xref: /linux/kernel/kprobes.c (revision 0678df8271820bcf8fb4f877129f05d68a237de4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation (includes suggestions from
9  *		Rusty Russell).
10  * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
11  *		hlists and exceptions notifier as suggested by Andi Kleen.
12  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
13  *		interface to access function arguments.
14  * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
15  *		exceptions notifier to be first on the priority list.
16  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
17  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
18  *		<prasanna@in.ibm.com> added function-return probes.
19  */
20 
21 #define pr_fmt(fmt) "kprobes: " fmt
22 
23 #include <linux/kprobes.h>
24 #include <linux/hash.h>
25 #include <linux/init.h>
26 #include <linux/slab.h>
27 #include <linux/stddef.h>
28 #include <linux/export.h>
29 #include <linux/moduleloader.h>
30 #include <linux/kallsyms.h>
31 #include <linux/freezer.h>
32 #include <linux/seq_file.h>
33 #include <linux/debugfs.h>
34 #include <linux/sysctl.h>
35 #include <linux/kdebug.h>
36 #include <linux/memory.h>
37 #include <linux/ftrace.h>
38 #include <linux/cpu.h>
39 #include <linux/jump_label.h>
40 #include <linux/static_call.h>
41 #include <linux/perf_event.h>
42 
43 #include <asm/sections.h>
44 #include <asm/cacheflush.h>
45 #include <asm/errno.h>
46 #include <linux/uaccess.h>
47 
48 #define KPROBE_HASH_BITS 6
49 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
50 
51 #if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
52 #define kprobe_sysctls_init() do { } while (0)
53 #endif
54 
55 static int kprobes_initialized;
56 /* kprobe_table can be accessed by
57  * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
58  * Or
59  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
60  */
61 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
62 
63 /* NOTE: change this value only with 'kprobe_mutex' held */
64 static bool kprobes_all_disarmed;
65 
66 /* This protects 'kprobe_table' and 'optimizing_list' */
67 static DEFINE_MUTEX(kprobe_mutex);
68 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
69 
70 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
71 					unsigned int __unused)
72 {
73 	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
74 }
75 
76 /*
77  * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
78  * kprobes can not probe.
79  */
80 static LIST_HEAD(kprobe_blacklist);
81 
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84  * 'kprobe::ainsn.insn' points to the copy of the instruction to be
85  * single-stepped. x86_64, POWER4 and above have no-exec support and
86  * stepping on the instruction on a vmalloced/kmalloced/data page
87  * is a recipe for disaster
88  */
89 struct kprobe_insn_page {
90 	struct list_head list;
91 	kprobe_opcode_t *insns;		/* Page of instruction slots */
92 	struct kprobe_insn_cache *cache;
93 	int nused;
94 	int ngarbage;
95 	char slot_used[];
96 };
97 
98 #define KPROBE_INSN_PAGE_SIZE(slots)			\
99 	(offsetof(struct kprobe_insn_page, slot_used) +	\
100 	 (sizeof(char) * (slots)))
101 
102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104 	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106 
107 enum kprobe_slot_state {
108 	SLOT_CLEAN = 0,
109 	SLOT_DIRTY = 1,
110 	SLOT_USED = 2,
111 };
112 
113 void __weak *alloc_insn_page(void)
114 {
115 	/*
116 	 * Use module_alloc() so this page is within +/- 2GB of where the
117 	 * kernel image and loaded module images reside. This is required
118 	 * for most of the architectures.
119 	 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
120 	 */
121 	return module_alloc(PAGE_SIZE);
122 }
123 
124 static void free_insn_page(void *page)
125 {
126 	module_memfree(page);
127 }
128 
129 struct kprobe_insn_cache kprobe_insn_slots = {
130 	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
131 	.alloc = alloc_insn_page,
132 	.free = free_insn_page,
133 	.sym = KPROBE_INSN_PAGE_SYM,
134 	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135 	.insn_size = MAX_INSN_SIZE,
136 	.nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139 
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146 	struct kprobe_insn_page *kip;
147 	kprobe_opcode_t *slot = NULL;
148 
149 	/* Since the slot array is not protected by rcu, we need a mutex */
150 	mutex_lock(&c->mutex);
151  retry:
152 	rcu_read_lock();
153 	list_for_each_entry_rcu(kip, &c->pages, list) {
154 		if (kip->nused < slots_per_page(c)) {
155 			int i;
156 
157 			for (i = 0; i < slots_per_page(c); i++) {
158 				if (kip->slot_used[i] == SLOT_CLEAN) {
159 					kip->slot_used[i] = SLOT_USED;
160 					kip->nused++;
161 					slot = kip->insns + (i * c->insn_size);
162 					rcu_read_unlock();
163 					goto out;
164 				}
165 			}
166 			/* kip->nused is broken. Fix it. */
167 			kip->nused = slots_per_page(c);
168 			WARN_ON(1);
169 		}
170 	}
171 	rcu_read_unlock();
172 
173 	/* If there are any garbage slots, collect it and try again. */
174 	if (c->nr_garbage && collect_garbage_slots(c) == 0)
175 		goto retry;
176 
177 	/* All out of space.  Need to allocate a new page. */
178 	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
179 	if (!kip)
180 		goto out;
181 
182 	kip->insns = c->alloc();
183 	if (!kip->insns) {
184 		kfree(kip);
185 		goto out;
186 	}
187 	INIT_LIST_HEAD(&kip->list);
188 	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
189 	kip->slot_used[0] = SLOT_USED;
190 	kip->nused = 1;
191 	kip->ngarbage = 0;
192 	kip->cache = c;
193 	list_add_rcu(&kip->list, &c->pages);
194 	slot = kip->insns;
195 
196 	/* Record the perf ksymbol register event after adding the page */
197 	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
198 			   PAGE_SIZE, false, c->sym);
199 out:
200 	mutex_unlock(&c->mutex);
201 	return slot;
202 }
203 
204 /* Return true if all garbages are collected, otherwise false. */
205 static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207 	kip->slot_used[idx] = SLOT_CLEAN;
208 	kip->nused--;
209 	if (kip->nused == 0) {
210 		/*
211 		 * Page is no longer in use.  Free it unless
212 		 * it's the last one.  We keep the last one
213 		 * so as not to have to set it up again the
214 		 * next time somebody inserts a probe.
215 		 */
216 		if (!list_is_singular(&kip->list)) {
217 			/*
218 			 * Record perf ksymbol unregister event before removing
219 			 * the page.
220 			 */
221 			perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
222 					   (unsigned long)kip->insns, PAGE_SIZE, true,
223 					   kip->cache->sym);
224 			list_del_rcu(&kip->list);
225 			synchronize_rcu();
226 			kip->cache->free(kip->insns);
227 			kfree(kip);
228 		}
229 		return true;
230 	}
231 	return false;
232 }
233 
234 static int collect_garbage_slots(struct kprobe_insn_cache *c)
235 {
236 	struct kprobe_insn_page *kip, *next;
237 
238 	/* Ensure no-one is interrupted on the garbages */
239 	synchronize_rcu();
240 
241 	list_for_each_entry_safe(kip, next, &c->pages, list) {
242 		int i;
243 
244 		if (kip->ngarbage == 0)
245 			continue;
246 		kip->ngarbage = 0;	/* we will collect all garbages */
247 		for (i = 0; i < slots_per_page(c); i++) {
248 			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
249 				break;
250 		}
251 	}
252 	c->nr_garbage = 0;
253 	return 0;
254 }
255 
256 void __free_insn_slot(struct kprobe_insn_cache *c,
257 		      kprobe_opcode_t *slot, int dirty)
258 {
259 	struct kprobe_insn_page *kip;
260 	long idx;
261 
262 	mutex_lock(&c->mutex);
263 	rcu_read_lock();
264 	list_for_each_entry_rcu(kip, &c->pages, list) {
265 		idx = ((long)slot - (long)kip->insns) /
266 			(c->insn_size * sizeof(kprobe_opcode_t));
267 		if (idx >= 0 && idx < slots_per_page(c))
268 			goto out;
269 	}
270 	/* Could not find this slot. */
271 	WARN_ON(1);
272 	kip = NULL;
273 out:
274 	rcu_read_unlock();
275 	/* Mark and sweep: this may sleep */
276 	if (kip) {
277 		/* Check double free */
278 		WARN_ON(kip->slot_used[idx] != SLOT_USED);
279 		if (dirty) {
280 			kip->slot_used[idx] = SLOT_DIRTY;
281 			kip->ngarbage++;
282 			if (++c->nr_garbage > slots_per_page(c))
283 				collect_garbage_slots(c);
284 		} else {
285 			collect_one_slot(kip, idx);
286 		}
287 	}
288 	mutex_unlock(&c->mutex);
289 }
290 
291 /*
292  * Check given address is on the page of kprobe instruction slots.
293  * This will be used for checking whether the address on a stack
294  * is on a text area or not.
295  */
296 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
297 {
298 	struct kprobe_insn_page *kip;
299 	bool ret = false;
300 
301 	rcu_read_lock();
302 	list_for_each_entry_rcu(kip, &c->pages, list) {
303 		if (addr >= (unsigned long)kip->insns &&
304 		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
305 			ret = true;
306 			break;
307 		}
308 	}
309 	rcu_read_unlock();
310 
311 	return ret;
312 }
313 
314 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
315 			     unsigned long *value, char *type, char *sym)
316 {
317 	struct kprobe_insn_page *kip;
318 	int ret = -ERANGE;
319 
320 	rcu_read_lock();
321 	list_for_each_entry_rcu(kip, &c->pages, list) {
322 		if ((*symnum)--)
323 			continue;
324 		strscpy(sym, c->sym, KSYM_NAME_LEN);
325 		*type = 't';
326 		*value = (unsigned long)kip->insns;
327 		ret = 0;
328 		break;
329 	}
330 	rcu_read_unlock();
331 
332 	return ret;
333 }
334 
335 #ifdef CONFIG_OPTPROBES
336 void __weak *alloc_optinsn_page(void)
337 {
338 	return alloc_insn_page();
339 }
340 
341 void __weak free_optinsn_page(void *page)
342 {
343 	free_insn_page(page);
344 }
345 
346 /* For optimized_kprobe buffer */
347 struct kprobe_insn_cache kprobe_optinsn_slots = {
348 	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
349 	.alloc = alloc_optinsn_page,
350 	.free = free_optinsn_page,
351 	.sym = KPROBE_OPTINSN_PAGE_SYM,
352 	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
353 	/* .insn_size is initialized later */
354 	.nr_garbage = 0,
355 };
356 #endif
357 #endif
358 
359 /* We have preemption disabled.. so it is safe to use __ versions */
360 static inline void set_kprobe_instance(struct kprobe *kp)
361 {
362 	__this_cpu_write(kprobe_instance, kp);
363 }
364 
365 static inline void reset_kprobe_instance(void)
366 {
367 	__this_cpu_write(kprobe_instance, NULL);
368 }
369 
370 /*
371  * This routine is called either:
372  *	- under the 'kprobe_mutex' - during kprobe_[un]register().
373  *				OR
374  *	- with preemption disabled - from architecture specific code.
375  */
376 struct kprobe *get_kprobe(void *addr)
377 {
378 	struct hlist_head *head;
379 	struct kprobe *p;
380 
381 	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
382 	hlist_for_each_entry_rcu(p, head, hlist,
383 				 lockdep_is_held(&kprobe_mutex)) {
384 		if (p->addr == addr)
385 			return p;
386 	}
387 
388 	return NULL;
389 }
390 NOKPROBE_SYMBOL(get_kprobe);
391 
392 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
393 
394 /* Return true if 'p' is an aggregator */
395 static inline bool kprobe_aggrprobe(struct kprobe *p)
396 {
397 	return p->pre_handler == aggr_pre_handler;
398 }
399 
400 /* Return true if 'p' is unused */
401 static inline bool kprobe_unused(struct kprobe *p)
402 {
403 	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
404 	       list_empty(&p->list);
405 }
406 
407 /* Keep all fields in the kprobe consistent. */
408 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
409 {
410 	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
411 	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
412 }
413 
414 #ifdef CONFIG_OPTPROBES
415 /* NOTE: This is protected by 'kprobe_mutex'. */
416 static bool kprobes_allow_optimization;
417 
418 /*
419  * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
420  * This must be called from arch-dep optimized caller.
