xref: /linux/kernel/kprobes.c (revision 092e0e7e520a1fca03e13c9f2d157432a8657ff2)
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *		Probes initial implementation (includes suggestions from
23  *		Rusty Russell).
24  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *		hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *		interface to access function arguments.
28  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *		exceptions notifier to be first on the priority list.
30  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *		<prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51 
52 #include <asm-generic/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <asm/uaccess.h>
56 
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59 
60 
61 /*
62  * Some oddball architectures like 64bit powerpc have function descriptors
63  * so this must be overridable.
64  */
65 #ifndef kprobe_lookup_name
66 #define kprobe_lookup_name(name, addr) \
67 	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
68 #endif
69 
70 static int kprobes_initialized;
71 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
72 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
73 
74 /* NOTE: change this value only with kprobe_mutex held */
75 static bool kprobes_all_disarmed;
76 
77 static DEFINE_MUTEX(kprobe_mutex);	/* Protects kprobe_table */
78 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
79 static struct {
80 	spinlock_t lock ____cacheline_aligned_in_smp;
81 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
82 
83 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
84 {
85 	return &(kretprobe_table_locks[hash].lock);
86 }
87 
88 /*
89  * Normally, functions that we'd want to prohibit kprobes in, are marked
90  * __kprobes. But, there are cases where such functions already belong to
91  * a different section (__sched for preempt_schedule)
92  *
93  * For such cases, we now have a blacklist
94  */
95 static struct kprobe_blackpoint kprobe_blacklist[] = {
96 	{"preempt_schedule",},
97 	{"native_get_debugreg",},
98 	{"irq_entries_start",},
99 	{"common_interrupt",},
100 	{"mcount",},	/* mcount can be called from everywhere */
101 	{NULL}    /* Terminator */
102 };
103 
104 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
105 /*
106  * kprobe->ainsn.insn points to the copy of the instruction to be
107  * single-stepped. x86_64, POWER4 and above have no-exec support and
108  * stepping on the instruction on a vmalloced/kmalloced/data page
109  * is a recipe for disaster
110  */
111 struct kprobe_insn_page {
112 	struct list_head list;
113 	kprobe_opcode_t *insns;		/* Page of instruction slots */
114 	int nused;
115 	int ngarbage;
116 	char slot_used[];
117 };
118 
119 #define KPROBE_INSN_PAGE_SIZE(slots)			\
120 	(offsetof(struct kprobe_insn_page, slot_used) +	\
121 	 (sizeof(char) * (slots)))
122 
123 struct kprobe_insn_cache {
124 	struct list_head pages;	/* list of kprobe_insn_page */
125 	size_t insn_size;	/* size of instruction slot */
126 	int nr_garbage;
127 };
128 
129 static int slots_per_page(struct kprobe_insn_cache *c)
130 {
131 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
132 }
133 
134 enum kprobe_slot_state {
135 	SLOT_CLEAN = 0,
136 	SLOT_DIRTY = 1,
137 	SLOT_USED = 2,
138 };
139 
140 static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
141 static struct kprobe_insn_cache kprobe_insn_slots = {
142 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
143 	.insn_size = MAX_INSN_SIZE,
144 	.nr_garbage = 0,
145 };
146 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
147 
148 /**
149  * __get_insn_slot() - Find a slot on an executable page for an instruction.
150  * We allocate an executable page if there's no room on existing ones.
151  */
152 static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
153 {
154 	struct kprobe_insn_page *kip;
155 
156  retry:
157 	list_for_each_entry(kip, &c->pages, list) {
158 		if (kip->nused < slots_per_page(c)) {
159 			int i;
160 			for (i = 0; i < slots_per_page(c); i++) {
161 				if (kip->slot_used[i] == SLOT_CLEAN) {
162 					kip->slot_used[i] = SLOT_USED;
163 					kip->nused++;
164 					return kip->insns + (i * c->insn_size);
165 				}
166 			}
167 			/* kip->nused is broken. Fix it. */
168 			kip->nused = slots_per_page(c);
169 			WARN_ON(1);
170 		}
171 	}
172 
173 	/* If there are any garbage slots, collect it and try again. */
174 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
175 		goto retry;
176 
177 	/* All out of space.  Need to allocate a new page. */
178 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179 	if (!kip)
180 		return NULL;
181 
182 	/*
183 	 * Use module_alloc so this page is within +/- 2GB of where the
184 	 * kernel image and loaded module images reside. This is required
185 	 * so x86_64 can correctly handle the %rip-relative fixups.
186 	 */
187 	kip->insns = module_alloc(PAGE_SIZE);
188 	if (!kip->insns) {
189 		kfree(kip);
190 		return NULL;
191 	}
192 	INIT_LIST_HEAD(&kip->list);
193 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
194 	kip->slot_used[0] = SLOT_USED;
195 	kip->nused = 1;
196 	kip->ngarbage = 0;
197 	list_add(&kip->list, &c->pages);
198 	return kip->insns;
199 }
200 
201 
202 kprobe_opcode_t __kprobes *get_insn_slot(void)
203 {
204 	kprobe_opcode_t *ret = NULL;
205 
206 	mutex_lock(&kprobe_insn_mutex);
207 	ret = __get_insn_slot(&kprobe_insn_slots);
208 	mutex_unlock(&kprobe_insn_mutex);
209 
210 	return ret;
211 }
212 
213 /* Return 1 if all garbages are collected, otherwise 0. */
214 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
215 {
216 	kip->slot_used[idx] = SLOT_CLEAN;
217 	kip->nused--;
218 	if (kip->nused == 0) {
219 		/*
220 		 * Page is no longer in use.  Free it unless
221 		 * it's the last one.  We keep the last one
222 		 * so as not to have to set it up again the
223 		 * next time somebody inserts a probe.
224 		 */
225 		if (!list_is_singular(&kip->list)) {
226 			list_del(&kip->list);
227 			module_free(NULL, kip->insns);
228 			kfree(kip);
229 		}
230 		return 1;
231 	}
232 	return 0;
233 }
234 
235 static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
236 {
237 	struct kprobe_insn_page *kip, *next;
238 
239 	/* Ensure no-one is interrupted on the garbages */
240 	synchronize_sched();
241 
242 	list_for_each_entry_safe(kip, next, &c->pages, list) {
243 		int i;
244 		if (kip->ngarbage == 0)
245 			continue;
246 		kip->ngarbage = 0;	/* we will collect all garbages */
247 		for (i = 0; i < slots_per_page(c); i++) {
248 			if (kip->slot_used[i] == SLOT_DIRTY &&
249 			    collect_one_slot(kip, i))
250 				break;
251 		}
252 	}
253 	c->nr_garbage = 0;
254 	return 0;
255 }
256 
257 static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
258 				       kprobe_opcode_t *slot, int dirty)
259 {
260 	struct kprobe_insn_page *kip;
261 
262 	list_for_each_entry(kip, &c->pages, list) {
263 		long idx = ((long)slot - (long)kip->insns) /
264 				(c->insn_size * sizeof(kprobe_opcode_t));
265 		if (idx >= 0 && idx < slots_per_page(c)) {
266 			WARN_ON(kip->slot_used[idx] != SLOT_USED);
267 			if (dirty) {
268 				kip->slot_used[idx] = SLOT_DIRTY;
269 				kip->ngarbage++;
270 				if (++c->nr_garbage > slots_per_page(c))
271 					collect_garbage_slots(c);
272 			} else
273 				collect_one_slot(kip, idx);
274 			return;
275 		}
276 	}
277 	/* Could not free this slot. */
278 	WARN_ON(1);
279 }
280 
281 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
282 {
283 	mutex_lock(&kprobe_insn_mutex);
284 	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
285 	mutex_unlock(&kprobe_insn_mutex);
286 }
287 #ifdef CONFIG_OPTPROBES
288 /* For optimized_kprobe buffer */
289 static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
290 static struct kprobe_insn_cache kprobe_optinsn_slots = {
291 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
292 	/* .insn_size is initialized later */
293 	.nr_garbage = 0,
294 };
295 /* Get a slot for optimized_kprobe buffer */
296 kprobe_opcode_t __kprobes *get_optinsn_slot(void)
297 {
298 	kprobe_opcode_t *ret = NULL;
299 
300 	mutex_lock(&kprobe_optinsn_mutex);
301 	ret = __get_insn_slot(&kprobe_optinsn_slots);
302 	mutex_unlock(&kprobe_optinsn_mutex);
303 
304 	return ret;
305 }
306 
307 void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
308 {
309 	mutex_lock(&kprobe_optinsn_mutex);
310 	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
311 	mutex_unlock(&kprobe_optinsn_mutex);
312 }
313 #endif
314 #endif
315 
316 /* We have preemption disabled.. so it is safe to use __ versions */
317 static inline void set_kprobe_instance(struct kprobe *kp)
318 {
319 	__get_cpu_var(kprobe_instance) = kp;
320 }
321 
322 static inline void reset_kprobe_instance(void)
323 {
324 	__get_cpu_var(kprobe_instance) = NULL;
325 }
326 
327 /*
328  * This routine is called either:
329  * 	- under the kprobe_mutex - during kprobe_[un]register()
330  * 				OR
331  * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
332  */
333 struct kprobe __kprobes *get_kprobe(void *addr)
334 {
335 	struct hlist_head *head;
336 	struct hlist_node *node;
337 	struct kprobe *p;
338 
339 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
340 	hlist_for_each_entry_rcu(p, node, head, hlist) {
341 		if (p->addr == addr)
342 			return p;
343 	}
344 
345 	return NULL;
346 }
347 
348 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
349 
350 /* Return true if the kprobe is an aggregator */
351 static inline int kprobe_aggrprobe(struct kprobe *p)
352 {
353 	return p->pre_handler == aggr_pre_handler;
354 }
355 
356 /*
357  * Keep all fields in the kprobe consistent
358  */
359 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
360 {
361 	memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
362 	memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
363 }
364 
365 #ifdef CONFIG_OPTPROBES
366 /* NOTE: change this value only with kprobe_mutex held */
367 static bool kprobes_allow_optimization;
368 
369 /*
370  * Call all pre_handler on the list, but ignores its return value.
