1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec: kexec_file_load system call 4 * 5 * Copyright (C) 2014 Red Hat Inc. 6 * Authors: 7 * Vivek Goyal <vgoyal@redhat.com> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/capability.h> 13 #include <linux/mm.h> 14 #include <linux/file.h> 15 #include <linux/slab.h> 16 #include <linux/kexec.h> 17 #include <linux/memblock.h> 18 #include <linux/mutex.h> 19 #include <linux/list.h> 20 #include <linux/fs.h> 21 #include <linux/ima.h> 22 #include <crypto/sha2.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/kernel.h> 26 #include <linux/kernel_read_file.h> 27 #include <linux/syscalls.h> 28 #include <linux/vmalloc.h> 29 #include "kexec_internal.h" 30 31 #ifdef CONFIG_KEXEC_SIG 32 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE); 33 34 void set_kexec_sig_enforced(void) 35 { 36 sig_enforce = true; 37 } 38 #endif 39 40 static int kexec_calculate_store_digests(struct kimage *image); 41 42 /* Maximum size in bytes for kernel/initrd files. */ 43 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX) 44 45 /* 46 * Currently this is the only default function that is exported as some 47 * architectures need it to do additional handlings. 48 * In the future, other default functions may be exported too if required. 49 */ 50 int kexec_image_probe_default(struct kimage *image, void *buf, 51 unsigned long buf_len) 52 { 53 const struct kexec_file_ops * const *fops; 54 int ret = -ENOEXEC; 55 56 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { 57 ret = (*fops)->probe(buf, buf_len); 58 if (!ret) { 59 image->fops = *fops; 60 return ret; 61 } 62 } 63 64 return ret; 65 } 66 67 static void *kexec_image_load_default(struct kimage *image) 68 { 69 if (!image->fops || !image->fops->load) 70 return ERR_PTR(-ENOEXEC); 71 72 return image->fops->load(image, image->kernel_buf, 73 image->kernel_buf_len, image->initrd_buf, 74 image->initrd_buf_len, image->cmdline_buf, 75 image->cmdline_buf_len); 76 } 77 78 int kexec_image_post_load_cleanup_default(struct kimage *image) 79 { 80 if (!image->fops || !image->fops->cleanup) 81 return 0; 82 83 return image->fops->cleanup(image->image_loader_data); 84 } 85 86 /* 87 * Free up memory used by kernel, initrd, and command line. This is temporary 88 * memory allocation which is not needed any more after these buffers have 89 * been loaded into separate segments and have been copied elsewhere. 90 */ 91 void kimage_file_post_load_cleanup(struct kimage *image) 92 { 93 struct purgatory_info *pi = &image->purgatory_info; 94 95 vfree(image->kernel_buf); 96 image->kernel_buf = NULL; 97 98 vfree(image->initrd_buf); 99 image->initrd_buf = NULL; 100 101 kfree(image->cmdline_buf); 102 image->cmdline_buf = NULL; 103 104 vfree(pi->purgatory_buf); 105 pi->purgatory_buf = NULL; 106 107 vfree(pi->sechdrs); 108 pi->sechdrs = NULL; 109 110 #ifdef CONFIG_IMA_KEXEC 111 vfree(image->ima_buffer); 112 image->ima_buffer = NULL; 113 #endif /* CONFIG_IMA_KEXEC */ 114 115 /* See if architecture has anything to cleanup post load */ 116 arch_kimage_file_post_load_cleanup(image); 117 118 /* 119 * Above call should have called into bootloader to free up 120 * any data stored in kimage->image_loader_data. It should 121 * be ok now to free it up. 122 */ 123 kfree(image->image_loader_data); 124 image->image_loader_data = NULL; 125 126 kexec_file_dbg_print = false; 127 } 128 129 #ifdef CONFIG_KEXEC_SIG 130 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION 131 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len) 132 { 133 int ret; 134 135 ret = verify_pefile_signature(kernel, kernel_len, 136 VERIFY_USE_SECONDARY_KEYRING, 137 VERIFYING_KEXEC_PE_SIGNATURE); 138 if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) { 139 ret = verify_pefile_signature(kernel, kernel_len, 140 VERIFY_USE_PLATFORM_KEYRING, 141 VERIFYING_KEXEC_PE_SIGNATURE); 142 } 143 return ret; 144 } 145 #endif 146 147 static int kexec_image_verify_sig(struct kimage *image, void *buf, 148 unsigned long buf_len) 149 { 150 if (!image->fops || !image->fops->verify_sig) { 151 pr_debug("kernel loader does not support signature verification.