421  */
422 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
423 {
424 	struct kprobe *kp;
425 
426 	list_for_each_entry_rcu(kp, &p->list, list) {
427 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
428 			set_kprobe_instance(kp);
429 			kp->pre_handler(kp, regs);
430 		}
431 		reset_kprobe_instance();
432 	}
433 }
434 NOKPROBE_SYMBOL(opt_pre_handler);
435 
436 /* Free optimized instructions and optimized_kprobe */
437 static void free_aggr_kprobe(struct kprobe *p)
438 {
439 	struct optimized_kprobe *op;
440 
441 	op = container_of(p, struct optimized_kprobe, kp);
442 	arch_remove_optimized_kprobe(op);
443 	arch_remove_kprobe(p);
444 	kfree(op);
445 }
446 
447 /* Return true if the kprobe is ready for optimization. */
448 static inline int kprobe_optready(struct kprobe *p)
449 {
450 	struct optimized_kprobe *op;
451 
452 	if (kprobe_aggrprobe(p)) {
453 		op = container_of(p, struct optimized_kprobe, kp);
454 		return arch_prepared_optinsn(&op->optinsn);
455 	}
456 
457 	return 0;
458 }
459 
460 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
461 bool kprobe_disarmed(struct kprobe *p)
462 {
463 	struct optimized_kprobe *op;
464 
465 	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
466 	if (!kprobe_aggrprobe(p))
467 		return kprobe_disabled(p);
468 
469 	op = container_of(p, struct optimized_kprobe, kp);
470 
471 	return kprobe_disabled(p) && list_empty(&op->list);
472 }
473 
474 /* Return true if the probe is queued on (un)optimizing lists */
475 static bool kprobe_queued(struct kprobe *p)
476 {
477 	struct optimized_kprobe *op;
478 
479 	if (kprobe_aggrprobe(p)) {
480 		op = container_of(p, struct optimized_kprobe, kp);
481 		if (!list_empty(&op->list))
482 			return true;
483 	}
484 	return false;
485 }
486 
487 /*
488  * Return an optimized kprobe whose optimizing code replaces
489  * instructions including 'addr' (exclude breakpoint).
490  */
491 static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
492 {
493 	int i;
494 	struct kprobe *p = NULL;
495 	struct optimized_kprobe *op;
496 
497 	/* Don't check i == 0, since that is a breakpoint case. */
498 	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
499 		p = get_kprobe(addr - i);
500 
501 	if (p && kprobe_optready(p)) {
502 		op = container_of(p, struct optimized_kprobe, kp);
503 		if (arch_within_optimized_kprobe(op, addr))
504 			return p;
505 	}
506 
507 	return NULL;
508 }
509 
510 /* Optimization staging list, protected by 'kprobe_mutex' */
511 static LIST_HEAD(optimizing_list);
512 static LIST_HEAD(unoptimizing_list);
513 static LIST_HEAD(freeing_list);
514 
515 static void kprobe_optimizer(struct work_struct *work);
516 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
517 #define OPTIMIZE_DELAY 5
518 
519 /*
520  * Optimize (replace a breakpoint with a jump) kprobes listed on
521  * 'optimizing_list'.
522  */
523 static void do_optimize_kprobes(void)
524 {
525 	lockdep_assert_held(&text_mutex);
526 	/*
527 	 * The optimization/unoptimization refers 'online_cpus' via
528 	 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
529 	 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
530 	 * This combination can cause a deadlock (cpu-hotplug tries to lock
531 	 * 'text_mutex' but stop_machine() can not be done because
532 	 * the 'online_cpus' has been changed)
533 	 * To avoid this deadlock, caller must have locked cpu-hotplug
534 	 * for preventing cpu-hotplug outside of 'text_mutex' locking.
535 	 */
536 	lockdep_assert_cpus_held();
537 
538 	/* Optimization never be done when disarmed */
539 	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
540 	    list_empty(&optimizing_list))
541 		return;
542 
543 	arch_optimize_kprobes(&optimizing_list);
544 }
545 
546 /*
547  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
548  * if need) kprobes listed on 'unoptimizing_list'.
549  */
550 static void do_unoptimize_kprobes(void)
551 {
552 	struct optimized_kprobe *op, *tmp;
553 
554 	lockdep_assert_held(&text_mutex);
555 	/* See comment in do_optimize_kprobes() */
556 	lockdep_assert_cpus_held();
557 
558 	if (!list_empty(&unoptimizing_list))
559 		arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
560 
561 	/* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
562 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
563 		/* Switching from detour code to origin */
564 		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
565 		/* Disarm probes if marked disabled and not gone */
566 		if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
567 			arch_disarm_kprobe(&op->kp);
568 		if (kprobe_unused(&op->kp)) {
569 			/*
570 			 * Remove unused probes from hash list. After waiting
571 			 * for synchronization, these probes are reclaimed.
572 			 * (reclaiming is done by do_free_cleaned_kprobes().)
573 			 */
574 			hlist_del_rcu(&op->kp.hlist);
575 		} else
576 			list_del_init(&op->list);
577 	}
578 }
579 
580 /* Reclaim all kprobes on the 'freeing_list' */
581 static void do_free_cleaned_kprobes(void)
582 {
583 	struct optimized_kprobe *op, *tmp;
584 
585 	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
586 		list_del_init(&op->list);
587 		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
588 			/*
589 			 * This must not happen, but if there is a kprobe
590 			 * still in use, keep it on kprobes hash list.
591 			 */
592 			continue;
593 		}
594 		free_aggr_kprobe(&op->kp);
595 	}
596 }
597 
598 /* Start optimizer after OPTIMIZE_DELAY passed */
599 static void kick_kprobe_optimizer(void)
600 {
601 	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
602 }
603 
604 /* Kprobe jump optimizer */
605 static void kprobe_optimizer(struct work_struct *work)
606 {
607 	mutex_lock(&kprobe_mutex);
608 	cpus_read_lock();
609 	mutex_lock(&text_mutex);
610 
611 	/*
612 	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
613 	 * kprobes before waiting for quiesence period.
614 	 */
615 	do_unoptimize_kprobes();
616 
617 	/*
618 	 * Step 2: Wait for quiesence period to ensure all potentially
619 	 * preempted tasks to have normally scheduled. Because optprobe
620 	 * may modify multiple instructions, there is a chance that Nth
621 	 * instruction is preempted. In that case, such tasks can return
622 	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
623 	 * Note that on non-preemptive kernel, this is transparently converted
624 	 * to synchronoze_sched() to wait for all interrupts to have completed.
625 	 */
626 	synchronize_rcu_tasks();
627 
628 	/* Step 3: Optimize kprobes after quiesence period */
629 	do_optimize_kprobes();
630 
631 	/* Step 4: Free cleaned kprobes after quiesence period */
632 	do_free_cleaned_kprobes();
633 
634 	mutex_unlock(&text_mutex);
635 	cpus_read_unlock();
636 
637 	/* Step 5: Kick optimizer again if needed */
638 	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
639 		kick_kprobe_optimizer();
640 
641 	mutex_unlock(&kprobe_mutex);
642 }
643 
644 /* Wait for completing optimization and unoptimization */
645 void wait_for_kprobe_optimizer(void)
646 {
647 	mutex_lock(&kprobe_mutex);
648 
649 	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
650 		mutex_unlock(&kprobe_mutex);
651 
652 		/* This will also make 'optimizing_work' execute immmediately */
653 		flush_delayed_work(&optimizing_work);
654 		/* 'optimizing_work' might not have been queued yet, relax */
655 		cpu_relax();
656 
657 		mutex_lock(&kprobe_mutex);
658 	}
659 
660 	mutex_unlock(&kprobe_mutex);
661 }
662 
663 bool optprobe_queued_unopt(struct optimized_kprobe *op)
664 {
665 	struct optimized_kprobe *_op;
666 
667 	list_for_each_entry(_op, &unoptimizing_list, list) {
668 		if (op == _op)
669 			return true;
670 	}
671 
672 	return false;
673 }
674 
675 /* Optimize kprobe if p is ready to be optimized */
676 static void optimize_kprobe(struct kprobe *p)
677 {
678 	struct optimized_kprobe *op;
679 
680 	/* Check if the kprobe is disabled or not ready for optimization. */
681 	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
682 	    (kprobe_disabled(p) || kprobes_all_disarmed))
683 		return;
684 
685 	/* kprobes with 'post_handler' can not be optimized */
686 	if (p->post_handler)
687 		return;
688 
689 	op = container_of(p, struct optimized_kprobe, kp);
690 
691 	/* Check there is no other kprobes at the optimized instructions */
692 	if (arch_check_optimized_kprobe(op) < 0)
693 		return;
694 
695 	/* Check if it is already optimized. */
696 	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
697 		if (optprobe_queued_unopt(op)) {
698 			/* This is under unoptimizing. Just dequeue the probe */
699 			list_del_init(&op->list);
700 		}
701 		return;
702 	}
703 	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
704 
705 	/*
706 	 * On the 'unoptimizing_list' and 'optimizing_list',
707 	 * 'op' must have OPTIMIZED flag
708 	 */
709 	if (WARN_ON_ONCE(!list_empty(&op->list)))
710 		return;
711 
712 	list_add(&op->list, &optimizing_list);
713 	kick_kprobe_optimizer();
714 }
715 
716 /* Short cut to direct unoptimizing */
717 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
718 {
719 	lockdep_assert_cpus_held();
720 	arch_unoptimize_kprobe(op);
721 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
722 }
723 
724 /* Unoptimize a kprobe if p is optimized */
725 static void unoptimize_kprobe(struct kprobe *p, bool force)
726 {
727 	struct optimized_kprobe *op;
728 
729 	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
730 		return; /* This is not an optprobe nor optimized */
731 
732 	op = container_of(p, struct optimized_kprobe, kp);
733 	if (!kprobe_optimized(p))
734 		return;
735 
736 	if (!list_empty(&op->list)) {
737 		if (optprobe_queued_unopt(op)) {
738 			/* Queued in unoptimizing queue */
739 			if (force) {
740 				/*
741 				 * Forcibly unoptimize the kprobe here, and queue it
742 				 * in the freeing list for release afterwards.
743 				 */
744 				force_unoptimize_kprobe(op);
745 				list_move(&op->list, &freeing_list);
746 			}
747 		} else {
748 			/* Dequeue from the optimizing queue */
749 			list_del_init(&op->list);
750 			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
751 		}
752 		return;
753 	}
754 
755 	/* Optimized kprobe case */
756 	if (force) {
757 		/* Forcibly update the code: this is a special case */
758 		force_unoptimize_kprobe(op);
759 	} else {
760 		list_add(&op->list, &unoptimizing_list);
761 		kick_kprobe_optimizer();
762 	}
763 }
764 
765 /* Cancel unoptimizing for reusing */
766 static int reuse_unused_kprobe(struct kprobe *ap)
767 {
768 	struct optimized_kprobe *op;
769 
770 	/*
771 	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
772 	 * there is still a relative jump) and disabled.
773 	 */
774 	op = container_of(ap, struct optimized_kprobe, kp);
775 	WARN_ON_ONCE(list_empty(&op->list));
776 	/* Enable the probe again */
777 	ap->flags &= ~KPROBE_FLAG_DISABLED;
778 	/* Optimize it again. (remove from 'op->list') */
779 	if (!kprobe_optready(ap))
780 		return -EINVAL;
781 
782 	optimize_kprobe(ap);
783 	return 0;
784 }
785 
786 /* Remove optimized instructions */
787 static void kill_optimized_kprobe(struct kprobe *p)
788 {
789 	struct optimized_kprobe *op;
790 
791 	op = container_of(p, struct optimized_kprobe, kp);
792 	if (!list_empty(&op->list))
793 		/* Dequeue from the (un)optimization queue */
794 		list_del_init(&op->list);
795 	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
796 
797 	if (kprobe_unused(p)) {
798 		/*
799 		 * Unused kprobe is on unoptimizing or freeing list. We move it
800 		 * to freeing_list and let the kprobe_optimizer() remove it from
801 		 * the kprobe hash list and free it.
