1 /* 2 * kexec: kexec_file_load system call 3 * 4 * Copyright (C) 2014 Red Hat Inc. 5 * Authors: 6 * Vivek Goyal <vgoyal@redhat.com> 7 * 8 * This source code is licensed under the GNU General Public License, 9 * Version 2. See the file COPYING for more details. 10 */ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/capability.h> 15 #include <linux/mm.h> 16 #include <linux/file.h> 17 #include <linux/slab.h> 18 #include <linux/kexec.h> 19 #include <linux/memblock.h> 20 #include <linux/mutex.h> 21 #include <linux/list.h> 22 #include <linux/fs.h> 23 #include <linux/ima.h> 24 #include <crypto/hash.h> 25 #include <crypto/sha.h> 26 #include <linux/elf.h> 27 #include <linux/elfcore.h> 28 #include <linux/kernel.h> 29 #include <linux/syscalls.h> 30 #include <linux/vmalloc.h> 31 #include "kexec_internal.h" 32 33 static int kexec_calculate_store_digests(struct kimage *image); 34 35 /* 36 * Currently this is the only default function that is exported as some 37 * architectures need it to do additional handlings. 38 * In the future, other default functions may be exported too if required. 39 */ 40 int kexec_image_probe_default(struct kimage *image, void *buf, 41 unsigned long buf_len) 42 { 43 const struct kexec_file_ops * const *fops; 44 int ret = -ENOEXEC; 45 46 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { 47 ret = (*fops)->probe(buf, buf_len); 48 if (!ret) { 49 image->fops = *fops; 50 return ret; 51 } 52 } 53 54 return ret; 55 } 56 57 /* Architectures can provide this probe function */ 58 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 59 unsigned long buf_len) 60 { 61 return kexec_image_probe_default(image, buf, buf_len); 62 } 63 64 static void *kexec_image_load_default(struct kimage *image) 65 { 66 if (!image->fops || !image->fops->load) 67 return ERR_PTR(-ENOEXEC); 68 69 return image->fops->load(image, image->kernel_buf, 70 image->kernel_buf_len, image->initrd_buf, 71 image->initrd_buf_len, image->cmdline_buf, 72 image->cmdline_buf_len); 73 } 74 75 void * __weak arch_kexec_kernel_image_load(struct kimage *image) 76 { 77 return kexec_image_load_default(image); 78 } 79 80 int kexec_image_post_load_cleanup_default(struct kimage *image) 81 { 82 if (!image->fops || !image->fops->cleanup) 83 return 0; 84 85 return image->fops->cleanup(image->image_loader_data); 86 } 87 88 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image) 89 { 90 return kexec_image_post_load_cleanup_default(image); 91 } 92 93 #ifdef CONFIG_KEXEC_VERIFY_SIG 94 static int kexec_image_verify_sig_default(struct kimage *image, void *buf, 95 unsigned long buf_len) 96 { 97 if (!image->fops || !image->fops->verify_sig) { 98 pr_debug("kernel loader does not support signature verification.\n"); 99 return -EKEYREJECTED; 100 } 101 102 return image->fops->verify_sig(buf, buf_len); 103 } 104 105 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, 106 unsigned long buf_len) 107 { 108 return kexec_image_verify_sig_default(image, buf, buf_len); 109 } 110 #endif 111 112 /* 113 * arch_kexec_apply_relocations_add - apply relocations of type RELA 114 * @pi: Purgatory to be relocated. 115 * @section: Section relocations applying to. 116 * @relsec: Section containing RELAs. 117 * @symtab: Corresponding symtab. 118 * 119 * Return: 0 on success, negative errno on error. 120 */ 121 int __weak 122 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section, 123 const Elf_Shdr *relsec, const Elf_Shdr *symtab) 124 { 125 pr_err("RELA relocation unsupported.\n"); 126 return -ENOEXEC; 127 } 128 129 /* 130 * arch_kexec_apply_relocations - apply relocations of type REL 131 * @pi: Purgatory to be relocated. 132 * @section: Section relocations applying to. 133 * @relsec: Section containing RELs. 134 * @symtab: Corresponding symtab. 135 * 136 * Return: 0 on success, negative errno on error. 137 */ 138 int __weak 139 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section, 140 const Elf_Shdr *relsec, const Elf_Shdr *symtab) 141 { 142 pr_err("REL relocation unsupported.\n"); 143 return -ENOEXEC; 144 } 145 146 /* 147 * Free up memory used by kernel, initrd, and command line. This is temporary 148 * memory allocation which is not needed any more after these buffers have 149 * been loaded into separate segments and have been copied elsewhere. 