1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec: kexec_file_load system call 4 * 5 * Copyright (C) 2014 Red Hat Inc. 6 * Authors: 7 * Vivek Goyal <vgoyal@redhat.com> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/capability.h> 13 #include <linux/mm.h> 14 #include <linux/file.h> 15 #include <linux/slab.h> 16 #include <linux/kexec.h> 17 #include <linux/memblock.h> 18 #include <linux/mutex.h> 19 #include <linux/list.h> 20 #include <linux/fs.h> 21 #include <linux/ima.h> 22 #include <crypto/hash.h> 23 #include <crypto/sha2.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/kernel.h> 27 #include <linux/kernel_read_file.h> 28 #include <linux/syscalls.h> 29 #include <linux/vmalloc.h> 30 #include "kexec_internal.h" 31 32 #ifdef CONFIG_KEXEC_SIG 33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE); 34 35 void set_kexec_sig_enforced(void) 36 { 37 sig_enforce = true; 38 } 39 #endif 40 41 static int kexec_calculate_store_digests(struct kimage *image); 42 43 /* Maximum size in bytes for kernel/initrd files. */ 44 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX) 45 46 /* 47 * Currently this is the only default function that is exported as some 48 * architectures need it to do additional handlings. 49 * In the future, other default functions may be exported too if required. 50 */ 51 int kexec_image_probe_default(struct kimage *image, void *buf, 52 unsigned long buf_len) 53 { 54 const struct kexec_file_ops * const *fops; 55 int ret = -ENOEXEC; 56 57 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { 58 ret = (*fops)->probe(buf, buf_len); 59 if (!ret) { 60 image->fops = *fops; 61 return ret; 62 } 63 } 64 65 return ret; 66 } 67 68 static void *kexec_image_load_default(struct kimage *image) 69 { 70 if (!image->fops || !image->fops->load) 71 return ERR_PTR(-ENOEXEC); 72 73 return image->fops->load(image, image->kernel_buf, 74 image->kernel_buf_len, image->initrd_buf, 75 image->initrd_buf_len, image->cmdline_buf, 76 image->cmdline_buf_len); 77 } 78 79 int kexec_image_post_load_cleanup_default(struct kimage *image) 80 { 81 if (!image->fops || !image->fops->cleanup) 82 return 0; 83 84 return image->fops->cleanup(image->image_loader_data); 85 } 86 87 /* 88 * Free up memory used by kernel, initrd, and command line. This is temporary 89 * memory allocation which is not needed any more after these buffers have 90 * been loaded into separate segments and have been copied elsewhere. 91 */ 92 void kimage_file_post_load_cleanup(struct kimage *image) 93 { 94 struct purgatory_info *pi = &image->purgatory_info; 95 96 vfree(image->kernel_buf); 97 image->kernel_buf = NULL; 98 99 vfree(image->initrd_buf); 100 image->initrd_buf = NULL; 101 102 kfree(image->cmdline_buf); 103 image->cmdline_buf = NULL; 104 105 vfree(pi->purgatory_buf); 106 pi->purgatory_buf = NULL; 107 108 vfree(pi->sechdrs); 109 pi->sechdrs = NULL; 110 111 #ifdef CONFIG_IMA_KEXEC 112 vfree(image->ima_buffer); 113 image->ima_buffer = NULL; 114 #endif /* CONFIG_IMA_KEXEC */ 115 116 /* See if architecture has anything to cleanup post load */ 117 arch_kimage_file_post_load_cleanup(image); 118 119 /* 120 * Above call should have called into bootloader to free up 121 * any data stored in kimage->image_loader_data. It should 122 * be ok now to free it up. 123 */ 124 kfree(image->image_loader_data); 125 image->image_loader_data = NULL; 126 127 kexec_file_dbg_print = false; 128 } 129 130 #ifdef CONFIG_KEXEC_SIG 131 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION 132 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len) 133 { 134 int ret; 135 136 ret = verify_pefile_signature(kernel, kernel_len, 137 VERIFY_USE_SECONDARY_KEYRING, 138 VERIFYING_KEXEC_PE_SIGNATURE); 139 if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) { 140 ret = verify_pefile_signature(kernel, kernel_len, 141 VERIFY_USE_PLATFORM_KEYRING, 142 VERIFYING_KEXEC_PE_SIGNATURE); 143 } 144 return ret; 145 } 146 #endif 147 148 static int kexec_image_verify_sig(struct kimage *image, void *buf, 149 unsigned long buf_len) 150 { 151 if (!image->fops || !image->fops->verify_sig) { 152 pr_debug("kernel loader does not support signature verification.