1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec: kexec_file_load system call 4 * 5 * Copyright (C) 2014 Red Hat Inc. 6 * Authors: 7 * Vivek Goyal <vgoyal@redhat.com> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/capability.h> 13 #include <linux/mm.h> 14 #include <linux/file.h> 15 #include <linux/slab.h> 16 #include <linux/kexec.h> 17 #include <linux/memblock.h> 18 #include <linux/mutex.h> 19 #include <linux/list.h> 20 #include <linux/fs.h> 21 #include <linux/ima.h> 22 #include <crypto/hash.h> 23 #include <crypto/sha2.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/kernel.h> 27 #include <linux/kernel_read_file.h> 28 #include <linux/syscalls.h> 29 #include <linux/vmalloc.h> 30 #include "kexec_internal.h" 31 32 #ifdef CONFIG_KEXEC_SIG 33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE); 34 35 void set_kexec_sig_enforced(void) 36 { 37 sig_enforce = true; 38 } 39 #endif 40 41 static int kexec_calculate_store_digests(struct kimage *image); 42 43 /* Maximum size in bytes for kernel/initrd files. */ 44 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX) 45 46 /* 47 * Currently this is the only default function that is exported as some 48 * architectures need it to do additional handlings. 49 * In the future, other default functions may be exported too if required. 50 */ 51 int kexec_image_probe_default(struct kimage *image, void *buf, 52 unsigned long buf_len) 53 { 54 const struct kexec_file_ops * const *fops; 55 int ret = -ENOEXEC; 56 57 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { 58 ret = (*fops)->probe(buf, buf_len); 59 if (!ret) { 60 image->fops = *fops; 61 return ret; 62 } 63 } 64 65 return ret; 66 } 67 68 static void *kexec_image_load_default(struct kimage *image) 69 { 70 if (!image->fops || !image->fops->load) 71 return ERR_PTR(-ENOEXEC); 72 73 return image->fops->load(image, image->kernel_buf, 74 image->kernel_buf_len, image->initrd_buf, 75 image->initrd_buf_len, image->cmdline_buf, 76 image->cmdline_buf_len); 77 } 78 79 int kexec_image_post_load_cleanup_default(struct kimage *image) 80 { 81 if (!image->fops || !image->fops->cleanup) 82 return 0; 83 84 return image->fops->cleanup(image->image_loader_data); 85 } 86 87 /* 88 * Free up memory used by kernel, initrd, and command line. This is temporary 89 * memory allocation which is not needed any more after these buffers have 90 * been loaded into separate segments and have been copied elsewhere. 91 */ 92 void kimage_file_post_load_cleanup(struct kimage *image) 93 { 94 struct purgatory_info *pi = &image->purgatory_info; 95 96 vfree(image->kernel_buf); 97 image->kernel_buf = NULL; 98 99 vfree(image->initrd_buf); 100 image->initrd_buf = NULL; 101 102 kfree(image->cmdline_buf); 103 image->cmdline_buf = NULL; 104 105 vfree(pi->purgatory_buf); 106 pi->purgatory_buf = NULL; 107 108 vfree(pi->sechdrs); 109 pi->sechdrs = NULL; 110 111 #ifdef CONFIG_IMA_KEXEC 112 vfree(image->ima_buffer); 113 image->ima_buffer = NULL; 114 #endif /* CONFIG_IMA_KEXEC */ 115 116 /* See if architecture has anything to cleanup post load */ 117 arch_kimage_file_post_load_cleanup(image); 118 119 /* 120 * Above call should have called into bootloader to free up 121 * any data stored in kimage->image_loader_data. It should 122 * be ok now to free it up. 123 */ 124 kfree(image->image_loader_data); 125 image->image_loader_data = NULL; 126 127 kexec_file_dbg_print = false; 128 } 129 130 #ifdef CONFIG_KEXEC_SIG 131 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION 132 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len) 133 { 134 