150 */ 151 void kimage_file_post_load_cleanup(struct kimage *image) 152 { 153 struct purgatory_info *pi = &image->purgatory_info; 154 155 vfree(image->kernel_buf); 156 image->kernel_buf = NULL; 157 158 vfree(image->initrd_buf); 159 image->initrd_buf = NULL; 160 161 kfree(image->cmdline_buf); 162 image->cmdline_buf = NULL; 163 164 vfree(pi->purgatory_buf); 165 pi->purgatory_buf = NULL; 166 167 vfree(pi->sechdrs); 168 pi->sechdrs = NULL; 169 170 /* See if architecture has anything to cleanup post load */ 171 arch_kimage_file_post_load_cleanup(image); 172 173 /* 174 * Above call should have called into bootloader to free up 175 * any data stored in kimage->image_loader_data. It should 176 * be ok now to free it up. 177 */ 178 kfree(image->image_loader_data); 179 image->image_loader_data = NULL; 180 } 181 182 /* 183 * In file mode list of segments is prepared by kernel. Copy relevant 184 * data from user space, do error checking, prepare segment list 185 */ 186 static int 187 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 188 const char __user *cmdline_ptr, 189 unsigned long cmdline_len, unsigned flags) 190 { 191 int ret = 0; 192 void *ldata; 193 loff_t size; 194 195 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf, 196 &size, INT_MAX, READING_KEXEC_IMAGE); 197 if (ret) 198 return ret; 199 image->kernel_buf_len = size; 200 201 /* IMA needs to pass the measurement list to the next kernel. */ 202 ima_add_kexec_buffer(image); 203 204 /* Call arch image probe handlers */ 205 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 206 image->kernel_buf_len); 207 if (ret) 208 goto out; 209 210 #ifdef CONFIG_KEXEC_VERIFY_SIG 211 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, 212 image->kernel_buf_len); 213 if (ret) { 214 pr_debug("kernel signature verification failed.\n"); 215 goto out; 216 } 217 pr_debug("kernel signature verification successful.\n"); 218 #endif 219 /* It is possible that there no initramfs is being loaded */ 220 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 221 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf, 222 &size, INT_MAX, 223 READING_KEXEC_INITRAMFS); 224 if (ret) 225 goto out; 226 image->initrd_buf_len = size; 227 } 228 229 if (cmdline_len) { 230 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 231 if (IS_ERR(image->cmdline_buf)) { 232 ret = PTR_ERR(image->cmdline_buf); 233 image->cmdline_buf = NULL; 234 goto out; 235 } 236 237 image->cmdline_buf_len = cmdline_len; 238 239 /* command line should be a string with last byte null */ 240 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 241 ret = -EINVAL; 242 goto out; 243 } 244 } 245 246 /* Call arch image load handlers */ 247 ldata = arch_kexec_kernel_image_load(image); 248 249 if (IS_ERR(ldata)) { 250 ret = PTR_ERR(ldata); 251 goto out; 252 } 253 254 image->image_loader_data = ldata; 255 out: 256 /* In case of error, free up all allocated memory in this function */ 257 if (ret) 258 kimage_file_post_load_cleanup(image); 259 return ret; 260 } 261 262 static int 263 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 264 int initrd_fd, const char __user *cmdline_ptr, 265 unsigned long cmdline_len, unsigned long flags) 266 { 267 int ret; 268 struct kimage *image; 269 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 270 271 image = do_kimage_alloc_init(); 272 if (!image) 273 return -ENOMEM; 274 275 image->file_mode = 1; 276 277 if (kexec_on_panic) { 278 /* Enable special crash kernel control page alloc policy. */ 279 image->control_page = crashk_res.start; 280 image->type = KEXEC_TYPE_CRASH; 281 } 282 283 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 284 cmdline_ptr, cmdline_len, flags); 285 if (ret) 286 goto out_free_image; 287 288 ret = sanity_check_segment_list(image); 289 if (ret) 290 goto out_free_post_load_bufs; 291 292 ret = -ENOMEM; 293 image->control_code_page = kimage_alloc_control_pages(image, 294 get_order(KEXEC_CONTROL_PAGE_SIZE)); 295 if (!image->control_code_page) { 296 pr_err("Could not allocate control_code_buffer\n"); 297 goto out_free_post_load_bufs; 298 } 299 300 if (!kexec_on_panic) { 301 image->swap_page = kimage_alloc_control_pages(image, 0); 302 if (!image->swap_page) { 303 pr_err("Could not allocate swap buffer\n"); 304 goto out_free_control_pages; 305 } 306 } 307 308 *rimage = image; 309 return 0; 310 out_free_control_pages: 311 kimage_free_page_list(&image->control_pages); 312 out_free_post_load_bufs: 313 kimage_file_post_load_cleanup(image); 314 out_free_image: 315 kfree(image); 316 return ret; 317 } 318 319 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 320 