xref: /linux/kernel/kexec_file.c (revision faabed295cccc2aba2b67f2e7b309f2892d55004)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include "kexec_internal.h"
30 
31 static int kexec_calculate_store_digests(struct kimage *image);
32 
33 /*
34  * Currently this is the only default function that is exported as some
35  * architectures need it to do additional handlings.
36  * In the future, other default functions may be exported too if required.
37  */
38 int kexec_image_probe_default(struct kimage *image, void *buf,
39 			      unsigned long buf_len)
40 {
41 	const struct kexec_file_ops * const *fops;
42 	int ret = -ENOEXEC;
43 
44 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45 		ret = (*fops)->probe(buf, buf_len);
46 		if (!ret) {
47 			image->fops = *fops;
48 			return ret;
49 		}
50 	}
51 
52 	return ret;
53 }
54 
55 /* Architectures can provide this probe function */
56 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57 					 unsigned long buf_len)
58 {
59 	return kexec_image_probe_default(image, buf, buf_len);
60 }
61 
62 static void *kexec_image_load_default(struct kimage *image)
63 {
64 	if (!image->fops || !image->fops->load)
65 		return ERR_PTR(-ENOEXEC);
66 
67 	return image->fops->load(image, image->kernel_buf,
68 				 image->kernel_buf_len, image->initrd_buf,
69 				 image->initrd_buf_len, image->cmdline_buf,
70 				 image->cmdline_buf_len);
71 }
72 
73 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74 {
75 	return kexec_image_load_default(image);
76 }
77 
78 int kexec_image_post_load_cleanup_default(struct kimage *image)
79 {
80 	if (!image->fops || !image->fops->cleanup)
81 		return 0;
82 
83 	return image->fops->cleanup(image->image_loader_data);
84 }
85 
86 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87 {
88 	return kexec_image_post_load_cleanup_default(image);
89 }
90 
91 #ifdef CONFIG_KEXEC_SIG
92 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93 					  unsigned long buf_len)
94 {
95 	if (!image->fops || !image->fops->verify_sig) {
96 		pr_debug("kernel loader does not support signature verification.\n");
97 		return -EKEYREJECTED;
98 	}
99 
100 	return image->fops->verify_sig(buf, buf_len);
101 }
102 
103 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104 					unsigned long buf_len)
105 {
106 	return kexec_image_verify_sig_default(image, buf, buf_len);
107 }
108 #endif
109 
110 /*
111  * arch_kexec_apply_relocations_add - apply relocations of type RELA
112  * @pi:		Purgatory to be relocated.
113  * @section:	Section relocations applying to.
114  * @relsec:	Section containing RELAs.
115  * @symtab:	Corresponding symtab.
116  *
117  * Return: 0 on success, negative errno on error.
118  */
119 int __weak
120 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
121 				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
122 {
123 	pr_err("RELA relocation unsupported.\n");
124 	return -ENOEXEC;
125 }
126 
127 /*
128  * arch_kexec_apply_relocations - apply relocations of type REL
129  * @pi:		Purgatory to be relocated.
130  * @section:	Section relocations applying to.
131  * @relsec:	Section containing RELs.
132  * @symtab:	Corresponding symtab.
133  *
134  * Return: 0 on success, negative errno on error.
135  */
136 int __weak
137 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
138 			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
139 {
140 	pr_err("REL relocation unsupported.\n");
141 	return -ENOEXEC;
142 }
143 
144 /*
145  * Free up memory used by kernel, initrd, and command line. This is temporary
146  * memory allocation which is not needed any more after these buffers have
147  * been loaded into separate segments and have been copied elsewhere.
148  */
149 void kimage_file_post_load_cleanup(struct kimage *image)
150 {
151 	struct purgatory_info *pi = &image->purgatory_info;
152 
153 	vfree(image->kernel_buf);
154 	image->kernel_buf = NULL;
155 
156 	vfree(image->initrd_buf);
157 	image->initrd_buf = NULL;
158 
159 	kfree(image->cmdline_buf);
160 	image->cmdline_buf = NULL;
161 
162 	vfree(pi->purgatory_buf);
163 	pi->purgatory_buf = NULL;
164 
165 	vfree(pi->sechdrs);
166 	pi->sechdrs = NULL;
167 
168 	/* See if architecture has anything to cleanup post load */
169 	arch_kimage_file_post_load_cleanup(image);
170 
171 	/*
172 	 * Above call should have called into bootloader to free up
173 	 * any data stored in kimage->image_loader_data. It should
174 	 * be ok now to free it up.
175 	 */
176 	kfree(image->image_loader_data);
177 	image->image_loader_data = NULL;
178 }
179 
180 #ifdef CONFIG_KEXEC_SIG
181 static int
182 kimage_validate_signature(struct kimage *image)
183 {
184 	int ret;
185 
186 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
187 					   image->kernel_buf_len);
188 	if (ret) {
189 
190 		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
191 			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
192 			return ret;
193 		}
194 
195 		/*
196 		 * If IMA is guaranteed to appraise a signature on the kexec
197 		 * image, permit it even if the kernel is otherwise locked
198 		 * down.