int ret; 135 136 ret = verify_pefile_signature(kernel, kernel_len, 137 VERIFY_USE_SECONDARY_KEYRING, 138 VERIFYING_KEXEC_PE_SIGNATURE); 139 if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) { 140 ret = verify_pefile_signature(kernel, kernel_len, 141 VERIFY_USE_PLATFORM_KEYRING, 142 VERIFYING_KEXEC_PE_SIGNATURE); 143 } 144 return ret; 145 } 146 #endif 147 148 static int kexec_image_verify_sig(struct kimage *image, void *buf, 149 unsigned long buf_len) 150 { 151 if (!image->fops || !image->fops->verify_sig) { 152 pr_debug("kernel loader does not support signature verification.\n"); 153 return -EKEYREJECTED; 154 } 155 156 return image->fops->verify_sig(buf, buf_len); 157 } 158 159 static int 160 kimage_validate_signature(struct kimage *image) 161 { 162 int ret; 163 164 ret = kexec_image_verify_sig(image, image->kernel_buf, 165 image->kernel_buf_len); 166 if (ret) { 167 168 if (sig_enforce) { 169 pr_notice("Enforced kernel signature verification failed (%d).\n", ret); 170 return ret; 171 } 172 173 /* 174 * If IMA is guaranteed to appraise a signature on the kexec 175 * image, permit it even if the kernel is otherwise locked 176 * down. 177 */ 178 if (!ima_appraise_signature(READING_KEXEC_IMAGE) && 179 security_locked_down(LOCKDOWN_KEXEC)) 180 return -EPERM; 181 182 pr_debug("kernel signature verification failed (%d).\n", ret); 183 } 184 185 return 0; 186 } 187 #endif 188 189 /* 190 * In file mode list of segments is prepared by kernel. Copy relevant 191 * data from user space, do error checking, prepare segment list 192 */ 193 static int 194 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 195 const char __user *cmdline_ptr, 196 unsigned long cmdline_len, unsigned flags) 197 { 198 ssize_t ret; 199 void *ldata; 200 201 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf, 202 KEXEC_FILE_SIZE_MAX, NULL, 203 READING_KEXEC_IMAGE); 204 if (ret < 0) 205 return ret; 206 image->kernel_buf_len = ret; 207 kexec_dprintk("kernel: %p kernel_size: %#lx\n", 208 image->kernel_buf, image->kernel_buf_len); 209 210 /* Call arch image probe handlers */ 211 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 212 image->kernel_buf_len); 213 if (ret) 214 goto out; 215 216 #ifdef CONFIG_KEXEC_SIG 217 ret = kimage_validate_signature(image); 218 219 if (ret) 220 goto out; 221 #endif 222 /* It is possible that there no initramfs is being loaded */ 223 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 224 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf, 225 KEXEC_FILE_SIZE_MAX, NULL, 226 READING_KEXEC_INITRAMFS); 227 if (ret < 0) 228 goto out; 229 image->initrd_buf_len = ret; 230 ret = 0; 231 } 232 233 if (cmdline_len) { 234 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 235 if (IS_ERR(image->cmdline_buf)) { 236 ret = PTR_ERR(image->cmdline_buf); 237 image->cmdline_buf = NULL; 238 goto out; 239 } 240 241 image->cmdline_buf_len = cmdline_len; 242 243 /* command line should be a string with last byte null */ 244 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 245 ret = -EINVAL; 246 goto out; 247 } 248 249 ima_kexec_cmdline(kernel_fd, image->cmdline_buf, 250 image->cmdline_buf_len - 1); 251 } 252 253 /* IMA needs to pass the measurement list to the next kernel. */ 254 ima_add_kexec_buffer(image); 255 256 /* If KHO is active, add its images to the list */ 257 ret = kho_fill_kimage(image); 258 if (ret) 259 goto out; 260 261 /* Call image load handler */ 262 ldata = kexec_image_load_default(image); 263 264 if (IS_ERR(ldata)) { 265 ret = PTR_ERR(ldata); 266 goto out; 267 } 268 269 image->image_loader_data = ldata; 270 out: 271 /* In case of error, free up all allocated memory in this function */ 272 if (ret) 273 kimage_file_post_load_cleanup(image); 274 return ret; 275 } 276 277 static int 278 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 279 int initrd_fd, const char __user *cmdline_ptr, 280 unsigned long cmdline_len, unsigned long flags) 281 { 282 int ret; 283 struct kimage *image; 284 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 285 286 image = do_kimage_alloc_init(); 287 if (!image) 288 return -ENOMEM; 289 290 kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG); 291 image->file_mode = 1; 292 293 #ifdef CONFIG_CRASH_DUMP 294 if (kexec_on_panic) { 295 /* Enable special crash kernel control page alloc policy. */ 296 image->control_page = crashk_res.start; 297 image->type = KEXEC_TYPE_CRASH; 298 } 299 #endif 300 301 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 302 cmdline_ptr, cmdline_len, flags); 303 if (ret) 304 goto out_free_image; 305 306 ret = sanity_check_segment_list(image); 307 if (ret) 308 goto out_free_post_load_bufs; 309 310 ret = -ENOMEM; 311 image->control_code_page = kimage_alloc_control_pages(image, 312 get_order(KEXEC_CONTROL_PAGE_SIZE)); 313 if (!image->control_code_page) { 314 pr_err("Could not allocate control_code_buffer\n"); 315 goto out_free_post_load_bufs; 316 } 317 318 if (!kexec_on_panic) { 319 image->swap_page = kimage_alloc_control_pages(image, 0); 320 if (!image->swap_page) { 321 pr_err("Could not allocate swap buffer\n"); 322 goto out_free_control_pages; 323 } 324 } 325 326 *rimage = image; 327 return 0; 328 out_free_control_pages: 329 kimage_free_page_list(&image->control_pages); 330 out_free_post_load_bufs: 331 kimage_file_post_load_cleanup(image); 332 out_free_image: 333 kfree(image); 334 return ret; 335 } 336 337 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 338 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 339 unsigned long, flags) 340 { 341 int image_type = (flags & KEXEC_FILE_ON_CRASH) ? 342 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT; 343 struct kimage **dest_image, *image; 344 int ret = 0, i; 345 346 /* We only trust the superuser with rebooting the system. */ 347 if (!kexec_load_permitted(image_type)) 348 return -EPERM; 349 350 /* Make sure we have a legal set of flags */ 351 if (flags != (flags & KEXEC_FILE_FLAGS)) 352 return -EINVAL; 353 354 image = NULL; 355 356 if (!kexec_trylock()) 357 return -EBUSY; 358 359 #ifdef CONFIG_CRASH_DUMP 360 if (image_type == KEXEC_TYPE_CRASH) { 361 dest_image = &kexec_crash_image; 362 if (kexec_crash_image) 363 arch_kexec_unprotect_crashkres(); 364 } else 365 #endif 366 dest_image = &kexec_image; 367 368 if (flags & KEXEC_FILE_UNLOAD) 369 goto exchange; 370 371 /* 372 * In case of crash, new kernel gets loaded in reserved region. It is 373 * same memory where old crash kernel might be loaded. Free any 374 * current crash dump kernel before we corrupt it. 375 */ 376 if (flags & KEXEC_FILE_ON_CRASH) 377 kimage_free(xchg(&kexec_crash_image, NULL)); 378 379 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 380 cmdline_len, flags); 381 if (ret) 382 goto out; 383 384 #ifdef CONFIG_CRASH_HOTPLUG 385 if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags)) 386 image->hotplug_support = 1; 387 #endif 388 389 ret = machine_kexec_prepare(image); 390 if (ret) 391 goto out; 392 393 /* 394 * Some architecture(like S390) may touch the crash memory before 395 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 396 */ 397 ret = kimage_crash_copy_vmcoreinfo(image); 