\n"); 152 return -EKEYREJECTED; 153 } 154 155 return image->fops->verify_sig(buf, buf_len); 156 } 157 158 static int 159 kimage_validate_signature(struct kimage *image) 160 { 161 int ret; 162 163 ret = kexec_image_verify_sig(image, image->kernel_buf, 164 image->kernel_buf_len); 165 if (ret) { 166 167 if (sig_enforce) { 168 pr_notice("Enforced kernel signature verification failed (%d).\n", ret); 169 return ret; 170 } 171 172 /* 173 * If IMA is guaranteed to appraise a signature on the kexec 174 * image, permit it even if the kernel is otherwise locked 175 * down. 176 */ 177 if (!ima_appraise_signature(READING_KEXEC_IMAGE) && 178 security_locked_down(LOCKDOWN_KEXEC)) 179 return -EPERM; 180 181 pr_debug("kernel signature verification failed (%d).\n", ret); 182 } 183 184 return 0; 185 } 186 #endif 187 188 /* 189 * In file mode list of segments is prepared by kernel. Copy relevant 190 * data from user space, do error checking, prepare segment list 191 */ 192 static int 193 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 194 const char __user *cmdline_ptr, 195 unsigned long cmdline_len, unsigned flags) 196 { 197 ssize_t ret; 198 void *ldata; 199 200 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf, 201 KEXEC_FILE_SIZE_MAX, NULL, 202 READING_KEXEC_IMAGE); 203 if (ret < 0) 204 return ret; 205 image->kernel_buf_len = ret; 206 kexec_dprintk("kernel: %p kernel_size: %#lx\n", 207 image->kernel_buf, image->kernel_buf_len); 208 209 /* Call arch image probe handlers */ 210 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 211 image->kernel_buf_len); 212 if (ret) 213 goto out; 214 215 #ifdef CONFIG_KEXEC_SIG 216 ret = kimage_validate_signature(image); 217 218 if (ret) 219 goto out; 220 #endif 221 /* It is possible that there no initramfs is being loaded */ 222 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 223 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf, 224 KEXEC_FILE_SIZE_MAX, NULL, 225 READING_KEXEC_INITRAMFS); 226 if (ret < 0) 227 goto out; 228 image->initrd_buf_len = ret; 229 ret = 0; 230 } 231 232 if (cmdline_len) { 233 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 234 if (IS_ERR(image->cmdline_buf)) { 235 ret = PTR_ERR(image->cmdline_buf); 236 image->cmdline_buf = NULL; 237 goto out; 238 } 239 240 image->cmdline_buf_len = cmdline_len; 241 242 /* command line should be a string with last byte null */ 243 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 244 ret = -EINVAL; 245 goto out; 246 } 247 248 ima_kexec_cmdline(kernel_fd, image->cmdline_buf, 249 image->cmdline_buf_len - 1); 250 } 251 252 /* IMA needs to pass the measurement list to the next kernel. */ 253 ima_add_kexec_buffer(image); 254 255 /* Call image load handler */ 256 ldata = kexec_image_load_default(image); 257 258 if (IS_ERR(ldata)) { 259 ret = PTR_ERR(ldata); 260 goto out; 261 } 262 263 image->image_loader_data = ldata; 264 out: 265 /* In case of error, free up all allocated memory in this function */ 266 if (ret) 267 kimage_file_post_load_cleanup(image); 268 return ret; 269 } 270 271 static int 272 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 273 int initrd_fd, const char __user *cmdline_ptr, 274 unsigned long cmdline_len, unsigned long flags) 275 { 276 int ret; 277 struct kimage *image; 278 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 279 280 image = do_kimage_alloc_init(); 281 if (!image) 282 return -ENOMEM; 283 284 kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG); 285 image->file_mode = 1; 286 287 #ifdef CONFIG_CRASH_DUMP 288 if (kexec_on_panic) { 289 /* Enable special crash kernel control page alloc policy. */ 290 image->control_page = crashk_res.start; 291 image->type = KEXEC_TYPE_CRASH; 292 } 293 #endif 294 295 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 296 cmdline_ptr, cmdline_len, flags); 