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 321 unsigned long, flags) 322 { 323 int ret = 0, i; 324 struct kimage **dest_image, *image; 325 326 /* We only trust the superuser with rebooting the system. */ 327 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 328 return -EPERM; 329 330 /* Make sure we have a legal set of flags */ 331 if (flags != (flags & KEXEC_FILE_FLAGS)) 332 return -EINVAL; 333 334 image = NULL; 335 336 if (!mutex_trylock(&kexec_mutex)) 337 return -EBUSY; 338 339 dest_image = &kexec_image; 340 if (flags & KEXEC_FILE_ON_CRASH) { 341 dest_image = &kexec_crash_image; 342 if (kexec_crash_image) 343 arch_kexec_unprotect_crashkres(); 344 } 345 346 if (flags & KEXEC_FILE_UNLOAD) 347 goto exchange; 348 349 /* 350 * In case of crash, new kernel gets loaded in reserved region. It is 351 * same memory where old crash kernel might be loaded. Free any 352 * current crash dump kernel before we corrupt it. 353 */ 354 if (flags & KEXEC_FILE_ON_CRASH) 355 kimage_free(xchg(&kexec_crash_image, NULL)); 356 357 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 358 cmdline_len, flags); 359 if (ret) 360 goto out; 361 362 ret = machine_kexec_prepare(image); 363 if (ret) 364 goto out; 365 366 /* 367 * Some architecture(like S390) may touch the crash memory before 368 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 369 */ 370 ret = kimage_crash_copy_vmcoreinfo(image); 371 if (ret) 372 goto out; 373 374 ret = kexec_calculate_store_digests(image); 375 if (ret) 376 goto out; 377 378 for (i = 0; i < image->nr_segments; i++) { 379 struct kexec_segment *ksegment; 380 381 ksegment = &image->segment[i]; 382 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 383 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 384 ksegment->memsz); 385 386 ret = kimage_load_segment(image, &image->segment[i]); 387 if (ret) 388 goto out; 389 } 390 391 kimage_terminate(image); 392 393 /* 394 * Free up any temporary buffers allocated which are not needed 395 * after image has been loaded 396 */ 397 kimage_file_post_load_cleanup(image); 398 exchange: 399 image = xchg(dest_image, image); 400 out: 401 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 402 arch_kexec_protect_crashkres(); 403 404 mutex_unlock(&kexec_mutex); 405 kimage_free(image); 406 return ret; 407 } 408 409 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 410 struct kexec_buf *kbuf) 411 { 412 struct kimage *image = kbuf->image; 413 unsigned long temp_start, temp_end; 414 415 temp_end = min(end, kbuf->buf_max); 416 temp_start = temp_end - kbuf->memsz; 417 418 do { 419 /* align down start */ 420 temp_start = temp_start & (~(kbuf->buf_align - 1)); 421 422 if (temp_start < start || temp_start < kbuf->buf_min) 423 return 0; 424 425 temp_end = temp_start + kbuf->memsz - 1; 426 427 /* 428 * Make sure this does not conflict with any of existing 429 * segments 430 */ 431 if (kimage_is_destination_range(image, temp_start, temp_end)) { 432 temp_start = temp_start - PAGE_SIZE; 433 continue; 434 } 435 436 /* We found a suitable memory range */ 437 break; 438 } while (1); 439 440 /* If we are here, we found a suitable memory range */ 441 kbuf->mem = temp_start; 442 443 /* Success, stop navigating through remaining System RAM ranges */ 444 return 1; 445 } 446 447 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 448 struct kexec_buf *kbuf) 449 { 450 struct kimage *image = kbuf->image; 451 unsigned long temp_start, temp_end; 452 453 temp_start = max(start, kbuf->buf_min); 454 455 do { 456 temp_start = ALIGN(temp_start, kbuf->buf_align); 457 temp_end = temp_start + kbuf->memsz - 1; 458 459 if (temp_end > end || temp_end > kbuf->buf_max) 460 return 0; 461 /* 462 * Make sure this does not conflict with any of existing 463 * segments 464 */ 465 if (kimage_is_destination_range(image, temp_start, temp_end)) { 466 temp_start = temp_start + PAGE_SIZE; 467 continue; 468 } 469 470 /* We found a suitable memory range */ 471 break; 472 } while (1); 473 474 /* If we are here, we found a suitable memory range */ 475 kbuf->mem = temp_start; 476 477 /* Success, stop navigating through remaining System RAM ranges */ 478 return 1; 479 } 480 481 static int locate_mem_hole_callback(struct resource *res, void *arg) 482 { 483 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 484 u64 start = res->start, end = res->end; 485 unsigned long sz = end - start + 1; 486 487 /* Returning 0 will take to next memory range */ 488 if (sz < kbuf->memsz) 489 return 0; 490 491 if (end < kbuf->buf_min || start > kbuf->buf_max) 492 return 0; 493 494 /* 495 * Allocate memory top down with-in ram range. Otherwise bottom up 496 * allocation. 