371  * This must be called from arch-dep optimized caller.
372  */
373 void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
374 {
375 	struct kprobe *kp;
376 
377 	list_for_each_entry_rcu(kp, &p->list, list) {
378 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
379 			set_kprobe_instance(kp);
380 			kp->pre_handler(kp, regs);
381 		}
382 		reset_kprobe_instance();
383 	}
384 }
385 
386 /* Return true(!0) if the kprobe is ready for optimization. */
387 static inline int kprobe_optready(struct kprobe *p)
388 {
389 	struct optimized_kprobe *op;
390 
391 	if (kprobe_aggrprobe(p)) {
392 		op = container_of(p, struct optimized_kprobe, kp);
393 		return arch_prepared_optinsn(&op->optinsn);
394 	}
395 
396 	return 0;
397 }
398 
399 /*
400  * Return an optimized kprobe whose optimizing code replaces
401  * instructions including addr (exclude breakpoint).
402  */
403 static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
404 {
405 	int i;
406 	struct kprobe *p = NULL;
407 	struct optimized_kprobe *op;
408 
409 	/* Don't check i == 0, since that is a breakpoint case. */
410 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
411 		p = get_kprobe((void *)(addr - i));
412 
413 	if (p && kprobe_optready(p)) {
414 		op = container_of(p, struct optimized_kprobe, kp);
415 		if (arch_within_optimized_kprobe(op, addr))
416 			return p;
417 	}
418 
419 	return NULL;
420 }
421 
422 /* Optimization staging list, protected by kprobe_mutex */
423 static LIST_HEAD(optimizing_list);
424 
425 static void kprobe_optimizer(struct work_struct *work);
426 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
427 #define OPTIMIZE_DELAY 5
428 
429 /* Kprobe jump optimizer */
430 static __kprobes void kprobe_optimizer(struct work_struct *work)
431 {
432 	struct optimized_kprobe *op, *tmp;
433 
434 	/* Lock modules while optimizing kprobes */
435 	mutex_lock(&module_mutex);
436 	mutex_lock(&kprobe_mutex);
437 	if (kprobes_all_disarmed || !kprobes_allow_optimization)
438 		goto end;
439 
440 	/*
441 	 * Wait for quiesence period to ensure all running interrupts
442 	 * are done. Because optprobe may modify multiple instructions
443 	 * there is a chance that Nth instruction is interrupted. In that
444 	 * case, running interrupt can return to 2nd-Nth byte of jump
445 	 * instruction. This wait is for avoiding it.
446 	 */
447 	synchronize_sched();
448 
449 	/*
450 	 * The optimization/unoptimization refers online_cpus via
451 	 * stop_machine() and cpu-hotplug modifies online_cpus.
452 	 * And same time, text_mutex will be held in cpu-hotplug and here.
453 	 * This combination can cause a deadlock (cpu-hotplug try to lock
454 	 * text_mutex but stop_machine can not be done because online_cpus
455 	 * has been changed)
456 	 * To avoid this deadlock, we need to call get_online_cpus()
457 	 * for preventing cpu-hotplug outside of text_mutex locking.
458 	 */
459 	get_online_cpus();
460 	mutex_lock(&text_mutex);
461 	list_for_each_entry_safe(op, tmp, &optimizing_list, list) {
462 		WARN_ON(kprobe_disabled(&op->kp));
463 		if (arch_optimize_kprobe(op) < 0)
464 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
465 		list_del_init(&op->list);
466 	}
467 	mutex_unlock(&text_mutex);
468 	put_online_cpus();
469 end:
470 	mutex_unlock(&kprobe_mutex);
471 	mutex_unlock(&module_mutex);
472 }
473 
474 /* Optimize kprobe if p is ready to be optimized */
475 static __kprobes void optimize_kprobe(struct kprobe *p)
476 {
477 	struct optimized_kprobe *op;
478 
479 	/* Check if the kprobe is disabled or not ready for optimization. */
480 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
481 	    (kprobe_disabled(p) || kprobes_all_disarmed))
482 		return;
483 
484 	/* Both of break_handler and post_handler are not supported. */
485 	if (p->break_handler || p->post_handler)
486 		return;
487 
488 	op = container_of(p, struct optimized_kprobe, kp);
489 
490 	/* Check there is no other kprobes at the optimized instructions */
491 	if (arch_check_optimized_kprobe(op) < 0)
492 		return;
493 
494 	/* Check if it is already optimized. */
495 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
496 		return;
497 
498 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
499 	list_add(&op->list, &optimizing_list);
500 	if (!delayed_work_pending(&optimizing_work))
501 		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
502 }
503 
504 /* Unoptimize a kprobe if p is optimized */
505 static __kprobes void unoptimize_kprobe(struct kprobe *p)
506 {
507 	struct optimized_kprobe *op;
508 
509 	if ((p->flags & KPROBE_FLAG_OPTIMIZED) && kprobe_aggrprobe(p)) {
510 		op = container_of(p, struct optimized_kprobe, kp);
511 		if (!list_empty(&op->list))
512 			/* Dequeue from the optimization queue */
513 			list_del_init(&op->list);
514 		else
515 			/* Replace jump with break */
516 			arch_unoptimize_kprobe(op);
517 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
518 	}
519 }
520 
521 /* Remove optimized instructions */
522 static void __kprobes kill_optimized_kprobe(struct kprobe *p)
523 {
524 	struct optimized_kprobe *op;
525 
526 	op = container_of(p, struct optimized_kprobe, kp);
527 	if (!list_empty(&op->list)) {
528 		/* Dequeue from the optimization queue */
529 		list_del_init(&op->list);
530 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
531 	}
532 	/* Don't unoptimize, because the target code will be freed. */
533 	arch_remove_optimized_kprobe(op);
534 }
535 
536 /* Try to prepare optimized instructions */
537 static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
538 {
539 	struct optimized_kprobe *op;
540 
541 	op = container_of(p, struct optimized_kprobe, kp);
542 	arch_prepare_optimized_kprobe(op);
543 }
544 
545 /* Free optimized instructions and optimized_kprobe */
546 static __kprobes void free_aggr_kprobe(struct kprobe *p)
547 {
548 	struct optimized_kprobe *op;
549 
550 	op = container_of(p, struct optimized_kprobe, kp);
551 	arch_remove_optimized_kprobe(op);
552 	kfree(op);
553 }
554 
555 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
556 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
557 {
558 	struct optimized_kprobe *op;
559 
560 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
561 	if (!op)
562 		return NULL;
563 
564 	INIT_LIST_HEAD(&op->list);
565 	op->kp.addr = p->addr;
566 	arch_prepare_optimized_kprobe(op);
567 
568 	return &op->kp;
569 }
570 
571 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
572 
573 /*
574  * Prepare an optimized_kprobe and optimize it
575  * NOTE: p must be a normal registered kprobe
576  */
577 static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
578 {
579 	struct kprobe *ap;
580 	struct optimized_kprobe *op;
581 
582 	ap = alloc_aggr_kprobe(p);
583 	if (!ap)
584 		return;
585 
586 	op = container_of(ap, struct optimized_kprobe, kp);
587 	if (!arch_prepared_optinsn(&op->optinsn)) {
588 		/* If failed to setup optimizing, fallback to kprobe */
589 		free_aggr_kprobe(ap);
590 		return;
591 	}
592 
593 	init_aggr_kprobe(ap, p);
594 	optimize_kprobe(ap);
595 }
596 
597 #ifdef CONFIG_SYSCTL
598 static void __kprobes optimize_all_kprobes(void)
599 {
600 	struct hlist_head *head;
601 	struct hlist_node *node;
602 	struct kprobe *p;
603 	unsigned int i;
604 
605 	/* If optimization is already allowed, just return */
606 	if (kprobes_allow_optimization)
607 		return;
608 
609 	kprobes_allow_optimization = true;
610 	mutex_lock(&text_mutex);
611 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
612 		head = &kprobe_table[i];
613 		hlist_for_each_entry_rcu(p, node, head, hlist)
614 			if (!kprobe_disabled(p))