297 if (ret) 298 goto out_free_image; 299 300 ret = sanity_check_segment_list(image); 301 if (ret) 302 goto out_free_post_load_bufs; 303 304 ret = -ENOMEM; 305 image->control_code_page = kimage_alloc_control_pages(image, 306 get_order(KEXEC_CONTROL_PAGE_SIZE)); 307 if (!image->control_code_page) { 308 pr_err("Could not allocate control_code_buffer\n"); 309 goto out_free_post_load_bufs; 310 } 311 312 if (!kexec_on_panic) { 313 image->swap_page = kimage_alloc_control_pages(image, 0); 314 if (!image->swap_page) { 315 pr_err("Could not allocate swap buffer\n"); 316 goto out_free_control_pages; 317 } 318 } 319 320 *rimage = image; 321 return 0; 322 out_free_control_pages: 323 kimage_free_page_list(&image->control_pages); 324 out_free_post_load_bufs: 325 kimage_file_post_load_cleanup(image); 326 out_free_image: 327 kfree(image); 328 return ret; 329 } 330 331 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 332 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 333 unsigned long, flags) 334 { 335 int image_type = (flags & KEXEC_FILE_ON_CRASH) ? 336 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT; 337 struct kimage **dest_image, *image; 338 int ret = 0, i; 339 340 /* We only trust the superuser with rebooting the system. */ 341 if (!kexec_load_permitted(image_type)) 342 return -EPERM; 343 344 /* Make sure we have a legal set of flags */ 345 if (flags != (flags & KEXEC_FILE_FLAGS)) 346 return -EINVAL; 347 348 image = NULL; 349 350 if (!kexec_trylock()) 351 return -EBUSY; 352 353 #ifdef CONFIG_CRASH_DUMP 354 if (image_type == KEXEC_TYPE_CRASH) { 355 dest_image = &kexec_crash_image; 356 if (kexec_crash_image) 357 arch_kexec_unprotect_crashkres(); 358 } else 359 #endif 360 dest_image = &kexec_image; 361 362 if (flags & KEXEC_FILE_UNLOAD) 363 goto exchange; 364 365 /* 366 * In case of crash, new kernel gets loaded in reserved region. It is 367 * same memory where old crash kernel might be loaded. Free any 368 * current crash dump kernel before we corrupt it. 369 */ 370 if (flags & KEXEC_FILE_ON_CRASH) 371 kimage_free(xchg(&kexec_crash_image, NULL)); 372 373 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 374 cmdline_len, flags); 375 if (ret) 376 goto out; 377 378 #ifdef CONFIG_CRASH_HOTPLUG 379 if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags)) 380 image->hotplug_support = 1; 381 #endif 382 383 ret = machine_kexec_prepare(image); 384 if (ret) 385 goto out; 386 387 /* 388 * Some architecture(like S390) may touch the crash memory before 389 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 390 */ 391 ret = kimage_crash_copy_vmcoreinfo(image); 392 if (ret) 393 goto out; 394 395 ret = kexec_calculate_store_digests(image); 396 if (ret) 397 goto out; 398 399 kexec_dprintk("nr_segments = %lu\n", image->nr_segments); 400 for (i = 0; i < image->nr_segments; i++) { 401 struct kexec_segment *ksegment; 402 403 ksegment = &image->segment[i]; 404 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 405 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 406 ksegment->memsz); 407 408 ret = kimage_load_segment(image, &image->segment[i]); 409 if (ret) 410 goto out; 411 } 412 413 kimage_terminate(image); 414 415 ret = machine_kexec_post_load(image); 416 if (ret) 417 goto out; 418 419 kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n", 420 image->type, image->start, image->head, flags); 421 /* 422 * Free up any temporary buffers allocated which are not needed 423 * after image has been loaded 424 */ 425 kimage_file_post_load_cleanup(image); 426 exchange: 427 image = xchg(dest_image, image); 428 out: 429 #ifdef CONFIG_CRASH_DUMP 430 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 431 arch_kexec_protect_crashkres(); 432 #endif 433 434 kexec_unlock(); 435 kimage_free(image); 436 return ret; 437 } 438 439 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 440 struct kexec_buf *kbuf) 441 { 442 struct kimage *image = kbuf->image; 443 unsigned long temp_start, temp_end; 