497 */ 498 if (kbuf->top_down) 499 return locate_mem_hole_top_down(start, end, kbuf); 500 return locate_mem_hole_bottom_up(start, end, kbuf); 501 } 502 503 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK 504 static int kexec_walk_memblock(struct kexec_buf *kbuf, 505 int (*func)(struct resource *, void *)) 506 { 507 int ret = 0; 508 u64 i; 509 phys_addr_t mstart, mend; 510 struct resource res = { }; 511 512 if (kbuf->image->type == KEXEC_TYPE_CRASH) 513 return func(&crashk_res, kbuf); 514 515 if (kbuf->top_down) { 516 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, 517 &mstart, &mend, NULL) { 518 /* 519 * In memblock, end points to the first byte after the 520 * range while in kexec, end points to the last byte 521 * in the range. 522 */ 523 res.start = mstart; 524 res.end = mend - 1; 525 ret = func(&res, kbuf); 526 if (ret) 527 break; 528 } 529 } else { 530 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 531 &mstart, &mend, NULL) { 532 /* 533 * In memblock, end points to the first byte after the 534 * range while in kexec, end points to the last byte 535 * in the range. 536 */ 537 res.start = mstart; 538 res.end = mend - 1; 539 ret = func(&res, kbuf); 540 if (ret) 541 break; 542 } 543 } 544 545 return ret; 546 } 547 #else 548 static int kexec_walk_memblock(struct kexec_buf *kbuf, 549 int (*func)(struct resource *, void *)) 550 { 551 return 0; 552 } 553 #endif 554 555 /** 556 * kexec_walk_resources - call func(data) on free memory regions 557 * @kbuf: Context info for the search. Also passed to @func. 558 * @func: Function to call for each memory region. 559 * 560 * Return: The memory walk will stop when func returns a non-zero value 561 * and that value will be returned. If all free regions are visited without 562 * func returning non-zero, then zero will be returned. 563 */ 564 static int kexec_walk_resources(struct kexec_buf *kbuf, 565 int (*func)(struct resource *, void *)) 566 { 567 if (kbuf->image->type == KEXEC_TYPE_CRASH) 568 return walk_iomem_res_desc(crashk_res.desc, 569 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 570 crashk_res.start, crashk_res.end, 571 kbuf, func); 572 else 573 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 574 } 575 576 /** 577 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 578 * @kbuf: Parameters for the memory search. 579 * 580 * On success, kbuf->mem will have the start address of the memory region found. 581 * 582 * Return: 0 on success, negative errno on error. 583 */ 584 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 585 { 586 int ret; 587 588 /* Arch knows where to place */ 589 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) 590 return 0; 591 592 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 593 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); 594 else 595 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); 596 597 return ret == 1 ? 0 : -EADDRNOTAVAIL; 598 } 599 600 /** 601 * kexec_add_buffer - place a buffer in a kexec segment 602 * @kbuf: Buffer contents and memory parameters. 603 * 604 * This function assumes that kexec_mutex is held. 605 * On successful return, @kbuf->mem will have the physical address of 606 * the buffer in memory. 607 * 608 * Return: 0 on success, negative errno on error. 609 */ 610 int kexec_add_buffer(struct kexec_buf *kbuf) 611 { 612 613 struct kexec_segment *ksegment; 614 int ret; 615 616 /* Currently adding segment this way is allowed only in file mode */ 617 if (!kbuf->image->file_mode) 618 return -EINVAL; 619 620 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 621 return -EINVAL; 622 623 /* 624 * Make sure we are not trying to add buffer after allocating 625 * control pages. All segments need to be placed first before 626 * any control pages are allocated. As control page allocation 627 * logic goes through list of segments to make sure there are 628 * no destination overlaps. 