398 if (ret) 399 goto out; 400 401 ret = kexec_calculate_store_digests(image); 402 if (ret) 403 goto out; 404 405 kexec_dprintk("nr_segments = %lu\n", image->nr_segments); 406 for (i = 0; i < image->nr_segments; i++) { 407 struct kexec_segment *ksegment; 408 409 ksegment = &image->segment[i]; 410 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 411 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 412 ksegment->memsz); 413 414 ret = kimage_load_segment(image, &image->segment[i]); 415 if (ret) 416 goto out; 417 } 418 419 kimage_terminate(image); 420 421 ret = machine_kexec_post_load(image); 422 if (ret) 423 goto out; 424 425 kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n", 426 image->type, image->start, image->head, flags); 427 /* 428 * Free up any temporary buffers allocated which are not needed 429 * after image has been loaded 430 */ 431 kimage_file_post_load_cleanup(image); 432 exchange: 433 image = xchg(dest_image, image); 434 out: 435 #ifdef CONFIG_CRASH_DUMP 436 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 437 arch_kexec_protect_crashkres(); 438 #endif 439 440 kexec_unlock(); 441 kimage_free(image); 442 return ret; 443 } 444 445 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 446 struct kexec_buf *kbuf) 447 { 448 struct kimage *image = kbuf->image; 449 unsigned long temp_start, temp_end; 450 451 temp_end = min(end, kbuf->buf_max); 452 temp_start = temp_end - kbuf->memsz + 1; 453 454 do { 455 /* align down start */ 456 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align); 457 458 if (temp_start < start || temp_start < kbuf->buf_min) 459 return 0; 460 461 temp_end = temp_start + kbuf->memsz - 1; 462 463 /* 464 * Make sure this does not conflict with any of existing 465 * segments 466 */ 467 if (kimage_is_destination_range(image, temp_start, temp_end)) { 468 temp_start = temp_start - PAGE_SIZE; 469 continue; 470 } 471 472 /* Make sure this does not conflict with exclude range */ 473 if (arch_check_excluded_range(image, temp_start, temp_end)) { 474 temp_start = temp_start - PAGE_SIZE; 475 continue; 476 } 477 478 /* We found a suitable memory range */ 479 break; 480 } while (1); 481 482 /* If we are here, we found a suitable memory range */ 483 kbuf->mem = temp_start; 484 485 /* Success, stop navigating through remaining System RAM ranges */ 486 return 1; 487 } 488 489 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 490 struct kexec_buf *kbuf) 491 { 492 struct kimage *image = kbuf->image; 493 unsigned long temp_start, temp_end; 494 495 temp_start = max(start, kbuf->buf_min); 496 497 do { 498 temp_start = ALIGN(temp_start, kbuf->buf_align); 499 temp_end = temp_start + kbuf->memsz - 1; 500 501 if (temp_end > end || temp_end > kbuf->buf_max) 502 return 0; 503 /* 504 * Make sure this does not conflict with any of existing 505 * segments 506 */ 507 if (kimage_is_destination_range(image, temp_start, temp_end)) { 508 temp_start = temp_start + PAGE_SIZE; 509 continue; 510 } 511 512 /* Make sure this does not conflict with exclude range */ 513 if (arch_check_excluded_range(image, temp_start, temp_end)) { 514 temp_start = temp_start + PAGE_SIZE; 515 continue; 516 } 517 518 /* We found a suitable memory range */ 519 break; 520 } while (1); 521 522 /* If we are here, we found a suitable memory range */ 523 kbuf->mem = temp_start; 524 525 /* Success, stop navigating through remaining System RAM ranges */ 526 return 1; 527 } 528 529 static int locate_mem_hole_callback(struct resource *res, void *arg) 530 { 531 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 532 u64 start = res->start, end = res->end; 533 unsigned long sz = end - start + 1; 534 535 /* Returning 0 will take to next memory range */ 536 537 /* Don't use memory that will be detected and handled by a driver. */ 538 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 539 return 0; 540 541 if (sz < kbuf->memsz) 542 return 0; 543 544 if (end < kbuf->buf_min || start > kbuf->buf_max) 545 return 0; 546 547 /* 548 * Allocate memory top down with-in ram range. Otherwise bottom up 549 * allocation. 