444 445 temp_end = min(end, kbuf->buf_max); 446 temp_start = temp_end - kbuf->memsz + 1; 447 448 do { 449 /* align down start */ 450 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align); 451 452 if (temp_start < start || temp_start < kbuf->buf_min) 453 return 0; 454 455 temp_end = temp_start + kbuf->memsz - 1; 456 457 /* 458 * Make sure this does not conflict with any of existing 459 * segments 460 */ 461 if (kimage_is_destination_range(image, temp_start, temp_end)) { 462 temp_start = temp_start - PAGE_SIZE; 463 continue; 464 } 465 466 /* Make sure this does not conflict with exclude range */ 467 if (arch_check_excluded_range(image, temp_start, temp_end)) { 468 temp_start = temp_start - PAGE_SIZE; 469 continue; 470 } 471 472 /* We found a suitable memory range */ 473 break; 474 } while (1); 475 476 /* If we are here, we found a suitable memory range */ 477 kbuf->mem = temp_start; 478 479 /* Success, stop navigating through remaining System RAM ranges */ 480 return 1; 481 } 482 483 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 484 struct kexec_buf *kbuf) 485 { 486 struct kimage *image = kbuf->image; 487 unsigned long temp_start, temp_end; 488 489 temp_start = max(start, kbuf->buf_min); 490 491 do { 492 temp_start = ALIGN(temp_start, kbuf->buf_align); 493 temp_end = temp_start + kbuf->memsz - 1; 494 495 if (temp_end > end || temp_end > kbuf->buf_max) 496 return 0; 497 /* 498 * Make sure this does not conflict with any of existing 499 * segments 500 */ 501 if (kimage_is_destination_range(image, temp_start, temp_end)) { 502 temp_start = temp_start + PAGE_SIZE; 503 continue; 504 } 505 506 /* Make sure this does not conflict with exclude range */ 507 if (arch_check_excluded_range(image, temp_start, temp_end)) { 508 temp_start = temp_start + PAGE_SIZE; 509 continue; 510 } 511 512 /* We found a suitable memory range */ 513 break; 514 } while (1); 515 516 /* If we are here, we found a suitable memory range */ 517 kbuf->mem = temp_start; 518 519 /* Success, stop navigating through remaining System RAM ranges */ 520 return 1; 521 } 522 523 static int locate_mem_hole_callback(struct resource *res, void *arg) 524 { 525 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 526 u64 start = res->start, end = res->end; 527 unsigned long sz = end - start + 1; 528 529 /* Returning 0 will take to next memory range */ 530 531 /* Don't use memory that will be detected and handled by a driver. */ 532 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 533 return 0; 534 535 if (sz < kbuf->memsz) 536 return 0; 537 538 if (end < kbuf->buf_min || start > kbuf->buf_max) 539 return 0; 540 541 /* 542 * Allocate memory top down with-in ram range. Otherwise bottom up 543 * allocation. 544 */ 545 if (kbuf->top_down) 546 return locate_mem_hole_top_down(start, end, kbuf); 547 return locate_mem_hole_bottom_up(start, end, kbuf); 548 } 549 550 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK 551 static int kexec_walk_memblock(struct kexec_buf *kbuf, 552 int (*func)(struct resource *, void *)) 553 { 554 int ret = 0; 555 u64 i; 556 phys_addr_t mstart, mend; 557 struct resource res = { }; 558 559 #ifdef CONFIG_CRASH_DUMP 560 if (kbuf->image->type == KEXEC_TYPE_CRASH) 561 return func(&crashk_res, kbuf); 562 #endif 563 564 /* 565 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See 566 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in 567 * locate_mem_hole_callback(). 568 */ 569 if (kbuf->top_down) { 570 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, 571 &mstart, &mend, NULL) { 572 /* 573 * In memblock, end points to the first byte after the 574 * range while in kexec, end points to the last byte 575 * in the range. 576 */ 577 res.start = mstart; 578 res.end = mend - 1; 579 ret = func(&res, kbuf); 580 if (ret) 581 break; 582 } 583 } else { 584 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 585 &mstart, &mend, NULL) { 586 /* 587 * In memblock, end points to the first byte after the 588 * range while in kexec, end points to the last byte 589 * in the range. 