1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec: kexec_file_load system call 4 * 5 * Copyright (C) 2014 Red Hat Inc. 6 * Authors: 7 * Vivek Goyal <vgoyal@redhat.com> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/capability.h> 13 #include <linux/mm.h> 14 #include <linux/file.h> 15 #include <linux/slab.h> 16 #include <linux/kexec.h> 17 #include <linux/memblock.h> 18 #include <linux/mutex.h> 19 #include <linux/list.h> 20 #include <linux/fs.h> 21 #include <linux/ima.h> 22 #include <crypto/sha2.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/kernel.h> 26 #include <linux/kernel_read_file.h> 27 #include <linux/syscalls.h> 28 #include <linux/vmalloc.h> 29 #include "kexec_internal.h" 30 31 #ifdef CONFIG_KEXEC_SIG 32 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE); 33 34 void set_kexec_sig_enforced(void) 35 { 36 sig_enforce = true; 37 } 38 #endif 39 40 static int kexec_calculate_store_digests(struct kimage *image); 41 42 /* Maximum size in bytes for kernel/initrd files. */ 43 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX) 44 45 /* 46 * Currently this is the only default function that is exported as some 47 * architectures need it to do additional handlings. 48 * In the future, other default functions may be exported too if required. 49 */ 50 int kexec_image_probe_default(struct kimage *image, void *buf, 51 unsigned long buf_len) 52 { 53 const struct kexec_file_ops * const *fops; 54 int ret = -ENOEXEC; 55 56 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { 57 ret = (*fops)->probe(buf, buf_len); 58 if (!ret) { 59 image->fops = *fops; 60 return ret; 61 } 62 } 63 64 return ret; 65 } 66 67 static void *kexec_image_load_default(struct kimage *image) 68 { 69 if (!image->fops || !image->fops->load) 70 return ERR_PTR(-ENOEXEC); 71 72 return image->fops->load(image, image->kernel_buf, 73 image->kernel_buf_len, image->initrd_buf, 74 image->initrd_buf_len, image->cmdline_buf, 75 image->cmdline_buf_len); 76 } 77 78 int kexec_image_post_load_cleanup_default(struct kimage *image) 79 { 80 if (!image->fops || !image->fops->cleanup) 81 return 0; 82 83 return image->fops->cleanup(image->image_loader_data); 84 } 85 86 /* 87 * Free up memory used by kernel, initrd, and command line. This is temporary 88 * memory allocation which is not needed any more after these buffers have 89 * been loaded into separate segments and have been copied elsewhere. 90 */ 91 void kimage_file_post_load_cleanup(struct kimage *image) 92 { 93 struct purgatory_info *pi = &image->purgatory_info; 94 95 vfree(image->kernel_buf); 96 image->kernel_buf = NULL; 97 98 vfree(image->initrd_buf); 99 image->initrd_buf = NULL; 100 101 kfree(image->cmdline_buf); 102 image->cmdline_buf = NULL; 103 104 vfree(pi->purgatory_buf); 105 pi->purgatory_buf = NULL; 106 107 vfree(pi->sechdrs); 108 pi->sechdrs = NULL; 109 110 #ifdef CONFIG_IMA_KEXEC 111 vfree(image->ima_buffer); 112 image->ima_buffer = NULL; 113 #endif /* CONFIG_IMA_KEXEC */ 114 115 /* See if architecture has anything to cleanup post load */ 116 arch_kimage_file_post_load_cleanup(image); 117 118 /* 119 * Above call should have called into bootloader to free up 120 * any data stored in kimage->image_loader_data. It should 121 * be ok now to free it up. 122 */ 123 kfree(image->image_loader_data); 124 image->image_loader_data = NULL; 125 126 kexec_file_dbg_print = false; 127 } 128 129 #ifdef CONFIG_KEXEC_SIG 130 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION 131 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len) 132 { 133 int ret; 134 135 ret = verify_pefile_signature(kernel, kernel_len, 136 VERIFY_USE_SECONDARY_KEYRING, 137 VERIFYING_KEXEC_PE_SIGNATURE); 138 if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) { 139 ret = verify_pefile_signature(kernel, kernel_len, 140 VERIFY_USE_PLATFORM_KEYRING, 141 VERIFYING_KEXEC_PE_SIGNATURE); 142 } 143 return ret; 144 } 145 #endif 146 147 static int kexec_image_verify_sig(struct kimage *image, void *buf, 148 unsigned long buf_len) 149 { 150 if (!image->fops || !image->fops->verify_sig) { 151 pr_debug("kernel loader does not support signature verification.