1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec: kexec_file_load system call 4 * 5 * Copyright (C) 2014 Red Hat Inc. 6 * Authors: 7 * Vivek Goyal <vgoyal@redhat.com> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/capability.h> 13 #include <linux/mm.h> 14 #include <linux/file.h> 15 #include <linux/slab.h> 16 #include <linux/kexec.h> 17 #include <linux/memblock.h> 18 #include <linux/mutex.h> 19 #include <linux/list.h> 20 #include <linux/fs.h> 21 #include <linux/ima.h> 22 #include <crypto/sha2.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/kernel.h> 26 #include <linux/kernel_read_file.h> 27 #include <linux/syscalls.h> 28 #include <linux/vmalloc.h> 29 #include "kexec_internal.h" 30 31 #ifdef CONFIG_KEXEC_SIG 32 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE); 33 34 void set_kexec_sig_enforced(void) 35 { 36 sig_enforce = true; 37 } 38 #endif 39 40 #ifdef CONFIG_IMA_KEXEC 41 static bool check_ima_segment_index(struct kimage *image, int i) 42 { 43 if (image->is_ima_segment_index_set && i == image->ima_segment_index) 44 return true; 45 else 46 return false; 47 } 48 #else 49 static bool check_ima_segment_index(struct kimage *image, int i) 50 { 51 return false; 52 } 53 #endif 54 55 static int kexec_calculate_store_digests(struct kimage *image); 56 57 /* Maximum size in bytes for kernel/initrd files. */ 58 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX) 59 60 /* 61 * Currently this is the only default function that is exported as some 62 * architectures need it to do additional handlings. 63 * In the future, other default functions may be exported too if required. 64 */ 65 int kexec_image_probe_default(struct kimage *image, void *buf, 66 unsigned long buf_len) 67 { 68 const struct kexec_file_ops * const *fops; 69 int ret = -ENOEXEC; 70 71 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { 72 ret = (*fops)->probe(buf, buf_len); 73 if (!ret) { 74 image->fops = *fops; 75 return ret; 76 } 77 } 78 79 return ret; 80 } 81 82 static void *kexec_image_load_default(struct kimage *image) 83 { 84 if (!image->fops || !image->fops->load) 85 return ERR_PTR(-ENOEXEC); 86 87 return image->fops->load(image, image->kernel_buf, 88 image->kernel_buf_len, image->initrd_buf, 89 image->initrd_buf_len, image->cmdline_buf, 90 image->cmdline_buf_len); 91 } 92 93 int kexec_image_post_load_cleanup_default(struct kimage *image) 94 { 95 if (!image->fops || !image->fops->cleanup) 96 return 0; 97 98 return image->fops->cleanup(image->image_loader_data); 99 } 100 101 /* 102 * Free up memory used by kernel, initrd, and command line. This is temporary 103 * memory allocation which is not needed any more after these buffers have 104 * been loaded into separate segments and have been copied elsewhere. 105 */ 106 void kimage_file_post_load_cleanup(struct kimage *image) 107 { 108 struct purgatory_info *pi = &image->purgatory_info; 109 110 vfree(image->kernel_buf); 111 image->kernel_buf = NULL; 112 113 vfree(image->initrd_buf); 114 image->initrd_buf = NULL; 115 116 kfree(image->cmdline_buf); 117 image->cmdline_buf = NULL; 118 119 vfree(pi->purgatory_buf); 120 pi->purgatory_buf = NULL; 121 122 vfree(pi->sechdrs); 123 pi->sechdrs = NULL; 124 125 #ifdef CONFIG_IMA_KEXEC 126 vfree(image->ima_buffer); 127 image->ima_buffer = NULL; 128 #endif /* CONFIG_IMA_KEXEC */ 129 130 /* See if architecture has anything to cleanup post load */ 131 arch_kimage_file_post_load_cleanup(image); 132 133 /* 134 * Above call should have called into bootloader to free up 135 * any data stored in kimage->image_loader_data. It should 136 * be ok now to free it up. 137 */ 138 kfree(image->image_loader_data); 139 image->image_loader_data = NULL; 140 141 kexec_file_dbg_print = false; 142 } 143 144 #ifdef CONFIG_KEXEC_SIG 145 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION 146 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len) 147 { 148 int ret; 149 150 ret = verify_pefile_signature(kernel, kernel_len, 151 VERIFY_USE_SECONDARY_KEYRING, 152 VERIFYING_KEXEC_PE_SIGNATURE); 153 if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) { 154 ret = verify_pefile_signature(kernel, kernel_len, 155 VERIFY_USE_PLATFORM_KEYRING, 156 VERIFYING_KEXEC_PE_SIGNATURE); 157 } 158 return ret; 159 } 160 #endif 161 162 static int kexec_image_verify_sig(struct kimage *image, void *buf, 163 unsigned long buf_len) 164 { 165 if (!image->fops || !image->fops->verify_sig) { 166 pr_debug("kernel loader does not support signature verification.