590 */ 591 res.start = mstart; 592 res.end = mend - 1; 593 ret = func(&res, kbuf); 594 if (ret) 595 break; 596 } 597 } 598 599 return ret; 600 } 601 #else 602 static int kexec_walk_memblock(struct kexec_buf *kbuf, 603 int (*func)(struct resource *, void *)) 604 { 605 return 0; 606 } 607 #endif 608 609 /** 610 * kexec_walk_resources - call func(data) on free memory regions 611 * @kbuf: Context info for the search. Also passed to @func. 612 * @func: Function to call for each memory region. 613 * 614 * Return: The memory walk will stop when func returns a non-zero value 615 * and that value will be returned. If all free regions are visited without 616 * func returning non-zero, then zero will be returned. 617 */ 618 static int kexec_walk_resources(struct kexec_buf *kbuf, 619 int (*func)(struct resource *, void *)) 620 { 621 #ifdef CONFIG_CRASH_DUMP 622 if (kbuf->image->type == KEXEC_TYPE_CRASH) 623 return walk_iomem_res_desc(crashk_res.desc, 624 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 625 crashk_res.start, crashk_res.end, 626 kbuf, func); 627 #endif 628 if (kbuf->top_down) 629 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func); 630 else 631 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 632 } 633 634 /** 635 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 636 * @kbuf: Parameters for the memory search. 637 * 638 * On success, kbuf->mem will have the start address of the memory region found. 639 * 640 * Return: 0 on success, negative errno on error. 641 */ 642 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 643 { 644 int ret; 645 646 /* Arch knows where to place */ 647 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) 648 return 0; 649 650 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 651 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); 652 else 653 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); 654 655 return ret == 1 ? 0 : -EADDRNOTAVAIL; 656 } 657 658 /** 659 * kexec_add_buffer - place a buffer in a kexec segment 660 * @kbuf: Buffer contents and memory parameters. 661 * 662 * This function assumes that kexec_lock is held. 663 * On successful return, @kbuf->mem will have the physical address of 664 * the buffer in memory. 665 * 666 * Return: 0 on success, negative errno on error. 667 */ 668 int kexec_add_buffer(struct kexec_buf *kbuf) 669 { 670 struct kexec_segment *ksegment; 671 int ret; 672 673 /* Currently adding segment this way is allowed only in file mode */ 674 if (!kbuf->image->file_mode) 675 return -EINVAL; 676 677 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 678 return -EINVAL; 679 680 /* 681 * Make sure we are not trying to add buffer after allocating 682 * control pages. All segments need to be placed first before 683 * any control pages are allocated. As control page allocation 684 * logic goes through list of segments to make sure there are 685 * no destination overlaps. 686 */ 687 if (!list_empty(&kbuf->image->control_pages)) { 688 WARN_ON(1); 689 return -EINVAL; 690 } 691 692 /* Ensure minimum alignment needed for segments. */ 693 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 694 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 695 696 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 697 ret = arch_kexec_locate_mem_hole(kbuf); 698 if (ret) 699 return ret; 700 701 /* Found a suitable memory range */ 702 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 703 ksegment->kbuf = kbuf->buffer; 704 ksegment->bufsz = kbuf->bufsz; 705 ksegment->mem = kbuf->mem; 706 ksegment->memsz = kbuf->memsz; 707 kbuf->image->nr_segments++; 708 return 0; 709 } 710 711 /* Calculate and store the digest of segments */ 712 static int kexec_calculate_store_digests(struct kimage *image) 713 { 714 struct sha256_state state; 715 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 716 size_t nullsz; 717 u8 