\n"); 152 return -EKEYREJECTED; 153 } 154 155 return image->fops->verify_sig(buf, buf_len); 156 } 157 158 static int 159 kimage_validate_signature(struct kimage *image) 160 { 161 int ret; 162 163 ret = kexec_image_verify_sig(image, image->kernel_buf, 164 image->kernel_buf_len); 165 if (ret) { 166 167 if (sig_enforce) { 168 pr_notice("Enforced kernel signature verification failed (%d).\n", ret); 169 return ret; 170 } 171 172 /* 173 * If IMA is guaranteed to appraise a signature on the kexec 174 * image, permit it even if the kernel is otherwise locked 175 * down. 176 */ 177 if (!ima_appraise_signature(READING_KEXEC_IMAGE) && 178 security_locked_down(LOCKDOWN_KEXEC)) 179 return -EPERM; 180 181 pr_debug("kernel signature verification failed (%d).\n", ret); 182 } 183 184 return 0; 185 } 186 #endif 187 188 /* 189 * In file mode list of segments is prepared by kernel. Copy relevant 190 * data from user space, do error checking, prepare segment list 191 */ 192 static int 193 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 194 const char __user *cmdline_ptr, 195 unsigned long cmdline_len, unsigned flags) 196 { 197 ssize_t ret; 198 void *ldata; 199 200 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf, 201 KEXEC_FILE_SIZE_MAX, NULL, 202 READING_KEXEC_IMAGE); 203 if (ret < 0) 204 return ret; 205 image->kernel_buf_len = ret; 206 kexec_dprintk("kernel: %p kernel_size: %#lx\n", 207 image->kernel_buf, image->kernel_buf_len); 208 209 /* Call arch image probe handlers */ 210 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 211 image->kernel_buf_len); 212 if (ret) 213 goto out; 214 215 #ifdef CONFIG_KEXEC_SIG 216 ret = kimage_validate_signature(image); 217 218 if (ret) 219 goto out; 220 #endif 221 /* It is possible that there no initramfs is being loaded */ 222 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 223 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf, 224 KEXEC_FILE_SIZE_MAX, NULL, 225 READING_KEXEC_INITRAMFS); 226 if (ret < 0) 227 goto out; 228 image->initrd_buf_len = ret; 229 ret = 0; 230 } 231 232 if (cmdline_len) { 233 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 234 if (IS_ERR(image->cmdline_buf)) { 235 ret = PTR_ERR(image->cmdline_buf); 236 image->cmdline_buf = NULL; 237 goto out; 238 } 239 240 image->cmdline_buf_len = cmdline_len; 241 242 /* command line should be a string with last byte null */ 243 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 244 ret = -EINVAL; 245 goto out; 246 } 247 248 ima_kexec_cmdline(kernel_fd, image->cmdline_buf, 249 image->cmdline_buf_len - 1); 250 } 251 252 /* IMA needs to pass the measurement list to the next kernel. */ 253 ima_add_kexec_buffer(image); 254 255 /* Call image load handler */ 256 ldata = kexec_image_load_default(image); 257 258 if (IS_ERR(ldata)) { 259 ret = PTR_ERR(ldata); 260 goto out; 261 } 262 263 image->image_loader_data = ldata; 264 out: 265 /* In case of error, free up all allocated memory in this function */ 266 if (ret) 267 kimage_file_post_load_cleanup(image); 268 return ret; 269 } 270 271 static int 272 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 273 int initrd_fd, const char __user *cmdline_ptr, 274 unsigned long cmdline_len, unsigned long flags) 275 { 276 int ret; 277 struct kimage *image; 278 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 279 280 image = do_kimage_alloc_init(); 281 if (!image) 282 return -ENOMEM; 283 284 kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG); 285 image->file_mode = 1; 286 287 #ifdef CONFIG_CRASH_DUMP 288 if (kexec_on_panic) { 289 /* Enable special crash kernel control page alloc policy. */ 290 image->control_page = crashk_res.start; 291 image->type = KEXEC_TYPE_CRASH; 292 } 293 #endif 294 295 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 296 cmdline_ptr, cmdline_len, flags); 297 if (ret) 298 goto