550 */ 551 if (kbuf->top_down) 552 return locate_mem_hole_top_down(start, end, kbuf); 553 return locate_mem_hole_bottom_up(start, end, kbuf); 554 } 555 556 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK 557 static int kexec_walk_memblock(struct kexec_buf *kbuf, 558 int (*func)(struct resource *, void *)) 559 { 560 int ret = 0; 561 u64 i; 562 phys_addr_t mstart, mend; 563 struct resource res = { }; 564 565 #ifdef CONFIG_CRASH_DUMP 566 if (kbuf->image->type == KEXEC_TYPE_CRASH) 567 return func(&crashk_res, kbuf); 568 #endif 569 570 /* 571 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See 572 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in 573 * locate_mem_hole_callback(). 574 */ 575 if (kbuf->top_down) { 576 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, 577 &mstart, &mend, NULL) { 578 /* 579 * In memblock, end points to the first byte after the 580 * range while in kexec, end points to the last byte 581 * in the range. 582 */ 583 res.start = mstart; 584 res.end = mend - 1; 585 ret = func(&res, kbuf); 586 if (ret) 587 break; 588 } 589 } else { 590 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 591 &mstart, &mend, NULL) { 592 /* 593 * In memblock, end points to the first byte after the 594 * range while in kexec, end points to the last byte 595 * in the range. 596 */ 597 res.start = mstart; 598 res.end = mend - 1; 599 ret = func(&res, kbuf); 600 if (ret) 601 break; 602 } 603 } 604 605 return ret; 606 } 607 #else 608 static int kexec_walk_memblock(struct kexec_buf *kbuf, 609 int (*func)(struct resource *, void *)) 610 { 611 return 0; 612 } 613 #endif 614 615 /** 616 * kexec_walk_resources - call func(data) on free memory regions 617 * @kbuf: Context info for the search. Also passed to @func. 618 * @func: Function to call for each memory region. 619 * 620 * Return: The memory walk will stop when func returns a non-zero value 621 * and that value will be returned. If all free regions are visited without 622 * func returning non-zero, then zero will be returned. 623 */ 624 static int kexec_walk_resources(struct kexec_buf *kbuf, 625 int (*func)(struct resource *, void *)) 626 { 627 #ifdef CONFIG_CRASH_DUMP 628 if (kbuf->image->type == KEXEC_TYPE_CRASH) 629 return walk_iomem_res_desc(crashk_res.desc, 630 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 631 crashk_res.start, crashk_res.end, 632 kbuf, func); 633 #endif 634 if (kbuf->top_down) 635 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func); 636 else 637 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 638 } 639 640 /** 641 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 642 * @kbuf: Parameters for the memory search. 643 * 644 * On success, kbuf->mem will have the start address of the memory region found. 645 * 646 * Return: 0 on success, negative errno on error. 