615 				optimize_kprobe(p);
616 	}
617 	mutex_unlock(&text_mutex);
618 	printk(KERN_INFO "Kprobes globally optimized\n");
619 }
620 
621 static void __kprobes unoptimize_all_kprobes(void)
622 {
623 	struct hlist_head *head;
624 	struct hlist_node *node;
625 	struct kprobe *p;
626 	unsigned int i;
627 
628 	/* If optimization is already prohibited, just return */
629 	if (!kprobes_allow_optimization)
630 		return;
631 
632 	kprobes_allow_optimization = false;
633 	printk(KERN_INFO "Kprobes globally unoptimized\n");
634 	get_online_cpus();	/* For avoiding text_mutex deadlock */
635 	mutex_lock(&text_mutex);
636 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
637 		head = &kprobe_table[i];
638 		hlist_for_each_entry_rcu(p, node, head, hlist) {
639 			if (!kprobe_disabled(p))
640 				unoptimize_kprobe(p);
641 		}
642 	}
643 
644 	mutex_unlock(&text_mutex);
645 	put_online_cpus();
646 	/* Allow all currently running kprobes to complete */
647 	synchronize_sched();
648 }
649 
650 int sysctl_kprobes_optimization;
651 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
652 				      void __user *buffer, size_t *length,
653 				      loff_t *ppos)
654 {
655 	int ret;
656 
657 	mutex_lock(&kprobe_mutex);
658 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
659 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
660 
661 	if (sysctl_kprobes_optimization)
662 		optimize_all_kprobes();
663 	else
664 		unoptimize_all_kprobes();
665 	mutex_unlock(&kprobe_mutex);
666 
667 	return ret;
668 }
669 #endif /* CONFIG_SYSCTL */
670 
671 static void __kprobes __arm_kprobe(struct kprobe *p)
672 {
673 	struct kprobe *old_p;
674 
675 	/* Check collision with other optimized kprobes */
676 	old_p = get_optimized_kprobe((unsigned long)p->addr);
677 	if (unlikely(old_p))
678 		unoptimize_kprobe(old_p); /* Fallback to unoptimized kprobe */
679 
680 	arch_arm_kprobe(p);
681 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
682 }
683 
684 static void __kprobes __disarm_kprobe(struct kprobe *p)
685 {
686 	struct kprobe *old_p;
687 
688 	unoptimize_kprobe(p);	/* Try to unoptimize */
689 	arch_disarm_kprobe(p);
690 
691 	/* If another kprobe was blocked, optimize it. */
692 	old_p = get_optimized_kprobe((unsigned long)p->addr);
693 	if (unlikely(old_p))
694 		optimize_kprobe(old_p);
695 }
696 
697 #else /* !CONFIG_OPTPROBES */
698 
699 #define optimize_kprobe(p)			do {} while (0)
700 #define unoptimize_kprobe(p)			do {} while (0)
701 #define kill_optimized_kprobe(p)		do {} while (0)
702 #define prepare_optimized_kprobe(p)		do {} while (0)
703 #define try_to_optimize_kprobe(p)		do {} while (0)
704 #define __arm_kprobe(p)				arch_arm_kprobe(p)
705 #define __disarm_kprobe(p)			arch_disarm_kprobe(p)
706 
707 static __kprobes void free_aggr_kprobe(struct kprobe *p)
708 {
709 	kfree(p);
710 }
711 
712 static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
713 {
714 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
715 }
716 #endif /* CONFIG_OPTPROBES */
717 
718 /* Arm a kprobe with text_mutex */
719 static void __kprobes arm_kprobe(struct kprobe *kp)
720 {
721 	/*
722 	 * Here, since __arm_kprobe() doesn't use stop_machine(),
723 	 * this doesn't cause deadlock on text_mutex. So, we don't
724 	 * need get_online_cpus().
725 	 */
726 	mutex_lock(&text_mutex);
727 	__arm_kprobe(kp);
728 	mutex_unlock(&text_mutex);
729 }
730 
731 /* Disarm a kprobe with text_mutex */
732 static void __kprobes disarm_kprobe(struct kprobe *kp)
733 {
734 	get_online_cpus();	/* For avoiding text_mutex deadlock */
735 	mutex_lock(&text_mutex);
736 	__disarm_kprobe(kp);
737 	mutex_unlock(&text_mutex);
738 	put_online_cpus();
739 }
740 
741 /*
742  * Aggregate handlers for multiple kprobes support - these handlers
743  * take care of invoking the individual kprobe handlers on p->list
744  */
745 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
746 {
747 	struct kprobe *kp;
748 
749 	list_for_each_entry_rcu(kp, &p->list, list) {
750 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
751 			set_kprobe_instance(kp);
752 			if (kp->pre_handler(kp, regs))
753 				return 1;
754 		}
755 		reset_kprobe_instance();
756 	}
757 	return 0;
758 }
759 
760 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
761 					unsigned long flags)
762 {
763 	struct kprobe *kp;
764 
765 	list_for_each_entry_rcu(kp, &p->list, list) {
766 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
767 			set_kprobe_instance(kp);
768 			kp->post_handler(kp, regs, flags);
769 			reset_kprobe_instance();
770 		}
771 	}
772 }
773 
774 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
775 					int trapnr)
776 {
777 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
778 
779 	/*
780 	 * if we faulted "during" the execution of a user specified
781 	 * probe handler, invoke just that probe's fault handler
782 	 */
783 	if (cur && cur->fault_handler) {
784 		if (cur->fault_handler(cur, regs, trapnr))
785 			return 1;
786 	}
787 	return 0;
788 }
789 
790 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
791 {
792 	struct kprobe *cur = __get_cpu_var(kprobe_instance);
793 	int ret = 0;
794 
795 	if (cur && cur->break_handler) {
796 		if (cur->break_handler(cur, regs))
797 			ret = 1;
798 	}
799 	reset_kprobe_instance();
800 	return ret;
801 }
802 
803 /* Walks the list and increments nmissed count for multiprobe case */
804 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
805 {
806 	struct kprobe *kp;
807 	if (!kprobe_aggrprobe(p)) {
808 		p->nmissed++;
809 	} else {
810 		list_for_each_entry_rcu(kp, &p->list, list)
811 			kp->nmissed++;
812 	}
813 	return;
814 }
815 
816 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
817 				struct hlist_head *head)
818 {
819 	struct kretprobe *rp = ri->rp;
820 
821 	/* remove rp inst off the rprobe_inst_table */
822 	hlist_del(&ri->hlist);
823 	INIT_HLIST_NODE(&ri->hlist);
824 	if (likely(rp)) {
825 		spin_lock(&rp->lock);
826 		hlist_add_head(&ri->hlist, &rp->free_instances);
827 		spin_unlock(&rp->lock);
828 	} else
829 		/* Unregistering */
830 		hlist_add_head(&ri->hlist, head);
831 }
832 
833 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
834 			 struct hlist_head **head, unsigned long *flags)
835 __acquires(hlist_lock)
836 {
837 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
838 	spinlock_t *hlist_lock;
839 
840 	*head = &kretprobe_inst_table[hash];
841 	hlist_lock = kretprobe_table_lock_ptr(hash);
842 	spin_lock_irqsave(hlist_lock, *flags);
843 }
844 
845 static void __kprobes kretprobe_table_lock(unsigned long hash,
846 	unsigned long *flags)
847 __acquires(hlist_lock)
848 {
849 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
850 	spin_lock_irqsave(hlist_lock, *flags);
851 }
852 
853 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
854 	unsigned long *flags)
855 __releases(hlist_lock)
856 {
857 	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
858 	spinlock_t *hlist_lock;
859 
860 	hlist_lock = kretprobe_table_lock_ptr(hash);
861 	spin_unlock_irqrestore(hlist_lock, *flags);
862 }
863 
864 static void __kprobes kretprobe_table_unlock(unsigned long hash,
865        unsigned long *flags)
866 __releases(hlist_lock)
867 {
868 	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
869 	spin_unlock_irqrestore(hlist_lock, *flags);
870 }
871 
872 /*
873  * This function is called from finish_task_switch when task tk becomes dead,
874  * so that we can recycle any function-return probe instances associated
875  * with this task. These left over instances represent probed functions
876  * that have been called but will never return.