digest[SHA256_DIGEST_SIZE]; 718 void *zero_buf; 719 struct kexec_sha_region *sha_regions; 720 struct purgatory_info *pi = &image->purgatory_info; 721 722 if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY)) 723 return 0; 724 725 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 726 zero_buf_sz = PAGE_SIZE; 727 728 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 729 sha_regions = vzalloc(sha_region_sz); 730 if (!sha_regions) 731 return -ENOMEM; 732 733 sha256_init(&state); 734 735 for (j = i = 0; i < image->nr_segments; i++) { 736 struct kexec_segment *ksegment; 737 738 #ifdef CONFIG_CRASH_HOTPLUG 739 /* Exclude elfcorehdr segment to allow future changes via hotplug */ 740 if (i == image->elfcorehdr_index) 741 continue; 742 #endif 743 744 ksegment = &image->segment[i]; 745 /* 746 * Skip purgatory as it will be modified once we put digest 747 * info in purgatory. 748 */ 749 if (ksegment->kbuf == pi->purgatory_buf) 750 continue; 751 752 sha256_update(&state, ksegment->kbuf, ksegment->bufsz); 753 754 /* 755 * Assume rest of the buffer is filled with zero and 756 * update digest accordingly. 757 */ 758 nullsz = ksegment->memsz - ksegment->bufsz; 759 while (nullsz) { 760 unsigned long bytes = nullsz; 761 762 if (bytes > zero_buf_sz) 763 bytes = zero_buf_sz; 764 sha256_update(&state, zero_buf, bytes); 765 nullsz -= bytes; 766 } 767 768 sha_regions[j].start = ksegment->mem; 769 sha_regions[j].len = ksegment->memsz; 770 j++; 771 } 772 773 sha256_final(&state, digest); 774 775 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 776 sha_regions, sha_region_sz, 0); 777 if (ret) 778 goto out_free_sha_regions; 779 780 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 781 digest, SHA256_DIGEST_SIZE, 0); 782 out_free_sha_regions: 783 vfree(sha_regions); 784 return ret; 785 } 786 787 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY 788 /* 789 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. 790 * @pi: Purgatory to be loaded. 791 * @kbuf: Buffer to setup. 792 * 793 * Allocates the memory needed for the buffer. Caller is responsible to free 794 * the memory after use. 795 * 796 * Return: 0 on success, negative errno on error. 797 */ 798 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, 799 struct kexec_buf *kbuf) 800 { 801 const Elf_Shdr *sechdrs; 802 unsigned long bss_align; 803 unsigned long bss_sz; 804 unsigned long align; 805 int i, ret; 806 807 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 808 kbuf->buf_align = bss_align = 1; 809 kbuf->bufsz = bss_sz = 0; 810 811 for (i = 0; i < pi->ehdr->e_shnum; i++) { 812 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 813 continue; 814 815 align = sechdrs[i].sh_addralign; 816 if (sechdrs[i].sh_type != SHT_NOBITS) { 817 if (kbuf->buf_align < align) 818 kbuf->buf_align = align; 819 kbuf->bufsz = ALIGN(kbuf->bufsz, align); 820 kbuf->bufsz += sechdrs[i].sh_size; 821 } else { 822 if (bss_align < align) 823 bss_align = align; 824 bss_sz = ALIGN(bss_sz, align); 825 bss_sz += sechdrs[i].sh_size; 826 } 827 } 828 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); 829 kbuf->memsz = kbuf->bufsz + bss_sz; 830 if (kbuf->buf_align < bss_align) 831 kbuf->buf_align = bss_align; 832 833 kbuf->buffer = vzalloc(kbuf->bufsz); 834 if (!kbuf->buffer) 835 return -ENOMEM; 836 pi->purgatory_buf = kbuf->buffer; 837 838 ret = kexec_add_buffer(kbuf); 839 if (ret) 840 goto out; 841 842 return 0; 843 out: 844 vfree(pi->purgatory_buf); 845 pi->purgatory_buf = NULL; 846 return ret; 847 } 848 849 /* 850 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. 851 * @pi: Purgatory to be loaded. 852 * @kbuf: Buffer prepared to store purgatory. 853 * 854 * Allocates the memory needed for the buffer. Caller is responsible to free 855 * the memory after use. 856 * 857 * Return: 0 on success, negative errno on error. 