf_size] = '\0';
2591 	switch (buf[0]) {
2592 	case 'y':
2593 	case 'Y':
2594 	case '1':
2595 		ret = arm_all_kprobes();
2596 		break;
2597 	case 'n':
2598 	case 'N':
2599 	case '0':
2600 		ret = disarm_all_kprobes();
2601 		break;
2602 	default:
2603 		return -EINVAL;
2604 	}
2605 
2606 	if (ret)
2607 		return ret;
2608 
2609 	return count;
2610 }
2611 
2612 static const struct file_operations fops_kp = {
2613 	.read =         read_enabled_file_bool,
2614 	.write =        write_enabled_file_bool,
2615 	.llseek =	default_llseek,
2616 };
2617 
2618 static int __init debugfs_kprobe_init(void)
2619 {
2620 	struct dentry *dir;
2621 	unsigned int value = 1;
2622 
2623 	dir = debugfs_create_dir("kprobes", NULL);
2624 
2625 	debugfs_create_file("list", 0400, dir, NULL,
2626 			    &debugfs_kprobes_operations);
2627 
2628 	debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2629 
2630 	debugfs_create_file("blacklist", 0400, dir, NULL,
2631 			    &debugfs_kprobe_blacklist_ops);
2632 
2633 	return 0;
2634 }
2635 
2636 late_initcall(debugfs_kprobe_init);
2637 #endif /* CONFIG_DEBUG_FS */
2638