out_free_image; 299 300 ret = sanity_check_segment_list(image); 301 if (ret) 302 goto out_free_post_load_bufs; 303 304 ret = -ENOMEM; 305 image->control_code_page = kimage_alloc_control_pages(image, 306 get_order(KEXEC_CONTROL_PAGE_SIZE)); 307 if (!image->control_code_page) { 308 pr_err("Could not allocate control_code_buffer\n"); 309 goto out_free_post_load_bufs; 310 } 311 312 if (!kexec_on_panic) { 313 image->swap_page = kimage_alloc_control_pages(image, 0); 314 if (!image->swap_page) { 315 pr_err("Could not allocate swap buffer\n"); 316 goto out_free_control_pages; 317 } 318 } 319 320 *rimage = image; 321 return 0; 322 out_free_control_pages: 323 kimage_free_page_list(&image->control_pages); 324 out_free_post_load_bufs: 325 kimage_file_post_load_cleanup(image); 326 out_free_image: 327 kfree(image); 328 return ret; 329 } 330 331 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 332 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 333 unsigned long, flags) 334 { 335 int image_type = (flags & KEXEC_FILE_ON_CRASH) ? 336 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT; 337 struct kimage **dest_image, *image; 338 int ret = 0, i; 339 340 /* We only trust the superuser with rebooting the system. */ 341 if (!kexec_load_permitted(image_type)) 342 return -EPERM; 343 344 /* Make sure we have a legal set of flags */ 345 if (flags != (flags & KEXEC_FILE_FLAGS)) 346 return -EINVAL; 347 348 image = NULL; 349 350 if (!kexec_trylock()) 351 return -EBUSY; 352 353 #ifdef CONFIG_CRASH_DUMP 354 if (image_type == KEXEC_TYPE_CRASH) { 355 dest_image = &kexec_crash_image; 356 if (kexec_crash_image) 357 arch_kexec_unprotect_crashkres(); 358 } else 359 #endif 360 dest_image = &kexec_image; 361 362 if (flags & KEXEC_FILE_UNLOAD) 363 goto exchange; 364 365 /* 366 * In case of crash, new kernel gets loaded in reserved region. It is 367 * same memory where old crash kernel might be loaded. Free any 368 * current crash dump kernel before we corrupt it. 369 */ 370 if (flags & KEXEC_FILE_ON_CRASH) 371 kimage_free(xchg(&kexec_crash_image, NULL)); 372 373 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 374 cmdline_len, flags); 375 if (ret) 376 goto out; 377 378 #ifdef CONFIG_CRASH_HOTPLUG 379 if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags)) 380 image->hotplug_support = 1; 381 #endif 382 383 ret = machine_kexec_prepare(image); 384 if (ret) 385 goto out; 386 387 /* 388 * Some architecture(like S390) may touch the crash memory before 389 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 390 */ 391 ret = kimage_crash_copy_vmcoreinfo(image); 392 if (ret) 393 goto out; 394 395 ret = kexec_calculate_store_digests(image); 396 if (ret) 397 goto out; 398 399 kexec_dprintk("nr_segments = %lu\n", image->nr_segments); 400 for (i = 0; i < image->nr_segments; i++) { 401 struct kexec_segment *ksegment; 402 403 ksegment = &image->segment[i]; 404 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 405 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 406 ksegment->memsz); 407 408 ret = kimage_load_segment(image, &image->segment[i]); 409 if (ret) 410 goto out; 411 } 412 413 kimage_terminate(image); 414 415 ret = machine_kexec_post_load(image); 416 if (ret) 417 goto out; 418 419 kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n", 420 image->type, image->start, image->head, flags); 421 /* 422 * Free up any temporary buffers allocated which are not needed 423 * after image has been loaded 424 */ 425 kimage_file_post_load_cleanup(image); 426 exchange: 427 image = xchg(dest_image, image); 428 out: 429 #ifdef CONFIG_CRASH_DUMP 430 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 431 arch_kexec_protect_crashkres(); 432 #endif 433 434 kexec_unlock(); 435 kimage_free(image); 436 return ret; 437 } 438 439 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 440 struct kexec_buf *kbuf) 441 { 442 struct kimage *image = kbuf->image; 443 unsigned long temp_start, temp_end; 444 445 temp_end = min(end, kbuf->buf_max); 