\n"); 167 return -EKEYREJECTED; 168 } 169 170 return image->fops->verify_sig(buf, buf_len); 171 } 172 173 static int 174 kimage_validate_signature(struct kimage *image) 175 { 176 int ret; 177 178 ret = kexec_image_verify_sig(image, image->kernel_buf, 179 image->kernel_buf_len); 180 if (ret) { 181 182 if (sig_enforce) { 183 pr_notice("Enforced kernel signature verification failed (%d).\n", ret); 184 return ret; 185 } 186 187 /* 188 * If IMA is guaranteed to appraise a signature on the kexec 189 * image, permit it even if the kernel is otherwise locked 190 * down. 191 */ 192 if (!ima_appraise_signature(READING_KEXEC_IMAGE) && 193 security_locked_down(LOCKDOWN_KEXEC)) 194 return -EPERM; 195 196 pr_debug("kernel signature verification failed (%d).\n", ret); 197 } 198 199 return 0; 200 } 201 #endif 202 203 static int kexec_post_load(struct kimage *image, unsigned long flags) 204 { 205 #ifdef CONFIG_IMA_KEXEC 206 if (!(flags & KEXEC_FILE_ON_CRASH)) 207 ima_kexec_post_load(image); 208 #endif 209 return machine_kexec_post_load(image); 210 } 211 212 /* 213 * In file mode list of segments is prepared by kernel. Copy relevant 214 * data from user space, do error checking, prepare segment list 215 */ 216 static int 217 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 218 const char __user *cmdline_ptr, 219 unsigned long cmdline_len, unsigned flags) 220 { 221 ssize_t ret; 222 void *ldata; 223 224 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf, 225 KEXEC_FILE_SIZE_MAX, NULL, 226 READING_KEXEC_IMAGE); 227 if (ret < 0) 228 return ret; 229 image->kernel_buf_len = ret; 230 kexec_dprintk("kernel: %p kernel_size: %#lx\n", 231 image->kernel_buf, image->kernel_buf_len); 232 233 /* Call arch image probe handlers */ 234 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 235 image->kernel_buf_len); 236 if (ret) 237 goto out; 238 239 #ifdef CONFIG_KEXEC_SIG 240 ret = kimage_validate_signature(image); 241 242 if (ret) 243 goto out; 244 #endif 245 /* It is possible that there no initramfs is being loaded */ 246 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 247 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf, 248 KEXEC_FILE_SIZE_MAX, NULL, 249 READING_KEXEC_INITRAMFS); 250 if (ret < 0) 251 goto out; 252 image->initrd_buf_len = ret; 253 ret = 0; 254 } 255 256 if (cmdline_len) { 257 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 258 if (IS_ERR(image->cmdline_buf)) { 259 ret = PTR_ERR(image->cmdline_buf); 260 image->cmdline_buf = NULL; 261 goto out; 262 } 263 264 image->cmdline_buf_len = cmdline_len; 265 266 /* command line should be a string with last byte null */ 267 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 268 ret = -EINVAL; 269 goto out; 270 } 271 272 ima_kexec_cmdline(kernel_fd, image->cmdline_buf, 273 image->cmdline_buf_len - 1); 274 } 275 276 /* IMA needs to pass the measurement list to the next kernel. */ 277 ima_add_kexec_buffer(image); 278 279 /* If KHO is active, add its images to the list */ 280 ret = kho_fill_kimage(image); 281 if (ret) 282 goto out; 283 284 /* Call image load handler */ 285 ldata = kexec_image_load_default(image); 286 287 if (IS_ERR(ldata)) { 288 ret = PTR_ERR(ldata); 289 goto out; 290 } 291 292 image->image_loader_data = ldata; 293 out: 294 /* In case of error, free up all allocated memory in this function */ 295 if (ret) 296 kimage_file_post_load_cleanup(image); 297 return ret; 298 } 299 300 static int 301 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 302 int initrd_fd, const char __user *cmdline_ptr, 303 unsigned long cmdline_len, unsigned long flags) 304 { 305 int ret; 306 struct kimage *image; 307 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 308 309 image = do_kimage_alloc_init(); 310 if (!image) 311 return -ENOMEM; 312 313 kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG); 314 image->file_mode = 1; 315 316 #ifdef CONFIG_CRASH_DUMP 317 if (kexec_on_panic) { 318 /* Enable special crash kernel control page alloc policy. */ 319 image->control_page = crashk_res.start; 320 image->type = KEXEC_TYPE_CRASH; 321 } 322 #endif 323 324 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 325 cmdline_ptr, cmdline_len, flags); 326 if (ret) 327 goto out_free_image; 328 329 ret = sanity_check_segment_list(image); 330 if (ret) 331 goto out_free_post_load_bufs; 332 333 ret = -ENOMEM; 334 image->control_code_page = kimage_alloc_control_pages(image, 335 get_order(KEXEC_CONTROL_PAGE_SIZE)); 336 if (!image->control_code_page) { 337 pr_err("Could not allocate control_code_buffer\n"); 338 goto out_free_post_load_bufs; 339 } 340 341 if (!kexec_on_panic) { 342 image->swap_page = kimage_alloc_control_pages(image, 0); 343 if (!image->swap_page) { 344 pr_err("Could not allocate swap buffer\n"); 345 goto out_free_control_pages; 346 } 347 } 348 349 *rimage = image; 350 return 0; 351 out_free_control_pages: 352 kimage_free_page_list(&image->control_pages); 353 out_free_post_load_bufs: 354 kimage_file_post_load_cleanup(image); 355 out_free_image: 356 kfree(image); 357 return ret; 358 } 359 360 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 361 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 362 unsigned long, flags) 363 { 364 int image_type = (flags & KEXEC_FILE_ON_CRASH) ? 365 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT; 366 struct kimage **dest_image, *image; 367 int ret = 0, i; 368 369 /* We only trust the superuser with rebooting the system. */ 370 if (!kexec_load_permitted(image_type)) 371 return -EPERM; 372 373 /* Make sure we have a legal set of flags */ 374 if (flags != (flags & KEXEC_FILE_FLAGS)) 375 return -EINVAL; 376 377 image = NULL; 378 379 if (!kexec_trylock()) 380 return -EBUSY; 381 382 #ifdef CONFIG_CRASH_DUMP 383 if (image_type == KEXEC_TYPE_CRASH) { 384 dest_image = &kexec_crash_image; 385 if (kexec_crash_image) 386 arch_kexec_unprotect_crashkres(); 387 } else 388 #endif 389 dest_image = &kexec_image; 390 391 if (flags & KEXEC_FILE_UNLOAD) 392 goto exchange; 393 394 /* 395 * In case of crash, new kernel gets loaded in reserved region. It is 396 * same memory where old crash kernel might be loaded. Free any 397 * current crash dump kernel before we corrupt it. 398 */ 399 if (flags & KEXEC_FILE_ON_CRASH) 400 kimage_free(xchg(&kexec_crash_image, NULL)); 401 402 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 403 cmdline_len, flags); 404 if (ret) 405 goto out; 406 407 #ifdef CONFIG_CRASH_HOTPLUG 408 if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags)) 409 image->hotplug_support = 1; 410 #endif 411 412 ret = machine_kexec_prepare(image); 413 if (ret) 414 goto out; 415 416 /* 417 * Some architecture(like S390) may touch the crash memory before 418 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 419 */ 420 ret = kimage_crash_copy_vmcoreinfo(image); 421 if (ret) 422 goto out; 423 424 ret = kexec_calculate_store_digests(image); 425 if (ret) 426 goto out; 427 428 kexec_dprintk("nr_segments = %lu\n", image->nr_segments); 429 for (i = 0; i < image->nr_segments; i++) { 430 struct kexec_segment *ksegment; 431 432 ksegment = &image->segment[i]; 433 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 434 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 435 ksegment->memsz); 436 437 ret = kimage_load_segment(image, &image->segment[i]); 438 if (ret) 439 goto out; 440 } 441 442 kimage_terminate(image); 443 444 ret = kexec_post_load(image, flags); 445 if (ret) 446 goto out; 447 448 kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n", 449 image->type, image->start, image->head, flags); 450 /* 451 * Free up any temporary buffers allocated which are not needed 452 * after image has been loaded 453 */ 454 kimage_file_post_load_cleanup(image); 455 exchange: 456 image = xchg(dest_image, image); 457 out: 458 #ifdef CONFIG_CRASH_DUMP 459 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 460 arch_kexec_protect_crashkres(); 461 #endif 462 