629 */ 630 if (!list_empty(&kbuf->image->control_pages)) { 631 WARN_ON(1); 632 return -EINVAL; 633 } 634 635 /* Ensure minimum alignment needed for segments. */ 636 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 637 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 638 639 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 640 ret = kexec_locate_mem_hole(kbuf); 641 if (ret) 642 return ret; 643 644 /* Found a suitable memory range */ 645 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 646 ksegment->kbuf = kbuf->buffer; 647 ksegment->bufsz = kbuf->bufsz; 648 ksegment->mem = kbuf->mem; 649 ksegment->memsz = kbuf->memsz; 650 kbuf->image->nr_segments++; 651 return 0; 652 } 653 654 /* Calculate and store the digest of segments */ 655 static int kexec_calculate_store_digests(struct kimage *image) 656 { 657 struct crypto_shash *tfm; 658 struct shash_desc *desc; 659 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 660 size_t desc_size, nullsz; 661 char *digest; 662 void *zero_buf; 663 struct kexec_sha_region *sha_regions; 664 struct purgatory_info *pi = &image->purgatory_info; 665 666 if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY)) 667 return 0; 668 669 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 670 zero_buf_sz = PAGE_SIZE; 671 672 tfm = crypto_alloc_shash("sha256", 0, 0); 673 if (IS_ERR(tfm)) { 674 ret = PTR_ERR(tfm); 675 goto out; 676 } 677 678 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 679 desc = kzalloc(desc_size, GFP_KERNEL); 680 if (!desc) { 681 ret = -ENOMEM; 682 goto out_free_tfm; 683 } 684 685 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 686 sha_regions = vzalloc(sha_region_sz); 687 if (!sha_regions) 688 goto out_free_desc; 689 690 desc->tfm = tfm; 691 692 ret = crypto_shash_init(desc); 693 if (ret < 0) 694 goto out_free_sha_regions; 695 696 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 697 if (!digest) { 698 ret = -ENOMEM; 699 goto out_free_sha_regions; 700 } 701 702 for (j = i = 0; i < image->nr_segments; i++) { 703 struct kexec_segment *ksegment; 704 705 ksegment = &image->segment[i]; 706 /* 707 * Skip purgatory as it will be modified once we put digest 708 * info in purgatory. 709 */ 710 if (ksegment->kbuf == pi->purgatory_buf) 711 continue; 712 713 ret = crypto_shash_update(desc, ksegment->kbuf, 714 ksegment->bufsz); 715 if (ret) 716 break; 717 718 /* 719 * Assume rest of the buffer is filled with zero and 720 * update digest accordingly. 721 */ 722 nullsz = ksegment->memsz - ksegment->bufsz; 723 while (nullsz) { 724 unsigned long bytes = nullsz; 725 726 if (bytes > zero_buf_sz) 727 bytes = zero_buf_sz; 728 ret = crypto_shash_update(desc, zero_buf, bytes); 729 if (ret) 730 break; 731 nullsz -= bytes; 732 } 733 734 if (ret) 735 break; 736 737 sha_regions[j].start = ksegment->mem; 738 sha_regions[j].len = ksegment->memsz; 739 j++; 740 } 741 742 if (!ret) { 743 ret = crypto_shash_final(desc, digest); 744 if (ret) 745 goto out_free_digest; 746 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 747 sha_regions, sha_region_sz, 0); 748 if (ret) 749 goto out_free_digest; 750 751 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 752 digest, SHA256_DIGEST_SIZE, 0); 753 if (ret) 754 goto out_free_digest; 755 } 756 757 out_free_digest: 758 kfree(digest); 759 out_free_sha_regions: 760 vfree(sha_regions); 761 out_free_desc: 762 kfree(desc); 763 out_free_tfm: 764 kfree(tfm); 765 out: 766 return ret; 767 } 768 769 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY 770 /* 771 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. 772 * @pi: Purgatory to be loaded. 773 * @kbuf: Buffer to setup. 774 * 775 * Allocates the memory needed for the buffer. Caller is responsible to free 776 * the memory after use. 777 * 778 * Return: 0 on success, negative errno on error. 779 */ 780 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, 781 struct kexec_buf *kbuf) 782 { 783 const Elf_Shdr *sechdrs; 784 unsigned long bss_align; 785 unsigned long bss_sz; 786 unsigned long align; 787 int i, ret; 788 789 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 790 kbuf->buf_align = bss_align = 1; 791 kbuf->bufsz = bss_sz = 0; 792 793 for (i = 0; i < pi->ehdr->e_shnum; i++) { 794 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 795 continue; 796 797 align = sechdrs[i].sh_addralign; 798 if (sechdrs[i].sh_type != SHT_NOBITS) { 799 if (kbuf->buf_align < align) 800 kbuf->buf_align = align; 801 kbuf->bufsz = ALIGN(kbuf->bufsz, align); 802 kbuf->bufsz += sechdrs[i].sh_size; 803 } else { 804 if (bss_align < align) 805 bss_align = align; 806 bss_sz = ALIGN(bss_sz, align); 807 bss_sz += sechdrs[i].sh_size; 808 } 809 } 810 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); 811 kbuf->memsz = kbuf->bufsz + bss_sz; 812 if (kbuf->buf_align < bss_align) 813 kbuf->buf_align = bss_align; 814 815 kbuf->buffer = vzalloc(kbuf->bufsz); 816 if (!kbuf->buffer) 817 return -ENOMEM; 818 pi->purgatory_buf = kbuf->buffer; 819 820 ret = kexec_add_buffer(kbuf); 821 if (ret) 822 goto out; 823 824 return 0; 825 out: 826 vfree(pi->purgatory_buf); 827 pi->purgatory_buf = NULL; 828 return ret; 829 } 830 831 /* 832 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. 