858 */ 859 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, 860 struct kexec_buf *kbuf) 861 { 862 unsigned long bss_addr; 863 unsigned long offset; 864 size_t sechdrs_size; 865 Elf_Shdr *sechdrs; 866 int i; 867 868 /* 869 * The section headers in kexec_purgatory are read-only. In order to 870 * have them modifiable make a temporary copy. 871 */ 872 sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum); 873 sechdrs = vzalloc(sechdrs_size); 874 if (!sechdrs) 875 return -ENOMEM; 876 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size); 877 pi->sechdrs = sechdrs; 878 879 offset = 0; 880 bss_addr = kbuf->mem + kbuf->bufsz; 881 kbuf->image->start = pi->ehdr->e_entry; 882 883 for (i = 0; i < pi->ehdr->e_shnum; i++) { 884 unsigned long align; 885 void *src, *dst; 886 887 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 888 continue; 889 890 align = sechdrs[i].sh_addralign; 891 if (sechdrs[i].sh_type == SHT_NOBITS) { 892 bss_addr = ALIGN(bss_addr, align); 893 sechdrs[i].sh_addr = bss_addr; 894 bss_addr += sechdrs[i].sh_size; 895 continue; 896 } 897 898 offset = ALIGN(offset, align); 899 900 /* 901 * Check if the segment contains the entry point, if so, 902 * calculate the value of image->start based on it. 903 * If the compiler has produced more than one .text section 904 * (Eg: .text.hot), they are generally after the main .text 905 * section, and they shall not be used to calculate 906 * image->start. So do not re-calculate image->start if it 907 * is not set to the initial value, and warn the user so they 908 * have a chance to fix their purgatory's linker script. 909 */ 910 if (sechdrs[i].sh_flags & SHF_EXECINSTR && 911 pi->ehdr->e_entry >= sechdrs[i].sh_addr && 912 pi->ehdr->e_entry < (sechdrs[i].sh_addr 913 + sechdrs[i].sh_size) && 914 !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) { 915 kbuf->image->start -= sechdrs[i].sh_addr; 916 kbuf->image->start += kbuf->mem + offset; 917 } 918 919 src = (void *)pi->ehdr + sechdrs[i].sh_offset; 920 dst = pi->purgatory_buf + offset; 921 memcpy(dst, src, sechdrs[i].sh_size); 922 923 sechdrs[i].sh_addr = kbuf->mem + offset; 924 sechdrs[i].sh_offset = offset; 925 offset += sechdrs[i].sh_size; 926 } 927 928 return 0; 929 } 930 931 static int kexec_apply_relocations(struct kimage *image) 932 { 933 int i, ret; 934 struct purgatory_info *pi = &image->purgatory_info; 935 const Elf_Shdr *sechdrs; 936 937 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 938 939 for (i = 0; i < pi->ehdr->e_shnum; i++) { 940 const Elf_Shdr *relsec; 941 const Elf_Shdr *symtab; 942 Elf_Shdr *section; 943 944 relsec = sechdrs + i; 945 946 if (relsec->sh_type != SHT_RELA && 947 relsec->sh_type != SHT_REL) 948 continue; 949 950 /* 951 * For section of type SHT_RELA/SHT_REL, 952 * ->sh_link contains section header index of associated 953 * symbol table. And ->sh_info contains section header 954 * index of section to which relocations apply. 955 */ 956 if (relsec->sh_info >= pi->ehdr->e_shnum || 957 relsec->sh_link >= pi->ehdr->e_shnum) 958 return -ENOEXEC; 959 960 section = pi->sechdrs + relsec->sh_info; 961 symtab = sechdrs + relsec->sh_link; 962 963 if (!(section->sh_flags & SHF_ALLOC)) 964 continue; 965 966 /* 967 * symtab->sh_link contain section header index of associated 968 * string table. 969 */ 970 if (symtab->sh_link >= pi->ehdr->e_shnum) 971 /* Invalid section number? */ 972 continue; 973 974 /* 975 * Respective architecture needs to provide support for applying 976 * relocations of type SHT_RELA/SHT_REL. 977 */ 978 if (relsec->sh_type == SHT_RELA) 979 ret = arch_kexec_apply_relocations_add(pi, section, 980 relsec, symtab); 981 else if (relsec->sh_type == SHT_REL) 982 ret = arch_kexec_apply_relocations(pi, section, 983 relsec, symtab); 984 if (ret) 985 return ret; 986 } 987 988 return 0; 989 } 990 991 /* 992 * kexec_load_purgatory - Load and relocate the purgatory object. 993 * @image: Image to add the purgatory to. 994 * @kbuf: Memory parameters to use. 995 * 996 * Allocates the memory needed for image->purgatory_info.sechdrs and 997 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible 998 * to free the memory after use. 999 * 1000 * Return: 0 on success, negative errno on error. 