463 kexec_unlock(); 464 kimage_free(image); 465 return ret; 466 } 467 468 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 469 struct kexec_buf *kbuf) 470 { 471 struct kimage *image = kbuf->image; 472 unsigned long temp_start, temp_end; 473 474 temp_end = min(end, kbuf->buf_max); 475 temp_start = temp_end - kbuf->memsz + 1; 476 kexec_random_range_start(temp_start, temp_end, kbuf, &temp_start); 477 478 do { 479 /* align down start */ 480 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align); 481 482 if (temp_start < start || temp_start < kbuf->buf_min) 483 return 0; 484 485 temp_end = temp_start + kbuf->memsz - 1; 486 487 /* 488 * Make sure this does not conflict with any of existing 489 * segments 490 */ 491 if (kimage_is_destination_range(image, temp_start, temp_end)) { 492 temp_start = temp_start - PAGE_SIZE; 493 continue; 494 } 495 496 /* Make sure this does not conflict with exclude range */ 497 if (arch_check_excluded_range(image, temp_start, temp_end)) { 498 temp_start = temp_start - PAGE_SIZE; 499 continue; 500 } 501 502 /* We found a suitable memory range */ 503 break; 504 } while (1); 505 506 /* If we are here, we found a suitable memory range */ 507 kbuf->mem = temp_start; 508 509 /* Success, stop navigating through remaining System RAM ranges */ 510 return 1; 511 } 512 513 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 514 struct kexec_buf *kbuf) 515 { 516 struct kimage *image = kbuf->image; 517 unsigned long temp_start, temp_end; 518 519 temp_start = max(start, kbuf->buf_min); 520 521 kexec_random_range_start(temp_start, end, kbuf, &temp_start); 522 523 do { 524 temp_start = ALIGN(temp_start, kbuf->buf_align); 525 temp_end = temp_start + kbuf->memsz - 1; 526 527 if (temp_end > end || temp_end > kbuf->buf_max) 528 return 0; 529 /* 530 * Make sure this does not conflict with any of existing 531 * segments 532 */ 533 if (kimage_is_destination_range(image, temp_start, temp_end)) { 534 temp_start = temp_start + PAGE_SIZE; 535 continue; 536 } 537 538 /* Make sure this does not conflict with exclude range */ 539 if (arch_check_excluded_range(image, temp_start, temp_end)) { 540 temp_start = temp_start + PAGE_SIZE; 541 continue; 542 } 543 544 /* We found a suitable memory range */ 545 break; 546 } while (1); 547 548 /* If we are here, we found a suitable memory range */ 549 kbuf->mem = temp_start; 550 551 /* Success, stop navigating through remaining System RAM ranges */ 552 return 1; 553 } 554 555 static int locate_mem_hole_callback(struct resource *res, void *arg) 556 { 557 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 558 u64 start = res->start, end = res->end; 559 unsigned long sz = end - start + 1; 560 561 /* Returning 0 will take to next memory range */ 562 563 /* Don't use memory that will be detected and handled by a driver. */ 564 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 565 return 0; 566 567 if (sz < kbuf->memsz) 568 return 0; 569 570 if (end < kbuf->buf_min || start > kbuf->buf_max) 571 return 0; 572 573 /* 574 * Allocate memory top down with-in ram range. Otherwise bottom up 575 * allocation. 576 */ 577 if (kbuf->top_down) 578 return locate_mem_hole_top_down(start, end, kbuf); 579 return locate_mem_hole_bottom_up(start, end, kbuf); 580 } 581 582 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK 583 static int kexec_walk_memblock(struct kexec_buf *kbuf, 584 int (*func)(struct resource *, void *)) 585 { 586 int ret = 0; 587 u64 i; 588 phys_addr_t mstart, mend; 589 struct resource res = { }; 590 591 #ifdef CONFIG_CRASH_DUMP 592 if (kbuf->image->type == KEXEC_TYPE_CRASH) 593 return func(&crashk_res, kbuf); 594 #endif 595 596 /* 597 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See 598 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in 599 * locate_mem_hole_callback(). 600 */ 601 if (kbuf->top_down) { 602 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, 603 &mstart, &mend, NULL) { 604 /* 605 * In memblock, end points to the first byte after the 606 * range while in kexec, end points to the last byte 607 * in the range. 