802 		 */
803 		if (optprobe_queued_unopt(op))
804 			list_move(&op->list, &freeing_list);
805 	}
806 
807 	/* Don't touch the code, because it is already freed. */
808 	arch_remove_optimized_kprobe(op);
809 }
810 
811 static inline
812 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
813 {
814 	if (!kprobe_ftrace(p))
815 		arch_prepare_optimized_kprobe(op, p);
816 }
817 
818 /* Try to prepare optimized instructions */
819 static void prepare_optimized_kprobe(struct kprobe *p)
820 {
821 	struct optimized_kprobe *op;
822 
823 	op = container_of(p, struct optimized_kprobe, kp);
824 	__prepare_optimized_kprobe(op, p);
825 }
826 
827 /* Allocate new optimized_kprobe and try to prepare optimized instructions. */
828 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
829 {
830 	struct optimized_kprobe *op;
831 
832 	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
833 	if (!op)
834 		return NULL;
835 
836 	INIT_LIST_HEAD(&op->list);
837 	op->kp.addr = p->addr;
838 	__prepare_optimized_kprobe(op, p);
839 
840 	return &op->kp;
841 }
842 
843 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
844 
845 /*
846  * Prepare an optimized_kprobe and optimize it.
847  * NOTE: 'p' must be a normal registered kprobe.
848  */
849 static void try_to_optimize_kprobe(struct kprobe *p)
850 {
851 	struct kprobe *ap;
852 	struct optimized_kprobe *op;
853 
854 	/* Impossible to optimize ftrace-based kprobe. */
855 	if (kprobe_ftrace(p))
856 		return;
857 
858 	/* For preparing optimization, jump_label_text_reserved() is called. */
859 	cpus_read_lock();
860 	jump_label_lock();
861 	mutex_lock(&text_mutex);
862 
863 	ap = alloc_aggr_kprobe(p);
864 	if (!ap)
865 		goto out;
866 
867 	op = container_of(ap, struct optimized_kprobe, kp);
868 	if (!arch_prepared_optinsn(&op->optinsn)) {
869 		/* If failed to setup optimizing, fallback to kprobe. */
870 		arch_remove_optimized_kprobe(op);
871 		kfree(op);
872 		goto out;
873 	}
874 
875 	init_aggr_kprobe(ap, p);
876 	optimize_kprobe(ap);	/* This just kicks optimizer thread. */
877 
878 out:
879 	mutex_unlock(&text_mutex);
880 	jump_label_unlock();
881 	cpus_read_unlock();
882 }
883 
884 static void optimize_all_kprobes(void)
885 {
886 	struct hlist_head *head;
887 	struct kprobe *p;
888 	unsigned int i;
889 
890 	mutex_lock(&kprobe_mutex);
891 	/* If optimization is already allowed, just return. */
892 	if (kprobes_allow_optimization)
893 		goto out;
894 
895 	cpus_read_lock();
896 	kprobes_allow_optimization = true;
897 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
898 		head = &kprobe_table[i];
899 		hlist_for_each_entry(p, head, hlist)
900 			if (!kprobe_disabled(p))
901 				optimize_kprobe(p);
902 	}
903 	cpus_read_unlock();
904 	pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
905 out:
906 	mutex_unlock(&kprobe_mutex);
907 }
908 
909 #ifdef CONFIG_SYSCTL
910 static void unoptimize_all_kprobes(void)
911 {
912 	struct hlist_head *head;
913 	struct kprobe *p;
914 	unsigned int i;
915 
916 	mutex_lock(&kprobe_mutex);
917 	/* If optimization is already prohibited, just return. */
918 	if (!kprobes_allow_optimization) {
919 		mutex_unlock(&kprobe_mutex);
920 		return;
921 	}
922 
923 	cpus_read_lock();
924 	kprobes_allow_optimization = false;
925 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
926 		head = &kprobe_table[i];
927 		hlist_for_each_entry(p, head, hlist) {
928 			if (!kprobe_disabled(p))
929 				unoptimize_kprobe(p, false);
930 		}
931 	}
932 	cpus_read_unlock();
933 	mutex_unlock(&kprobe_mutex);
934 
935 	/* Wait for unoptimizing completion. */
936 	wait_for_kprobe_optimizer();
937 	pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
938 }
939 
940 static DEFINE_MUTEX(kprobe_sysctl_mutex);
941 static int sysctl_kprobes_optimization;
942 static int proc_kprobes_optimization_handler(struct ctl_table *table,
943 					     int write, void *buffer,
944 					     size_t *length, loff_t *ppos)
945 {
946 	int ret;
947 
948 	mutex_lock(&kprobe_sysctl_mutex);
949 	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
950 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
951 
952 	if (sysctl_kprobes_optimization)
953 		optimize_all_kprobes();
954 	else
955 		unoptimize_all_kprobes();
956 	mutex_unlock(&kprobe_sysctl_mutex);
957 
958 	return ret;
959 }
960 
961 static struct ctl_table kprobe_sysctls[] = {
962 	{
963 		.procname	= "kprobes-optimization",
964 		.data		= &sysctl_kprobes_optimization,
965 		.maxlen		= sizeof(int),
966 		.mode		= 0644,
967 		.proc_handler	= proc_kprobes_optimization_handler,
968 		.extra1		= SYSCTL_ZERO,
969 		.extra2		= SYSCTL_ONE,
970 	},
971 	{}
972 };
973 
974 static void __init kprobe_sysctls_init(void)
975 {
976 	register_sysctl_init("debug", kprobe_sysctls);
977 }
978 #endif /* CONFIG_SYSCTL */
979 
980 /* Put a breakpoint for a probe. */
981 static void __arm_kprobe(struct kprobe *p)
982 {
983 	struct kprobe *_p;
984 
985 	lockdep_assert_held(&text_mutex);
986 
987 	/* Find the overlapping optimized kprobes. */
988 	_p = get_optimized_kprobe(p->addr);
989 	if (unlikely(_p))
990 		/* Fallback to unoptimized kprobe */
991 		unoptimize_kprobe(_p, true);
992 
993 	arch_arm_kprobe(p);
994 	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
995 }
996 
997 /* Remove the breakpoint of a probe. */
998 static void __disarm_kprobe(struct kprobe *p, bool reopt)
999 {
1000 	struct kprobe *_p;
1001 
1002 	lockdep_assert_held(&text_mutex);
1003 
1004 	/* Try to unoptimize */
1005 	unoptimize_kprobe(p, kprobes_all_disarmed);
1006 
1007 	if (!kprobe_queued(p)) {
1008 		arch_disarm_kprobe(p);
1009 		/* If another kprobe was blocked, re-optimize it. */
1010 		_p = get_optimized_kprobe(p->addr);
1011 		if (unlikely(_p) && reopt)
1012 			optimize_kprobe(_p);
1013 	}
1014 	/*
1015 	 * TODO: Since unoptimization and real disarming will be done by
1016 	 * the worker thread, we can not check whether another probe are
1017 	 * unoptimized because of this probe here. It should be re-optimized
1018 	 * by the worker thread.
1019 	 */
1020 }
1021 
1022 #else /* !CONFIG_OPTPROBES */
1023 
1024 #define optimize_kprobe(p)			do {} while (0)
1025 #define unoptimize_kprobe(p, f)			do {} while (0)
1026 #define kill_optimized_kprobe(p)		do {} while (0)
1027 #define prepare_optimized_kprobe(p)		do {} while (0)
1028 #define try_to_optimize_kprobe(p)		do {} while (0)
1029 #define __arm_kprobe(p)				arch_arm_kprobe(p)
1030 #define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
1031 #define kprobe_disarmed(p)			kprobe_disabled(p)
1032 #define wait_for_kprobe_optimizer()		do {} while (0)
1033 
1034 static int reuse_unused_kprobe(struct kprobe *ap)
1035 {
1036 	/*
1037 	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1038 	 * released at the same time that the last aggregated kprobe is
1039 	 * unregistered.
1040 	 * Thus there should be no chance to reuse unused kprobe.
1041 	 */
1042 	WARN_ON_ONCE(1);
1043 	return -EINVAL;
1044 }
1045 
1046 static void free_aggr_kprobe(struct kprobe *p)
1047 {
1048 	arch_remove_kprobe(p);
1049 	kfree(p);
1050 }
1051 
1052 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1053 {
1054 	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1055 }
1056 #endif /* CONFIG_OPTPROBES */
1057 
1058 #ifdef CONFIG_KPROBES_ON_FTRACE
1059 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1060 	.func = kprobe_ftrace_handler,
1061 	.flags = FTRACE_OPS_FL_SAVE_REGS,
1062 };
1063 
1064 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1065 	.func = kprobe_ftrace_handler,
1066 	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1067 };
1068 
1069 static int kprobe_ipmodify_enabled;
1070 static int kprobe_ftrace_enabled;
1071 
1072 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1073 			       int *cnt)
1074 {
1075 	int ret;
1076 
1077 	lockdep_assert_held(&kprobe_mutex);
1078 
1079 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1080 	if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1081 		return ret;
1082 
1083 	if (*cnt == 0) {
1084 		ret = register_ftrace_function(ops);
1085 		if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1086 			goto err_ftrace;
1087 	}
1088 
1089 	(*cnt)++;
1090 	return ret;
1091 
1092 err_ftrace:
1093 	/*
1094 	 * At this point, sinec ops is not registered, we should be sefe from
1095 	 * registering empty filter.