446 temp_start = temp_end - kbuf->memsz + 1; 447 kexec_random_range_start(temp_start, temp_end, kbuf, &temp_start); 448 449 do { 450 /* align down start */ 451 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align); 452 453 if (temp_start < start || temp_start < kbuf->buf_min) 454 return 0; 455 456 temp_end = temp_start + kbuf->memsz - 1; 457 458 /* 459 * Make sure this does not conflict with any of existing 460 * segments 461 */ 462 if (kimage_is_destination_range(image, temp_start, temp_end)) { 463 temp_start = temp_start - PAGE_SIZE; 464 continue; 465 } 466 467 /* Make sure this does not conflict with exclude range */ 468 if (arch_check_excluded_range(image, temp_start, temp_end)) { 469 temp_start = temp_start - PAGE_SIZE; 470 continue; 471 } 472 473 /* We found a suitable memory range */ 474 break; 475 } while (1); 476 477 /* If we are here, we found a suitable memory range */ 478 kbuf->mem = temp_start; 479 480 /* Success, stop navigating through remaining System RAM ranges */ 481 return 1; 482 } 483 484 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 485 struct kexec_buf *kbuf) 486 { 487 struct kimage *image = kbuf->image; 488 unsigned long temp_start, temp_end; 489 490 temp_start = max(start, kbuf->buf_min); 491 492 kexec_random_range_start(temp_start, end, kbuf, &temp_start); 493 494 do { 495 temp_start = ALIGN(temp_start, kbuf->buf_align); 496 temp_end = temp_start + kbuf->memsz - 1; 497 498 if (temp_end > end || temp_end > kbuf->buf_max) 499 return 0; 500 /* 501 * Make sure this does not conflict with any of existing 502 * segments 503 */ 504 if (kimage_is_destination_range(image, temp_start, temp_end)) { 505 temp_start = temp_start + PAGE_SIZE; 506 continue; 507 } 508 509 /* Make sure this does not conflict with exclude range */ 510 if (arch_check_excluded_range(image, temp_start, temp_end)) { 511 temp_start = temp_start + PAGE_SIZE; 512 continue; 513 } 514 515 /* We found a suitable memory range */ 516 break; 517 } while (1); 518 519 /* If we are here, we found a suitable memory range */ 520 kbuf->mem = temp_start; 521 522 /* Success, stop navigating through remaining System RAM ranges */ 523 return 1; 524 } 525 526 static int locate_mem_hole_callback(struct resource *res, void *arg) 527 { 528 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 529 u64 start = res->start, end = res->end; 530 unsigned long sz = end - start + 1; 531 532 /* Returning 0 will take to next memory range */ 533 534 /* Don't use memory that will be detected and handled by a driver. */ 535 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 536 return 0; 537 538 if (sz < kbuf->memsz) 539 return 0; 540 541 if (end < kbuf->buf_min || start > kbuf->buf_max) 542 return 0; 543 544 /* 545 * Allocate memory top down with-in ram range. Otherwise bottom up 546 * allocation. 547 */ 548 if (kbuf->top_down) 549 return locate_mem_hole_top_down(start, end, kbuf); 550 return locate_mem_hole_bottom_up(start, end, kbuf); 551 } 552 553 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK 554 static int kexec_walk_memblock(struct kexec_buf *kbuf, 555 int (*func)(struct resource *, void *)) 556 { 557 int ret = 0; 558 u64 i; 559 phys_addr_t mstart, mend; 560 struct resource res = { }; 561 562 #ifdef CONFIG_CRASH_DUMP 563 if (kbuf->image->type == KEXEC_TYPE_CRASH) 564 return func(&crashk_res, kbuf); 565 #endif 566 567 /* 568 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See 569 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in 570 * locate_mem_hole_callback(). 571 */ 572 if (kbuf->top_down) { 573 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, 574 &mstart, &mend, NULL) { 575 /* 576 * In memblock, end points to the first byte after the 577 * range while in kexec, end points to the last byte 578 * in the range. 579 */ 580 res.start = mstart; 581 res.end = mend - 1; 582 ret = func(&res, kbuf); 583 if (ret) 584 break; 585 } 586 } else { 587 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 588 &mstart, &mend, NULL) { 589 /* 590 * In memblock, end points to the first byte after the 591 * range while in kexec, end points to the last byte 592 * in the range. 