199 		 */
200 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
201 		    security_locked_down(LOCKDOWN_KEXEC))
202 			return -EPERM;
203 
204 		pr_debug("kernel signature verification failed (%d).\n", ret);
205 	}
206 
207 	return 0;
208 }
209 #endif
210 
211 /*
212  * In file mode list of segments is prepared by kernel. Copy relevant
213  * data from user space, do error checking, prepare segment list
214  */
215 static int
216 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
217 			     const char __user *cmdline_ptr,
218 			     unsigned long cmdline_len, unsigned flags)
219 {
220 	int ret;
221 	void *ldata;
222 	loff_t size;
223 
224 	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
225 				       &size, INT_MAX, READING_KEXEC_IMAGE);
226 	if (ret)
227 		return ret;
228 	image->kernel_buf_len = size;
229 
230 	/* Call arch image probe handlers */
231 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
232 					    image->kernel_buf_len);
233 	if (ret)
234 		goto out;
235 
236 #ifdef CONFIG_KEXEC_SIG
237 	ret = kimage_validate_signature(image);
238 
239 	if (ret)
240 		goto out;
241 #endif
242 	/* It is possible that there no initramfs is being loaded */
243 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
244 		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
245 					       &size, INT_MAX,
246 					       READING_KEXEC_INITRAMFS);
247 		if (ret)
248 			goto out;
249 		image->initrd_buf_len = size;
250 	}
251 
252 	if (cmdline_len) {
253 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
254 		if (IS_ERR(image->cmdline_buf)) {
255 			ret = PTR_ERR(image->cmdline_buf);
256 			image->cmdline_buf = NULL;
257 			goto out;
258 		}
259 
260 		image->cmdline_buf_len = cmdline_len;
261 
262 		/* command line should be a string with last byte null */
263 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
264 			ret = -EINVAL;
265 			goto out;
266 		}
267 
268 		ima_kexec_cmdline(image->cmdline_buf,
269 				  image->cmdline_buf_len - 1);
270 	}
271 
272 	/* IMA needs to pass the measurement list to the next kernel. */
273 	ima_add_kexec_buffer(image);
274 
275 	/* Call arch image load handlers */
276 	ldata = arch_kexec_kernel_image_load(image);
277 
278 	if (IS_ERR(ldata)) {
279 		ret = PTR_ERR(ldata);
280 		goto out;
281 	}
282 
283 	image->image_loader_data = ldata;
284 out:
285 	/* In case of error, free up all allocated memory in this function */
286 	if (ret)
287 		kimage_file_post_load_cleanup(image);
288 	return ret;
289 }
290 
291 static int
292 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
293 		       int initrd_fd, const char __user *cmdline_ptr,
294 		       unsigned long cmdline_len, unsigned long flags)
295 {
296 	int ret;
297 	struct kimage *image;
298 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
299 
300 	image = do_kimage_alloc_init();
301 	if (!image)
302 		return -ENOMEM;
303 
304 	image->file_mode = 1;
305 
306 	if (kexec_on_panic) {
307 		/* Enable special crash kernel control page alloc policy. */
308 		image->control_page = crashk_res.start;
309 		image->type = KEXEC_TYPE_CRASH;
310 	}
311 
312 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
313 					   cmdline_ptr, cmdline_len, flags);
314 	if (ret)
315 		goto out_free_image;
316 
317 	ret = sanity_check_segment_list(image);
318 	if (ret)
319 		goto out_free_post_load_bufs;
320 
321 	ret = -ENOMEM;
322 	image->control_code_page = kimage_alloc_control_pages(image,
323 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
324 	if (!image->control_code_page) {
325 		pr_err("Could not allocate control_code_buffer\n");
326 		goto out_free_post_load_bufs;
327 	}
328 
329 	if (!kexec_on_panic) {
330 		image->swap_page = kimage_alloc_control_pages(image, 0);
331 		if (!image->swap_page) {
332 			pr_err("Could not allocate swap buffer\n");
333 			goto out_free_control_pages;
334 		}
335 	}
336 
337 	*rimage = image;
338 	return 0;
339 out_free_control_pages:
340 	kimage_free_page_list(&image->control_pages);
341 out_free_post_load_bufs:
342 	kimage_file_post_load_cleanup(image);
343 out_free_image:
344 	kfree(image);
345 	return ret;
346 }
347 
348 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
349 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
350 		unsigned long, flags)
351 {
352 	int ret = 0, i;
353 	struct kimage **dest_image, *image;
354 
355 	/* We only trust the superuser with rebooting the system. */
356 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
357 		return -EPERM;
358 
359 	/* Make sure we have a legal set of flags */
360 	if (flags != (flags & KEXEC_FILE_FLAGS))
361 		return -EINVAL;
362 
363 	image = NULL;
364 
365 	if (!mutex_trylock(&kexec_mutex))
366 		return -EBUSY;
367 
368 	dest_image = &kexec_image;
369 	if (flags & KEXEC_FILE_ON_CRASH) {
370 		dest_image = &kexec_crash_image;
371 		if (kexec_crash_image)
372 			arch_kexec_unprotect_crashkres();
373 	}
374 
375 	if (flags & KEXEC_FILE_UNLOAD)
376 		goto exchange;
377 
378 	/*
379 	 * In case of crash, new kernel gets loaded in reserved region. It is
380 	 * same memory where old crash kernel might be loaded. Free any
381 	 * current crash dump kernel before we corrupt it.