1096 	 */
1097 	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1098 	return ret;
1099 }
1100 
1101 static int arm_kprobe_ftrace(struct kprobe *p)
1102 {
1103 	bool ipmodify = (p->post_handler != NULL);
1104 
1105 	return __arm_kprobe_ftrace(p,
1106 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1107 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1108 }
1109 
1110 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1111 				  int *cnt)
1112 {
1113 	int ret;
1114 
1115 	lockdep_assert_held(&kprobe_mutex);
1116 
1117 	if (*cnt == 1) {
1118 		ret = unregister_ftrace_function(ops);
1119 		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1120 			return ret;
1121 	}
1122 
1123 	(*cnt)--;
1124 
1125 	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1126 	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1127 		  p->addr, ret);
1128 	return ret;
1129 }
1130 
1131 static int disarm_kprobe_ftrace(struct kprobe *p)
1132 {
1133 	bool ipmodify = (p->post_handler != NULL);
1134 
1135 	return __disarm_kprobe_ftrace(p,
1136 		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1137 		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1138 }
1139 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1140 static inline int arm_kprobe_ftrace(struct kprobe *p)
1141 {
1142 	return -ENODEV;
1143 }
1144 
1145 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1146 {
1147 	return -ENODEV;
1148 }
1149 #endif
1150 
1151 static int prepare_kprobe(struct kprobe *p)
1152 {
1153 	/* Must ensure p->addr is really on ftrace */
1154 	if (kprobe_ftrace(p))
1155 		return arch_prepare_kprobe_ftrace(p);
1156 
1157 	return arch_prepare_kprobe(p);
1158 }
1159 
1160 static int arm_kprobe(struct kprobe *kp)
1161 {
1162 	if (unlikely(kprobe_ftrace(kp)))
1163 		return arm_kprobe_ftrace(kp);
1164 
1165 	cpus_read_lock();
1166 	mutex_lock(&text_mutex);
1167 	__arm_kprobe(kp);
1168 	mutex_unlock(&text_mutex);
1169 	cpus_read_unlock();
1170 
1171 	return 0;
1172 }
1173 
1174 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1175 {
1176 	if (unlikely(kprobe_ftrace(kp)))
1177 		return disarm_kprobe_ftrace(kp);
1178 
1179 	cpus_read_lock();
1180 	mutex_lock(&text_mutex);
1181 	__disarm_kprobe(kp, reopt);
1182 	mutex_unlock(&text_mutex);
1183 	cpus_read_unlock();
1184 
1185 	return 0;
1186 }
1187 
1188 /*
1189  * Aggregate handlers for multiple kprobes support - these handlers
1190  * take care of invoking the individual kprobe handlers on p->list
1191  */
1192 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1193 {
1194 	struct kprobe *kp;
1195 
1196 	list_for_each_entry_rcu(kp, &p->list, list) {
1197 		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1198 			set_kprobe_instance(kp);
1199 			if (kp->pre_handler(kp, regs))
1200 				return 1;
1201 		}
1202 		reset_kprobe_instance();
1203 	}
1204 	return 0;
1205 }
1206 NOKPROBE_SYMBOL(aggr_pre_handler);
1207 
1208 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1209 			      unsigned long flags)
1210 {
1211 	struct kprobe *kp;
1212 
1213 	list_for_each_entry_rcu(kp, &p->list, list) {
1214 		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1215 			set_kprobe_instance(kp);
1216 			kp->post_handler(kp, regs, flags);
1217 			reset_kprobe_instance();
1218 		}
1219 	}
1220 }
1221 NOKPROBE_SYMBOL(aggr_post_handler);
1222 
1223 /* Walks the list and increments 'nmissed' if 'p' has child probes. */
1224 void kprobes_inc_nmissed_count(struct kprobe *p)
1225 {
1226 	struct kprobe *kp;
1227 
1228 	if (!kprobe_aggrprobe(p)) {
1229 		p->nmissed++;
1230 	} else {
1231 		list_for_each_entry_rcu(kp, &p->list, list)
1232 			kp->nmissed++;
1233 	}
1234 }
1235 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1236 
1237 static struct kprobe kprobe_busy = {
1238 	.addr = (void *) get_kprobe,
1239 };
1240 
1241 void kprobe_busy_begin(void)
1242 {
1243 	struct kprobe_ctlblk *kcb;
1244 
1245 	preempt_disable();
1246 	__this_cpu_write(current_kprobe, &kprobe_busy);
1247 	kcb = get_kprobe_ctlblk();
1248 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1249 }
1250 
1251 void kprobe_busy_end(void)
1252 {
1253 	__this_cpu_write(current_kprobe, NULL);
1254 	preempt_enable();
1255 }
1256 
1257 /* Add the new probe to 'ap->list'. */
1258 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1259 {
1260 	if (p->post_handler)
1261 		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1262 
1263 	list_add_rcu(&p->list, &ap->list);
1264 	if (p->post_handler && !ap->post_handler)
1265 		ap->post_handler = aggr_post_handler;
1266 
1267 	return 0;
1268 }
1269 
1270 /*
1271  * Fill in the required fields of the aggregator kprobe. Replace the
1272  * earlier kprobe in the hlist with the aggregator kprobe.
1273  */
1274 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1275 {
1276 	/* Copy the insn slot of 'p' to 'ap'. */
1277 	copy_kprobe(p, ap);
1278 	flush_insn_slot(ap);
1279 	ap->addr = p->addr;
1280 	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1281 	ap->pre_handler = aggr_pre_handler;
1282 	/* We don't care the kprobe which has gone. */
1283 	if (p->post_handler && !kprobe_gone(p))
1284 		ap->post_handler = aggr_post_handler;
1285 
1286 	INIT_LIST_HEAD(&ap->list);
1287 	INIT_HLIST_NODE(&ap->hlist);
1288 
1289 	list_add_rcu(&p->list, &ap->list);
1290 	hlist_replace_rcu(&p->hlist, &ap->hlist);
1291 }
1292 
1293 /*
1294  * This registers the second or subsequent kprobe at the same address.
1295  */
1296 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1297 {
1298 	int ret = 0;
1299 	struct kprobe *ap = orig_p;
1300 
1301 	cpus_read_lock();
1302 
1303 	/* For preparing optimization, jump_label_text_reserved() is called */
1304 	jump_label_lock();
1305 	mutex_lock(&text_mutex);
1306 
1307 	if (!kprobe_aggrprobe(orig_p)) {
1308 		/* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1309 		ap = alloc_aggr_kprobe(orig_p);
1310 		if (!ap) {
1311 			ret = -ENOMEM;
1312 			goto out;
1313 		}
1314 		init_aggr_kprobe(ap, orig_p);
1315 	} else if (kprobe_unused(ap)) {
1316 		/* This probe is going to die. Rescue it */
1317 		ret = reuse_unused_kprobe(ap);
1318 		if (ret)
1319 			goto out;
1320 	}
1321 
1322 	if (kprobe_gone(ap)) {
1323 		/*
1324 		 * Attempting to insert new probe at the same location that
1325 		 * had a probe in the module vaddr area which already
1326 		 * freed. So, the instruction slot has already been
1327 		 * released. We need a new slot for the new probe.
1328 		 */
1329 		ret = arch_prepare_kprobe(ap);
1330 		if (ret)
1331 			/*
1332 			 * Even if fail to allocate new slot, don't need to
1333 			 * free the 'ap'. It will be used next time, or
1334 			 * freed by unregister_kprobe().
1335 			 */
1336 			goto out;
1337 
1338 		/* Prepare optimized instructions if possible. */
1339 		prepare_optimized_kprobe(ap);
1340 
1341 		/*
1342 		 * Clear gone flag to prevent allocating new slot again, and
1343 		 * set disabled flag because it is not armed yet.
1344 		 */
1345 		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1346 			    | KPROBE_FLAG_DISABLED;
1347 	}
1348 
1349 	/* Copy the insn slot of 'p' to 'ap'. */
1350 	copy_kprobe(ap, p);
1351 	ret = add_new_kprobe(ap, p);
1352 
1353 out:
1354 	mutex_unlock(&text_mutex);
1355 	jump_label_unlock();
1356 	cpus_read_unlock();
1357 
1358 	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1359 		ap->flags &= ~KPROBE_FLAG_DISABLED;
1360 		if (!kprobes_all_disarmed) {
1361 			/* Arm the breakpoint again. */
1362 			ret = arm_kprobe(ap);
1363 			if (ret) {
1364 				ap->flags |= KPROBE_FLAG_DISABLED;
1365 				list_del_rcu(&p->list);
1366 				synchronize_rcu();
1367 			}
1368 		}
1369 	}
1370 	return ret;
1371 }
1372 
1373 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1374 {
1375 	/* The '__kprobes' functions and entry code must not be probed. */
1376 	return addr >= (unsigned long)__kprobes_text_start &&
1377 	       addr < (unsigned long)__kprobes_text_end;
1378 }
1379 
1380 static bool __within_kprobe_blacklist(unsigned long addr)
1381 {
1382 	struct kprobe_blacklist_entry *ent;
1383 
1384 	if (arch_within_kprobe_blacklist(addr))
1385 		return true;
1386 	/*
1387 	 * If 'kprobe_blacklist' is defined, check the address and
1388 	 * reject any probe registration in the prohibited area.
1389 	 */
1390 	list_for_each_entry(ent, &kprobe_blacklist, list) {
1391 		if (addr >= ent->start_addr && addr < ent->end_addr)
1392 			return true;
1393 	}
1394 	return false;
1395 }
1396 
1397 bool within_kprobe_blacklist(unsigned long addr)
1398 {
1399 	char symname[KSYM_NAME_LEN], *p;
1400 
1401 	if (__within_kprobe_blacklist(addr))
1402 		return true;
1403 
1404 	/* Check if the address is on a suffixed-symbol */
1405 	if (!lookup_symbol_name(addr, symname)) {
1406 		p = strchr(symname, '.');
1407 		if (!p)
1408 			return false;
1409 		*p = '\0';
1410 		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1411 		if (addr)
1412 			return __within_kprobe_blacklist(addr);
1413 	}
1414 	return false;
1415 }
1416 
1417 /*
1418  * arch_adjust_kprobe_addr - adjust the address
1419  * @addr: symbol base address
1420  * @offset: offset within the symbol
1421  * @on_func_entry: was this @addr+@offset on the function entry
1422  *
1423  * Typically returns @addr + @offset, except for special cases where the
1424  * function might be prefixed by a CFI landing pad, in that case any offset
1425  * inside the landing pad is mapped to the first 'real' instruction of the
1426  * symbol.
1427  *
1428  * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1429  * instruction at +0.
1430  */
1431 kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1432 						unsigned long offset,
1433 						bool *on_func_entry)
1434 {
1435 	*on_func_entry = !offset;
1436 	return (kprobe_opcode_t *)(addr + offset);
1437 }
1438 
1439 /*
1440  * If 'symbol_name' is specified, look it up and add the 'offset'
1441  * to it. This way, we can specify a relative address to a symbol.
1442  * This returns encoded errors if it fails to look up symbol or invalid
1443  * combination of parameters.
1444  */
1445 static kprobe_opcode_t *
1446 _kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1447 	     unsigned long offset, bool *on_func_entry)
1448 {
1449 	if ((symbol_name && addr) || (!symbol_name && !addr))
1450 		goto invalid;
1451 
1452 	if (symbol_name) {
1453 		/*
1454 		 * Input: @sym + @offset
1455 		 * Output: @addr + @offset
1456 		 *
1457 		 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1458 		 *       argument into it's output!
1459 		 */
1460 		addr = kprobe_lookup_name(symbol_name, offset);
1461 		if (!addr)
1462 			return ERR_PTR(-ENOENT);
1463 	}
1464 
1465 	/*
1466 	 * So here we have @addr + @offset, displace it into a new
1467 	 * @addr' + @offset' where @addr' is the symbol start address.
1468 	 */
1469 	addr = (void *)addr + offset;
1470 	if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1471 		return ERR_PTR(-ENOENT);
1472 	addr = (void *)addr - offset;
1473 
1474 	/*
1475 	 * Then ask the architecture to re-combine them, taking care of
1476 	 * magical function entry details while telling us if this was indeed
1477 	 * at the start of the function.
1478 	 */
1479 	addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1480 	if (addr)
1481 		return addr;
1482 
1483 invalid:
1484 	return ERR_PTR(-EINVAL);
1485 }
1486 
1487 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1488 {
1489 	bool on_func_entry;
1490 	return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1491 }
1492 
1493 /*
1494  * Check the 'p' is valid and return the aggregator kprobe
1495  * at the same address.
1496  */
1497 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1498 {
1499 	struct kprobe *ap, *list_p;
1500 
1501 	lockdep_assert_held(&kprobe_mutex);
1502 
1503 	ap = get_kprobe(p->addr);
1504 	if (unlikely(!ap))
1505 		return NULL;
1506 
1507 	if (p != ap) {
1508 		list_for_each_entry(list_p, &ap->list, list)
1509 			if (list_p == p)
1510 			/* kprobe p is a valid probe */
1511 				goto valid;
1512 		return NULL;
1513 	}
1514 valid:
1515 	return ap;
1516 }
1517 
1518 /*
1519  * Warn and return error if the kprobe is being re-registered since
1520  * there must be a software bug.