\n"); 153 return -EKEYREJECTED; 154 } 155 156 return image->fops->verify_sig(buf, buf_len); 157 } 158 159 static int 160 kimage_validate_signature(struct kimage *image) 161 { 162 int ret; 163 164 ret = kexec_image_verify_sig(image, image->kernel_buf, 165 image->kernel_buf_len); 166 if (ret) { 167 168 if (sig_enforce) { 169 pr_notice("Enforced kernel signature verification failed (%d).\n", ret); 170 return ret; 171 } 172 173 /* 174 * If IMA is guaranteed to appraise a signature on the kexec 175 * image, permit it even if the kernel is otherwise locked 176 * down. 177 */ 178 if (!ima_appraise_signature(READING_KEXEC_IMAGE) && 179 security_locked_down(LOCKDOWN_KEXEC)) 180 return -EPERM; 181 182 pr_debug("kernel signature verification failed (%d).\n", ret); 183 } 184 185 return 0; 186 } 187 #endif 188 189 /* 190 * In file mode list of segments is prepared by kernel. Copy relevant 191 * data from user space, do error checking, prepare segment list 192 */ 193 static int 194 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 195 const char __user *cmdline_ptr, 196 unsigned long cmdline_len, unsigned flags) 197 { 198 ssize_t ret; 199 void *ldata; 200 201 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf, 202 KEXEC_FILE_SIZE_MAX, NULL, 203 READING_KEXEC_IMAGE); 204 if (ret < 0) 205 return ret; 206 image->kernel_buf_len = ret; 207 kexec_dprintk("kernel: %p kernel_size: %#lx\n", 208 image->kernel_buf, image->kernel_buf_len); 209 210 /* Call arch image probe handlers */ 211 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 212 image->kernel_buf_len); 213 if (ret) 214 goto out; 215 216 #ifdef CONFIG_KEXEC_SIG 217 ret = kimage_validate_signature(image); 218 219 if (ret) 220 goto out; 221 #endif 222 /* It is possible that there no initramfs is being loaded */ 223 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 224 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf, 225 KEXEC_FILE_SIZE_MAX, NULL, 226 READING_KEXEC_INITRAMFS); 227 if (ret < 0) 228 goto out; 229 image->initrd_buf_len = ret; 230 ret = 0; 231 } 232 233 if (cmdline_len) { 234 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 235 if (IS_ERR(image->cmdline_buf)) { 236 ret = PTR_ERR(image->cmdline_buf); 237 image->cmdline_buf = NULL; 238 goto out; 239 } 240 241 image->cmdline_buf_len = cmdline_len; 242 243 /* command line should be a string with last byte null */ 244 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 245 ret = -EINVAL; 246 goto out; 247 } 248 249 ima_kexec_cmdline(kernel_fd, image->cmdline_buf, 250 image->cmdline_buf_len - 1); 251 } 252 253 /* IMA needs to pass the measurement list to the next kernel. */ 254 ima_add_kexec_buffer(image); 255 256 /* Call image load handler */ 257 ldata = kexec_image_load_default(image); 258 259 if (IS_ERR(ldata)) { 260 ret = PTR_ERR(ldata); 261 goto out; 262 } 263 264 image->image_loader_data = ldata; 265 out: 266 /* In case of error, free up all allocated memory in this function */ 267 if (ret) 268 kimage_file_post_load_cleanup(image); 269 return ret; 270 } 271 272 static int 273 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 274 int initrd_fd, const char __user *cmdline_ptr, 275 unsigned long cmdline_len, unsigned long flags) 276 { 277 int ret; 278 struct kimage *image; 279 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 280 281 image = do_kimage_alloc_init(); 282 if (!image) 283 return -ENOMEM; 284 285 kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG); 286 image->file_mode = 1; 287 288 if (kexec_on_panic) { 289 /* Enable special crash kernel control page alloc policy. */ 290 image->control_page = crashk_res.start; 291 image->type = KEXEC_TYPE_CRASH; 292 } 293 294 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 295 cmdline_ptr, cmdline_len, flags); 296 if (ret) 297 goto out_free_image; 298 299 ret = sanity_check_segment_list(image); 300 if (ret) 301 goto out_free_post_load_bufs; 302 303 ret = -ENOMEM; 304 image->control_code_page = kimage_alloc_control_pages(image, 305 get_order(KEXEC_CONTROL_PAGE_SIZE)); 306 if (!image->control_code_page) { 307 pr_err("Could not allocate control_code_buffer\n"); 308 goto out_free_post_load_bufs; 309 } 310 311 if (!kexec_on_panic) { 312 image->swap_page = kimage_alloc_control_pages(image, 0); 313 if (!image->swap_page) { 314 pr_err("Could not allocate swap buffer\n"); 315 goto out_free_control_pages; 316 } 317 } 318 319 *rimage = image; 320 return 0; 321 out_free_control_pages: 322 kimage_free_page_list(&image->control_pages); 323 out_free_post_load_bufs: 324 kimage_file_post_load_cleanup(image); 325 out_free_image: 326 kfree(image); 327 return ret; 328 } 329 330 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 331 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 332 unsigned long, flags) 333 { 334 int image_type = (flags & KEXEC_FILE_ON_CRASH) ? 335 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT; 336 struct kimage **dest_image, *image; 337 int ret = 0, i; 338 339 /* We only trust the superuser with rebooting the system. */ 340 if (!kexec_load_permitted(image_type)) 341 return -EPERM; 342 343 /* Make sure we have a legal set of flags */ 344 if (flags != (flags & KEXEC_FILE_FLAGS)) 345 return -EINVAL; 346 347 image = NULL; 348 349 if (!kexec_trylock()) 350 return -EBUSY; 351 352 if (image_type == KEXEC_TYPE_CRASH) { 353 dest_image = &kexec_crash_image; 354 if (kexec_crash_image) 355 arch_kexec_unprotect_crashkres(); 356 } else { 357 dest_image = &kexec_image; 358 } 359 360 if (flags & KEXEC_FILE_UNLOAD) 361 goto exchange; 362 363 /* 364 * In case of crash, new kernel gets loaded in reserved region. It is 365 * same memory where old crash kernel might be loaded. Free any 366 * current crash dump kernel before we corrupt it. 367 */ 368 if (flags & KEXEC_FILE_ON_CRASH) 369 kimage_free(xchg(&kexec_crash_image, NULL)); 370 371 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 372 cmdline_len, flags); 373 if (ret) 374 goto out; 375 376 ret = machine_kexec_prepare(image); 377 if (ret) 378 goto out; 379 380 /* 381 * Some architecture(like S390) may touch the crash memory before 382 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 383 */ 384 ret = kimage_crash_copy_vmcoreinfo(image); 385 if (ret) 386 goto out; 387 388 ret = kexec_calculate_store_digests(image); 389 if (ret) 390 goto out; 391 392 kexec_dprintk("nr_segments = %lu\n", image->nr_segments); 393 for (i = 0; i < image->nr_segments; i++) { 394 struct kexec_segment *ksegment; 395 396 ksegment = &image->segment[i]; 397 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 398 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 399 ksegment->memsz); 400 401 ret = kimage_load_segment(image, &image->segment[i]); 402 if (ret) 403 goto out; 404 } 405 406 kimage_terminate(image); 407 408 ret = machine_kexec_post_load(image); 409 if (ret) 410 goto out; 411 412 kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n", 413 image->type, image->start, image->head, flags); 414 /* 415 * Free up any temporary buffers allocated which are not needed 416 * after image has been loaded 417 */ 418 kimage_file_post_load_cleanup(image); 419 exchange: 420 image = xchg(dest_image, image); 421 out: 422 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 423 arch_kexec_protect_crashkres(); 424 425 kexec_unlock(); 426 kimage_free(image); 427 return ret; 428 } 429 430 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 431 struct kexec_buf *kbuf) 432 { 433 struct kimage *image = kbuf->image; 434 unsigned long temp_start, temp_end; 435 436 temp_end = min(end, kbuf->buf_max); 437 temp_start = temp_end - kbuf->memsz + 1; 438 439 do { 440 /* align down start */ 441 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align); 442 443 if (temp_start < start || temp_start < kbuf->buf_min) 444 return 0; 445 446 temp_end = temp_start + kbuf->memsz - 1; 447 448 /* 449 * Make sure this does not conflict with any of existing 450 * segments 451 */ 452 if (kimage_is_destination_range(image, temp_start, temp_end)) { 453 temp_start = temp_start - PAGE_SIZE; 454 continue; 455 } 456 457 /* We found a suitable memory range */ 458 break; 459 } while (1); 460 461 /* If we are here, we found a suitable memory range */ 462 kbuf->mem = temp_start; 463 464 /* Success, stop navigating through remaining System RAM ranges */ 465 return 1; 466 } 467 468 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 469 struct kexec_buf *kbuf) 470 { 471 struct kimage *image = kbuf->image; 472 unsigned long temp_start, temp_end; 473 474 temp_start = max(start, kbuf->buf_min); 475 476 do { 477 temp_start = ALIGN(temp_start, kbuf->buf_align); 478 temp_end = temp_start + kbuf->memsz - 1; 479 480 if (temp_end > end || temp_end > kbuf->buf_max) 481 return 0; 482 /* 483 * Make sure this does not conflict with any of existing 484 * segments 485 */ 486 if (kimage_is_destination_range(image, temp_start, temp_end)) { 487 temp_start = temp_start + PAGE_SIZE; 488 continue; 489 } 490 491 /* We found a suitable memory range */ 492 break; 493 } while (1); 494 495 /* If we are here, we found a suitable memory range */ 496 kbuf->mem = temp_start; 497 498 /* Success, stop navigating through remaining System RAM ranges */ 499 return 1; 500 } 501 502 static int locate_mem_hole_callback(struct resource *res, void *arg) 503 { 504 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 505 u64 start = res->start, end = res->end; 506 unsigned long sz = end - start + 1; 507 508 /* Returning 0 will take to next memory range */ 509 510 /* Don't use memory that will be detected and handled by a driver. */ 511 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 512 return 0; 513 514 if (sz < kbuf->memsz) 515 return 0; 516 517 if (end < kbuf->buf_min || start > kbuf->buf_max) 518 return 0; 519 520 /* 521 * Allocate memory top down with-in ram range. Otherwise bottom up 522 * allocation. 523 */ 524 if (kbuf->top_down) 525 return locate_mem_hole_top_down(start, end, kbuf); 526 return locate_mem_hole_bottom_up(start, end, kbuf); 527 } 528 529 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK 530 static int kexec_walk_memblock(struct kexec_buf *kbuf, 531 int (*func)(struct resource *, void *)) 532 { 533 int ret = 0; 534 u64 i; 535 phys_addr_t mstart, mend; 536 struct resource res = { }; 537 538 if (kbuf->image->type == KEXEC_TYPE_CRASH) 539 return func(&crashk_res, kbuf); 540 541 /* 542 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See 543 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in 544 * locate_mem_hole_callback(). 545 */ 546 if (kbuf->top_down) { 547 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, 548 &mstart, &mend, NULL) { 549 /* 550 * In memblock, end points to the first byte after the 551 * range while in kexec, end points to the last byte 552 * in the range. 553 */ 554 res.start = mstart; 555 res.end = mend - 1; 556 ret = func(&res, kbuf); 557 if (ret) 558 break; 559 } 560 } else { 561 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 562 &mstart, &mend, NULL) { 563 /* 564 * In memblock, end points to the first byte after the 565 * range while in kexec, end points to the last byte 566 * in the range. 567 */ 568 res.start = mstart; 569 res.end = mend - 1; 570 ret = func(&res, kbuf); 571 if (ret) 572 break; 573 } 574 } 575 576 return ret; 577 } 578 #else 579 static int kexec_walk_memblock(struct kexec_buf *kbuf, 580 int (*func)(struct resource *, void *)) 581 { 582 return 0; 583 } 584 #endif 585 586 /** 587 * kexec_walk_resources - call func(data) on free memory regions 588 * @kbuf: Context info for the search. Also passed to @func. 589 * @func: Function to call for each memory region. 590 * 591 * Return: The memory walk will stop when func returns a non-zero value 592 * and that value will be returned. If all free regions are visited without 593 * func returning non-zero, then zero will be returned. 