382 	 */
383 	if (flags & KEXEC_FILE_ON_CRASH)
384 		kimage_free(xchg(&kexec_crash_image, NULL));
385 
386 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
387 				     cmdline_len, flags);
388 	if (ret)
389 		goto out;
390 
391 	ret = machine_kexec_prepare(image);
392 	if (ret)
393 		goto out;
394 
395 	/*
396 	 * Some architecture(like S390) may touch the crash memory before
397 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
398 	 */
399 	ret = kimage_crash_copy_vmcoreinfo(image);
400 	if (ret)
401 		goto out;
402 
403 	ret = kexec_calculate_store_digests(image);
404 	if (ret)
405 		goto out;
406 
407 	for (i = 0; i < image->nr_segments; i++) {
408 		struct kexec_segment *ksegment;
409 
410 		ksegment = &image->segment[i];
411 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
412 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
413 			 ksegment->memsz);
414 
415 		ret = kimage_load_segment(image, &image->segment[i]);
416 		if (ret)
417 			goto out;
418 	}
419 
420 	kimage_terminate(image);
421 
422 	ret = machine_kexec_post_load(image);
423 	if (ret)
424 		goto out;
425 
426 	/*
427 	 * Free up any temporary buffers allocated which are not needed
428 	 * after image has been loaded
429 	 */
430 	kimage_file_post_load_cleanup(image);
431 exchange:
432 	image = xchg(dest_image, image);
433 out:
434 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
435 		arch_kexec_protect_crashkres();
436 
437 	mutex_unlock(&kexec_mutex);
438 	kimage_free(image);
439 	return ret;
440 }
441 
442 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
443 				    struct kexec_buf *kbuf)
444 {
445 	struct kimage *image = kbuf->image;
446 	unsigned long temp_start, temp_end;
447 
448 	temp_end = min(end, kbuf->buf_max);
449 	temp_start = temp_end - kbuf->memsz;
450 
451 	do {
452 		/* align down start */
453 		temp_start = temp_start & (~(kbuf->buf_align - 1));
454 
455 		if (temp_start < start || temp_start < kbuf->buf_min)
456 			return 0;
457 
458 		temp_end = temp_start + kbuf->memsz - 1;
459 
460 		/*
461 		 * Make sure this does not conflict with any of existing
462 		 * segments
463 		 */
464 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
465 			temp_start = temp_start - PAGE_SIZE;
466 			continue;
467 		}
468 
469 		/* We found a suitable memory range */
470 		break;
471 	} while (1);
472 
473 	/* If we are here, we found a suitable memory range */
474 	kbuf->mem = temp_start;
475 
476 	/* Success, stop navigating through remaining System RAM ranges */
477 	return 1;
478 }
479 
480 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
481 				     struct kexec_buf *kbuf)
482 {
483 	struct kimage *image = kbuf->image;
484 	unsigned long temp_start, temp_end;
485 
486 	temp_start = max(start, kbuf->buf_min);
487 
488 	do {
489 		temp_start = ALIGN(temp_start, kbuf->buf_align);
490 		temp_end = temp_start + kbuf->memsz - 1;
491 
492 		if (temp_end > end || temp_end > kbuf->buf_max)
493 			return 0;
494 		/*
495 		 * Make sure this does not conflict with any of existing
496 		 * segments
497 		 */
498 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
499 			temp_start = temp_start + PAGE_SIZE;
500 			continue;
501 		}
502 
503 		/* We found a suitable memory range */
504 		break;
505 	} while (1);
506 
507 	/* If we are here, we found a suitable memory range */
508 	kbuf->mem = temp_start;
509 
510 	/* Success, stop navigating through remaining System RAM ranges */
511 	return 1;
512 }
513 
514 static int locate_mem_hole_callback(struct resource *res, void *arg)
515 {
516 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
517 	u64 start = res->start, end = res->end;
518 	unsigned long sz = end - start + 1;
519 
520 	/* Returning 0 will take to next memory range */
521 
522 	/* Don't use memory that will be detected and handled by a driver. */
523 	if (res->flags & IORESOURCE_MEM_DRIVER_MANAGED)
524 		return 0;
525 
526 	if (sz < kbuf->memsz)
527 		return 0;
528 
529 	if (end < kbuf->buf_min || start > kbuf->buf_max)
530 		return 0;
531 
532 	/*
533 	 * Allocate memory top down with-in ram range. Otherwise bottom up
534 	 * allocation.