593 */ 594 res.start = mstart; 595 res.end = mend - 1; 596 ret = func(&res, kbuf); 597 if (ret) 598 break; 599 } 600 } 601 602 return ret; 603 } 604 #else 605 static int kexec_walk_memblock(struct kexec_buf *kbuf, 606 int (*func)(struct resource *, void *)) 607 { 608 return 0; 609 } 610 #endif 611 612 /** 613 * kexec_walk_resources - call func(data) on free memory regions 614 * @kbuf: Context info for the search. Also passed to @func. 615 * @func: Function to call for each memory region. 616 * 617 * Return: The memory walk will stop when func returns a non-zero value 618 * and that value will be returned. If all free regions are visited without 619 * func returning non-zero, then zero will be returned. 620 */ 621 static int kexec_walk_resources(struct kexec_buf *kbuf, 622 int (*func)(struct resource *, void *)) 623 { 624 #ifdef CONFIG_CRASH_DUMP 625 if (kbuf->image->type == KEXEC_TYPE_CRASH) 626 return walk_iomem_res_desc(crashk_res.desc, 627 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 628 crashk_res.start, crashk_res.end, 629 kbuf, func); 630 #endif 631 if (kbuf->top_down) 632 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func); 633 else 634 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 635 } 636 637 /** 638 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 639 * @kbuf: Parameters for the memory search. 640 * 641 * On success, kbuf->mem will have the start address of the memory region found. 642 * 643 * Return: 0 on success, negative errno on error. 644 */ 645 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 646 { 647 int ret; 648 649 /* Arch knows where to place */ 650 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) 651 return 0; 652 653 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 654 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); 655 else 656 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); 657 658 return ret == 1 ? 0 : -EADDRNOTAVAIL; 659 } 660 661 /** 662 * kexec_add_buffer - place a buffer in a kexec segment 663 * @kbuf: Buffer contents and memory parameters. 664 * 665 * This function assumes that kexec_lock is held. 666 * On successful return, @kbuf->mem will have the physical address of 667 * the buffer in memory. 668 * 669 * Return: 0 on success, negative errno on error. 670 */ 671 int kexec_add_buffer(struct kexec_buf *kbuf) 672 { 673 struct kexec_segment *ksegment; 674 int ret; 675 676 /* Currently adding segment this way is allowed only in file mode */ 677 if (!kbuf->image->file_mode) 678 return -EINVAL; 679 680 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 681 return -EINVAL; 682 683 /* 684 * Make sure we are not trying to add buffer after allocating 685 * control pages. All segments need to be placed first before 686 * any control pages are allocated. As control page allocation 687 * logic goes through list of segments to make sure there are 688 * no destination overlaps. 689 */ 690 if (!list_empty(&kbuf->image->control_pages)) { 691 WARN_ON(1); 692 return -EINVAL; 693 } 694 695 /* Ensure minimum alignment needed for segments. */ 696 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 697 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 698 699 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 700 ret = arch_kexec_locate_mem_hole(kbuf); 701 if (ret) 702 return ret; 703 704 /* Found a suitable memory range */ 705 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 706 ksegment->kbuf = kbuf->buffer; 707 ksegment->bufsz = kbuf->bufsz; 708 ksegment->mem = kbuf->mem; 709 ksegment->memsz = kbuf->memsz; 710 kbuf->image->nr_segments++; 711 return 0; 712 } 713 714 /* Calculate and store the digest of segments */ 715 static int kexec_calculate_store_digests(struct kimage *image) 716 { 717 struct sha256_state state; 718 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 