608 */ 609 res.start = mstart; 610 res.end = mend - 1; 611 ret = func(&res, kbuf); 612 if (ret) 613 break; 614 } 615 } else { 616 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 617 &mstart, &mend, NULL) { 618 /* 619 * In memblock, end points to the first byte after the 620 * range while in kexec, end points to the last byte 621 * in the range. 622 */ 623 res.start = mstart; 624 res.end = mend - 1; 625 ret = func(&res, kbuf); 626 if (ret) 627 break; 628 } 629 } 630 631 return ret; 632 } 633 #else 634 static int kexec_walk_memblock(struct kexec_buf *kbuf, 635 int (*func)(struct resource *, void *)) 636 { 637 return 0; 638 } 639 #endif 640 641 /** 642 * kexec_walk_resources - call func(data) on free memory regions 643 * @kbuf: Context info for the search. Also passed to @func. 644 * @func: Function to call for each memory region. 645 * 646 * Return: The memory walk will stop when func returns a non-zero value 647 * and that value will be returned. If all free regions are visited without 648 * func returning non-zero, then zero will be returned. 649 */ 650 static int kexec_walk_resources(struct kexec_buf *kbuf, 651 int (*func)(struct resource *, void *)) 652 { 653 #ifdef CONFIG_CRASH_DUMP 654 if (kbuf->image->type == KEXEC_TYPE_CRASH) 655 return walk_iomem_res_desc(crashk_res.desc, 656 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 657 crashk_res.start, crashk_res.end, 658 kbuf, func); 659 #endif 660 if (kbuf->top_down) 661 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func); 662 else 663 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 664 } 665 666 /** 667 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 668 * @kbuf: Parameters for the memory search. 669 * 670 * On success, kbuf->mem will have the start address of the memory region found. 671 * 672 * Return: 0 on success, negative errno on error. 673 */ 674 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 675 { 676 int ret; 677 678 /* Arch knows where to place */ 679 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) 680 return 0; 681 682 /* 683 * If KHO is active, only use KHO scratch memory. All other memory 684 * could potentially be handed over. 685 */ 686 ret = kho_locate_mem_hole(kbuf, locate_mem_hole_callback); 687 if (ret <= 0) 688 return ret; 689 690 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 691 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); 692 else 693 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); 694 695 return ret == 1 ? 0 : -EADDRNOTAVAIL; 696 } 697 698 /** 699 * kexec_add_buffer - place a buffer in a kexec segment 700 * @kbuf: Buffer contents and memory parameters. 701 * 702 * This function assumes that kexec_lock is held. 703 * On successful return, @kbuf->mem will have the physical address of 704 * the buffer in memory. 705 * 706 * Return: 0 on success, negative errno on error. 707 */ 708 int kexec_add_buffer(struct kexec_buf *kbuf) 709 { 710 struct kexec_segment *ksegment; 711 int ret; 712 713 /* Currently adding segment this way is allowed only in file mode */ 714 if (!kbuf->image->file_mode) 715 return -EINVAL; 716 717 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 718 return -EINVAL; 719 720 /* 721 * Make sure we are not trying to add buffer after allocating 722 * control pages. All segments need to be placed first before 723 * any control pages are allocated. As control page allocation 724 * logic goes through list of segments to make sure there are 725 * no destination overlaps. 726 */ 727 if (!list_empty(&kbuf->image->control_pages)) { 728 WARN_ON(1); 729 return -EINVAL; 730 } 731 732 /* Ensure minimum alignment needed for segments. */ 733 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 734 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 735 736 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 737 ret = arch_kexec_locate_mem_hole(kbuf); 738 if (ret) 739 return ret; 740 741 /* Found a suitable memory range */ 742 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 743 ksegment->kbuf = kbuf->buffer; 744 ksegment->bufsz = kbuf->bufsz; 745 ksegment->mem = kbuf->mem; 746 ksegment->memsz = kbuf->memsz; 747 kbuf->image->nr_segments++; 