647 */ 648 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 649 { 650 int ret; 651 652 /* Arch knows where to place */ 653 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) 654 return 0; 655 656 /* 657 * If KHO is active, only use KHO scratch memory. All other memory 658 * could potentially be handed over. 659 */ 660 ret = kho_locate_mem_hole(kbuf, locate_mem_hole_callback); 661 if (ret <= 0) 662 return ret; 663 664 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 665 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); 666 else 667 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); 668 669 return ret == 1 ? 0 : -EADDRNOTAVAIL; 670 } 671 672 /** 673 * kexec_add_buffer - place a buffer in a kexec segment 674 * @kbuf: Buffer contents and memory parameters. 675 * 676 * This function assumes that kexec_lock is held. 677 * On successful return, @kbuf->mem will have the physical address of 678 * the buffer in memory. 679 * 680 * Return: 0 on success, negative errno on error. 681 */ 682 int kexec_add_buffer(struct kexec_buf *kbuf) 683 { 684 struct kexec_segment *ksegment; 685 int ret; 686 687 /* Currently adding segment this way is allowed only in file mode */ 688 if (!kbuf->image->file_mode) 689 return -EINVAL; 690 691 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 692 return -EINVAL; 693 694 /* 695 * Make sure we are not trying to add buffer after allocating 696 * control pages. All segments need to be placed first before 697 * any control pages are allocated. As control page allocation 698 * logic goes through list of segments to make sure there are 699 * no destination overlaps. 700 */ 701 if (!list_empty(&kbuf->image->control_pages)) { 702 WARN_ON(1); 703 return -EINVAL; 704 } 705 706 /* Ensure minimum alignment needed for segments. */ 707 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 708 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 709 710 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 711 ret = arch_kexec_locate_mem_hole(kbuf); 712 if (ret) 713 return ret; 714 715 /* Found a suitable memory range */ 716 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 717 ksegment->kbuf = kbuf->buffer; 718 ksegment->bufsz = kbuf->bufsz; 719 ksegment->mem = kbuf->mem; 720 ksegment->memsz = kbuf->memsz; 721 kbuf->image->nr_segments++; 722 return 0; 723 } 724 725 /* Calculate and store the digest of segments */ 726 static int kexec_calculate_store_digests(struct kimage *image) 727 { 728 struct crypto_shash *tfm; 729 struct shash_desc *desc; 730 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 731 size_t desc_size, nullsz; 732 char *digest; 733 void *zero_buf; 734 struct kexec_sha_region *sha_regions; 735 struct purgatory_info *pi = &image->purgatory_info; 736 737 if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY)) 738 return 0; 739 740 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 741 zero_buf_sz = PAGE_SIZE; 742 743 tfm = crypto_alloc_shash("sha256", 0, 0); 744 if (IS_ERR(tfm)) { 745 ret = PTR_ERR(tfm); 746 goto out; 747 } 748 749 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 750 desc = kzalloc(desc_size, GFP_KERNEL); 751 if (!desc) { 752 ret = -ENOMEM; 753 goto out_free_tfm; 754 } 755 756 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 757 sha_regions = vzalloc(sha_region_sz); 758 if (!sha_regions) { 759 ret = -ENOMEM; 760 goto out_free_desc; 761 } 762 763 desc->tfm = tfm; 764 765 ret = crypto_shash_init(desc); 766 if (ret < 0) 767 goto out_free_sha_regions; 768 769 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 770 if (!digest) { 771 ret = -ENOMEM; 772 goto out_free_sha_regions; 773 } 774 775 for (j = i = 0; i < image->nr_segments; i++) { 776 struct kexec_segment *ksegment; 777 778 #ifdef CONFIG_CRASH_HOTPLUG 779 /* Exclude elfcorehdr segment to allow future changes via hotplug */ 780 if (i == image->elfcorehdr_index) 781 continue; 782 #endif 783 784 ksegment = &image->segment[i]; 785 /* 786 * Skip purgatory as it will be modified once we put digest 787 * info in purgatory. 