535 	 */
536 	if (kbuf->top_down)
537 		return locate_mem_hole_top_down(start, end, kbuf);
538 	return locate_mem_hole_bottom_up(start, end, kbuf);
539 }
540 
541 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
542 static int kexec_walk_memblock(struct kexec_buf *kbuf,
543 			       int (*func)(struct resource *, void *))
544 {
545 	int ret = 0;
546 	u64 i;
547 	phys_addr_t mstart, mend;
548 	struct resource res = { };
549 
550 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
551 		return func(&crashk_res, kbuf);
552 
553 	if (kbuf->top_down) {
554 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
555 						&mstart, &mend, NULL) {
556 			/*
557 			 * In memblock, end points to the first byte after the
558 			 * range while in kexec, end points to the last byte
559 			 * in the range.
560 			 */
561 			res.start = mstart;
562 			res.end = mend - 1;
563 			ret = func(&res, kbuf);
564 			if (ret)
565 				break;
566 		}
567 	} else {
568 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
569 					&mstart, &mend, NULL) {
570 			/*
571 			 * In memblock, end points to the first byte after the
572 			 * range while in kexec, end points to the last byte
573 			 * in the range.
574 			 */
575 			res.start = mstart;
576 			res.end = mend - 1;
577 			ret = func(&res, kbuf);
578 			if (ret)
579 				break;
580 		}
581 	}
582 
583 	return ret;
584 }
585 #else
586 static int kexec_walk_memblock(struct kexec_buf *kbuf,
587 			       int (*func)(struct resource *, void *))
588 {
589 	return 0;
590 }
591 #endif
592 
593 /**
594  * kexec_walk_resources - call func(data) on free memory regions
595  * @kbuf:	Context info for the search. Also passed to @func.
596  * @func:	Function to call for each memory region.
597  *
598  * Return: The memory walk will stop when func returns a non-zero value
599  * and that value will be returned. If all free regions are visited without
600  * func returning non-zero, then zero will be returned.
601  */
602 static int kexec_walk_resources(struct kexec_buf *kbuf,
603 				int (*func)(struct resource *, void *))
604 {
605 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
606 		return walk_iomem_res_desc(crashk_res.desc,
607 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
608 					   crashk_res.start, crashk_res.end,
609 					   kbuf, func);
610 	else
611 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
612 }
613 
614 /**
615  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
616  * @kbuf:	Parameters for the memory search.
617  *
618  * On success, kbuf->mem will have the start address of the memory region found.
619  *
620  * Return: 0 on success, negative errno on error.
621  */
622 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
623 {
624 	int ret;
625 
626 	/* Arch knows where to place */
627 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
628 		return 0;
629 
630 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
631 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
632 	else
633 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
634 
635 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
636 }
637 
638 /**
639  * kexec_add_buffer - place a buffer in a kexec segment
640  * @kbuf:	Buffer contents and memory parameters.
641  *
642  * This function assumes that kexec_mutex is held.
643  * On successful return, @kbuf->mem will have the physical address of
644  * the buffer in memory.
645  *
646  * Return: 0 on success, negative errno on error.
647  */
648 int kexec_add_buffer(struct kexec_buf *kbuf)
649 {
650 
651 	struct kexec_segment *ksegment;
652 	int ret;
653 
654 	/* Currently adding segment this way is allowed only in file mode */
655 	if (!kbuf->image->file_mode)
656 		return -EINVAL;
657 
658 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
659 		return -EINVAL;
660 
661 	/*
662 	 * Make sure we are not trying to add buffer after allocating
663 	 * control pages. All segments need to be placed first before
664 	 * any control pages are allocated. As control page allocation
665 	 * logic goes through list of segments to make sure there are
666 	 * no destination overlaps.