594 */ 595 static int kexec_walk_resources(struct kexec_buf *kbuf, 596 int (*func)(struct resource *, void *)) 597 { 598 if (kbuf->image->type == KEXEC_TYPE_CRASH) 599 return walk_iomem_res_desc(crashk_res.desc, 600 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 601 crashk_res.start, crashk_res.end, 602 kbuf, func); 603 else if (kbuf->top_down) 604 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func); 605 else 606 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 607 } 608 609 /** 610 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 611 * @kbuf: Parameters for the memory search. 612 * 613 * On success, kbuf->mem will have the start address of the memory region found. 614 * 615 * Return: 0 on success, negative errno on error. 616 */ 617 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 618 { 619 int ret; 620 621 /* Arch knows where to place */ 622 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) 623 return 0; 624 625 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 626 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); 627 else 628 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); 629 630 return ret == 1 ? 0 : -EADDRNOTAVAIL; 631 } 632 633 /** 634 * kexec_add_buffer - place a buffer in a kexec segment 635 * @kbuf: Buffer contents and memory parameters. 636 * 637 * This function assumes that kexec_lock is held. 638 * On successful return, @kbuf->mem will have the physical address of 639 * the buffer in memory. 640 * 641 * Return: 0 on success, negative errno on error. 642 */ 643 int kexec_add_buffer(struct kexec_buf *kbuf) 644 { 645 struct kexec_segment *ksegment; 646 int ret; 647 648 /* Currently adding segment this way is allowed only in file mode */ 649 if (!kbuf->image->file_mode) 650 return -EINVAL; 651 652 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 653 return -EINVAL; 654 655 /* 656 * Make sure we are not trying to add buffer after allocating 657 * control pages. All segments need to be placed first before 658 * any control pages are allocated. As control page allocation 659 * logic goes through list of segments to make sure there are 660 * no destination overlaps. 661 */ 662 if (!list_empty(&kbuf->image->control_pages)) { 663 WARN_ON(1); 664 return -EINVAL; 665 } 666 667 /* Ensure minimum alignment needed for segments. */ 668 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 669 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 670 671 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 672 ret = arch_kexec_locate_mem_hole(kbuf); 673 if (ret) 674 return ret; 675 676 /* Found a suitable memory range */ 677 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 678 ksegment->kbuf = kbuf->buffer; 679 ksegment->bufsz = kbuf->bufsz; 680 ksegment->mem = kbuf->mem; 681 ksegment->memsz = kbuf->memsz; 682 kbuf->image->nr_segments++; 683 return 0; 684 } 685 686 /* Calculate and store the digest of segments */ 687 static int kexec_calculate_store_digests(struct kimage *image) 688 { 689 struct crypto_shash *tfm; 690 struct shash_desc *desc; 691 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 692 size_t desc_size, nullsz; 693 char *digest; 694 void *zero_buf; 695 struct kexec_sha_region *sha_regions; 696 struct purgatory_info *pi = &image->purgatory_info; 697 698 if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY)) 699 return 0; 700 701 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 702 zero_buf_sz = PAGE_SIZE; 703 704 tfm = crypto_alloc_shash("sha256", 0, 0); 705 if (IS_ERR(tfm)) { 706 ret = PTR_ERR(tfm); 707 goto out; 708 } 709 710 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 711 desc = kzalloc(desc_size, GFP_KERNEL); 712 if (!desc) { 713 ret = -ENOMEM; 714 goto out_free_tfm; 715 } 716 717 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 718 sha_regions = vzalloc(sha_region_sz); 719 if (!sha_regions) { 720 ret = -ENOMEM; 721 goto out_free_desc; 722 } 723 724 desc->tfm = tfm; 725 726 