833 * @pi: Purgatory to be loaded. 834 * @kbuf: Buffer prepared to store purgatory. 835 * 836 * Allocates the memory needed for the buffer. Caller is responsible to free 837 * the memory after use. 838 * 839 * Return: 0 on success, negative errno on error. 840 */ 841 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, 842 struct kexec_buf *kbuf) 843 { 844 unsigned long bss_addr; 845 unsigned long offset; 846 Elf_Shdr *sechdrs; 847 int i; 848 849 /* 850 * The section headers in kexec_purgatory are read-only. In order to 851 * have them modifiable make a temporary copy. 852 */ 853 sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum)); 854 if (!sechdrs) 855 return -ENOMEM; 856 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, 857 pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 858 pi->sechdrs = sechdrs; 859 860 offset = 0; 861 bss_addr = kbuf->mem + kbuf->bufsz; 862 kbuf->image->start = pi->ehdr->e_entry; 863 864 for (i = 0; i < pi->ehdr->e_shnum; i++) { 865 unsigned long align; 866 void *src, *dst; 867 868 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 869 continue; 870 871 align = sechdrs[i].sh_addralign; 872 if (sechdrs[i].sh_type == SHT_NOBITS) { 873 bss_addr = ALIGN(bss_addr, align); 874 sechdrs[i].sh_addr = bss_addr; 875 bss_addr += sechdrs[i].sh_size; 876 continue; 877 } 878 879 offset = ALIGN(offset, align); 880 if (sechdrs[i].sh_flags & SHF_EXECINSTR && 881 pi->ehdr->e_entry >= sechdrs[i].sh_addr && 882 pi->ehdr->e_entry < (sechdrs[i].sh_addr 883 + sechdrs[i].sh_size)) { 884 kbuf->image->start -= sechdrs[i].sh_addr; 885 kbuf->image->start += kbuf->mem + offset; 886 } 887 888 src = (void *)pi->ehdr + sechdrs[i].sh_offset; 889 dst = pi->purgatory_buf + offset; 890 memcpy(dst, src, sechdrs[i].sh_size); 891 892 sechdrs[i].sh_addr = kbuf->mem + offset; 893 sechdrs[i].sh_offset = offset; 894 offset += sechdrs[i].sh_size; 895 } 896 897 return 0; 898 } 899 900 static int kexec_apply_relocations(struct kimage *image) 901 { 902 int i, ret; 903 struct purgatory_info *pi = &image->purgatory_info; 904 const Elf_Shdr *sechdrs; 905 906 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 907 908 for (i = 0; i < pi->ehdr->e_shnum; i++) { 909 const Elf_Shdr *relsec; 910 const Elf_Shdr *symtab; 911 Elf_Shdr *section; 912 913 relsec = sechdrs + i; 914 915 if (relsec->sh_type != SHT_RELA && 916 relsec->sh_type != SHT_REL) 917 continue; 918 919 /* 920 * For section of type SHT_RELA/SHT_REL, 921 * ->sh_link contains section header index of associated 922 * symbol table. And ->sh_info contains section header 923 * index of section to which relocations apply. 924 */ 925 if (relsec->sh_info >= pi->ehdr->e_shnum || 926 relsec->sh_link >= pi->ehdr->e_shnum) 927 return -ENOEXEC; 928 929 section = pi->sechdrs + relsec->sh_info; 930 symtab = sechdrs + relsec->sh_link; 931 932 if (!(section->sh_flags & SHF_ALLOC)) 933 continue; 934 935 /* 936 * symtab->sh_link contain section header index of associated 937 * string table. 938 */ 939 if (symtab->sh_link >= pi->ehdr->e_shnum) 940 /* Invalid section number? */ 941 continue; 942 943 /* 944 * Respective architecture needs to provide support for applying 945 * relocations of type SHT_RELA/SHT_REL. 946 */ 947 if (relsec->sh_type == SHT_RELA) 948 ret = arch_kexec_apply_relocations_add(pi, section, 949 relsec, symtab); 950 else if (relsec->sh_type == SHT_REL) 951 ret = arch_kexec_apply_relocations(pi, section, 952 relsec, symtab); 953 if (ret) 954 return ret; 955 } 956 957 return 0; 958 } 959 960 /* 961 * kexec_load_purgatory - Load and relocate the purgatory object. 962 * @image: Image to add the purgatory to. 963 * @kbuf: Memory parameters to use. 964 * 965 * Allocates the memory needed for image->purgatory_info.sechdrs and 966 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible 967 * to free the memory after use. 968 * 969 * Return: 0 on success, negative errno on error. 