667 	 */
668 	if (!list_empty(&kbuf->image->control_pages)) {
669 		WARN_ON(1);
670 		return -EINVAL;
671 	}
672 
673 	/* Ensure minimum alignment needed for segments. */
674 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
675 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
676 
677 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
678 	ret = kexec_locate_mem_hole(kbuf);
679 	if (ret)
680 		return ret;
681 
682 	/* Found a suitable memory range */
683 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
684 	ksegment->kbuf = kbuf->buffer;
685 	ksegment->bufsz = kbuf->bufsz;
686 	ksegment->mem = kbuf->mem;
687 	ksegment->memsz = kbuf->memsz;
688 	kbuf->image->nr_segments++;
689 	return 0;
690 }
691 
692 /* Calculate and store the digest of segments */
693 static int kexec_calculate_store_digests(struct kimage *image)
694 {
695 	struct crypto_shash *tfm;
696 	struct shash_desc *desc;
697 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
698 	size_t desc_size, nullsz;
699 	char *digest;
700 	void *zero_buf;
701 	struct kexec_sha_region *sha_regions;
702 	struct purgatory_info *pi = &image->purgatory_info;
703 
704 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
705 		return 0;
706 
707 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
708 	zero_buf_sz = PAGE_SIZE;
709 
710 	tfm = crypto_alloc_shash("sha256", 0, 0);
711 	if (IS_ERR(tfm)) {
712 		ret = PTR_ERR(tfm);
713 		goto out;
714 	}
715 
716 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
717 	desc = kzalloc(desc_size, GFP_KERNEL);
718 	if (!desc) {
719 		ret = -ENOMEM;
720 		goto out_free_tfm;
721 	}
722 
723 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
724 	sha_regions = vzalloc(sha_region_sz);
725 	if (!sha_regions)
726 		goto out_free_desc;
727 
728 	desc->tfm   = tfm;
729 
730 	ret = crypto_shash_init(desc);
731 	if (ret < 0)
732 		goto out_free_sha_regions;
733 
734 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
735 	if (!digest) {
736 		ret = -ENOMEM;
737 		goto out_free_sha_regions;
738 	}
739 
740 	for (j = i = 0; i < image->nr_segments; i++) {
741 		struct kexec_segment *ksegment;
742 
743 		ksegment = &image->segment[i];
744 		/*
745 		 * Skip purgatory as it will be modified once we put digest
746 		 * info in purgatory.
747 		 */
748 		if (ksegment->kbuf == pi->purgatory_buf)
749 			continue;
750 
751 		ret = crypto_shash_update(desc, ksegment->kbuf,
752 					  ksegment->bufsz);
753 		if (ret)
754 			break;
755 
756 		/*
757 		 * Assume rest of the buffer is filled with zero and
758 		 * update digest accordingly.
759 		 */
760 		nullsz = ksegment->memsz - ksegment->bufsz;
761 		while (nullsz) {
762 			unsigned long bytes = nullsz;
763 
764 			if (bytes > zero_buf_sz)
765 				bytes = zero_buf_sz;
766 			ret = crypto_shash_update(desc, zero_buf, bytes);
767 			if (ret)
768 				break;
769 			nullsz -= bytes;
770 		}
771 
772 		if (ret)
773 			break;
774 
775 		sha_regions[j].start = ksegment->mem;
776 		sha_regions[j].len = ksegment->memsz;
777 		j++;
778 	}
779 
780 	if (!ret) {
781 		ret = crypto_shash_final(desc, digest);
782 		if (ret)
783 			goto out_free_digest;
784 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
785 						     sha_regions, sha_region_sz, 0);
786 		if (ret)
787 			goto out_free_digest;
788 
789 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
790 						     digest, SHA256_DIGEST_SIZE, 0);
791 		if (ret)
792 			goto out_free_digest;
793 	}
794 
795 out_free_digest:
796 	kfree(digest);
797 out_free_sha_regions:
798 	vfree(sha_regions);
799 out_free_desc:
800 	kfree(desc);
801 out_free_tfm:
802 	kfree(tfm);
803 out:
804 	return ret;
805 }
806 
807 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
808 /*
809  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
810  * @pi:		Purgatory to be loaded.
811  * @kbuf:	Buffer to setup.
812  *
813  * Allocates the memory needed for the buffer. Caller is responsible to free
814  * the memory after use.
815  *
816  * Return: 0 on success, negative errno on error.
817  */
818 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
819 				      struct kexec_buf *kbuf)
820 {
821 	const Elf_Shdr *sechdrs;
822 	unsigned long bss_align;
823 	unsigned long bss_sz;
824 	unsigned long align;
825 	int i, ret;
826 
827 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
828 	kbuf->buf_align = bss_align = 1;
829 	kbuf->bufsz = bss_sz = 0;
830 
831 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
832 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
833 			continue;
834 
835 		align = sechdrs[i].sh_addralign;
836 		if (sechdrs[i].sh_type != SHT_NOBITS) {
837 			if (kbuf->buf_align < align)
838 				kbuf->buf_align = align;
839 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
840 			kbuf->bufsz += sechdrs[i].sh_size;
841 		} else {
842 			if (bss_align < align)
843 				bss_align = align;
844 			bss_sz = ALIGN(bss_sz, align);
845 			bss_sz += sechdrs[i].sh_size;
846 		}
847 	}
848 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
849 	kbuf->memsz = kbuf->bufsz + bss_sz;
850 	if (kbuf->buf_align < bss_align)
851 		kbuf->buf_align = bss_align;
852 
853 	kbuf->buffer = vzalloc(kbuf->bufsz);
854 	if (!kbuf->buffer)
855 		return -ENOMEM;
856 	pi->purgatory_buf = kbuf->buffer;
857 
858 	ret = kexec_add_buffer(kbuf);
859 	if (ret)
860 		goto out;
861 
862 	return 0;
863 out:
864 	vfree(pi->purgatory_buf);
865 	pi->purgatory_buf = NULL;
866 	return ret;
867 }
868 
869 /*
870  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
871  * @pi:		Purgatory to be loaded.