1521  */
1522 static inline int warn_kprobe_rereg(struct kprobe *p)
1523 {
1524 	int ret = 0;
1525 
1526 	mutex_lock(&kprobe_mutex);
1527 	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1528 		ret = -EINVAL;
1529 	mutex_unlock(&kprobe_mutex);
1530 
1531 	return ret;
1532 }
1533 
1534 static int check_ftrace_location(struct kprobe *p)
1535 {
1536 	unsigned long addr = (unsigned long)p->addr;
1537 
1538 	if (ftrace_location(addr) == addr) {
1539 #ifdef CONFIG_KPROBES_ON_FTRACE
1540 		p->flags |= KPROBE_FLAG_FTRACE;
1541 #else	/* !CONFIG_KPROBES_ON_FTRACE */
1542 		return -EINVAL;
1543 #endif
1544 	}
1545 	return 0;
1546 }
1547 
1548 static bool is_cfi_preamble_symbol(unsigned long addr)
1549 {
1550 	char symbuf[KSYM_NAME_LEN];
1551 
1552 	if (lookup_symbol_name(addr, symbuf))
1553 		return false;
1554 
1555 	return str_has_prefix("__cfi_", symbuf) ||
1556 		str_has_prefix("__pfx_", symbuf);
1557 }
1558 
1559 static int check_kprobe_address_safe(struct kprobe *p,
1560 				     struct module **probed_mod)
1561 {
1562 	int ret;
1563 
1564 	ret = check_ftrace_location(p);
1565 	if (ret)
1566 		return ret;
1567 	jump_label_lock();
1568 	preempt_disable();
1569 
1570 	/* Ensure it is not in reserved area nor out of text */
1571 	if (!(core_kernel_text((unsigned long) p->addr) ||
1572 	    is_module_text_address((unsigned long) p->addr)) ||
1573 	    in_gate_area_no_mm((unsigned long) p->addr) ||
1574 	    within_kprobe_blacklist((unsigned long) p->addr) ||
1575 	    jump_label_text_reserved(p->addr, p->addr) ||
1576 	    static_call_text_reserved(p->addr, p->addr) ||
1577 	    find_bug((unsigned long)p->addr) ||
1578 	    is_cfi_preamble_symbol((unsigned long)p->addr)) {
1579 		ret = -EINVAL;
1580 		goto out;
1581 	}
1582 
1583 	/* Check if 'p' is probing a module. */
1584 	*probed_mod = __module_text_address((unsigned long) p->addr);
1585 	if (*probed_mod) {
1586 		/*
1587 		 * We must hold a refcount of the probed module while updating
1588 		 * its code to prohibit unexpected unloading.
1589 		 */
1590 		if (unlikely(!try_module_get(*probed_mod))) {
1591 			ret = -ENOENT;
1592 			goto out;
1593 		}
1594 
1595 		/*
1596 		 * If the module freed '.init.text', we couldn't insert
1597 		 * kprobes in there.
1598 		 */
1599 		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1600 		    (*probed_mod)->state != MODULE_STATE_COMING) {
1601 			module_put(*probed_mod);
1602 			*probed_mod = NULL;
1603 			ret = -ENOENT;
1604 		}
1605 	}
1606 out:
1607 	preempt_enable();
1608 	jump_label_unlock();
1609 
1610 	return ret;
1611 }
1612 
1613 int register_kprobe(struct kprobe *p)
1614 {
1615 	int ret;
1616 	struct kprobe *old_p;
1617 	struct module *probed_mod;
1618 	kprobe_opcode_t *addr;
1619 	bool on_func_entry;
1620 
1621 	/* Adjust probe address from symbol */
1622 	addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1623 	if (IS_ERR(addr))
1624 		return PTR_ERR(addr);
1625 	p->addr = addr;
1626 
1627 	ret = warn_kprobe_rereg(p);
1628 	if (ret)
1629 		return ret;
1630 
1631 	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1632 	p->flags &= KPROBE_FLAG_DISABLED;
1633 	p->nmissed = 0;
1634 	INIT_LIST_HEAD(&p->list);
1635 
1636 	ret = check_kprobe_address_safe(p, &probed_mod);
1637 	if (ret)
1638 		return ret;
1639 
1640 	mutex_lock(&kprobe_mutex);
1641 
1642 	if (on_func_entry)
1643 		p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
1644 
1645 	old_p = get_kprobe(p->addr);
1646 	if (old_p) {
1647 		/* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1648 		ret = register_aggr_kprobe(old_p, p);
1649 		goto out;
1650 	}
1651 
1652 	cpus_read_lock();
1653 	/* Prevent text modification */
1654 	mutex_lock(&text_mutex);
1655 	ret = prepare_kprobe(p);
1656 	mutex_unlock(&text_mutex);
1657 	cpus_read_unlock();
1658 	if (ret)
1659 		goto out;
1660 
1661 	INIT_HLIST_NODE(&p->hlist);
1662 	hlist_add_head_rcu(&p->hlist,
1663 		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1664 
1665 	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1666 		ret = arm_kprobe(p);
1667 		if (ret) {
1668 			hlist_del_rcu(&p->hlist);
1669 			synchronize_rcu();
1670 			goto out;
1671 		}
1672 	}
1673 
1674 	/* Try to optimize kprobe */
1675 	try_to_optimize_kprobe(p);
1676 out:
1677 	mutex_unlock(&kprobe_mutex);
1678 
1679 	if (probed_mod)
1680 		module_put(probed_mod);
1681 
1682 	return ret;
1683 }
1684 EXPORT_SYMBOL_GPL(register_kprobe);
1685 
1686 /* Check if all probes on the 'ap' are disabled. */
1687 static bool aggr_kprobe_disabled(struct kprobe *ap)
1688 {
1689 	struct kprobe *kp;
1690 
1691 	lockdep_assert_held(&kprobe_mutex);
1692 
1693 	list_for_each_entry(kp, &ap->list, list)
1694 		if (!kprobe_disabled(kp))
1695 			/*
1696 			 * Since there is an active probe on the list,
1697 			 * we can't disable this 'ap'.
1698 			 */
1699 			return false;
1700 
1701 	return true;
1702 }
1703 
1704 static struct kprobe *__disable_kprobe(struct kprobe *p)
1705 {
1706 	struct kprobe *orig_p;
1707 	int ret;
1708 
1709 	lockdep_assert_held(&kprobe_mutex);
1710 
1711 	/* Get an original kprobe for return */
1712 	orig_p = __get_valid_kprobe(p);
1713 	if (unlikely(orig_p == NULL))
1714 		return ERR_PTR(-EINVAL);
1715 
1716 	if (!kprobe_disabled(p)) {
1717 		/* Disable probe if it is a child probe */
1718 		if (p != orig_p)
1719 			p->flags |= KPROBE_FLAG_DISABLED;
1720 
1721 		/* Try to disarm and disable this/parent probe */
1722 		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1723 			/*
1724 			 * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1725 			 * is false, 'orig_p' might not have been armed yet.
1726 			 * Note arm_all_kprobes() __tries__ to arm all kprobes
1727 			 * on the best effort basis.
1728 			 */
1729 			if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1730 				ret = disarm_kprobe(orig_p, true);
1731 				if (ret) {
1732 					p->flags &= ~KPROBE_FLAG_DISABLED;
1733 					return ERR_PTR(ret);
1734 				}
1735 			}
1736 			orig_p->flags |= KPROBE_FLAG_DISABLED;
1737 		}
1738 	}
1739 
1740 	return orig_p;
1741 }
1742 
1743 /*
1744  * Unregister a kprobe without a scheduler synchronization.
1745  */
1746 static int __unregister_kprobe_top(struct kprobe *p)
1747 {
1748 	struct kprobe *ap, *list_p;
1749 
1750 	/* Disable kprobe. This will disarm it if needed. */
1751 	ap = __disable_kprobe(p);
1752 	if (IS_ERR(ap))
1753 		return PTR_ERR(ap);
1754 
1755 	if (ap == p)
1756 		/*
1757 		 * This probe is an independent(and non-optimized) kprobe
1758 		 * (not an aggrprobe). Remove from the hash list.
1759 		 */
1760 		goto disarmed;
1761 
1762 	/* Following process expects this probe is an aggrprobe */
1763 	WARN_ON(!kprobe_aggrprobe(ap));
1764 
1765 	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1766 		/*
1767 		 * !disarmed could be happen if the probe is under delayed
1768 		 * unoptimizing.
1769 		 */
1770 		goto disarmed;
1771 	else {
1772 		/* If disabling probe has special handlers, update aggrprobe */
1773 		if (p->post_handler && !kprobe_gone(p)) {
1774 			list_for_each_entry(list_p, &ap->list, list) {
1775 				if ((list_p != p) && (list_p->post_handler))
1776 					goto noclean;
1777 			}
1778 			/*
1779 			 * For the kprobe-on-ftrace case, we keep the
1780 			 * post_handler setting to identify this aggrprobe
1781 			 * armed with kprobe_ipmodify_ops.
1782 			 */
1783 			if (!kprobe_ftrace(ap))
1784 				ap->post_handler = NULL;
1785 		}
1786 noclean:
1787 		/*
1788 		 * Remove from the aggrprobe: this path will do nothing in
1789 		 * __unregister_kprobe_bottom().
1790 		 */
1791 		list_del_rcu(&p->list);
1792 		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1793 			/*
1794 			 * Try to optimize this probe again, because post
1795 			 * handler may have been changed.
1796 			 */
1797 			optimize_kprobe(ap);
1798 	}
1799 	return 0;
1800 
1801 disarmed:
1802 	hlist_del_rcu(&ap->hlist);
1803 	return 0;
1804 }
1805 
1806 static void __unregister_kprobe_bottom(struct kprobe *p)
1807 {
1808 	struct kprobe *ap;
1809 
1810 	if (list_empty(&p->list))
1811 		/* This is an independent kprobe */
1812 		arch_remove_kprobe(p);
1813 	else if (list_is_singular(&p->list)) {
1814 		/* This is the last child of an aggrprobe */
1815 		ap = list_entry(p->list.next, struct kprobe, list);
1816 		list_del(&p->list);
1817 		free_aggr_kprobe(ap);
1818 	}
1819 	/* Otherwise, do nothing. */
1820 }
1821 
1822 int register_kprobes(struct kprobe **kps, int num)
1823 {
1824 	int i, ret = 0;
1825 
1826 	if (num <= 0)
1827 		return -EINVAL;
1828 	for (i = 0; i < num; i++) {
1829 		ret = register_kprobe(kps[i]);
1830 		if (ret < 0) {
1831 			if (i > 0)
1832 				unregister_kprobes(kps, i);
1833 			break;
1834 		}
1835 	}
1836 	return ret;
1837 }
1838 EXPORT_SYMBOL_GPL(register_kprobes);
1839 
1840 void unregister_kprobe(struct kprobe *p)
1841 {
1842 	unregister_kprobes(&p, 1);
1843 }
1844 EXPORT_SYMBOL_GPL(unregister_kprobe);
1845 
1846 void unregister_kprobes(struct kprobe **kps, int num)
1847 {
1848 	int i;
1849 
1850 	if (num <= 0)
1851 		return;
1852 	mutex_lock(&kprobe_mutex);
1853 	for (i = 0; i < num; i++)
1854 		if (__unregister_kprobe_top(kps[i]) < 0)
1855 			kps[i]->addr = NULL;
1856 	mutex_unlock(&kprobe_mutex);
1857 
1858 	synchronize_rcu();
1859 	for (i = 0; i < num; i++)
1860 		if (kps[i]->addr)
1861 			__unregister_kprobe_bottom(kps[i]);
1862 }
1863 EXPORT_SYMBOL_GPL(unregister_kprobes);
1864 
1865 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1866 					unsigned long val, void *data)
1867 {
1868 	return NOTIFY_DONE;
1869 }
1870 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1871 
1872 static struct notifier_block kprobe_exceptions_nb = {
1873 	.notifier_call = kprobe_exceptions_notify,
1874 	.priority = 0x7fffffff /* we need to be notified first */
1875 };
1876 
1877 #ifdef CONFIG_KRETPROBES
1878 
1879 #if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1880 
1881 /* callbacks for objpool of kretprobe instances */
1882 static int kretprobe_init_inst(void *nod, void *context)
1883 {
1884 	struct kretprobe_instance *ri = nod;
1885 
1886 	ri->rph = context;
1887 	return 0;
1888 }
1889 static int kretprobe_fini_pool(struct objpool_head *head, void *context)
1890 {
1891 	kfree(context);
1892 	return 0;
1893 }
1894 
1895 static void free_rp_inst_rcu(struct rcu_head *head)
1896 {
1897 	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1898 	struct kretprobe_holder *rph = ri->rph;
1899 
1900 	objpool_drop(ri, &rph->pool);
1901 }
1902 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1903 
1904 static void recycle_rp_inst(struct kretprobe_instance *ri)
1905 {
1906 	struct kretprobe *rp = get_kretprobe(ri);
1907 
1908 	if (likely(rp))
1909 		objpool_push(ri, &rp->rph->pool);
1910 	else
1911 		call_rcu(&ri->rcu, free_rp_inst_rcu);
1912 }
1913 NOKPROBE_SYMBOL(recycle_rp_inst);
1914 
1915 /*
1916  * This function is called from delayed_put_task_struct() when a task is
1917  * dead and cleaned up to recycle any kretprobe instances associated with
1918  * this task. These left over instances represent probed functions that
1919  * have been called but will never return.