748 return 0; 749 } 750 751 /* Calculate and store the digest of segments */ 752 static int kexec_calculate_store_digests(struct kimage *image) 753 { 754 struct sha256_state state; 755 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 756 size_t nullsz; 757 u8 digest[SHA256_DIGEST_SIZE]; 758 void *zero_buf; 759 struct kexec_sha_region *sha_regions; 760 struct purgatory_info *pi = &image->purgatory_info; 761 762 if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY)) 763 return 0; 764 765 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 766 zero_buf_sz = PAGE_SIZE; 767 768 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 769 sha_regions = vzalloc(sha_region_sz); 770 if (!sha_regions) 771 return -ENOMEM; 772 773 sha256_init(&state); 774 775 for (j = i = 0; i < image->nr_segments; i++) { 776 struct kexec_segment *ksegment; 777 778 #ifdef CONFIG_CRASH_HOTPLUG 779 /* Exclude elfcorehdr segment to allow future changes via hotplug */ 780 if (i == image->elfcorehdr_index) 781 continue; 782 #endif 783 784 ksegment = &image->segment[i]; 785 /* 786 * Skip purgatory as it will be modified once we put digest 787 * info in purgatory. 788 */ 789 if (ksegment->kbuf == pi->purgatory_buf) 790 continue; 791 792 /* 793 * Skip the segment if ima_segment_index is set and matches 794 * the current index 795 */ 796 if (check_ima_segment_index(image, i)) 797 continue; 798 799 sha256_update(&state, ksegment->kbuf, ksegment->bufsz); 800 801 /* 802 * Assume rest of the buffer is filled with zero and 803 * update digest accordingly. 804 */ 805 nullsz = ksegment->memsz - ksegment->bufsz; 806 while (nullsz) { 807 unsigned long bytes = nullsz; 808 809 if (bytes > zero_buf_sz) 810 bytes = zero_buf_sz; 811 sha256_update(&state, zero_buf, bytes); 812 nullsz -= bytes; 813 } 814 815 sha_regions[j].start = ksegment->mem; 816 sha_regions[j].len = ksegment->memsz; 817 j++; 818 } 819 820 sha256_final(&state, digest); 821 822 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 823 sha_regions, sha_region_sz, 0); 824 if (ret) 825 goto out_free_sha_regions; 826 827 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 828 digest, SHA256_DIGEST_SIZE, 0); 829 out_free_sha_regions: 830 vfree(sha_regions); 831 return ret; 832 } 833 834 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY 835 /* 836 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. 837 * @pi: Purgatory to be loaded. 838 * @kbuf: Buffer to setup. 839 * 840 * Allocates the memory needed for the buffer. Caller is responsible to free 841 * the memory after use. 842 * 843 * Return: 0 on success, negative errno on error. 844 */ 845 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, 846 struct kexec_buf *kbuf) 847 { 848 const Elf_Shdr *sechdrs; 849 unsigned long bss_align; 850 unsigned long bss_sz; 851 unsigned long align; 852 int i, ret; 853 854 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 855 kbuf->buf_align = bss_align = 1; 856 kbuf->bufsz = bss_sz = 0; 857 858 for (i = 0; i < pi->ehdr->e_shnum; i++) { 859 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 860 continue; 861 862 align = sechdrs[i].sh_addralign; 863 if (sechdrs[i].sh_type != SHT_NOBITS) { 864 if (kbuf->buf_align < align) 865 kbuf->buf_align = align; 866 kbuf->bufsz = ALIGN(kbuf->bufsz, align); 867 kbuf->bufsz += sechdrs[i].sh_size; 868 } else { 869 if (bss_align < align) 870 bss_align = align; 871 bss_sz = ALIGN(bss_sz, align); 872 bss_sz += sechdrs[i].sh_size; 873 } 874 } 875 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); 876 kbuf->memsz = kbuf->bufsz + bss_sz; 877 if (kbuf->buf_align < bss_align) 878 kbuf->buf_align = bss_align; 879 880 kbuf->buffer = vzalloc(kbuf->bufsz); 881 if (!kbuf->buffer) 882 return -ENOMEM; 883 pi->purgatory_buf = kbuf->buffer; 884 885 ret = kexec_add_buffer(kbuf); 886 if (ret) 887 goto out; 888 889 return 0; 890 out: 891 vfree(pi->purgatory_buf); 892 pi->purgatory_buf = NULL; 893 return ret; 894 } 895 896 /* 897 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. 898 * @pi: Purgatory to be loaded. 899 * @kbuf: Buffer prepared to store purgatory. 