719 size_t nullsz; 720 u8 digest[SHA256_DIGEST_SIZE]; 721 void *zero_buf; 722 struct kexec_sha_region *sha_regions; 723 struct purgatory_info *pi = &image->purgatory_info; 724 725 if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY)) 726 return 0; 727 728 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 729 zero_buf_sz = PAGE_SIZE; 730 731 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 732 sha_regions = vzalloc(sha_region_sz); 733 if (!sha_regions) 734 return -ENOMEM; 735 736 sha256_init(&state); 737 738 for (j = i = 0; i < image->nr_segments; i++) { 739 struct kexec_segment *ksegment; 740 741 #ifdef CONFIG_CRASH_HOTPLUG 742 /* Exclude elfcorehdr segment to allow future changes via hotplug */ 743 if (i == image->elfcorehdr_index) 744 continue; 745 #endif 746 747 ksegment = &image->segment[i]; 748 /* 749 * Skip purgatory as it will be modified once we put digest 750 * info in purgatory. 751 */ 752 if (ksegment->kbuf == pi->purgatory_buf) 753 continue; 754 755 sha256_update(&state, ksegment->kbuf, ksegment->bufsz); 756 757 /* 758 * Assume rest of the buffer is filled with zero and 759 * update digest accordingly. 760 */ 761 nullsz = ksegment->memsz - ksegment->bufsz; 762 while (nullsz) { 763 unsigned long bytes = nullsz; 764 765 if (bytes > zero_buf_sz) 766 bytes = zero_buf_sz; 767 sha256_update(&state, zero_buf, bytes); 768 nullsz -= bytes; 769 } 770 771 sha_regions[j].start = ksegment->mem; 772 sha_regions[j].len = ksegment->memsz; 773 j++; 774 } 775 776 sha256_final(&state, digest); 777 778 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 779 sha_regions, sha_region_sz, 0); 780 if (ret) 781 goto out_free_sha_regions; 782 783 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 784 digest, SHA256_DIGEST_SIZE, 0); 785 out_free_sha_regions: 786 vfree(sha_regions); 787 return ret; 788 } 789 790 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY 791 /* 792 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. 793 * @pi: Purgatory to be loaded. 794 * @kbuf: Buffer to setup. 795 * 796 * Allocates the memory needed for the buffer. Caller is responsible to free 797 * the memory after use. 798 * 799 * Return: 0 on success, negative errno on error. 800 */ 801 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, 802 struct kexec_buf *kbuf) 803 { 804 const Elf_Shdr *sechdrs; 805 unsigned long bss_align; 806 unsigned long bss_sz; 807 unsigned long align; 808 int i, ret; 809 810 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 811 kbuf->buf_align = bss_align = 1; 812 kbuf->bufsz = bss_sz = 0; 813 814 for (i = 0; i < pi->ehdr->e_shnum; i++) { 815 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 816 continue; 817 818 align = sechdrs[i].sh_addralign; 819 if (sechdrs[i].sh_type != SHT_NOBITS) { 820 if (kbuf->buf_align < align) 821 kbuf->buf_align = align; 822 kbuf->bufsz = ALIGN(kbuf->bufsz, align); 823 kbuf->bufsz += sechdrs[i].sh_size; 824 } else { 825 if (bss_align < align) 826 bss_align = align; 827 bss_sz = ALIGN(bss_sz, align); 828 bss_sz += sechdrs[i].sh_size; 829 } 830 } 831 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); 832 kbuf->memsz = kbuf->bufsz + bss_sz; 833 if (kbuf->buf_align < bss_align) 834 kbuf->buf_align = bss_align; 835 836 kbuf->buffer = vzalloc(kbuf->bufsz); 837 if (!kbuf->buffer) 838 return -ENOMEM; 839 pi->purgatory_buf = kbuf->buffer; 840 841 ret = kexec_add_buffer(kbuf); 842 if (ret) 843 goto out; 844 845 return 0; 846 out: 847 vfree(pi->purgatory_buf); 848 pi->purgatory_buf = NULL; 849 return ret; 850 } 851 852 /* 853 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. 854 * @pi: Purgatory to be loaded. 855 * @kbuf: Buffer prepared to store purgatory. 856 * 857 * Allocates the memory needed for the buffer. Caller is responsible to free 858 * the memory after use. 859 * 860 * Return: 0 on success, negative errno on error. 