877  */
878 void __kprobes kprobe_flush_task(struct task_struct *tk)
879 {
880 	struct kretprobe_instance *ri;
881 	struct hlist_head *head, empty_rp;
882 	struct hlist_node *node, *tmp;
883 	unsigned long hash, flags = 0;
884 
885 	if (unlikely(!kprobes_initialized))
886 		/* Early boot.  kretprobe_table_locks not yet initialized. */
887 		return;
888 
889 	hash = hash_ptr(tk, KPROBE_HASH_BITS);
890 	head = &kretprobe_inst_table[hash];
891 	kretprobe_table_lock(hash, &flags);
892 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
893 		if (ri->task == tk)
894 			recycle_rp_inst(ri, &empty_rp);
895 	}
896 	kretprobe_table_unlock(hash, &flags);
897 	INIT_HLIST_HEAD(&empty_rp);
898 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
899 		hlist_del(&ri->hlist);
900 		kfree(ri);
901 	}
902 }
903 
904 static inline void free_rp_inst(struct kretprobe *rp)
905 {
906 	struct kretprobe_instance *ri;
907 	struct hlist_node *pos, *next;
908 
909 	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
910 		hlist_del(&ri->hlist);
911 		kfree(ri);
912 	}
913 }
914 
915 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
916 {
917 	unsigned long flags, hash;
918 	struct kretprobe_instance *ri;
919 	struct hlist_node *pos, *next;
920 	struct hlist_head *head;
921 
922 	/* No race here */
923 	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
924 		kretprobe_table_lock(hash, &flags);
925 		head = &kretprobe_inst_table[hash];
926 		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
927 			if (ri->rp == rp)
928 				ri->rp = NULL;
929 		}
930 		kretprobe_table_unlock(hash, &flags);
931 	}
932 	free_rp_inst(rp);
933 }
934 
935 /*
936 * Add the new probe to ap->list. Fail if this is the
937 * second jprobe at the address - two jprobes can't coexist
938 */
939 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
940 {
941 	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
942 
943 	if (p->break_handler || p->post_handler)
944 		unoptimize_kprobe(ap);	/* Fall back to normal kprobe */
945 
946 	if (p->break_handler) {
947 		if (ap->break_handler)
948 			return -EEXIST;
949 		list_add_tail_rcu(&p->list, &ap->list);
950 		ap->break_handler = aggr_break_handler;
951 	} else
952 		list_add_rcu(&p->list, &ap->list);
953 	if (p->post_handler && !ap->post_handler)
954 		ap->post_handler = aggr_post_handler;
955 
956 	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
957 		ap->flags &= ~KPROBE_FLAG_DISABLED;
958 		if (!kprobes_all_disarmed)
959 			/* Arm the breakpoint again. */
960 			__arm_kprobe(ap);
961 	}
962 	return 0;
963 }
964 
965 /*
966  * Fill in the required fields of the "manager kprobe". Replace the
967  * earlier kprobe in the hlist with the manager kprobe
968  */
969 static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
970 {
971 	/* Copy p's insn slot to ap */
972 	copy_kprobe(p, ap);
973 	flush_insn_slot(ap);
974 	ap->addr = p->addr;
975 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
976 	ap->pre_handler = aggr_pre_handler;
977 	ap->fault_handler = aggr_fault_handler;
978 	/* We don't care the kprobe which has gone. */
979 	if (p->post_handler && !kprobe_gone(p))
980 		ap->post_handler = aggr_post_handler;
981 	if (p->break_handler && !kprobe_gone(p))
982 		ap->break_handler = aggr_break_handler;
983 
984 	INIT_LIST_HEAD(&ap->list);
985 	INIT_HLIST_NODE(&ap->hlist);
986 
987 	list_add_rcu(&p->list, &ap->list);
988 	hlist_replace_rcu(&p->hlist, &ap->hlist);
989 }
990 
991 /*
992  * This is the second or subsequent kprobe at the address - handle
993  * the intricacies
994  */
995 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
996 					  struct kprobe *p)
997 {
998 	int ret = 0;
999 	struct kprobe *ap = old_p;
1000 
1001 	if (!kprobe_aggrprobe(old_p)) {
1002 		/* If old_p is not an aggr_kprobe, create new aggr_kprobe. */
1003 		ap = alloc_aggr_kprobe(old_p);
1004 		if (!ap)
1005 			return -ENOMEM;
1006 		init_aggr_kprobe(ap, old_p);
1007 	}
1008 
1009 	if (kprobe_gone(ap)) {
1010 		/*
1011 		 * Attempting to insert new probe at the same location that
1012 		 * had a probe in the module vaddr area which already
1013 		 * freed. So, the instruction slot has already been
1014 		 * released. We need a new slot for the new probe.
1015 		 */
1016 		ret = arch_prepare_kprobe(ap);
1017 		if (ret)
1018 			/*
1019 			 * Even if fail to allocate new slot, don't need to
1020 			 * free aggr_probe. It will be used next time, or
1021 			 * freed by unregister_kprobe.
1022 			 */
1023 			return ret;
1024 
1025 		/* Prepare optimized instructions if possible. */
1026 		prepare_optimized_kprobe(ap);
1027 
1028 		/*
1029 		 * Clear gone flag to prevent allocating new slot again, and
1030 		 * set disabled flag because it is not armed yet.
1031 		 */
1032 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1033 			    | KPROBE_FLAG_DISABLED;
1034 	}
1035 
1036 	/* Copy ap's insn slot to p */
1037 	copy_kprobe(ap, p);
1038 	return add_new_kprobe(ap, p);
1039 }
1040 
1041 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
1042 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
1043 {
1044 	struct kprobe *kp;
1045 
1046 	list_for_each_entry_rcu(kp, &p->list, list) {
1047 		if (!kprobe_disabled(kp))
1048 			/*
1049 			 * There is an active probe on the list.
1050 			 * We can't disable aggr_kprobe.