788 */ 789 if (ksegment->kbuf == pi->purgatory_buf) 790 continue; 791 792 ret = crypto_shash_update(desc, ksegment->kbuf, 793 ksegment->bufsz); 794 if (ret) 795 break; 796 797 /* 798 * Assume rest of the buffer is filled with zero and 799 * update digest accordingly. 800 */ 801 nullsz = ksegment->memsz - ksegment->bufsz; 802 while (nullsz) { 803 unsigned long bytes = nullsz; 804 805 if (bytes > zero_buf_sz) 806 bytes = zero_buf_sz; 807 ret = crypto_shash_update(desc, zero_buf, bytes); 808 if (ret) 809 break; 810 nullsz -= bytes; 811 } 812 813 if (ret) 814 break; 815 816 sha_regions[j].start = ksegment->mem; 817 sha_regions[j].len = ksegment->memsz; 818 j++; 819 } 820 821 if (!ret) { 822 ret = crypto_shash_final(desc, digest); 823 if (ret) 824 goto out_free_digest; 825 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 826 sha_regions, sha_region_sz, 0); 827 if (ret) 828 goto out_free_digest; 829 830 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 831 digest, SHA256_DIGEST_SIZE, 0); 832 if (ret) 833 goto out_free_digest; 834 } 835 836 out_free_digest: 837 kfree(digest); 838 out_free_sha_regions: 839 vfree(sha_regions); 840 out_free_desc: 841 kfree(desc); 842 out_free_tfm: 843 kfree(tfm); 844 out: 845 return ret; 846 } 847 848 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY 849 /* 850 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. 851 * @pi: Purgatory to be loaded. 852 * @kbuf: Buffer to setup. 853 * 854 * Allocates the memory needed for the buffer. Caller is responsible to free 855 * the memory after use. 856 * 857 * Return: 0 on success, negative errno on error. 858 */ 859 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, 860 struct kexec_buf *kbuf) 861 { 862 const Elf_Shdr *sechdrs; 863 unsigned long bss_align; 864 unsigned long bss_sz; 865 unsigned long align; 866 int i, ret; 867 868 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 869 kbuf->buf_align = bss_align = 1; 870 kbuf->bufsz = bss_sz = 0; 871 872 for (i = 0; i < pi->ehdr->e_shnum; i++) { 873 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 874 continue; 875 876 align = sechdrs[i].sh_addralign; 877 if (sechdrs[i].sh_type != SHT_NOBITS) { 878 if (kbuf->buf_align < align) 879 kbuf->buf_align = align; 880 kbuf->bufsz = ALIGN(kbuf->bufsz, align); 881 kbuf->bufsz += sechdrs[i].sh_size; 882 } else { 883 if (bss_align < align) 884 bss_align = align; 885 bss_sz = ALIGN(bss_sz, align); 886 bss_sz += sechdrs[i].sh_size; 887 } 888 } 889 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); 890 kbuf->memsz = kbuf->bufsz + bss_sz; 891 if (kbuf->buf_align < bss_align) 892 kbuf->buf_align = bss_align; 893 894 kbuf->buffer = vzalloc(kbuf->bufsz); 895 if (!kbuf->buffer) 896 return -ENOMEM; 897 pi->purgatory_buf = kbuf->buffer; 898 899 ret = kexec_add_buffer(kbuf); 900 if (ret) 901 goto out; 902 903 return 0; 904 out: 905 vfree(pi->purgatory_buf); 906 pi->purgatory_buf = NULL; 907 return ret; 908 } 909 910 /* 911 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. 912 * @pi: Purgatory to be loaded. 913 * @kbuf: Buffer prepared to store purgatory. 914 * 915 * Allocates the memory needed for the buffer. Caller is responsible to free 916 * the memory after use. 917 * 918 * Return: 0 on success, negative errno on error. 