ret = crypto_shash_init(desc); 727 if (ret < 0) 728 goto out_free_sha_regions; 729 730 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 731 if (!digest) { 732 ret = -ENOMEM; 733 goto out_free_sha_regions; 734 } 735 736 for (j = i = 0; i < image->nr_segments; i++) { 737 struct kexec_segment *ksegment; 738 739 #ifdef CONFIG_CRASH_HOTPLUG 740 /* Exclude elfcorehdr segment to allow future changes via hotplug */ 741 if (j == image->elfcorehdr_index) 742 continue; 743 #endif 744 745 ksegment = &image->segment[i]; 746 /* 747 * Skip purgatory as it will be modified once we put digest 748 * info in purgatory. 749 */ 750 if (ksegment->kbuf == pi->purgatory_buf) 751 continue; 752 753 ret = crypto_shash_update(desc, ksegment->kbuf, 754 ksegment->bufsz); 755 if (ret) 756 break; 757 758 /* 759 * Assume rest of the buffer is filled with zero and 760 * update digest accordingly. 761 */ 762 nullsz = ksegment->memsz - ksegment->bufsz; 763 while (nullsz) { 764 unsigned long bytes = nullsz; 765 766 if (bytes > zero_buf_sz) 767 bytes = zero_buf_sz; 768 ret = crypto_shash_update(desc, zero_buf, bytes); 769 if (ret) 770 break; 771 nullsz -= bytes; 772 } 773 774 if (ret) 775 break; 776 777 sha_regions[j].start = ksegment->mem; 778 sha_regions[j].len = ksegment->memsz; 779 j++; 780 } 781 782 if (!ret) { 783 ret = crypto_shash_final(desc, digest); 784 if (ret) 785 goto out_free_digest; 786 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 787 sha_regions, sha_region_sz, 0); 788 if (ret) 789 goto out_free_digest; 790 791 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 792 digest, SHA256_DIGEST_SIZE, 0); 793 if (ret) 794 goto out_free_digest; 795 } 796 797 out_free_digest: 798 kfree(digest); 799 out_free_sha_regions: 800 vfree(sha_regions); 801 out_free_desc: 802 kfree(desc); 803 out_free_tfm: 804 kfree(tfm); 805 out: 806 return ret; 807 } 808 809 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY 810 /* 811 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. 812 * @pi: Purgatory to be loaded. 813 * @kbuf: Buffer to setup. 814 * 815 * Allocates the memory needed for the buffer. Caller is responsible to free 816 * the memory after use. 817 * 818 * Return: 0 on success, negative errno on error. 819 */ 820 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, 821 struct kexec_buf *kbuf) 822 { 823 const Elf_Shdr *sechdrs; 824 unsigned long bss_align; 825 unsigned long bss_sz; 826 unsigned long align; 827 int i, ret; 828 829 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 830 kbuf->buf_align = bss_align = 1; 831 kbuf->bufsz = bss_sz = 0; 832 833 for (i = 0; i < pi->ehdr->e_shnum; i++) { 834 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 835 continue; 836 837 align = sechdrs[i].sh_addralign; 838 if (sechdrs[i].sh_type != SHT_NOBITS) { 839 if (kbuf->buf_align < align) 840 kbuf->buf_align = align; 841 kbuf->bufsz = ALIGN(kbuf->bufsz, align); 842 kbuf->bufsz += sechdrs[i].sh_size; 843 } else { 844 if (bss_align < align) 845 bss_align = align; 846 bss_sz = ALIGN(bss_sz, align); 847 bss_sz += sechdrs[i].sh_size; 848 } 849 } 850 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); 851 kbuf->memsz = kbuf->bufsz + bss_sz; 852 if (kbuf->buf_align < bss_align) 853 kbuf->buf_align = bss_align; 854 855 kbuf->buffer = vzalloc(kbuf->bufsz); 856 if (!kbuf->buffer) 857 return -ENOMEM; 858 pi->purgatory_buf = kbuf->buffer; 859 860 ret = kexec_add_buffer(kbuf); 861 if (ret) 862 goto out; 863 864 return 0; 865 out: 866 vfree(pi->purgatory_buf); 867 pi->purgatory_buf = NULL; 868 return ret; 869 } 870 871 /* 872 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. 873 * @pi: Purgatory to be loaded. 874 * @kbuf: Buffer prepared to store purgatory. 875 * 876 * Allocates the memory needed for the buffer. Caller is responsible to free 877 * the memory after use. 878 * 879 * Return: 0 on success, negative errno on error. 