861 */ 862 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, 863 struct kexec_buf *kbuf) 864 { 865 unsigned long bss_addr; 866 unsigned long offset; 867 size_t sechdrs_size; 868 Elf_Shdr *sechdrs; 869 int i; 870 871 /* 872 * The section headers in kexec_purgatory are read-only. In order to 873 * have them modifiable make a temporary copy. 874 */ 875 sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum); 876 sechdrs = vzalloc(sechdrs_size); 877 if (!sechdrs) 878 return -ENOMEM; 879 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size); 880 pi->sechdrs = sechdrs; 881 882 offset = 0; 883 bss_addr = kbuf->mem + kbuf->bufsz; 884 kbuf->image->start = pi->ehdr->e_entry; 885 886 for (i = 0; i < pi->ehdr->e_shnum; i++) { 887 unsigned long align; 888 void *src, *dst; 889 890 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 891 continue; 892 893 align = sechdrs[i].sh_addralign; 894 if (sechdrs[i].sh_type == SHT_NOBITS) { 895 bss_addr = ALIGN(bss_addr, align); 896 sechdrs[i].sh_addr = bss_addr; 897 bss_addr += sechdrs[i].sh_size; 898 continue; 899 } 900 901 offset = ALIGN(offset, align); 902 903 /* 904 * Check if the segment contains the entry point, if so, 905 * calculate the value of image->start based on it. 906 * If the compiler has produced more than one .text section 907 * (Eg: .text.hot), they are generally after the main .text 908 * section, and they shall not be used to calculate 909 * image->start. So do not re-calculate image->start if it 910 * is not set to the initial value, and warn the user so they 911 * have a chance to fix their purgatory's linker script. 912 */ 913 if (sechdrs[i].sh_flags & SHF_EXECINSTR && 914 pi->ehdr->e_entry >= sechdrs[i].sh_addr && 915 pi->ehdr->e_entry < (sechdrs[i].sh_addr 916 + sechdrs[i].sh_size) && 917 !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) { 918 kbuf->image->start -= sechdrs[i].sh_addr; 919 kbuf->image->start += kbuf->mem + offset; 920 } 921 922 src = (void *)pi->ehdr + sechdrs[i].sh_offset; 923 dst = pi->purgatory_buf + offset; 924 memcpy(dst, src, sechdrs[i].sh_size); 925 926 sechdrs[i].sh_addr = kbuf->mem + offset; 927 sechdrs[i].sh_offset = offset; 928 offset += sechdrs[i].sh_size; 929 } 930 931 return 0; 932 } 933 934 static int kexec_apply_relocations(struct kimage *image) 935 { 936 int i, ret; 937 struct purgatory_info *pi = &image->purgatory_info; 938 const Elf_Shdr *sechdrs; 939 940 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 941 942 for (i = 0; i < pi->ehdr->e_shnum; i++) { 943 const Elf_Shdr *relsec; 944 const Elf_Shdr *symtab; 945 Elf_Shdr *section; 946 947 relsec = sechdrs + i; 948 949 if (relsec->sh_type != SHT_RELA && 950 relsec->sh_type != SHT_REL) 951 continue; 952 953 /* 954 * For section of type SHT_RELA/SHT_REL, 955 * ->sh_link contains section header index of associated 956 * symbol table. And ->sh_info contains section header 957 * index of section to which relocations apply. 958 */ 959 if (relsec->sh_info >= pi->ehdr->e_shnum || 960 relsec->sh_link >= pi->ehdr->e_shnum) 961 return -ENOEXEC; 962 963 section = pi->sechdrs + relsec->sh_info; 964 symtab = sechdrs + relsec->sh_link; 965 966 if (!(section->sh_flags & SHF_ALLOC)) 967 continue; 968 969 /* 970 * symtab->sh_link contain section header index of associated 971 * string table. 972 */ 973 if (symtab->sh_link >= pi->ehdr->e_shnum) 974 /* Invalid section number? */ 975 continue; 976 977 /* 978 * Respective architecture needs to provide support for applying 979 * relocations of type SHT_RELA/SHT_REL. 980 */ 981 if (relsec->sh_type == SHT_RELA) 982 ret = arch_kexec_apply_relocations_add(pi, section, 983 relsec, symtab); 984 else if (relsec->sh_type == SHT_REL) 985 ret = arch_kexec_apply_relocations(pi, section, 986 relsec, symtab); 987 if (ret) 988 return ret; 989 } 990 991 return 0; 992 } 993 994 /* 995 * kexec_load_purgatory - Load and relocate the purgatory object. 996 * @image: Image to add the purgatory to. 997 * @kbuf: Memory parameters to use. 998 * 999 * Allocates the memory needed for image->purgatory_info.sechdrs and 1000 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible 1001 * to free the memory after use. 1002 * 1003 * Return: 0 on success, negative errno on error. 