1001 */ 1002 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) 1003 { 1004 struct purgatory_info *pi = &image->purgatory_info; 1005 int ret; 1006 1007 if (kexec_purgatory_size <= 0) 1008 return -EINVAL; 1009 1010 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; 1011 1012 ret = kexec_purgatory_setup_kbuf(pi, kbuf); 1013 if (ret) 1014 return ret; 1015 1016 ret = kexec_purgatory_setup_sechdrs(pi, kbuf); 1017 if (ret) 1018 goto out_free_kbuf; 1019 1020 ret = kexec_apply_relocations(image); 1021 if (ret) 1022 goto out; 1023 1024 return 0; 1025 out: 1026 vfree(pi->sechdrs); 1027 pi->sechdrs = NULL; 1028 out_free_kbuf: 1029 vfree(pi->purgatory_buf); 1030 pi->purgatory_buf = NULL; 1031 return ret; 1032 } 1033 1034 /* 1035 * kexec_purgatory_find_symbol - find a symbol in the purgatory 1036 * @pi: Purgatory to search in. 1037 * @name: Name of the symbol. 1038 * 1039 * Return: pointer to symbol in read-only symtab on success, NULL on error. 1040 */ 1041 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 1042 const char *name) 1043 { 1044 const Elf_Shdr *sechdrs; 1045 const Elf_Ehdr *ehdr; 1046 const Elf_Sym *syms; 1047 const char *strtab; 1048 int i, k; 1049 1050 if (!pi->ehdr) 1051 return NULL; 1052 1053 ehdr = pi->ehdr; 1054 sechdrs = (void *)ehdr + ehdr->e_shoff; 1055 1056 for (i = 0; i < ehdr->e_shnum; i++) { 1057 if (sechdrs[i].sh_type != SHT_SYMTAB) 1058 continue; 1059 1060 if (sechdrs[i].sh_link >= ehdr->e_shnum) 1061 /* Invalid strtab section number */ 1062 continue; 1063 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; 1064 syms = (void *)ehdr + sechdrs[i].sh_offset; 1065 1066 /* Go through symbols for a match */ 1067 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 1068 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 1069 continue; 1070 1071 if (strcmp(strtab + syms[k].st_name, name) != 0) 1072 continue; 1073 1074 if (syms[k].st_shndx == SHN_UNDEF || 1075 syms[k].st_shndx >= ehdr->e_shnum) { 1076 pr_debug("Symbol: %s has bad section index %d.\n", 1077 name, syms[k].st_shndx); 1078 return NULL; 1079 } 1080 1081 /* Found the symbol we are looking for */ 1082 return &syms[k]; 1083 } 1084 } 1085 1086 return NULL; 1087 } 1088 1089 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 1090 { 1091 struct purgatory_info *pi = &image->purgatory_info; 1092 const Elf_Sym *sym; 1093 Elf_Shdr *sechdr; 1094 1095 sym = kexec_purgatory_find_symbol(pi, name); 1096 if (!sym) 1097 return ERR_PTR(-EINVAL); 1098 1099 sechdr = &pi->sechdrs[sym->st_shndx]; 1100 1101 /* 1102 * Returns the address where symbol will finally be loaded after 1103 * kexec_load_segment() 1104 */ 1105 return (void *)(sechdr->sh_addr + sym->st_value); 1106 } 1107 1108 /* 1109 * Get or set value of a symbol. If "get_value" is true, symbol value is 1110 * returned in buf otherwise symbol value is set based on value in buf. 1111 */ 1112 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 1113 void *buf, unsigned int size, bool get_value) 1114 { 1115 struct purgatory_info *pi = &image->purgatory_info; 1116 const Elf_Sym *sym; 1117 Elf_Shdr *sec; 1118 char *sym_buf; 1119 1120 sym = kexec_purgatory_find_symbol(pi, name); 1121 if (!sym) 1122 return -EINVAL; 1123 1124 if (sym->st_size != size) { 1125 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1126 name, (unsigned long)sym->st_size, size); 1127 return -EINVAL; 1128 } 1129 1130 sec = pi->sechdrs + sym->st_shndx; 1131 1132 if (sec->sh_type == SHT_NOBITS) { 1133 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1134 get_value ? "get" : "set"); 1135 return -EINVAL; 1136 } 1137 1138 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; 1139 1140 if (get_value) 1141 memcpy((void *)buf, sym_buf, size); 1142 else 1143 memcpy((void *)sym_buf, buf, size); 1144 1145 return 0; 1146 } 1147 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */ 1148