900 * 901 * Allocates the memory needed for the buffer. Caller is responsible to free 902 * the memory after use. 903 * 904 * Return: 0 on success, negative errno on error. 905 */ 906 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, 907 struct kexec_buf *kbuf) 908 { 909 unsigned long bss_addr; 910 unsigned long offset; 911 size_t sechdrs_size; 912 Elf_Shdr *sechdrs; 913 int i; 914 915 /* 916 * The section headers in kexec_purgatory are read-only. In order to 917 * have them modifiable make a temporary copy. 918 */ 919 sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum); 920 sechdrs = vzalloc(sechdrs_size); 921 if (!sechdrs) 922 return -ENOMEM; 923 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size); 924 pi->sechdrs = sechdrs; 925 926 offset = 0; 927 bss_addr = kbuf->mem + kbuf->bufsz; 928 kbuf->image->start = pi->ehdr->e_entry; 929 930 for (i = 0; i < pi->ehdr->e_shnum; i++) { 931 unsigned long align; 932 void *src, *dst; 933 934 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 935 continue; 936 937 align = sechdrs[i].sh_addralign; 938 if (sechdrs[i].sh_type == SHT_NOBITS) { 939 bss_addr = ALIGN(bss_addr, align); 940 sechdrs[i].sh_addr = bss_addr; 941 bss_addr += sechdrs[i].sh_size; 942 continue; 943 } 944 945 offset = ALIGN(offset, align); 946 947 /* 948 * Check if the segment contains the entry point, if so, 949 * calculate the value of image->start based on it. 950 * If the compiler has produced more than one .text section 951 * (Eg: .text.hot), they are generally after the main .text 952 * section, and they shall not be used to calculate 953 * image->start. So do not re-calculate image->start if it 954 * is not set to the initial value, and warn the user so they 955 * have a chance to fix their purgatory's linker script. 956 */ 957 if (sechdrs[i].sh_flags & SHF_EXECINSTR && 958 pi->ehdr->e_entry >= sechdrs[i].sh_addr && 959 pi->ehdr->e_entry < (sechdrs[i].sh_addr 960 + sechdrs[i].sh_size) && 961 !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) { 962 kbuf->image->start -= sechdrs[i].sh_addr; 963 kbuf->image->start += kbuf->mem + offset; 964 } 965 966 src = (void *)pi->ehdr + sechdrs[i].sh_offset; 967 dst = pi->purgatory_buf + offset; 968 memcpy(dst, src, sechdrs[i].sh_size); 969 970 sechdrs[i].sh_addr = kbuf->mem + offset; 971 sechdrs[i].sh_offset = offset; 972 offset += sechdrs[i].sh_size; 973 } 974 975 return 0; 976 } 977 978 static int kexec_apply_relocations(struct kimage *image) 979 { 980 int i, ret; 981 struct purgatory_info *pi = &image->purgatory_info; 982 const Elf_Shdr *sechdrs; 983 984 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 985 986 for (i = 0; i < pi->ehdr->e_shnum; i++) { 987 const Elf_Shdr *relsec; 988 const Elf_Shdr *symtab; 989 Elf_Shdr *section; 990 991 relsec = sechdrs + i; 992 993 if (relsec->sh_type != SHT_RELA && 994 relsec->sh_type != SHT_REL) 995 continue; 996 997 /* 998 * For section of type SHT_RELA/SHT_REL, 999 * ->sh_link contains section header index of associated 1000 * symbol table. And ->sh_info contains section header 1001 * index of section to which relocations apply. 1002 */ 1003 if (relsec->sh_info >= pi->ehdr->e_shnum || 1004 relsec->sh_link >= pi->ehdr->e_shnum) 1005 return -ENOEXEC; 1006 1007 section = pi->sechdrs + relsec->sh_info; 1008 symtab = sechdrs + relsec->sh_link; 1009 1010 if (!(section->sh_flags & SHF_ALLOC)) 1011 continue; 1012 1013 /* 1014 * symtab->sh_link contain section header index of associated 1015 * string table. 1016 */ 1017 if (symtab->sh_link >= pi->ehdr->e_shnum) 1018 /* Invalid section number? */ 1019 continue; 1020 1021 /* 1022 * Respective architecture needs to provide support for applying 1023 * relocations of type SHT_RELA/SHT_REL. 1024 */ 1025 if (relsec->sh_type == SHT_RELA) 1026 ret = arch_kexec_apply_relocations_add(pi, section, 1027 relsec, symtab); 1028 else if (relsec->sh_type == SHT_REL) 1029 ret = arch_kexec_apply_relocations(pi, section, 1030 relsec, symtab); 1031 if (ret) 1032 return ret; 1033 } 1034 1035 return 0; 1036 } 1037 1038 /* 1039 * kexec_load_purgatory - Load and relocate the purgatory object. 