880 */ 881 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, 882 struct kexec_buf *kbuf) 883 { 884 unsigned long bss_addr; 885 unsigned long offset; 886 size_t sechdrs_size; 887 Elf_Shdr *sechdrs; 888 int i; 889 890 /* 891 * The section headers in kexec_purgatory are read-only. In order to 892 * have them modifiable make a temporary copy. 893 */ 894 sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum); 895 sechdrs = vzalloc(sechdrs_size); 896 if (!sechdrs) 897 return -ENOMEM; 898 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size); 899 pi->sechdrs = sechdrs; 900 901 offset = 0; 902 bss_addr = kbuf->mem + kbuf->bufsz; 903 kbuf->image->start = pi->ehdr->e_entry; 904 905 for (i = 0; i < pi->ehdr->e_shnum; i++) { 906 unsigned long align; 907 void *src, *dst; 908 909 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 910 continue; 911 912 align = sechdrs[i].sh_addralign; 913 if (sechdrs[i].sh_type == SHT_NOBITS) { 914 bss_addr = ALIGN(bss_addr, align); 915 sechdrs[i].sh_addr = bss_addr; 916 bss_addr += sechdrs[i].sh_size; 917 continue; 918 } 919 920 offset = ALIGN(offset, align); 921 922 /* 923 * Check if the segment contains the entry point, if so, 924 * calculate the value of image->start based on it. 925 * If the compiler has produced more than one .text section 926 * (Eg: .text.hot), they are generally after the main .text 927 * section, and they shall not be used to calculate 928 * image->start. So do not re-calculate image->start if it 929 * is not set to the initial value, and warn the user so they 930 * have a chance to fix their purgatory's linker script. 931 */ 932 if (sechdrs[i].sh_flags & SHF_EXECINSTR && 933 pi->ehdr->e_entry >= sechdrs[i].sh_addr && 934 pi->ehdr->e_entry < (sechdrs[i].sh_addr 935 + sechdrs[i].sh_size) && 936 !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) { 937 kbuf->image->start -= sechdrs[i].sh_addr; 938 kbuf->image->start += kbuf->mem + offset; 939 } 940 941 src = (void *)pi->ehdr + sechdrs[i].sh_offset; 942 dst = pi->purgatory_buf + offset; 943 memcpy(dst, src, sechdrs[i].sh_size); 944 945 sechdrs[i].sh_addr = kbuf->mem + offset; 946 sechdrs[i].sh_offset = offset; 947 offset += sechdrs[i].sh_size; 948 } 949 950 return 0; 951 } 952 953 static int kexec_apply_relocations(struct kimage *image) 954 { 955 int i, ret; 956 struct purgatory_info *pi = &image->purgatory_info; 957 const Elf_Shdr *sechdrs; 958 959 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 960 961 for (i = 0; i < pi->ehdr->e_shnum; i++) { 962 const Elf_Shdr *relsec; 963 const Elf_Shdr *symtab; 964 Elf_Shdr *section; 965 966 relsec = sechdrs + i; 967 968 if (relsec->sh_type != SHT_RELA && 969 relsec->sh_type != SHT_REL) 970 continue; 971 972 /* 973 * For section of type SHT_RELA/SHT_REL, 974 * ->sh_link contains section header index of associated 975 * symbol table. And ->sh_info contains section header 976 * index of section to which relocations apply. 977 */ 978 if (relsec->sh_info >= pi->ehdr->e_shnum || 979 relsec->sh_link >= pi->ehdr->e_shnum) 980 return -ENOEXEC; 981 982 section = pi->sechdrs + relsec->sh_info; 983 symtab = sechdrs + relsec->sh_link; 984 985 if (!(section->sh_flags & SHF_ALLOC)) 986 continue; 987 988 /* 989 * symtab->sh_link contain section header index of associated 990 * string table. 991 */ 992 if (symtab->sh_link >= pi->ehdr->e_shnum) 993 /* Invalid section number? */ 994 continue; 995 996 /* 997 * Respective architecture needs to provide support for applying 998 * relocations of type SHT_RELA/SHT_REL. 999 */ 1000 if (relsec->sh_type == SHT_RELA) 1001 ret = arch_kexec_apply_relocations_add(pi, section, 1002 relsec, symtab); 1003 else if (relsec->sh_type == SHT_REL) 1004 ret = arch_kexec_apply_relocations(pi, section, 1005 relsec, symtab); 1006 if (ret) 1007 return ret; 1008 } 1009 1010 return 0; 1011 } 1012 1013 /* 1014 * kexec_load_purgatory - Load and relocate the purgatory object. 1015 * @image: Image to add the purgatory to. 1016 * @kbuf: Memory parameters to use. 1017 * 1018 * Allocates the memory needed for image->purgatory_info.sechdrs and 1019 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible 1020 * to free the memory after use. 1021 * 1022 * Return: 0 on success, negative errno on error. 