872  * @kbuf:	Buffer prepared to store purgatory.
873  *
874  * Allocates the memory needed for the buffer. Caller is responsible to free
875  * the memory after use.
876  *
877  * Return: 0 on success, negative errno on error.
878  */
879 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
880 					 struct kexec_buf *kbuf)
881 {
882 	unsigned long bss_addr;
883 	unsigned long offset;
884 	Elf_Shdr *sechdrs;
885 	int i;
886 
887 	/*
888 	 * The section headers in kexec_purgatory are read-only. In order to
889 	 * have them modifiable make a temporary copy.
890 	 */
891 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
892 	if (!sechdrs)
893 		return -ENOMEM;
894 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
895 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
896 	pi->sechdrs = sechdrs;
897 
898 	offset = 0;
899 	bss_addr = kbuf->mem + kbuf->bufsz;
900 	kbuf->image->start = pi->ehdr->e_entry;
901 
902 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
903 		unsigned long align;
904 		void *src, *dst;
905 
906 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
907 			continue;
908 
909 		align = sechdrs[i].sh_addralign;
910 		if (sechdrs[i].sh_type == SHT_NOBITS) {
911 			bss_addr = ALIGN(bss_addr, align);
912 			sechdrs[i].sh_addr = bss_addr;
913 			bss_addr += sechdrs[i].sh_size;
914 			continue;
915 		}
916 
917 		offset = ALIGN(offset, align);
918 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
919 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
920 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
921 					 + sechdrs[i].sh_size)) {
922 			kbuf->image->start -= sechdrs[i].sh_addr;
923 			kbuf->image->start += kbuf->mem + offset;
924 		}
925 
926 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
927 		dst = pi->purgatory_buf + offset;
928 		memcpy(dst, src, sechdrs[i].sh_size);
929 
930 		sechdrs[i].sh_addr = kbuf->mem + offset;
931 		sechdrs[i].sh_offset = offset;
932 		offset += sechdrs[i].sh_size;
933 	}
934 
935 	return 0;
936 }
937 
938 static int kexec_apply_relocations(struct kimage *image)
939 {
940 	int i, ret;
941 	struct purgatory_info *pi = &image->purgatory_info;
942 	const Elf_Shdr *sechdrs;
943 
944 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
945 
946 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
947 		const Elf_Shdr *relsec;
948 		const Elf_Shdr *symtab;
949 		Elf_Shdr *section;
950 
951 		relsec = sechdrs + i;
952 
953 		if (relsec->sh_type != SHT_RELA &&
954 		    relsec->sh_type != SHT_REL)
955 			continue;
956 
957 		/*
958 		 * For section of type SHT_RELA/SHT_REL,
959 		 * ->sh_link contains section header index of associated
960 		 * symbol table. And ->sh_info contains section header
961 		 * index of section to which relocations apply.
962 		 */
963 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
964 		    relsec->sh_link >= pi->ehdr->e_shnum)
965 			return -ENOEXEC;
966 
967 		section = pi->sechdrs + relsec->sh_info;
968 		symtab = sechdrs + relsec->sh_link;
969 
970 		if (!(section->sh_flags & SHF_ALLOC))
971 			continue;
972 
973 		/*
974 		 * symtab->sh_link contain section header index of associated
975 		 * string table.
976 		 */
977 		if (symtab->sh_link >= pi->ehdr->e_shnum)
978 			/* Invalid section number? */
979 			continue;
980 
981 		/*
982 		 * Respective architecture needs to provide support for applying
983 		 * relocations of type SHT_RELA/SHT_REL.
984 		 */
985 		if (relsec->sh_type == SHT_RELA)
986 			ret = arch_kexec_apply_relocations_add(pi, section,
987 							       relsec, symtab);
988 		else if (relsec->sh_type == SHT_REL)
989 			ret = arch_kexec_apply_relocations(pi, section,
990 							   relsec, symtab);
991 		if (ret)
992 			return ret;
993 	}
994 
995 	return 0;
996 }
997 
998 /*
999  * kexec_load_purgatory - Load and relocate the purgatory object.
1000  * @image:	Image to add the purgatory to.
1001  * @kbuf:	Memory parameters to use.
1002  *
1003  * Allocates the memory needed for image->purgatory_info.sechdrs and
1004  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1005  * to free the memory after use.
1006  *
1007  * Return: 0 on success, negative errno on error.