1004 */ 1005 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) 1006 { 1007 struct purgatory_info *pi = &image->purgatory_info; 1008 int ret; 1009 1010 if (kexec_purgatory_size <= 0) 1011 return -EINVAL; 1012 1013 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; 1014 1015 ret = kexec_purgatory_setup_kbuf(pi, kbuf); 1016 if (ret) 1017 return ret; 1018 1019 ret = kexec_purgatory_setup_sechdrs(pi, kbuf); 1020 if (ret) 1021 goto out_free_kbuf; 1022 1023 ret = kexec_apply_relocations(image); 1024 if (ret) 1025 goto out; 1026 1027 return 0; 1028 out: 1029 vfree(pi->sechdrs); 1030 pi->sechdrs = NULL; 1031 out_free_kbuf: 1032 vfree(pi->purgatory_buf); 1033 pi->purgatory_buf = NULL; 1034 return ret; 1035 } 1036 1037 /* 1038 * kexec_purgatory_find_symbol - find a symbol in the purgatory 1039 * @pi: Purgatory to search in. 1040 * @name: Name of the symbol. 1041 * 1042 * Return: pointer to symbol in read-only symtab on success, NULL on error. 1043 */ 1044 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 1045 const char *name) 1046 { 1047 const Elf_Shdr *sechdrs; 1048 const Elf_Ehdr *ehdr; 1049 const Elf_Sym *syms; 1050 const char *strtab; 1051 int i, k; 1052 1053 if (!pi->ehdr) 1054 return NULL; 1055 1056 ehdr = pi->ehdr; 1057 sechdrs = (void *)ehdr + ehdr->e_shoff; 1058 1059 for (i = 0; i < ehdr->e_shnum; i++) { 1060 if (sechdrs[i].sh_type != SHT_SYMTAB) 1061 continue; 1062 1063 if (sechdrs[i].sh_link >= ehdr->e_shnum) 1064 /* Invalid strtab section number */ 1065 continue; 1066 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; 1067 syms = (void *)ehdr + sechdrs[i].sh_offset; 1068 1069 /* Go through symbols for a match */ 1070 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 1071 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 1072 continue; 1073 1074 if (strcmp(strtab + syms[k].st_name, name) != 0) 1075 continue; 1076 1077 if (syms[k].st_shndx == SHN_UNDEF || 1078 syms[k].st_shndx >= ehdr->e_shnum) { 1079 pr_debug("Symbol: %s has bad section index %d.\n", 1080 name, syms[k].st_shndx); 1081 return NULL; 1082 } 1083 1084 /* Found the symbol we are looking for */ 1085 return &syms[k]; 1086 } 1087 } 1088 1089 return NULL; 1090 } 1091 1092 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 1093 { 1094 struct purgatory_info *pi = &image->purgatory_info; 1095 const Elf_Sym *sym; 1096 Elf_Shdr *sechdr; 1097 1098 sym = kexec_purgatory_find_symbol(pi, name); 1099 if (!sym) 1100 return ERR_PTR(-EINVAL); 1101 1102 sechdr = &pi->sechdrs[sym->st_shndx]; 1103 1104 /* 1105 * Returns the address where symbol will finally be loaded after 1106 * kexec_load_segment() 1107 */ 1108 return (void *)(sechdr->sh_addr + sym->st_value); 1109 } 1110 1111 /* 1112 * Get or set value of a symbol. If "get_value" is true, symbol value is 1113 * returned in buf otherwise symbol value is set based on value in buf. 1114 */ 1115 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 1116 void *buf, unsigned int size, bool get_value) 1117 { 1118 struct purgatory_info *pi = &image->purgatory_info; 1119 const Elf_Sym *sym; 1120 Elf_Shdr *sec; 1121 char *sym_buf; 1122 1123 sym = kexec_purgatory_find_symbol(pi, name); 1124 if (!sym) 1125 return -EINVAL; 1126 1127 if (sym->st_size != size) { 1128 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1129 name, (unsigned long)sym->st_size, size); 1130 return -EINVAL; 1131 } 1132 1133 sec = pi->sechdrs + sym->st_shndx; 1134 1135 if (sec->sh_type == SHT_NOBITS) { 1136 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1137 get_value ? "get" : "set"); 1138 return -EINVAL; 1139 } 1140 1141 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; 1142 1143 if (get_value) 1144 memcpy((void *)buf, sym_buf, size); 1145 else 1146 memcpy((void *)sym_buf, buf, size); 1147 1148 return 0; 1149 } 1150 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */ 1151