970 */ 971 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) 972 { 973 struct purgatory_info *pi = &image->purgatory_info; 974 int ret; 975 976 if (kexec_purgatory_size <= 0) 977 return -EINVAL; 978 979 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; 980 981 ret = kexec_purgatory_setup_kbuf(pi, kbuf); 982 if (ret) 983 return ret; 984 985 ret = kexec_purgatory_setup_sechdrs(pi, kbuf); 986 if (ret) 987 goto out_free_kbuf; 988 989 ret = kexec_apply_relocations(image); 990 if (ret) 991 goto out; 992 993 return 0; 994 out: 995 vfree(pi->sechdrs); 996 pi->sechdrs = NULL; 997 out_free_kbuf: 998 vfree(pi->purgatory_buf); 999 pi->purgatory_buf = NULL; 1000 return ret; 1001 } 1002 1003 /* 1004 * kexec_purgatory_find_symbol - find a symbol in the purgatory 1005 * @pi: Purgatory to search in. 1006 * @name: Name of the symbol. 1007 * 1008 * Return: pointer to symbol in read-only symtab on success, NULL on error. 1009 */ 1010 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 1011 const char *name) 1012 { 1013 const Elf_Shdr *sechdrs; 1014 const Elf_Ehdr *ehdr; 1015 const Elf_Sym *syms; 1016 const char *strtab; 1017 int i, k; 1018 1019 if (!pi->ehdr) 1020 return NULL; 1021 1022 ehdr = pi->ehdr; 1023 sechdrs = (void *)ehdr + ehdr->e_shoff; 1024 1025 for (i = 0; i < ehdr->e_shnum; i++) { 1026 if (sechdrs[i].sh_type != SHT_SYMTAB) 1027 continue; 1028 1029 if (sechdrs[i].sh_link >= ehdr->e_shnum) 1030 /* Invalid strtab section number */ 1031 continue; 1032 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; 1033 syms = (void *)ehdr + sechdrs[i].sh_offset; 1034 1035 /* Go through symbols for a match */ 1036 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 1037 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 1038 continue; 1039 1040 if (strcmp(strtab + syms[k].st_name, name) != 0) 1041 continue; 1042 1043 if (syms[k].st_shndx == SHN_UNDEF || 1044 syms[k].st_shndx >= ehdr->e_shnum) { 1045 pr_debug("Symbol: %s has bad section index %d.\n", 1046 name, syms[k].st_shndx); 1047 return NULL; 1048 } 1049 1050 /* Found the symbol we are looking for */ 1051 return &syms[k]; 1052 } 1053 } 1054 1055 return NULL; 1056 } 1057 1058 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 1059 { 1060 struct purgatory_info *pi = &image->purgatory_info; 1061 const Elf_Sym *sym; 1062 Elf_Shdr *sechdr; 1063 1064 sym = kexec_purgatory_find_symbol(pi, name); 1065 if (!sym) 1066 return ERR_PTR(-EINVAL); 1067 1068 sechdr = &pi->sechdrs[sym->st_shndx]; 1069 1070 /* 1071 * Returns the address where symbol will finally be loaded after 1072 * kexec_load_segment() 1073 */ 1074 return (void *)(sechdr->sh_addr + sym->st_value); 1075 } 1076 1077 /* 1078 * Get or set value of a symbol. If "get_value" is true, symbol value is 1079 * returned in buf otherwise symbol value is set based on value in buf. 1080 */ 1081 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 1082 void *buf, unsigned int size, bool get_value) 1083 { 1084 struct purgatory_info *pi = &image->purgatory_info; 1085 const Elf_Sym *sym; 1086 Elf_Shdr *sec; 1087 char *sym_buf; 1088 1089 sym = kexec_purgatory_find_symbol(pi, name); 1090 if (!sym) 1091 return -EINVAL; 1092 1093 if (sym->st_size != size) { 1094 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1095 name, (unsigned long)sym->st_size, size); 1096 return -EINVAL; 1097 } 1098 1099 sec = pi->sechdrs + sym->st_shndx; 1100 1101 if (sec->sh_type == SHT_NOBITS) { 1102 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1103 get_value ? "get" : "set"); 1104 return -EINVAL; 1105 } 1106 1107 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; 1108 1109 if (get_value) 1110 memcpy((void *)buf, sym_buf, size); 1111 else 1112 memcpy((void *)sym_buf, buf, size); 1113 1114 return 0; 1115 } 1116 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */ 1117 1118 int crash_exclude_mem_range(struct crash_mem *mem, 1119 unsigned long long mstart, unsigned long long mend) 1120 { 1121 int i, j; 1122 unsigned long long start, end; 1123 struct crash_mem_range temp_range = {0, 0}; 1124 1125 for (i = 0; i < mem->nr_ranges; i++) { 1126 start = mem->ranges[i].start; 1127 end = mem->ranges[i].end; 1128 1129 if (mstart > end || mend < start) 1130 continue; 1131 1132 /* Truncate any area outside of range */ 1133 if (mstart < start) 1134 mstart = start; 1135 if (mend > end) 1136 mend = end; 1137 1138 /* Found completely overlapping range */ 1139 if (mstart == start && mend == end) { 1140 mem->ranges[i].start = 0; 1141 mem->ranges[i].end = 0; 1142 if (i < mem->nr_ranges - 1) { 1143 /* Shift rest of the ranges to