1920  */
1921 void kprobe_flush_task(struct task_struct *tk)
1922 {
1923 	struct kretprobe_instance *ri;
1924 	struct llist_node *node;
1925 
1926 	/* Early boot, not yet initialized. */
1927 	if (unlikely(!kprobes_initialized))
1928 		return;
1929 
1930 	kprobe_busy_begin();
1931 
1932 	node = __llist_del_all(&tk->kretprobe_instances);
1933 	while (node) {
1934 		ri = container_of(node, struct kretprobe_instance, llist);
1935 		node = node->next;
1936 
1937 		recycle_rp_inst(ri);
1938 	}
1939 
1940 	kprobe_busy_end();
1941 }
1942 NOKPROBE_SYMBOL(kprobe_flush_task);
1943 
1944 static inline void free_rp_inst(struct kretprobe *rp)
1945 {
1946 	struct kretprobe_holder *rph = rp->rph;
1947 
1948 	if (!rph)
1949 		return;
1950 	rp->rph = NULL;
1951 	objpool_fini(&rph->pool);
1952 }
1953 
1954 /* This assumes the 'tsk' is the current task or the is not running. */
1955 static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1956 						  struct llist_node **cur)
1957 {
1958 	struct kretprobe_instance *ri = NULL;
1959 	struct llist_node *node = *cur;
1960 
1961 	if (!node)
1962 		node = tsk->kretprobe_instances.first;
1963 	else
1964 		node = node->next;
1965 
1966 	while (node) {
1967 		ri = container_of(node, struct kretprobe_instance, llist);
1968 		if (ri->ret_addr != kretprobe_trampoline_addr()) {
1969 			*cur = node;
1970 			return ri->ret_addr;
1971 		}
1972 		node = node->next;
1973 	}
1974 	return NULL;
1975 }
1976 NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1977 
1978 /**
1979  * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1980  * @tsk: Target task
1981  * @fp: A frame pointer
1982  * @cur: a storage of the loop cursor llist_node pointer for next call
1983  *
1984  * Find the correct return address modified by a kretprobe on @tsk in unsigned
1985  * long type. If it finds the return address, this returns that address value,
1986  * or this returns 0.
1987  * The @tsk must be 'current' or a task which is not running. @fp is a hint
1988  * to get the currect return address - which is compared with the
1989  * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1990  * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
1991  * first call, but '@cur' itself must NOT NULL.
1992  */
1993 unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
1994 				      struct llist_node **cur)
1995 {
1996 	struct kretprobe_instance *ri = NULL;
1997 	kprobe_opcode_t *ret;
1998 
1999 	if (WARN_ON_ONCE(!cur))
2000 		return 0;
2001 
2002 	do {
2003 		ret = __kretprobe_find_ret_addr(tsk, cur);
2004 		if (!ret)
2005 			break;
2006 		ri = container_of(*cur, struct kretprobe_instance, llist);
2007 	} while (ri->fp != fp);
2008 
2009 	return (unsigned long)ret;
2010 }
2011 NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2012 
2013 void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2014 					kprobe_opcode_t *correct_ret_addr)
2015 {
2016 	/*
2017 	 * Do nothing by default. Please fill this to update the fake return
2018 	 * address on the stack with the correct one on each arch if possible.
2019 	 */
2020 }
2021 
2022 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2023 					     void *frame_pointer)
2024 {
2025 	struct kretprobe_instance *ri = NULL;
2026 	struct llist_node *first, *node = NULL;
2027 	kprobe_opcode_t *correct_ret_addr;
2028 	struct kretprobe *rp;
2029 
2030 	/* Find correct address and all nodes for this frame. */
2031 	correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2032 	if (!correct_ret_addr) {
2033 		pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2034 		BUG_ON(1);
2035 	}
2036 
2037 	/*
2038 	 * Set the return address as the instruction pointer, because if the
2039 	 * user handler calls stack_trace_save_regs() with this 'regs',
2040 	 * the stack trace will start from the instruction pointer.
2041 	 */
2042 	instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2043 
2044 	/* Run the user handler of the nodes. */
2045 	first = current->kretprobe_instances.first;
2046 	while (first) {
2047 		ri = container_of(first, struct kretprobe_instance, llist);
2048 
2049 		if (WARN_ON_ONCE(ri->fp != frame_pointer))
2050 			break;
2051 
2052 		rp = get_kretprobe(ri);
2053 		if (rp && rp->handler) {
2054 			struct kprobe *prev = kprobe_running();
2055 
2056 			__this_cpu_write(current_kprobe, &rp->kp);
2057 			ri->ret_addr = correct_ret_addr;
2058 			rp->handler(ri, regs);
2059 			__this_cpu_write(current_kprobe, prev);
2060 		}
2061 		if (first == node)
2062 			break;
2063 
2064 		first = first->next;
2065 	}
2066 
2067 	arch_kretprobe_fixup_return(regs, correct_ret_addr);
2068 
2069 	/* Unlink all nodes for this frame. */
2070 	first = current->kretprobe_instances.first;
2071 	current->kretprobe_instances.first = node->next;
2072 	node->next = NULL;
2073 
2074 	/* Recycle free instances. */
2075 	while (first) {
2076 		ri = container_of(first, struct kretprobe_instance, llist);
2077 		first = first->next;
2078 
2079 		recycle_rp_inst(ri);
2080 	}
2081 
2082 	return (unsigned long)correct_ret_addr;
2083 }
2084 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2085 
2086 /*
2087  * This kprobe pre_handler is registered with every kretprobe. When probe
2088  * hits it will set up the return probe.
2089  */
2090 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2091 {
2092 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2093 	struct kretprobe_holder *rph = rp->rph;
2094 	struct kretprobe_instance *ri;
2095 
2096 	ri = objpool_pop(&rph->pool);
2097 	if (!ri) {
2098 		rp->nmissed++;
2099 		return 0;
2100 	}
2101 
2102 	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2103 		objpool_push(ri, &rph->pool);
2104 		return 0;
2105 	}
2106 
2107 	arch_prepare_kretprobe(ri, regs);
2108 
2109 	__llist_add(&ri->llist, &current->kretprobe_instances);
2110 
2111 	return 0;
2112 }
2113 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2114 #else /* CONFIG_KRETPROBE_ON_RETHOOK */
2115 /*
2116  * This kprobe pre_handler is registered with every kretprobe. When probe
2117  * hits it will set up the return probe.
2118  */
2119 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2120 {
2121 	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2122 	struct kretprobe_instance *ri;
2123 	struct rethook_node *rhn;
2124 
2125 	rhn = rethook_try_get(rp->rh);
2126 	if (!rhn) {
2127 		rp->nmissed++;
2128 		return 0;
2129 	}
2130 
2131 	ri = container_of(rhn, struct kretprobe_instance, node);
2132 
2133 	if (rp->entry_handler && rp->entry_handler(ri, regs))
2134 		rethook_recycle(rhn);
2135 	else
2136 		rethook_hook(rhn, regs, kprobe_ftrace(p));
2137 
2138 	return 0;
2139 }
2140 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2141 
2142 static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2143 				      unsigned long ret_addr,
2144 				      struct pt_regs *regs)
2145 {
2146 	struct kretprobe *rp = (struct kretprobe *)data;
2147 	struct kretprobe_instance *ri;
2148 	struct kprobe_ctlblk *kcb;
2149 
2150 	/* The data must NOT be null. This means rethook data structure is broken. */
2151 	if (WARN_ON_ONCE(!data) || !rp->handler)
2152 		return;
2153 
2154 	__this_cpu_write(current_kprobe, &rp->kp);
2155 	kcb = get_kprobe_ctlblk();
2156 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2157 
2158 	ri = container_of(rh, struct kretprobe_instance, node);
2159 	rp->handler(ri, regs);
2160 
2161 	__this_cpu_write(current_kprobe, NULL);
2162 }
2163 NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2164 
2165 #endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2166 
2167 /**
2168  * kprobe_on_func_entry() -- check whether given address is function entry
2169  * @addr: Target address
2170  * @sym:  Target symbol name
2171  * @offset: The offset from the symbol or the address
2172  *
2173  * This checks whether the given @addr+@offset or @sym+@offset is on the
2174  * function entry address or not.
2175  * This returns 0 if it is the function entry, or -EINVAL if it is not.
2176  * And also it returns -ENOENT if it fails the symbol or address lookup.
2177  * Caller must pass @addr or @sym (either one must be NULL), or this
2178  * returns -EINVAL.
2179  */
2180 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2181 {
2182 	bool on_func_entry;
2183 	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2184 
2185 	if (IS_ERR(kp_addr))
2186 		return PTR_ERR(kp_addr);
2187 
2188 	if (!on_func_entry)
2189 		return -EINVAL;
2190 
2191 	return 0;
2192 }
2193 
2194 int register_kretprobe(struct kretprobe *rp)
2195 {
2196 	int ret;
2197 	int i;
2198 	void *addr;
2199 
2200 	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2201 	if (ret)
2202 		return ret;
2203 
2204 	/* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2205 	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2206 		return -EINVAL;
2207 
2208 	if (kretprobe_blacklist_size) {
2209 		addr = kprobe_addr(&rp->kp);
2210 		if (IS_ERR(addr))
2211 			return PTR_ERR(addr);
2212 
2213 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2214 			if (kretprobe_blacklist[i].addr == addr)
2215 				return -EINVAL;
2216 		}
2217 	}
2218 
2219 	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2220 		return -E2BIG;
2221 
2222 	rp->kp.pre_handler = pre_handler_kretprobe;
2223 	rp->kp.post_handler = NULL;
2224 
2225 	/* Pre-allocate memory for max kretprobe instances */
2226 	if (rp->maxactive <= 0)
2227 		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2228 
2229 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2230 	rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler,
2231 				sizeof(struct kretprobe_instance) +
2232 				rp->data_size, rp->maxactive);
2233 	if (IS_ERR(rp->rh))
2234 		return PTR_ERR(rp->rh);
2235 
2236 	rp->nmissed = 0;
2237 	/* Establish function entry probe point */
2238 	ret = register_kprobe(&rp->kp);
2239 	if (ret != 0) {
2240 		rethook_free(rp->rh);
2241 		rp->rh = NULL;
2242 	}
2243 #else	/* !CONFIG_KRETPROBE_ON_RETHOOK */
2244 	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2245 	if (!rp->rph)
2246 		return -ENOMEM;
2247 
2248 	if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size +
2249 			sizeof(struct kretprobe_instance), GFP_KERNEL,
2250 			rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) {
2251 		kfree(rp->rph);
2252 		rp->rph = NULL;
2253 		return -ENOMEM;
2254 	}
2255 	rp->rph->rp = rp;
2256 	rp->nmissed = 0;
2257 	/* Establish function entry probe point */
2258 	ret = register_kprobe(&rp->kp);
2259 	if (ret != 0)
2260 		free_rp_inst(rp);
2261 #endif
2262 	return ret;
2263 }
2264 EXPORT_SYMBOL_GPL(register_kretprobe);
2265 
2266 int register_kretprobes(struct kretprobe **rps, int num)
2267 {
2268 	int ret = 0, i;
2269 
2270 	if (num <= 0)
2271 		return -EINVAL;
2272 	for (i = 0; i < num; i++) {
2273 		ret = register_kretprobe(rps[i]);
2274 		if (ret < 0) {
2275 			if (i > 0)
2276 				unregister_kretprobes(rps, i);
2277 			break;
2278 		}
2279 	}
2280 	return ret;
2281 }
2282 EXPORT_SYMBOL_GPL(register_kretprobes);
2283 
2284 void unregister_kretprobe(struct kretprobe *rp)
2285 {
2286 	unregister_kretprobes(&rp, 1);
2287 }
2288 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2289 
2290 void unregister_kretprobes(struct kretprobe **rps, int num)
2291 {
2292 	int i;
2293 
2294 	if (num <= 0)
2295 		return;
2296 	mutex_lock(&kprobe_mutex);
2297 	for (i = 0; i < num; i++) {
2298 		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2299 			rps[i]->kp.addr = NULL;
2300 #ifdef CONFIG_KRETPROBE_ON_RETHOOK
2301 		rethook_free(rps[i]->rh);
2302 #else
2303 		rps[i]->rph->rp = NULL;
2304 #endif
2305 	}
2306 	mutex_unlock(&kprobe_mutex);
2307 
2308 	synchronize_rcu();
2309 	for (i = 0; i < num; i++) {
2310 		if (rps[i]->kp.addr) {
2311 			__unregister_kprobe_bottom(&rps[i]->kp);
2312 #ifndef CONFIG_KRETPROBE_ON_RETHOOK
2313 			free_rp_inst(rps[i]);
2314 #endif
2315 		}
2316 	}
2317 }
2318 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2319 
2320 #else /* CONFIG_KRETPROBES */
2321 int register_kretprobe(struct kretprobe *rp)
2322 {
2323 	return -EOPNOTSUPP;
2324 }
2325 EXPORT_SYMBOL_GPL(register_kretprobe);
2326 
2327 int register_kretprobes(struct kretprobe **rps, int num)
2328 {
2329 	return -EOPNOTSUPP;
2330 }
2331 EXPORT_SYMBOL_GPL(register_kretprobes);
2332 
2333 void unregister_kretprobe(struct kretprobe *rp)
2334 {
2335 }
2336 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2337 
2338 void unregister_kretprobes(struct kretprobe **rps, int num)
2339 {
2340 }
2341 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2342 
2343 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2344 {
2345 	return 0;
2346 }
2347 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2348 
2349 #endif /* CONFIG_KRETPROBES */
2350 
2351 /* Set the kprobe gone and remove its instruction buffer. */
2352 static void kill_kprobe(struct kprobe *p)
2353 {
2354 	struct kprobe *kp;
2355 
2356 	lockdep_assert_held(&kprobe_mutex);
2357 
2358 	/*
2359 	 * The module is going away. We should disarm the kprobe which
2360 	 * is using ftrace, because ftrace framework is still available at
2361 	 * 'MODULE_STATE_GOING' notification.