1008  */
1009 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1010 {
1011 	struct purgatory_info *pi = &image->purgatory_info;
1012 	int ret;
1013 
1014 	if (kexec_purgatory_size <= 0)
1015 		return -EINVAL;
1016 
1017 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1018 
1019 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1020 	if (ret)
1021 		return ret;
1022 
1023 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1024 	if (ret)
1025 		goto out_free_kbuf;
1026 
1027 	ret = kexec_apply_relocations(image);
1028 	if (ret)
1029 		goto out;
1030 
1031 	return 0;
1032 out:
1033 	vfree(pi->sechdrs);
1034 	pi->sechdrs = NULL;
1035 out_free_kbuf:
1036 	vfree(pi->purgatory_buf);
1037 	pi->purgatory_buf = NULL;
1038 	return ret;
1039 }
1040 
1041 /*
1042  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1043  * @pi:		Purgatory to search in.
1044  * @name:	Name of the symbol.
1045  *
1046  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1047  */
1048 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1049 						  const char *name)
1050 {
1051 	const Elf_Shdr *sechdrs;
1052 	const Elf_Ehdr *ehdr;
1053 	const Elf_Sym *syms;
1054 	const char *strtab;
1055 	int i, k;
1056 
1057 	if (!pi->ehdr)
1058 		return NULL;
1059 
1060 	ehdr = pi->ehdr;
1061 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1062 
1063 	for (i = 0; i < ehdr->e_shnum; i++) {
1064 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1065 			continue;
1066 
1067 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1068 			/* Invalid strtab section number */
1069 			continue;
1070 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1071 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1072 
1073 		/* Go through symbols for a match */
1074 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1075 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1076 				continue;
1077 
1078 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1079 				continue;
1080 
1081 			if (syms[k].st_shndx == SHN_UNDEF ||
1082 			    syms[k].st_shndx >= ehdr->e_shnum) {
1083 				pr_debug("Symbol: %s has bad section index %d.\n",
1084 						name, syms[k].st_shndx);
1085 				return NULL;
1086 			}
1087 
1088 			/* Found the symbol we are looking for */
1089 			return &syms[k];
1090 		}
1091 	}
1092 
1093 	return NULL;
1094 }
1095 
1096 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1097 {
1098 	struct purgatory_info *pi = &image->purgatory_info;
1099 	const Elf_Sym *sym;
1100 	Elf_Shdr *sechdr;
1101 
1102 	sym = kexec_purgatory_find_symbol(pi, name);
1103 	if (!sym)
1104 		return ERR_PTR(-EINVAL);
1105 
1106 	sechdr = &pi->sechdrs[sym->st_shndx];
1107 
1108 	/*
1109 	 * Returns the address where symbol will finally be loaded after
1110 	 * kexec_load_segment()
1111 	 */
1112 	return (void *)(sechdr->sh_addr + sym->st_value);
1113 }
1114 
1115 /*
1116  * Get or set value of a symbol. If "get_value" is true, symbol value is
1117  * returned in buf otherwise symbol value is set based on value in buf.
1118  */
1119 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1120 				   void *buf, unsigned int size, bool get_value)
1121 {
1122 	struct purgatory_info *pi = &image->purgatory_info;
1123 	const Elf_Sym *sym;
1124 	Elf_Shdr *sec;
1125 	char *sym_buf;
1126 
1127 	sym = kexec_purgatory_find_symbol(pi, name);
1128 	if (!sym)
1129 		return -EINVAL;
1130 
1131 	if (sym->st_size != size) {
1132 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1133 		       name, (unsigned long)sym->st_size, size);
1134 		return -EINVAL;
1135 	}
1136 
1137 	sec = pi->sechdrs + sym->st_shndx;
1138 
1139 	if (sec->sh_type == SHT_NOBITS) {
1140 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1141 		       get_value ? "get" : "set");
1142 		return -EINVAL;
1143 	}
1144 
1145 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1146 
1147 	if (get_value)
1148 		memcpy((void *)buf, sym_buf, size);
1149 	else
1150 		memcpy((void *)sym_buf, buf, size);
1151 
1152 	return 0;
1153 }
1154 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1155 
1156 int crash_exclude_mem_range(struct crash_mem *mem,
1157 			    unsigned long long mstart, unsigned long long mend)
1158 {
1159 	int i, j;
1160 	unsigned long long start, end;
1161 	struct crash_mem_range temp_range = {0, 0};
1162 
1163 	for (i = 0; i < mem->nr_ranges; i++) {
1164 		start = mem->ranges[i].start;
1165 		end = mem->ranges[i].end;
1166 
1167 		if (mstart > end || mend < start)
1168 			continue;
1169 
1170 		/* Truncate any area outside of range */
1171 		if (mstart < start)
1172 			mstart = start;
1173 		if (mend > end)
1174 			mend = end;
1175 
1176 		/* Found completely overlapping range */
1177 		if (mstart == start && mend == end) {
1178 			mem->ranges[i].start = 0;