1040 * @image: Image to add the purgatory to. 1041 * @kbuf: Memory parameters to use. 1042 * 1043 * Allocates the memory needed for image->purgatory_info.sechdrs and 1044 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible 1045 * to free the memory after use. 1046 * 1047 * Return: 0 on success, negative errno on error. 1048 */ 1049 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) 1050 { 1051 struct purgatory_info *pi = &image->purgatory_info; 1052 int ret; 1053 1054 if (kexec_purgatory_size <= 0) 1055 return -EINVAL; 1056 1057 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; 1058 1059 ret = kexec_purgatory_setup_kbuf(pi, kbuf); 1060 if (ret) 1061 return ret; 1062 1063 ret = kexec_purgatory_setup_sechdrs(pi, kbuf); 1064 if (ret) 1065 goto out_free_kbuf; 1066 1067 ret = kexec_apply_relocations(image); 1068 if (ret) 1069 goto out; 1070 1071 return 0; 1072 out: 1073 vfree(pi->sechdrs); 1074 pi->sechdrs = NULL; 1075 out_free_kbuf: 1076 vfree(pi->purgatory_buf); 1077 pi->purgatory_buf = NULL; 1078 return ret; 1079 } 1080 1081 /* 1082 * kexec_purgatory_find_symbol - find a symbol in the purgatory 1083 * @pi: Purgatory to search in. 1084 * @name: Name of the symbol. 1085 * 1086 * Return: pointer to symbol in read-only symtab on success, NULL on error. 1087 */ 1088 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 1089 const char *name) 1090 { 1091 const Elf_Shdr *sechdrs; 1092 const Elf_Ehdr *ehdr; 1093 const Elf_Sym *syms; 1094 const char *strtab; 1095 int i, k; 1096 1097 if (!pi->ehdr) 1098 return NULL; 1099 1100 ehdr = pi->ehdr; 1101 sechdrs = (void *)ehdr + ehdr->e_shoff; 1102 1103 for (i = 0; i < ehdr->e_shnum; i++) { 1104 if (sechdrs[i].sh_type != SHT_SYMTAB) 1105 continue; 1106 1107 if (sechdrs[i].sh_link >= ehdr->e_shnum) 1108 /* Invalid strtab section number */ 1109 continue; 1110 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; 1111 syms = (void *)ehdr + sechdrs[i].sh_offset; 1112 1113 /* Go through symbols for a match */ 1114 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 1115 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 1116 continue; 1117 1118 if (strcmp(strtab + syms[k].st_name, name) != 0) 1119 continue; 1120 1121 if (syms[k].st_shndx == SHN_UNDEF || 1122 syms[k].st_shndx >= ehdr->e_shnum) { 1123 pr_debug("Symbol: %s has bad section index %d.\n", 1124 name, syms[k].st_shndx); 1125 return NULL; 1126 } 1127 1128 /* Found the symbol we are looking for */ 1129 return &syms[k]; 1130 } 1131 } 1132 1133 return NULL; 1134 } 1135 1136 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 1137 { 1138 struct purgatory_info *pi = &image->purgatory_info; 1139 const Elf_Sym *sym; 1140 Elf_Shdr *sechdr; 1141 1142 sym = kexec_purgatory_find_symbol(pi, name); 1143 if (!sym) 1144 return ERR_PTR(-EINVAL); 1145 1146 sechdr = &pi->sechdrs[sym->st_shndx]; 1147 1148 /* 1149 * Returns the address where symbol will finally be loaded after 1150 * kexec_load_segment() 1151 */ 1152 return (void *)(sechdr->sh_addr + sym->st_value); 1153 } 1154 1155 /* 1156 * Get or set value of a symbol. If "get_value" is true, symbol value is 1157 * returned in buf otherwise symbol value is set based on value in buf. 1158 */ 1159 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 1160 void *buf, unsigned int size, bool get_value) 1161 { 1162 struct purgatory_info *pi = &image->purgatory_info; 1163 const Elf_Sym *sym; 1164 Elf_Shdr *sec; 1165 char *sym_buf; 1166 1167 sym = kexec_purgatory_find_symbol(pi, name); 1168 if (!sym) 1169 return -EINVAL; 1170 1171 if (sym->st_size != size) { 1172 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1173 name, (unsigned long)sym->st_size, size); 1174 return -EINVAL; 1175 } 1176 1177 sec = pi->sechdrs + sym->st_shndx; 1178 1179 if (sec->sh_type == SHT_NOBITS) { 1180 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1181 get_value ? "get" : "set"); 1182 return -EINVAL; 1183 } 1184 1185 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; 1186 1187 if (get_value) 1188 memcpy((void *)buf, sym_buf, size); 1189 else 1190 memcpy((void *)sym_buf, buf, size); 1191 1192 return 0; 1193 } 1194 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */ 1195