left */ 1144 for (j = i; j < mem->nr_ranges - 1; j++) { 1145 mem->ranges[j].start = 1146 mem->ranges[j+1].start; 1147 mem->ranges[j].end = 1148 mem->ranges[j+1].end; 1149 } 1150 } 1151 mem->nr_ranges--; 1152 return 0; 1153 } 1154 1155 if (mstart > start && mend < end) { 1156 /* Split original range */ 1157 mem->ranges[i].end = mstart - 1; 1158 temp_range.start = mend + 1; 1159 temp_range.end = end; 1160 } else if (mstart != start) 1161 mem->ranges[i].end = mstart - 1; 1162 else 1163 mem->ranges[i].start = mend + 1; 1164 break; 1165 } 1166 1167 /* If a split happened, add the split to array */ 1168 if (!temp_range.end) 1169 return 0; 1170 1171 /* Split happened */ 1172 if (i == mem->max_nr_ranges - 1) 1173 return -ENOMEM; 1174 1175 /* Location where new range should go */ 1176 j = i + 1; 1177 if (j < mem->nr_ranges) { 1178 /* Move over all ranges one slot towards the end */ 1179 for (i = mem->nr_ranges - 1; i >= j; i--) 1180 mem->ranges[i + 1] = mem->ranges[i]; 1181 } 1182 1183 mem->ranges[j].start = temp_range.start; 1184 mem->ranges[j].end = temp_range.end; 1185 mem->nr_ranges++; 1186 return 0; 1187 } 1188 1189 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map, 1190 void **addr, unsigned long *sz) 1191 { 1192 Elf64_Ehdr *ehdr; 1193 Elf64_Phdr *phdr; 1194 unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz; 1195 unsigned char *buf; 1196 unsigned int cpu, i; 1197 unsigned long long notes_addr; 1198 unsigned long mstart, mend; 1199 1200 /* extra phdr for vmcoreinfo elf note */ 1201 nr_phdr = nr_cpus + 1; 1202 nr_phdr += mem->nr_ranges; 1203 1204 /* 1205 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping 1206 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64). 1207 * I think this is required by tools like gdb. So same physical 1208 * memory will be mapped in two elf headers. One will contain kernel 1209 * text virtual addresses and other will have __va(physical) addresses. 1210 */ 1211 1212 nr_phdr++; 1213 elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr); 1214 elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN); 1215 1216 buf = vzalloc(elf_sz); 1217 if (!buf) 1218 return -ENOMEM; 1219 1220 ehdr = (Elf64_Ehdr *)buf; 1221 phdr = (Elf64_Phdr *)(ehdr + 1); 1222 memcpy(ehdr->e_ident, ELFMAG, SELFMAG); 1223 ehdr->e_ident[EI_CLASS] = ELFCLASS64; 1224 ehdr->e_ident[EI_DATA] = ELFDATA2LSB; 1225 ehdr->e_ident[EI_VERSION] = EV_CURRENT; 1226 ehdr->e_ident[EI_OSABI] = ELF_OSABI; 1227 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD); 1228 ehdr->e_type = ET_CORE; 1229 ehdr->e_machine = ELF_ARCH; 1230 ehdr->e_version = EV_CURRENT; 1231 ehdr->e_phoff = sizeof(Elf64_Ehdr); 1232 ehdr->e_ehsize = sizeof(Elf64_Ehdr); 1233 ehdr->e_phentsize = sizeof(Elf64_Phdr); 1234 1235 /* Prepare one phdr of type PT_NOTE for each present cpu */ 1236 for_each_present_cpu(cpu) { 1237 phdr->p_type = PT_NOTE; 1238 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu)); 1239 phdr->p_offset = phdr->p_paddr = notes_addr; 1240 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t); 1241 (ehdr->e_phnum)++; 1242 phdr++; 1243 } 1244 1245 /* Prepare one PT_NOTE header for vmcoreinfo */ 1246 phdr->p_type = PT_NOTE; 1247 phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note(); 1248 phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE; 1249 (ehdr->e_phnum)++; 1250 phdr++; 1251 1252 /* Prepare PT_LOAD type program header for kernel text region */ 1253 if (kernel_map) { 1254 phdr->p_type = PT_LOAD; 1255 phdr->p_flags = PF_R|PF_W|PF_X; 1256 phdr->p_vaddr = (Elf64_Addr)_text; 1257 phdr->p_filesz = phdr->p_memsz = _end - _text; 1258 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text); 1259 ehdr->e_phnum++; 1260 phdr++; 1261 } 1262 1263 /* Go through all the ranges in mem->ranges[] and prepare phdr */ 1264 for (i = 0; i < mem->nr_ranges; i++) { 1265 mstart = mem->ranges[i].start; 1266 mend = mem->ranges[i].end; 1267 1268 phdr->p_type = PT_LOAD; 1269 phdr->p_flags = PF_R|PF_W|PF_X; 1270 phdr->p_offset = mstart; 1271 1272 phdr->p_paddr = mstart; 1273 phdr->p_vaddr = (unsigned long long) __va(mstart); 1274 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1; 1275 phdr->p_align = 0; 1276 ehdr->e_phnum++; 1277 phdr++; 1278 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n", 1279 phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz, 1280 ehdr->e_phnum, phdr->p_offset); 1281 } 1282 1283 *addr = buf; 1284 *sz = elf_sz; 1285 return 0; 1286 } 1287