1051 			 */
1052 			return 0;
1053 	}
1054 	p->flags |= KPROBE_FLAG_DISABLED;
1055 	return 1;
1056 }
1057 
1058 static int __kprobes in_kprobes_functions(unsigned long addr)
1059 {
1060 	struct kprobe_blackpoint *kb;
1061 
1062 	if (addr >= (unsigned long)__kprobes_text_start &&
1063 	    addr < (unsigned long)__kprobes_text_end)
1064 		return -EINVAL;
1065 	/*
1066 	 * If there exists a kprobe_blacklist, verify and
1067 	 * fail any probe registration in the prohibited area
1068 	 */
1069 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1070 		if (kb->start_addr) {
1071 			if (addr >= kb->start_addr &&
1072 			    addr < (kb->start_addr + kb->range))
1073 				return -EINVAL;
1074 		}
1075 	}
1076 	return 0;
1077 }
1078 
1079 /*
1080  * If we have a symbol_name argument, look it up and add the offset field
1081  * to it. This way, we can specify a relative address to a symbol.
1082  */
1083 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
1084 {
1085 	kprobe_opcode_t *addr = p->addr;
1086 	if (p->symbol_name) {
1087 		if (addr)
1088 			return NULL;
1089 		kprobe_lookup_name(p->symbol_name, addr);
1090 	}
1091 
1092 	if (!addr)
1093 		return NULL;
1094 	return (kprobe_opcode_t *)(((char *)addr) + p->offset);
1095 }
1096 
1097 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1098 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
1099 {
1100 	struct kprobe *old_p, *list_p;
1101 
1102 	old_p = get_kprobe(p->addr);
1103 	if (unlikely(!old_p))
1104 		return NULL;
1105 
1106 	if (p != old_p) {
1107 		list_for_each_entry_rcu(list_p, &old_p->list, list)
1108 			if (list_p == p)
1109 			/* kprobe p is a valid probe */
1110 				goto valid;
1111 		return NULL;
1112 	}
1113 valid:
1114 	return old_p;
1115 }
1116 
1117 /* Return error if the kprobe is being re-registered */
1118 static inline int check_kprobe_rereg(struct kprobe *p)
1119 {
1120 	int ret = 0;
1121 	struct kprobe *old_p;
1122 
1123 	mutex_lock(&kprobe_mutex);
1124 	old_p = __get_valid_kprobe(p);
1125 	if (old_p)
1126 		ret = -EINVAL;
1127 	mutex_unlock(&kprobe_mutex);
1128 	return ret;
1129 }
1130 
1131 int __kprobes register_kprobe(struct kprobe *p)
1132 {
1133 	int ret = 0;
1134 	struct kprobe *old_p;
1135 	struct module *probed_mod;
1136 	kprobe_opcode_t *addr;
1137 
1138 	addr = kprobe_addr(p);
1139 	if (!addr)
1140 		return -EINVAL;
1141 	p->addr = addr;
1142 
1143 	ret = check_kprobe_rereg(p);
1144 	if (ret)
1145 		return ret;
1146 
1147 	preempt_disable();
1148 	if (!kernel_text_address((unsigned long) p->addr) ||
1149 	    in_kprobes_functions((unsigned long) p->addr) ||
1150 	    ftrace_text_reserved(p->addr, p->addr) ||
1151 	    jump_label_text_reserved(p->addr, p->addr)) {
1152 		preempt_enable();
1153 		return -EINVAL;
1154 	}
1155 
1156 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1157 	p->flags &= KPROBE_FLAG_DISABLED;
1158 
1159 	/*
1160 	 * Check if are we probing a module.
1161 	 */
1162 	probed_mod = __module_text_address((unsigned long) p->addr);
1163 	if (probed_mod) {
1164 		/*
1165 		 * We must hold a refcount of the probed module while updating
1166 		 * its code to prohibit unexpected unloading.
1167 		 */
1168 		if (unlikely(!try_module_get(probed_mod))) {
1169 			preempt_enable();
1170 			return -EINVAL;
1171 		}
1172 		/*
1173 		 * If the module freed .init.text, we couldn't insert
1174 		 * kprobes in there.
1175 		 */
1176 		if (within_module_init((unsigned long)p->addr, probed_mod) &&
1177 		    probed_mod->state != MODULE_STATE_COMING) {
1178 			module_put(probed_mod);
1179 			preempt_enable();
1180 			return -EINVAL;
1181 		}
1182 	}
1183 	preempt_enable();
1184 
1185 	p->nmissed = 0;
1186 	INIT_LIST_HEAD(&p->list);
1187 	mutex_lock(&kprobe_mutex);
1188 
1189 	get_online_cpus();	/* For avoiding text_mutex deadlock. */
1190 	mutex_lock(&text_mutex);
1191 
1192 	old_p = get_kprobe(p->addr);
1193 	if (old_p) {
1194 		/* Since this may unoptimize old_p, locking text_mutex. */
1195 		ret = register_aggr_kprobe(old_p, p);
1196 		goto out;
1197 	}
1198 
1199 	ret = arch_prepare_kprobe(p);
1200 	if (ret)
1201 		goto out;
1202 
1203 	INIT_HLIST_NODE(&p->hlist);
1204 	hlist_add_head_rcu(&p->hlist,
1205 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1206 
1207 	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1208 		__arm_kprobe(p);
1209 
1210 	/* Try to optimize kprobe */
1211 	try_to_optimize_kprobe(p);
1212 
1213 out:
1214 	mutex_unlock(&text_mutex);
1215 	put_online_cpus();
1216 	mutex_unlock(&kprobe_mutex);
1217 
1218 	if (probed_mod)
1219 		module_put(probed_mod);
1220 
1221 	return ret;
1222 }
1223 EXPORT_SYMBOL_GPL(register_kprobe);
1224 
1225 /*
1226  * Unregister a kprobe without a scheduler synchronization.
1227  */
1228 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1229 {
1230 	struct kprobe *old_p, *list_p;
1231 
1232 	old_p = __get_valid_kprobe(p);
1233 	if (old_p == NULL)
1234 		return -EINVAL;
1235 
1236 	if (old_p == p ||
1237 	    (kprobe_aggrprobe(old_p) &&
1238 	     list_is_singular(&old_p->list))) {
1239 		/*
1240 		 * Only probe on the hash list. Disarm only if kprobes are
1241 		 * enabled and not gone - otherwise, the breakpoint would
1242 		 * already have been removed. We save on flushing icache.