1023 */ 1024 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) 1025 { 1026 struct purgatory_info *pi = &image->purgatory_info; 1027 int ret; 1028 1029 if (kexec_purgatory_size <= 0) 1030 return -EINVAL; 1031 1032 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; 1033 1034 ret = kexec_purgatory_setup_kbuf(pi, kbuf); 1035 if (ret) 1036 return ret; 1037 1038 ret = kexec_purgatory_setup_sechdrs(pi, kbuf); 1039 if (ret) 1040 goto out_free_kbuf; 1041 1042 ret = kexec_apply_relocations(image); 1043 if (ret) 1044 goto out; 1045 1046 return 0; 1047 out: 1048 vfree(pi->sechdrs); 1049 pi->sechdrs = NULL; 1050 out_free_kbuf: 1051 vfree(pi->purgatory_buf); 1052 pi->purgatory_buf = NULL; 1053 return ret; 1054 } 1055 1056 /* 1057 * kexec_purgatory_find_symbol - find a symbol in the purgatory 1058 * @pi: Purgatory to search in. 1059 * @name: Name of the symbol. 1060 * 1061 * Return: pointer to symbol in read-only symtab on success, NULL on error. 1062 */ 1063 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 1064 const char *name) 1065 { 1066 const Elf_Shdr *sechdrs; 1067 const Elf_Ehdr *ehdr; 1068 const Elf_Sym *syms; 1069 const char *strtab; 1070 int i, k; 1071 1072 if (!pi->ehdr) 1073 return NULL; 1074 1075 ehdr = pi->ehdr; 1076 sechdrs = (void *)ehdr + ehdr->e_shoff; 1077 1078 for (i = 0; i < ehdr->e_shnum; i++) { 1079 if (sechdrs[i].sh_type != SHT_SYMTAB) 1080 continue; 1081 1082 if (sechdrs[i].sh_link >= ehdr->e_shnum) 1083 /* Invalid strtab section number */ 1084 continue; 1085 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; 1086 syms = (void *)ehdr + sechdrs[i].sh_offset; 1087 1088 /* Go through symbols for a match */ 1089 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 1090 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 1091 continue; 1092 1093 if (strcmp(strtab + syms[k].st_name, name) != 0) 1094 continue; 1095 1096 if (syms[k].st_shndx == SHN_UNDEF || 1097 syms[k].st_shndx >= ehdr->e_shnum) { 1098 pr_debug("Symbol: %s has bad section index %d.\n", 1099 name, syms[k].st_shndx); 1100 return NULL; 1101 } 1102 1103 /* Found the symbol we are looking for */ 1104 return &syms[k]; 1105 } 1106 } 1107 1108 return NULL; 1109 } 1110 1111 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 1112 { 1113 struct purgatory_info *pi = &image->purgatory_info; 1114 const Elf_Sym *sym; 1115 Elf_Shdr *sechdr; 1116 1117 sym = kexec_purgatory_find_symbol(pi, name); 1118 if (!sym) 1119 return ERR_PTR(-EINVAL); 1120 1121 sechdr = &pi->sechdrs[sym->st_shndx]; 1122 1123 /* 1124 * Returns the address where symbol will finally be loaded after 1125 * kexec_load_segment() 1126 */ 1127 return (void *)(sechdr->sh_addr + sym->st_value); 1128 } 1129 1130 /* 1131 * Get or set value of a symbol. If "get_value" is true, symbol value is 1132 * returned in buf otherwise symbol value is set based on value in buf. 1133 */ 1134 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 1135 void *buf, unsigned int size, bool get_value) 1136 { 1137 struct purgatory_info *pi = &image->purgatory_info; 1138 const Elf_Sym *sym; 1139 Elf_Shdr *sec; 1140 char *sym_buf; 1141 1142 sym = kexec_purgatory_find_symbol(pi, name); 1143 if (!sym) 1144 return -EINVAL; 1145 1146 if (sym->st_size != size) { 1147 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1148 name, (unsigned long)sym->st_size, size); 1149 return -EINVAL; 1150 } 1151 1152 sec = pi->sechdrs + sym->st_shndx; 1153 1154 if (sec->sh_type == SHT_NOBITS) { 1155 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1156 get_value ? "get" : "set"); 1157 return -EINVAL; 1158 } 1159 1160 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; 1161 1162 if (get_value) 1163 memcpy((void *)buf, sym_buf, size); 1164 else 1165 memcpy((void *)sym_buf, buf, size); 1166 1167 return 0; 1168 } 1169 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */ 1170