2362 	 */
2363 	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2364 		disarm_kprobe_ftrace(p);
2365 
2366 	p->flags |= KPROBE_FLAG_GONE;
2367 	if (kprobe_aggrprobe(p)) {
2368 		/*
2369 		 * If this is an aggr_kprobe, we have to list all the
2370 		 * chained probes and mark them GONE.
2371 		 */
2372 		list_for_each_entry(kp, &p->list, list)
2373 			kp->flags |= KPROBE_FLAG_GONE;
2374 		p->post_handler = NULL;
2375 		kill_optimized_kprobe(p);
2376 	}
2377 	/*
2378 	 * Here, we can remove insn_slot safely, because no thread calls
2379 	 * the original probed function (which will be freed soon) any more.
2380 	 */
2381 	arch_remove_kprobe(p);
2382 }
2383 
2384 /* Disable one kprobe */
2385 int disable_kprobe(struct kprobe *kp)
2386 {
2387 	int ret = 0;
2388 	struct kprobe *p;
2389 
2390 	mutex_lock(&kprobe_mutex);
2391 
2392 	/* Disable this kprobe */
2393 	p = __disable_kprobe(kp);
2394 	if (IS_ERR(p))
2395 		ret = PTR_ERR(p);
2396 
2397 	mutex_unlock(&kprobe_mutex);
2398 	return ret;
2399 }
2400 EXPORT_SYMBOL_GPL(disable_kprobe);
2401 
2402 /* Enable one kprobe */
2403 int enable_kprobe(struct kprobe *kp)
2404 {
2405 	int ret = 0;
2406 	struct kprobe *p;
2407 
2408 	mutex_lock(&kprobe_mutex);
2409 
2410 	/* Check whether specified probe is valid. */
2411 	p = __get_valid_kprobe(kp);
2412 	if (unlikely(p == NULL)) {
2413 		ret = -EINVAL;
2414 		goto out;
2415 	}
2416 
2417 	if (kprobe_gone(kp)) {
2418 		/* This kprobe has gone, we couldn't enable it. */
2419 		ret = -EINVAL;
2420 		goto out;
2421 	}
2422 
2423 	if (p != kp)
2424 		kp->flags &= ~KPROBE_FLAG_DISABLED;
2425 
2426 	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2427 		p->flags &= ~KPROBE_FLAG_DISABLED;
2428 		ret = arm_kprobe(p);
2429 		if (ret) {
2430 			p->flags |= KPROBE_FLAG_DISABLED;
2431 			if (p != kp)
2432 				kp->flags |= KPROBE_FLAG_DISABLED;
2433 		}
2434 	}
2435 out:
2436 	mutex_unlock(&kprobe_mutex);
2437 	return ret;
2438 }
2439 EXPORT_SYMBOL_GPL(enable_kprobe);
2440 
2441 /* Caller must NOT call this in usual path. This is only for critical case */
2442 void dump_kprobe(struct kprobe *kp)
2443 {
2444 	pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2445 	       kp->symbol_name, kp->offset, kp->addr);
2446 }
2447 NOKPROBE_SYMBOL(dump_kprobe);
2448 
2449 int kprobe_add_ksym_blacklist(unsigned long entry)
2450 {
2451 	struct kprobe_blacklist_entry *ent;
2452 	unsigned long offset = 0, size = 0;
2453 
2454 	if (!kernel_text_address(entry) ||
2455 	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2456 		return -EINVAL;
2457 
2458 	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2459 	if (!ent)
2460 		return -ENOMEM;
2461 	ent->start_addr = entry;
2462 	ent->end_addr = entry + size;
2463 	INIT_LIST_HEAD(&ent->list);
2464 	list_add_tail(&ent->list, &kprobe_blacklist);
2465 
2466 	return (int)size;
2467 }
2468 
2469 /* Add all symbols in given area into kprobe blacklist */
2470 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2471 {
2472 	unsigned long entry;
2473 	int ret = 0;
2474 
2475 	for (entry = start; entry < end; entry += ret) {
2476 		ret = kprobe_add_ksym_blacklist(entry);
2477 		if (ret < 0)
2478 			return ret;
2479 		if (ret == 0)	/* In case of alias symbol */
2480 			ret = 1;
2481 	}
2482 	return 0;
2483 }
2484 
2485 /* Remove all symbols in given area from kprobe blacklist */
2486 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2487 {
2488 	struct kprobe_blacklist_entry *ent, *n;
2489 
2490 	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2491 		if (ent->start_addr < start || ent->start_addr >= end)
2492 			continue;
2493 		list_del(&ent->list);
2494 		kfree(ent);
2495 	}
2496 }
2497 
2498 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2499 {
2500 	kprobe_remove_area_blacklist(entry, entry + 1);
2501 }
2502 
2503 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2504 				   char *type, char *sym)
2505 {
2506 	return -ERANGE;
2507 }
2508 
2509 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2510 		       char *sym)
2511 {
2512 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2513 	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2514 		return 0;
2515 #ifdef CONFIG_OPTPROBES
2516 	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2517 		return 0;
2518 #endif
2519 #endif
2520 	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2521 		return 0;
2522 	return -ERANGE;
2523 }
2524 
2525 int __init __weak arch_populate_kprobe_blacklist(void)
2526 {
2527 	return 0;
2528 }
2529 
2530 /*
2531  * Lookup and populate the kprobe_blacklist.
2532  *
2533  * Unlike the kretprobe blacklist, we'll need to determine
2534  * the range of addresses that belong to the said functions,
2535  * since a kprobe need not necessarily be at the beginning
2536  * of a function.
2537  */
2538 static int __init populate_kprobe_blacklist(unsigned long *start,
2539 					     unsigned long *end)
2540 {
2541 	unsigned long entry;
2542 	unsigned long *iter;
2543 	int ret;
2544 
2545 	for (iter = start; iter < end; iter++) {
2546 		entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2547 		ret = kprobe_add_ksym_blacklist(entry);
2548 		if (ret == -EINVAL)
2549 			continue;
2550 		if (ret < 0)
2551 			return ret;
2552 	}
2553 
2554 	/* Symbols in '__kprobes_text' are blacklisted */
2555 	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2556 					(unsigned long)__kprobes_text_end);
2557 	if (ret)
2558 		return ret;
2559 
2560 	/* Symbols in 'noinstr' section are blacklisted */
2561 	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2562 					(unsigned long)__noinstr_text_end);
2563 
2564 	return ret ? : arch_populate_kprobe_blacklist();
2565 }
2566 
2567 static void add_module_kprobe_blacklist(struct module *mod)
2568 {
2569 	unsigned long start, end;
2570 	int i;
2571 
2572 	if (mod->kprobe_blacklist) {
2573 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2574 			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2575 	}
2576 
2577 	start = (unsigned long)mod->kprobes_text_start;
2578 	if (start) {
2579 		end = start + mod->kprobes_text_size;
2580 		kprobe_add_area_blacklist(start, end);
2581 	}
2582 
2583 	start = (unsigned long)mod->noinstr_text_start;
2584 	if (start) {
2585 		end = start + mod->noinstr_text_size;
2586 		kprobe_add_area_blacklist(start, end);
2587 	}
2588 }
2589 
2590 static void remove_module_kprobe_blacklist(struct module *mod)
2591 {
2592 	unsigned long start, end;
2593 	int i;
2594 
2595 	if (mod->kprobe_blacklist) {
2596 		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2597 			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2598 	}
2599 
2600 	start = (unsigned long)mod->kprobes_text_start;
2601 	if (start) {
2602 		end = start + mod->kprobes_text_size;
2603 		kprobe_remove_area_blacklist(start, end);
2604 	}
2605 
2606 	start = (unsigned long)mod->noinstr_text_start;
2607 	if (start) {
2608 		end = start + mod->noinstr_text_size;
2609 		kprobe_remove_area_blacklist(start, end);
2610 	}
2611 }
2612 
2613 /* Module notifier call back, checking kprobes on the module */
2614 static int kprobes_module_callback(struct notifier_block *nb,
2615 				   unsigned long val, void *data)
2616 {
2617 	struct module *mod = data;
2618 	struct hlist_head *head;
2619 	struct kprobe *p;
2620 	unsigned int i;
2621 	int checkcore = (val == MODULE_STATE_GOING);
2622 
2623 	if (val == MODULE_STATE_COMING) {
2624 		mutex_lock(&kprobe_mutex);
2625 		add_module_kprobe_blacklist(mod);
2626 		mutex_unlock(&kprobe_mutex);
2627 	}
2628 	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2629 		return NOTIFY_DONE;
2630 
2631 	/*
2632 	 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2633 	 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2634 	 * notified, only '.init.text' section would be freed. We need to
2635 	 * disable kprobes which have been inserted in the sections.
2636 	 */
2637 	mutex_lock(&kprobe_mutex);
2638 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2639 		head = &kprobe_table[i];
2640 		hlist_for_each_entry(p, head, hlist)
2641 			if (within_module_init((unsigned long)p->addr, mod) ||
2642 			    (checkcore &&
2643 			     within_module_core((unsigned long)p->addr, mod))) {
2644 				/*
2645 				 * The vaddr this probe is installed will soon
2646 				 * be vfreed buy not synced to disk. Hence,
2647 				 * disarming the breakpoint isn't needed.