1243 		 */
1244 		if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
1245 			disarm_kprobe(old_p);
1246 		hlist_del_rcu(&old_p->hlist);
1247 	} else {
1248 		if (p->break_handler && !kprobe_gone(p))
1249 			old_p->break_handler = NULL;
1250 		if (p->post_handler && !kprobe_gone(p)) {
1251 			list_for_each_entry_rcu(list_p, &old_p->list, list) {
1252 				if ((list_p != p) && (list_p->post_handler))
1253 					goto noclean;
1254 			}
1255 			old_p->post_handler = NULL;
1256 		}
1257 noclean:
1258 		list_del_rcu(&p->list);
1259 		if (!kprobe_disabled(old_p)) {
1260 			try_to_disable_aggr_kprobe(old_p);
1261 			if (!kprobes_all_disarmed) {
1262 				if (kprobe_disabled(old_p))
1263 					disarm_kprobe(old_p);
1264 				else
1265 					/* Try to optimize this probe again */
1266 					optimize_kprobe(old_p);
1267 			}
1268 		}
1269 	}
1270 	return 0;
1271 }
1272 
1273 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1274 {
1275 	struct kprobe *old_p;
1276 
1277 	if (list_empty(&p->list))
1278 		arch_remove_kprobe(p);
1279 	else if (list_is_singular(&p->list)) {
1280 		/* "p" is the last child of an aggr_kprobe */
1281 		old_p = list_entry(p->list.next, struct kprobe, list);
1282 		list_del(&p->list);
1283 		arch_remove_kprobe(old_p);
1284 		free_aggr_kprobe(old_p);
1285 	}
1286 }
1287 
1288 int __kprobes register_kprobes(struct kprobe **kps, int num)
1289 {
1290 	int i, ret = 0;
1291 
1292 	if (num <= 0)
1293 		return -EINVAL;
1294 	for (i = 0; i < num; i++) {
1295 		ret = register_kprobe(kps[i]);
1296 		if (ret < 0) {
1297 			if (i > 0)
1298 				unregister_kprobes(kps, i);
1299 			break;
1300 		}
1301 	}
1302 	return ret;
1303 }
1304 EXPORT_SYMBOL_GPL(register_kprobes);
1305 
1306 void __kprobes unregister_kprobe(struct kprobe *p)
1307 {
1308 	unregister_kprobes(&p, 1);
1309 }
1310 EXPORT_SYMBOL_GPL(unregister_kprobe);
1311 
1312 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1313 {
1314 	int i;
1315 
1316 	if (num <= 0)
1317 		return;
1318 	mutex_lock(&kprobe_mutex);
1319 	for (i = 0; i < num; i++)
1320 		if (__unregister_kprobe_top(kps[i]) < 0)
1321 			kps[i]->addr = NULL;
1322 	mutex_unlock(&kprobe_mutex);
1323 
1324 	synchronize_sched();
1325 	for (i = 0; i < num; i++)
1326 		if (kps[i]->addr)
1327 			__unregister_kprobe_bottom(kps[i]);
1328 }
1329 EXPORT_SYMBOL_GPL(unregister_kprobes);
1330 
1331 static struct notifier_block kprobe_exceptions_nb = {
1332 	.notifier_call = kprobe_exceptions_notify,
1333 	.priority = 0x7fffffff /* we need to be notified first */
1334 };
1335 
1336 unsigned long __weak arch_deref_entry_point(void *entry)
1337 {
1338 	return (unsigned long)entry;
1339 }
1340 
1341 int __kprobes register_jprobes(struct jprobe **jps, int num)
1342 {
1343 	struct jprobe *jp;
1344 	int ret = 0, i;
1345 
1346 	if (num <= 0)
1347 		return -EINVAL;
1348 	for (i = 0; i < num; i++) {
1349 		unsigned long addr, offset;
1350 		jp = jps[i];
1351 		addr = arch_deref_entry_point(jp->entry);
1352 
1353 		/* Verify probepoint is a function entry point */
1354 		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1355 		    offset == 0) {
1356 			jp->kp.pre_handler = setjmp_pre_handler;
1357 			jp->kp.break_handler = longjmp_break_handler;
1358 			ret = register_kprobe(&jp->kp);
1359 		} else
1360 			ret = -EINVAL;
1361 
1362 		if (ret < 0) {
1363 			if (i > 0)
1364 				unregister_jprobes(jps, i);
1365 			break;
1366 		}
1367 	}
1368 	return ret;
1369 }
1370 EXPORT_SYMBOL_GPL(register_jprobes);
1371 
1372 int __kprobes register_jprobe(struct jprobe *jp)
1373 {
1374 	return register_jprobes(&jp, 1);
1375 }
1376 EXPORT_SYMBOL_GPL(register_jprobe);
1377 
1378 void __kprobes unregister_jprobe(struct jprobe *jp)
1379 {
1380 	unregister_jprobes(&jp, 1);
1381 }
1382 EXPORT_SYMBOL_GPL(unregister_jprobe);
1383 
1384 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
1385 {
1386 	int i;
1387 
1388 	if (num <= 0)
1389 		return;
1390 	mutex_lock(&kprobe_mutex);
1391 	for (i = 0; i < num; i++)
1392 		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1393 			jps[i]->kp.addr = NULL;
1394 	mutex_unlock(&kprobe_mutex);
1395 
1396 	synchronize_sched();
1397 	for (i = 0; i < num; i++) {
1398 		if (jps[i]->kp.addr)
1399 			__unregister_kprobe_bottom(&jps[i]->kp);
1400 	}
1401 }
1402 EXPORT_SYMBOL_GPL(unregister_jprobes);
1403 
1404 #ifdef CONFIG_KRETPROBES
1405 /*
1406  * This kprobe pre_handler is registered with every kretprobe. When probe
1407  * hits it will set up the return probe.
1408  */
1409 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1410 					   struct pt_regs *regs)
1411 {
1412 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1413 	unsigned long hash, flags = 0;
1414 	struct kretprobe_instance *ri;
1415 
1416 	/*TODO: consider to only swap the RA after the last pre_handler fired */
1417 	hash = hash_ptr(current, KPROBE_HASH_BITS);
1418 	spin_lock_irqsave(&rp->lock, flags);
1419 	if (!hlist_empty(&rp->free_instances)) {
1420 		ri = hlist_entry(rp->free_instances.first,
1421 				struct kretprobe_instance, hlist);
1422 		hlist_del(&ri->hlist);
1423 		spin_unlock_irqrestore(&rp->lock, flags);
1424 
1425 		ri->rp = rp;
1426 		ri->task = current;
1427 
1428 		if (rp->entry_handler && rp->entry_handler(ri, regs))
1429 			return 0;
1430 
1431 		arch_prepare_kretprobe(ri, regs);
1432 
1433 		/* XXX(hch): why is there no hlist_move_head? */
1434 		INIT_HLIST_NODE(&ri->hlist);
1435 		kretprobe_table_lock(hash, &flags);
1436 		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1437 		kretprobe_table_unlock(hash, &flags);
1438 	} else {
1439 		rp->nmissed++;
1440 		spin_unlock_irqrestore(&rp->lock, flags);
1441 	}
1442 	return 0;
1443 }
1444 
1445 int __kprobes register_kretprobe(struct kretprobe *rp)
1446 {
1447 	int ret = 0;
1448 	struct kretprobe_instance *inst;
1449 	int i;
1450 	void *addr;
1451 
1452 	if (kretprobe_blacklist_size) {
1453 		addr = kprobe_addr(&rp->kp);
1454 		if (!addr)
1455 			return -EINVAL;
1456 
1457 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1458 			if (kretprobe_blacklist[i].addr == addr)
1459 				return -EINVAL;
1460 		}
1461 	}
1462 
1463 	rp->kp.pre_handler = pre_handler_kretprobe;
1464 	rp->kp.post_handler = NULL;
1465 	rp->kp.fault_handler = NULL;
1466 	rp->kp.break_handler = NULL;
1467 
1468 	/* Pre-allocate memory for max kretprobe instances */
1469 	if (rp->maxactive <= 0) {
1470 #ifdef CONFIG_PREEMPT
1471 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1472 #else
1473 		rp->maxactive = num_possible_cpus();
1474 #endif
1475 	}
1476 	spin_lock_init(&rp->lock);
1477 	INIT_HLIST_HEAD(&rp->free_instances);
1478 	for (i = 0; i < rp->maxactive; i++) {
1479 		inst = kmalloc(sizeof(struct kretprobe_instance) +
1480 			       rp->data_size, GFP_KERNEL);
1481 		if (inst == NULL) {
1482 			free_rp_inst(rp);
1483 			return -ENOMEM;
1484 		}
1485 		INIT_HLIST_NODE(&inst->hlist);
1486 		hlist_add_head(&inst->hlist, &rp->free_instances);
1487 	}
1488 
1489 	rp->nmissed = 0;
1490 	/* Establish function entry probe point */
1491 	ret = register_kprobe(&rp->kp);
1492 	if (ret != 0)
1493 		free_rp_inst(rp);
1494 	return ret;
1495 }
1496 EXPORT_SYMBOL_GPL(register_kretprobe);
1497 
1498 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1499 {
1500 	int ret = 0, i;
1501 
1502 	if (num <= 0)
1503 		return -EINVAL;
1504 	for (i = 0; i < num; i++) {
1505 		ret = register_kretprobe(rps[i]);
1506 		if (ret < 0) {
1507 			if (i > 0)
1508 				unregister_kretprobes(rps, i);
1509 			break;
1510 		}
1511 	}
1512 	return ret;
1513 }
1514 EXPORT_SYMBOL_GPL(register_kretprobes);
1515 
1516 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1517 {
1518 	unregister_kretprobes(&rp, 1);
1519 }
1520 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1521 
1522 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1523 {
1524 	int i;
1525 
1526 	if (num <= 0)
1527 		return;
1528 	mutex_lock(&kprobe_mutex);
1529 	for (i = 0; i < num; i++)
1530 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1531 			rps[i]->kp.addr = NULL;
1532 	mutex_unlock(&kprobe_mutex);
1533 
1534 	synchronize_sched();
1535 	for (i = 0; i < num; i++) {
1536 		if (rps[i]->kp.addr) {
1537 			__unregister_kprobe_bottom(&rps[i]->kp);
1538 			cleanup_rp_inst(rps[i]);
1539 		}
1540 	}
1541 }
1542 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1543 
1544 #else /* CONFIG_KRETPROBES */
1545 int __kprobes register_kretprobe(struct kretprobe *rp)
1546 {
1547 	return -ENOSYS;
1548 }
1549 EXPORT_SYMBOL_GPL(register_kretprobe);
1550 
1551 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1552 {
1553 	return -ENOSYS;
1554 }
1555 EXPORT_SYMBOL_GPL(register_kretprobes);
1556 
1557 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1558 {
1559 }
1560 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1561 
1562 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1563 {
1564 }
1565 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1566 
1567 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1568 					   struct pt_regs *regs)
1569 {
1570 	return 0;
1571 }
1572 
1573 #endif /* CONFIG_KRETPROBES */
1574 
1575 /* Set the kprobe gone and remove its instruction buffer. */
1576 static void __kprobes kill_kprobe(struct kprobe *p)
1577 {
1578 	struct kprobe *kp;
1579 
1580 	p->flags |= KPROBE_FLAG_GONE;
1581 	if (kprobe_aggrprobe(p)) {
1582 		/*
1583 		 * If this is an aggr_kprobe, we have to list all the
1584 		 * chained probes and mark them GONE.