1179 			mem->ranges[i].end = 0;
1180 			if (i < mem->nr_ranges - 1) {
1181 				/* Shift rest of the ranges to left */
1182 				for (j = i; j < mem->nr_ranges - 1; j++) {
1183 					mem->ranges[j].start =
1184 						mem->ranges[j+1].start;
1185 					mem->ranges[j].end =
1186 							mem->ranges[j+1].end;
1187 				}
1188 			}
1189 			mem->nr_ranges--;
1190 			return 0;
1191 		}
1192 
1193 		if (mstart > start && mend < end) {
1194 			/* Split original range */
1195 			mem->ranges[i].end = mstart - 1;
1196 			temp_range.start = mend + 1;
1197 			temp_range.end = end;
1198 		} else if (mstart != start)
1199 			mem->ranges[i].end = mstart - 1;
1200 		else
1201 			mem->ranges[i].start = mend + 1;
1202 		break;
1203 	}
1204 
1205 	/* If a split happened, add the split to array */
1206 	if (!temp_range.end)
1207 		return 0;
1208 
1209 	/* Split happened */
1210 	if (i == mem->max_nr_ranges - 1)
1211 		return -ENOMEM;
1212 
1213 	/* Location where new range should go */
1214 	j = i + 1;
1215 	if (j < mem->nr_ranges) {
1216 		/* Move over all ranges one slot towards the end */
1217 		for (i = mem->nr_ranges - 1; i >= j; i--)
1218 			mem->ranges[i + 1] = mem->ranges[i];
1219 	}
1220 
1221 	mem->ranges[j].start = temp_range.start;
1222 	mem->ranges[j].end = temp_range.end;
1223 	mem->nr_ranges++;
1224 	return 0;
1225 }
1226 
1227 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1228 			  void **addr, unsigned long *sz)
1229 {
1230 	Elf64_Ehdr *ehdr;
1231 	Elf64_Phdr *phdr;
1232 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1233 	unsigned char *buf;
1234 	unsigned int cpu, i;
1235 	unsigned long long notes_addr;
1236 	unsigned long mstart, mend;
1237 
1238 	/* extra phdr for vmcoreinfo elf note */
1239 	nr_phdr = nr_cpus + 1;
1240 	nr_phdr += mem->nr_ranges;
1241 
1242 	/*
1243 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1244 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1245 	 * I think this is required by tools like gdb. So same physical
1246 	 * memory will be mapped in two elf headers. One will contain kernel
1247 	 * text virtual addresses and other will have __va(physical) addresses.
1248 	 */
1249 
1250 	nr_phdr++;
1251 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1252 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1253 
1254 	buf = vzalloc(elf_sz);
1255 	if (!buf)
1256 		return -ENOMEM;
1257 
1258 	ehdr = (Elf64_Ehdr *)buf;
1259 	phdr = (Elf64_Phdr *)(ehdr + 1);
1260 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1261 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1262 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1263 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1264 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1265 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1266 	ehdr->e_type = ET_CORE;
1267 	ehdr->e_machine = ELF_ARCH;
1268 	ehdr->e_version = EV_CURRENT;
1269 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1270 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1271 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1272 
1273 	/* Prepare one phdr of type PT_NOTE for each present cpu */
1274 	for_each_present_cpu(cpu) {
1275 		phdr->p_type = PT_NOTE;
1276 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1277 		phdr->p_offset = phdr->p_paddr = notes_addr;
1278 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1279 		(ehdr->e_phnum)++;
1280 		phdr++;
1281 	}
1282 
1283 	/* Prepare one PT_NOTE header for vmcoreinfo */
1284 	phdr->p_type = PT_NOTE;
1285 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1286 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1287 	(ehdr->e_phnum)++;
1288 	phdr++;
1289 
1290 	/* Prepare PT_LOAD type program header for kernel text region */
1291 	if (kernel_map) {
1292 		phdr->p_type = PT_LOAD;
1293 		phdr->p_flags = PF_R|PF_W|PF_X;
1294 		phdr->p_vaddr = (unsigned long) _text;
1295 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1296 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1297 		ehdr->e_phnum++;
1298 		phdr++;
1299 	}
1300 
1301 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1302 	for (i = 0; i < mem->nr_ranges; i++) {
1303 		mstart = mem->ranges[i].start;
1304 		mend = mem->ranges[i].end;
1305 
1306 		phdr->p_type = PT_LOAD;
1307 		phdr->p_flags = PF_R|PF_W|PF_X;
1308 		phdr->p_offset  = mstart;
1309 
1310 		phdr->p_paddr = mstart;
1311 		phdr->p_vaddr = (unsigned long) __va(mstart);
1312 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1313 		phdr->p_align = 0;
1314 		ehdr->e_phnum++;
1315 		phdr++;
1316 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1317 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1318 			ehdr->e_phnum, phdr->p_offset);
1319 	}
1320 
1321 	*addr = buf;
1322 	*sz = elf_sz;
1323 	return 0;
1324 }
1325