2648 				 *
2649 				 * Note, this will also move any optimized probes
2650 				 * that are pending to be removed from their
2651 				 * corresponding lists to the 'freeing_list' and
2652 				 * will not be touched by the delayed
2653 				 * kprobe_optimizer() work handler.
2654 				 */
2655 				kill_kprobe(p);
2656 			}
2657 	}
2658 	if (val == MODULE_STATE_GOING)
2659 		remove_module_kprobe_blacklist(mod);
2660 	mutex_unlock(&kprobe_mutex);
2661 	return NOTIFY_DONE;
2662 }
2663 
2664 static struct notifier_block kprobe_module_nb = {
2665 	.notifier_call = kprobes_module_callback,
2666 	.priority = 0
2667 };
2668 
2669 void kprobe_free_init_mem(void)
2670 {
2671 	void *start = (void *)(&__init_begin);
2672 	void *end = (void *)(&__init_end);
2673 	struct hlist_head *head;
2674 	struct kprobe *p;
2675 	int i;
2676 
2677 	mutex_lock(&kprobe_mutex);
2678 
2679 	/* Kill all kprobes on initmem because the target code has been freed. */
2680 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2681 		head = &kprobe_table[i];
2682 		hlist_for_each_entry(p, head, hlist) {
2683 			if (start <= (void *)p->addr && (void *)p->addr < end)
2684 				kill_kprobe(p);
2685 		}
2686 	}
2687 
2688 	mutex_unlock(&kprobe_mutex);
2689 }
2690 
2691 static int __init init_kprobes(void)
2692 {
2693 	int i, err;
2694 
2695 	/* FIXME allocate the probe table, currently defined statically */
2696 	/* initialize all list heads */
2697 	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2698 		INIT_HLIST_HEAD(&kprobe_table[i]);
2699 
2700 	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2701 					__stop_kprobe_blacklist);
2702 	if (err)
2703 		pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
2704 
2705 	if (kretprobe_blacklist_size) {
2706 		/* lookup the function address from its name */
2707 		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2708 			kretprobe_blacklist[i].addr =
2709 				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2710 			if (!kretprobe_blacklist[i].addr)
2711 				pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2712 				       kretprobe_blacklist[i].name);
2713 		}
2714 	}
2715 
2716 	/* By default, kprobes are armed */
2717 	kprobes_all_disarmed = false;
2718 
2719 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2720 	/* Init 'kprobe_optinsn_slots' for allocation */
2721 	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2722 #endif
2723 
2724 	err = arch_init_kprobes();
2725 	if (!err)
2726 		err = register_die_notifier(&kprobe_exceptions_nb);
2727 	if (!err)
2728 		err = register_module_notifier(&kprobe_module_nb);
2729 
2730 	kprobes_initialized = (err == 0);
2731 	kprobe_sysctls_init();
2732 	return err;
2733 }
2734 early_initcall(init_kprobes);
2735 
2736 #if defined(CONFIG_OPTPROBES)
2737 static int __init init_optprobes(void)
2738 {
2739 	/*
2740 	 * Enable kprobe optimization - this kicks the optimizer which
2741 	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2742 	 * not spawned in early initcall. So delay the optimization.
2743 	 */
2744 	optimize_all_kprobes();
2745 
2746 	return 0;
2747 }
2748 subsys_initcall(init_optprobes);
2749 #endif
2750 
2751 #ifdef CONFIG_DEBUG_FS
2752 static void report_probe(struct seq_file *pi, struct kprobe *p,
2753 		const char *sym, int offset, char *modname, struct kprobe *pp)
2754 {
2755 	char *kprobe_type;
2756 	void *addr = p->addr;
2757 
2758 	if (p->pre_handler == pre_handler_kretprobe)
2759 		kprobe_type = "r";
2760 	else
2761 		kprobe_type = "k";
2762 
2763 	if (!kallsyms_show_value(pi->file->f_cred))
2764 		addr = NULL;
2765 
2766 	if (sym)
2767 		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2768 			addr, kprobe_type, sym, offset,
2769 			(modname ? modname : " "));
2770 	else	/* try to use %pS */
2771 		seq_printf(pi, "%px  %s  %pS ",
2772 			addr, kprobe_type, p->addr);
2773 
2774 	if (!pp)
2775 		pp = p;
2776 	seq_printf(pi, "%s%s%s%s\n",
2777 		(kprobe_gone(p) ? "[GONE]" : ""),
2778 		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2779 		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2780 		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2781 }
2782 
2783 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2784 {
2785 	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2786 }
2787 
2788 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2789 {
2790 	(*pos)++;
2791 	if (*pos >= KPROBE_TABLE_SIZE)
2792 		return NULL;
2793 	return pos;
2794 }
2795 
2796 static void kprobe_seq_stop(struct seq_file *f, void *v)
2797 {
2798 	/* Nothing to do */
2799 }
2800 
2801 static int show_kprobe_addr(struct seq_file *pi, void *v)
2802 {
2803 	struct hlist_head *head;
2804 	struct kprobe *p, *kp;
2805 	const char *sym = NULL;
2806 	unsigned int i = *(loff_t *) v;
2807 	unsigned long offset = 0;
2808 	char *modname, namebuf[KSYM_NAME_LEN];
2809 
2810 	head = &kprobe_table[i];
2811 	preempt_disable();
2812 	hlist_for_each_entry_rcu(p, head, hlist) {
2813 		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2814 					&offset, &modname, namebuf);
2815 		if (kprobe_aggrprobe(p)) {
2816 			list_for_each_entry_rcu(kp, &p->list, list)
2817 				report_probe(pi, kp, sym, offset, modname, p);
2818 		} else
2819 			report_probe(pi, p, sym, offset, modname, NULL);
2820 	}
2821 	preempt_enable();
2822 	return 0;
2823 }
2824 
2825 static const struct seq_operations kprobes_sops = {
2826 	.start = kprobe_seq_start,
2827 	.next  = kprobe_seq_next,
2828 	.stop  = kprobe_seq_stop,
2829 	.show  = show_kprobe_addr
2830 };
2831 
2832 DEFINE_SEQ_ATTRIBUTE(kprobes);
2833 
2834 /* kprobes/blacklist -- shows which functions can not be probed */
2835 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2836 {
2837 	mutex_lock(&kprobe_mutex);
2838 	return seq_list_start(&kprobe_blacklist, *pos);
2839 }
2840 
2841 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2842 {
2843 	return seq_list_next(v, &kprobe_blacklist, pos);
2844 }
2845 
2846 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2847 {
2848 	struct kprobe_blacklist_entry *ent =
2849 		list_entry(v, struct kprobe_blacklist_entry, list);
2850 
2851 	/*
2852 	 * If '/proc/kallsyms' is not showing kernel address, we won't
2853 	 * show them here either.
2854 	 */
2855 	if (!kallsyms_show_value(m->file->f_cred))
2856 		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2857 			   (void *)ent->start_addr);
2858 	else
2859 		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2860 			   (void *)ent->end_addr, (void *)ent->start_addr);
2861 	return 0;
2862 }
2863 
2864 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2865 {
2866 	mutex_unlock(&kprobe_mutex);
2867 }
2868 
2869 static const struct seq_operations kprobe_blacklist_sops = {
2870 	.start = kprobe_blacklist_seq_start,
2871 	.next  = kprobe_blacklist_seq_next,
2872 	.stop  = kprobe_blacklist_seq_stop,
2873 	.show  = kprobe_blacklist_seq_show,
2874 };
2875 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2876 
2877 static int arm_all_kprobes(void)
2878 {
2879 	struct hlist_head *head;
2880 	struct kprobe *p;
2881 	unsigned int i, total = 0, errors = 0;
2882 	int err, ret = 0;
2883 
2884 	mutex_lock(&kprobe_mutex);
2885 
2886 	/* If kprobes are armed, just return */
2887 	if (!kprobes_all_disarmed)
2888 		goto already_enabled;
2889 
2890 	/*
2891 	 * optimize_kprobe() called by arm_kprobe() checks
2892 	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2893 	 * arm_kprobe.
2894 	 */
2895 	kprobes_all_disarmed = false;
2896 	/* Arming kprobes doesn't optimize kprobe itself */
2897 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2898 		head = &kprobe_table[i];
2899 		/* Arm all kprobes on a best-effort basis */
2900 		hlist_for_each_entry(p, head, hlist) {
2901 			if (!kprobe_disabled(p)) {
2902 				err = arm_kprobe(p);
2903 				if (err)  {
2904 					errors++;
2905 					ret = err;
2906 				}
2907 				total++;
2908 			}
2909 		}
2910 	}
2911 
2912 	if (errors)
2913 		pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2914 			errors, total);
2915 	else
2916 		pr_info("Kprobes globally enabled\n");
2917 
2918 already_enabled:
2919 	mutex_unlock(&kprobe_mutex);
2920 	return ret;
2921 }
2922 
2923 static int disarm_all_kprobes(void)
2924 {
2925 	struct hlist_head *head;
2926 	struct kprobe *p;
2927 	unsigned int i, total = 0, errors = 0;
2928 	int err, ret = 0;
2929 
2930 	mutex_lock(&kprobe_mutex);
2931 
2932 	/* If kprobes are already disarmed, just return */
2933 	if (kprobes_all_disarmed) {
2934 		mutex_unlock(&kprobe_mutex);
2935 		return 0;
2936 	}
2937 
2938 	kprobes_all_disarmed = true;
2939 
2940 	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2941 		head = &kprobe_table[i];
2942 		/* Disarm all kprobes on a best-effort basis */
2943 		hlist_for_each_entry(p, head, hlist) {
2944 			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2945 				err = disarm_kprobe(p, false);
2946 				if (err) {
2947 					errors++;
2948 					ret = err;
2949 				}
2950 				total++;
2951 			}
2952 		}
2953 	}
2954 
2955 	if (errors)
2956 		pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2957 			errors, total);
2958 	else
2959 		pr_info("Kprobes globally disabled\n");
2960 
2961 	mutex_unlock(&kprobe_mutex);
2962 
2963 	/* Wait for disarming all kprobes by optimizer */
2964 	wait_for_kprobe_optimizer();
2965 
2966 	return ret;
2967 }
2968 
2969 /*
2970  * XXX: The debugfs bool file interface doesn't allow for callbacks
2971  * when the bool state is switched. We can reuse that facility when
2972  * available
2973  */
2974 static ssize_t read_enabled_file_bool(struct file *file,
2975 	       char __user *user_buf, size_t count, loff_t *ppos)
2976 {
2977 	char buf[3];
2978 
2979 	if (!kprobes_all_disarmed)
2980 		buf[0] = '1';
2981 	else
2982 		buf[0] = '0';
2983 	buf[1] = '\n';
2984 	buf[2] = 0x00;
2985 	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2986 }
2987 
2988 static ssize_t write_enabled_file_bool(struct file *file,
2989 	       const char __user *user_buf, size_t count, loff_t *ppos)
2990 {
2991 	bool enable;
2992 	int ret;
2993 
2994 	ret = kstrtobool_from_user(user_buf, count, &enable);
2995 	if (ret)
2996 		return ret;
2997 
2998 	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
2999 	if (ret)
3000 		return ret;
3001 
3002 	return count;
3003 }
3004 
3005 static const struct file_operations fops_kp = {
3006 	.read =         read_enabled_file_bool,
3007 	.write =        write_enabled_file_bool,
3008 	.llseek =	default_llseek,
3009 };
3010 
3011 static int __init debugfs_kprobe_init(void)
3012 {
3013 	struct dentry *dir;
3014 
3015 	dir = debugfs_create_dir("kprobes", NULL);
3016 
3017 	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3018 
3019 	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
3020 
3021 	debugfs_create_file("blacklist", 0400, dir, NULL,
3022 			    &kprobe_blacklist_fops);
3023 
3024 	return 0;
3025 }
3026 
3027 late_initcall(debugfs_kprobe_init);
3028 #endif /* CONFIG_DEBUG_FS */
3029