1585 		 */
1586 		list_for_each_entry_rcu(kp, &p->list, list)
1587 			kp->flags |= KPROBE_FLAG_GONE;
1588 		p->post_handler = NULL;
1589 		p->break_handler = NULL;
1590 		kill_optimized_kprobe(p);
1591 	}
1592 	/*
1593 	 * Here, we can remove insn_slot safely, because no thread calls
1594 	 * the original probed function (which will be freed soon) any more.
1595 	 */
1596 	arch_remove_kprobe(p);
1597 }
1598 
1599 /* Disable one kprobe */
1600 int __kprobes disable_kprobe(struct kprobe *kp)
1601 {
1602 	int ret = 0;
1603 	struct kprobe *p;
1604 
1605 	mutex_lock(&kprobe_mutex);
1606 
1607 	/* Check whether specified probe is valid. */
1608 	p = __get_valid_kprobe(kp);
1609 	if (unlikely(p == NULL)) {
1610 		ret = -EINVAL;
1611 		goto out;
1612 	}
1613 
1614 	/* If the probe is already disabled (or gone), just return */
1615 	if (kprobe_disabled(kp))
1616 		goto out;
1617 
1618 	kp->flags |= KPROBE_FLAG_DISABLED;
1619 	if (p != kp)
1620 		/* When kp != p, p is always enabled. */
1621 		try_to_disable_aggr_kprobe(p);
1622 
1623 	if (!kprobes_all_disarmed && kprobe_disabled(p))
1624 		disarm_kprobe(p);
1625 out:
1626 	mutex_unlock(&kprobe_mutex);
1627 	return ret;
1628 }
1629 EXPORT_SYMBOL_GPL(disable_kprobe);
1630 
1631 /* Enable one kprobe */
1632 int __kprobes enable_kprobe(struct kprobe *kp)
1633 {
1634 	int ret = 0;
1635 	struct kprobe *p;
1636 
1637 	mutex_lock(&kprobe_mutex);
1638 
1639 	/* Check whether specified probe is valid. */
1640 	p = __get_valid_kprobe(kp);
1641 	if (unlikely(p == NULL)) {
1642 		ret = -EINVAL;
1643 		goto out;
1644 	}
1645 
1646 	if (kprobe_gone(kp)) {
1647 		/* This kprobe has gone, we couldn't enable it. */
1648 		ret = -EINVAL;
1649 		goto out;
1650 	}
1651 
1652 	if (p != kp)
1653 		kp->flags &= ~KPROBE_FLAG_DISABLED;
1654 
1655 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1656 		p->flags &= ~KPROBE_FLAG_DISABLED;
1657 		arm_kprobe(p);
1658 	}
1659 out:
1660 	mutex_unlock(&kprobe_mutex);
1661 	return ret;
1662 }
1663 EXPORT_SYMBOL_GPL(enable_kprobe);
1664 
1665 void __kprobes dump_kprobe(struct kprobe *kp)
1666 {
1667 	printk(KERN_WARNING "Dumping kprobe:\n");
1668 	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1669 	       kp->symbol_name, kp->addr, kp->offset);
1670 }
1671 
1672 /* Module notifier call back, checking kprobes on the module */
1673 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1674 					     unsigned long val, void *data)
1675 {
1676 	struct module *mod = data;
1677 	struct hlist_head *head;
1678 	struct hlist_node *node;
1679 	struct kprobe *p;
1680 	unsigned int i;
1681 	int checkcore = (val == MODULE_STATE_GOING);
1682 
1683 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1684 		return NOTIFY_DONE;
1685 
1686 	/*
1687 	 * When MODULE_STATE_GOING was notified, both of module .text and
1688 	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1689 	 * notified, only .init.text section would be freed. We need to
1690 	 * disable kprobes which have been inserted in the sections.
1691 	 */
1692 	mutex_lock(&kprobe_mutex);
1693 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1694 		head = &kprobe_table[i];
1695 		hlist_for_each_entry_rcu(p, node, head, hlist)
1696 			if (within_module_init((unsigned long)p->addr, mod) ||
1697 			    (checkcore &&
1698 			     within_module_core((unsigned long)p->addr, mod))) {
1699 				/*
1700 				 * The vaddr this probe is installed will soon
1701 				 * be vfreed buy not synced to disk. Hence,
1702 				 * disarming the breakpoint isn't needed.
1703 				 */
1704 				kill_kprobe(p);
1705 			}
1706 	}
1707 	mutex_unlock(&kprobe_mutex);
1708 	return NOTIFY_DONE;
1709 }
1710 
1711 static struct notifier_block kprobe_module_nb = {
1712 	.notifier_call = kprobes_module_callback,
1713 	.priority = 0
1714 };
1715 
1716 static int __init init_kprobes(void)
1717 {
1718 	int i, err = 0;
1719 	unsigned long offset = 0, size = 0;
1720 	char *modname, namebuf[128];
1721 	const char *symbol_name;
1722 	void *addr;
1723 	struct kprobe_blackpoint *kb;
1724 
1725 	/* FIXME allocate the probe table, currently defined statically */
1726 	/* initialize all list heads */
1727 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1728 		INIT_HLIST_HEAD(&kprobe_table[i]);
1729 		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1730 		spin_lock_init(&(kretprobe_table_locks[i].lock));
1731 	}
1732 
1733 	/*
1734 	 * Lookup and populate the kprobe_blacklist.
1735 	 *
1736 	 * Unlike the kretprobe blacklist, we'll need to determine
1737 	 * the range of addresses that belong to the said functions,
1738 	 * since a kprobe need not necessarily be at the beginning
1739 	 * of a function.
1740 	 */
1741 	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1742 		kprobe_lookup_name(kb->name, addr);
1743 		if (!addr)
1744 			continue;
1745 
1746 		kb->start_addr = (unsigned long)addr;
1747 		symbol_name = kallsyms_lookup(kb->start_addr,
1748 				&size, &offset, &modname, namebuf);
1749 		if (!symbol_name)
1750 			kb->range = 0;
1751 		else
1752 			kb->range = size;
1753 	}
1754 
1755 	if (kretprobe_blacklist_size) {
1756 		/* lookup the function address from its name */
1757 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1758 			kprobe_lookup_name(kretprobe_blacklist[i].name,
1759 					   kretprobe_blacklist[i].addr);
1760 			if (!kretprobe_blacklist[i].addr)
1761 				printk("kretprobe: lookup failed: %s\n",
1762 				       kretprobe_blacklist[i].name);
1763 		}
1764 	}
1765 
1766 #if defined(CONFIG_OPTPROBES)
1767 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
1768 	/* Init kprobe_optinsn_slots */
1769 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
1770 #endif
1771 	/* By default, kprobes can be optimized */
1772 	kprobes_allow_optimization = true;
1773 #endif
1774 
1775 	/* By default, kprobes are armed */
1776 	kprobes_all_disarmed = false;
1777 
1778 	err = arch_init_kprobes();
1779 	if (!err)
1780 		err = register_die_notifier(&kprobe_exceptions_nb);
1781 	if (!err)
1782 		err = register_module_notifier(&kprobe_module_nb);
1783 
1784 	kprobes_initialized = (err == 0);
1785 
1786 	if (!err)
1787 		init_test_probes();
1788 	return err;
1789 }
1790 
1791 #ifdef CONFIG_DEBUG_FS
1792 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1793 		const char *sym, int offset, char *modname, struct kprobe *pp)
1794 {
1795 	char *kprobe_type;
1796 
1797 	if (p->pre_handler == pre_handler_kretprobe)
1798 		kprobe_type = "r";
1799 	else if (p->pre_handler == setjmp_pre_handler)
1800 		kprobe_type = "j";
1801 	else
1802 		kprobe_type = "k";
1803 
1804 	if (sym)
1805 		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
1806 			p->addr, kprobe_type, sym, offset,
1807 			(modname ? modname : " "));
1808 	else
1809 		seq_printf(pi, "%p  %s  %p ",
1810 			p->addr, kprobe_type, p->addr);
1811 
1812 	if (!pp)
1813 		pp = p;
1814 	seq_printf(pi, "%s%s%s\n",
1815 		(kprobe_gone(p) ? "[GONE]" : ""),
1816 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
1817 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
1818 }
1819 
1820 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1821 {
1822 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1823 }
1824 
1825 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1826 {
1827 	(*pos)++;
1828 	if (*pos >= KPROBE_TABLE_SIZE)
1829 		return NULL;
1830 	return pos;
1831 }
1832 
1833 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1834 {
1835 	/* Nothing to do */
1836 }
1837 
1838 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1839 {
1840 	struct hlist_head *head;
1841 	struct hlist_node *node;
1842 	struct kprobe *p, *kp;
1843 	const char *sym = NULL;
1844 	unsigned int i = *(loff_t *) v;
1845 	unsigned long offset = 0;
1846 	char *modname, namebuf[128];
1847 
1848 	head = &kprobe_table[i];
1849 	preempt_disable();
1850 	hlist_for_each_entry_rcu(p, node, head, hlist) {
1851 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1852 					&offset, &modname, namebuf);
1853 		if (kprobe_aggrprobe(p)) {
1854 			list_for_each_entry_rcu(kp, &p->list, list)
1855 				report_probe(pi, kp, sym, offset, modname, p);
1856 		} else
1857 			report_probe(pi, p, sym, offset, modname, NULL);
1858 	}
1859 	preempt_enable();
1860 	return 0;
1861 }
1862 
1863 static const struct seq_operations kprobes_seq_ops = {
1864 	.start = kprobe_seq_start,
1865 	.next  = kprobe_seq_next,
1866 	.stop  = kprobe_seq_stop,
1867 	.show  = show_kprobe_addr
1868 };
1869 
1870 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1871 {
1872 	return seq_open(filp, &kprobes_seq_ops);
1873 }
1874 
1875 static const struct file_operations debugfs_kprobes_operations = {
1876 	.open           = kprobes_open,
1877 	.read           = seq_read,
1878 	.llseek         = seq_lseek,
1879 	.release        = seq_release,
1880 };
1881 
1882 static void __kprobes arm_all_kprobes(void)
1883 {
1884 	struct hlist_head *head;
1885 	struct hlist_node *node;
1886 	struct kprobe *p;
1887 	unsigned int i;
1888 
1889 	mutex_lock(&kprobe_mutex);
1890 
1891 	/* If kprobes are armed, just return */
1892 	if (!kprobes_all_disarmed)
1893 		goto already_enabled;
1894 
1895 	/* Arming kprobes doesn't optimize kprobe itself */
1896 	mutex_lock(&text_mutex);
1897 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1898 		head = &kprobe_table[i];
1899 		hlist_for_each_entry_rcu(p, node, head, hlist)
1900 			if (!kprobe_disabled(p))
1901 				__arm_kprobe(p);
1902 	}
1903 	mutex_unlock(&text_mutex);
1904 
1905 	kprobes_all_disarmed = false;
1906 	printk(KERN_INFO "Kprobes globally enabled\n");
1907 
1908 already_enabled:
1909 	mutex_unlock(&kprobe_mutex);
1910 	return;
1911 }
1912 
1913 static void __kprobes disarm_all_kprobes(void)
1914 {
1915 	struct hlist_head *head;
1916 	struct hlist_node *node;
1917 	struct kprobe *p;
1918 	unsigned int i;
1919 
1920 	mutex_lock(&kprobe_mutex);
1921 
1922 	/* If kprobes are already disarmed, just return */
1923 	if (kprobes_all_disarmed)
1924 		goto already_disabled;
1925 
1926 	kprobes_all_disarmed = true;
1927 	printk(KERN_INFO "Kprobes globally disabled\n");
1928 
1929 	/*
1930 	 * Here we call get_online_cpus() for avoiding text_mutex deadlock,
1931 	 * because disarming may also unoptimize kprobes.
1932 	 */
1933 	get_online_cpus();
1934 	mutex_lock(&text_mutex);
1935 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1936 		head = &kprobe_table[i];
1937 		hlist_for_each_entry_rcu(p, node, head, hlist) {
1938 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1939 				__disarm_kprobe(p);
1940 		}
1941 	}
1942 
1943 	mutex_unlock(&text_mutex);
1944 	put_online_cpus();
1945 	mutex_unlock(&kprobe_mutex);
1946 	/* Allow all currently running kprobes to complete */
1947 	synchronize_sched();
1948 	return;
1949 
1950 already_disabled:
1951 	mutex_unlock(&kprobe_mutex);
1952 	return;
1953 }
1954 
1955 /*
1956  * XXX: The debugfs bool file interface doesn't allow for callbacks
1957  * when the bool state is switched. We can reuse that facility when
1958  * available
1959  */
1960 static ssize_t read_enabled_file_bool(struct file *file,
1961 	       char __user *user_buf, size_t count, loff_t *ppos)
1962 {
1963 	char buf[3];
1964 
1965 	if (!kprobes_all_disarmed)
1966 		buf[0] = '1';
1967 	else
1968 		buf[0] = '0';
1969 	buf[1] = '\n';
1970 	buf[2] = 0x00;
1971 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1972 }
1973 
1974 static ssize_t write_enabled_file_bool(struct file *file,
1975 	       const char __user *user_buf, size_t count, loff_t *ppos)
1976 {
1977 	char buf[32];
1978 	int buf_size;
1979 
1980 	buf_size = min(count, (sizeof(buf)-1));
1981 	if (copy_from_user(buf, user_buf, buf_size))
1982 		return -EFAULT;
1983 
1984 	switch (buf[0]) {
1985 	case 'y':
1986 	case 'Y':
1987 	case '1':
1988 		arm_all_kprobes();
1989 		break;
1990 	case 'n':
1991 	case 'N':
1992 	case '0':
1993 		disarm_all_kprobes();
1994 		break;
1995 	}
1996 
1997 	return count;
1998 }
1999 
2000 static const struct file_operations fops_kp = {
2001 	.read =         read_enabled_file_bool,
2002 	.write =        write_enabled_file_bool,
2003 	.llseek =	default_llseek,
2004 };
2005 
2006 static int __kprobes debugfs_kprobe_init(void)
2007 {
2008 	struct dentry *dir, *file;
2009 	unsigned int value = 1;
2010 
2011 	dir = debugfs_create_dir("kprobes", NULL);
2012 	if (!dir)
2013 		return -ENOMEM;
2014 
2015 	file = debugfs_create_file("list", 0444, dir, NULL,
2016 				&debugfs_kprobes_operations);
2017 	if (!file) {
2018 		debugfs_remove(dir);
2019 		return -ENOMEM;
2020 	}
2021 
2022 	file = debugfs_create_file("enabled", 0600, dir,
2023 					&value, &fops_kp);
2024 	if (!file) {
2025 		debugfs_remove(dir);
2026 		return -ENOMEM;
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 late_initcall(debugfs_kprobe_init);
2033 #endif /* CONFIG_DEBUG_FS */
2034 
2035 module_init(init_kprobes);
2036 
2037 /* defined in arch/.../kernel/kprobes.c */
2038 EXPORT_SYMBOL_GPL(jprobe_return);
2039