919 */ 920 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, 921 struct kexec_buf *kbuf) 922 { 923 unsigned long bss_addr; 924 unsigned long offset; 925 size_t sechdrs_size; 926 Elf_Shdr *sechdrs; 927 int i; 928 929 /* 930 * The section headers in kexec_purgatory are read-only. In order to 931 * have them modifiable make a temporary copy. 932 */ 933 sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum); 934 sechdrs = vzalloc(sechdrs_size); 935 if (!sechdrs) 936 return -ENOMEM; 937 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size); 938 pi->sechdrs = sechdrs; 939 940 offset = 0; 941 bss_addr = kbuf->mem + kbuf->bufsz; 942 kbuf->image->start = pi->ehdr->e_entry; 943 944 for (i = 0; i < pi->ehdr->e_shnum; i++) { 945 unsigned long align; 946 void *src, *dst; 947 948 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 949 continue; 950 951 align = sechdrs[i].sh_addralign; 952 if (sechdrs[i].sh_type == SHT_NOBITS) { 953 bss_addr = ALIGN(bss_addr, align); 954 sechdrs[i].sh_addr = bss_addr; 955 bss_addr += sechdrs[i].sh_size; 956 continue; 957 } 958 959 offset = ALIGN(offset, align); 960 961 /* 962 * Check if the segment contains the entry point, if so, 963 * calculate the value of image->start based on it. 964 * If the compiler has produced more than one .text section 965 * (Eg: .text.hot), they are generally after the main .text 966 * section, and they shall not be used to calculate 967 * image->start. So do not re-calculate image->start if it 968 * is not set to the initial value, and warn the user so they 969 * have a chance to fix their purgatory's linker script. 970 */ 971 if (sechdrs[i].sh_flags & SHF_EXECINSTR && 972 pi->ehdr->e_entry >= sechdrs[i].sh_addr && 973 pi->ehdr->e_entry < (sechdrs[i].sh_addr 974 + sechdrs[i].sh_size) && 975 !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) { 976 kbuf->image->start -= sechdrs[i].sh_addr; 977 kbuf->image->start += kbuf->mem + offset; 978 } 979 980 src = (void *)pi->ehdr + sechdrs[i].sh_offset; 981 dst = pi->purgatory_buf + offset; 982 memcpy(dst, src, sechdrs[i].sh_size); 983 984 sechdrs[i].sh_addr = kbuf->mem + offset; 985 sechdrs[i].sh_offset = offset; 986 offset += sechdrs[i].sh_size; 987 } 988 989 return 0; 990 } 991 992 static int kexec_apply_relocations(struct kimage *image) 993 { 994 int i, ret; 995 struct purgatory_info *pi = &image->purgatory_info; 996 const Elf_Shdr *sechdrs; 997 998 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 999 1000 for (i = 0; i < pi->ehdr->e_shnum; i++) { 1001 const Elf_Shdr *relsec; 1002 const Elf_Shdr *symtab; 1003 Elf_Shdr *section; 1004 1005 relsec = sechdrs + i; 1006 1007 if (relsec->sh_type != SHT_RELA && 1008 relsec->sh_type != SHT_REL) 1009 continue; 1010 1011 /* 1012 * For section of type SHT_RELA/SHT_REL, 1013 * ->sh_link contains section header index of associated 1014 * symbol table. And ->sh_info contains section header 1015 * index of section to which relocations apply. 1016 */ 1017 if (relsec->sh_info >= pi->ehdr->e_shnum || 1018 relsec->sh_link >= pi->ehdr->e_shnum) 1019 return -ENOEXEC; 1020 1021 section = pi->sechdrs + relsec->sh_info; 1022 symtab = sechdrs + relsec->sh_link; 1023 1024 if (!(section->sh_flags & SHF_ALLOC)) 1025 continue; 1026 1027 /* 1028 * symtab->sh_link contain section header index of associated 1029 * string table. 1030 */ 1031 if (symtab->sh_link >= pi->ehdr->e_shnum) 1032 /* Invalid section number? */ 1033 continue; 1034 1035 /* 1036 * Respective architecture needs to provide support for applying 1037 * relocations of type SHT_RELA/SHT_REL. 1038 */ 1039 if (relsec->sh_type == SHT_RELA) 1040 ret = arch_kexec_apply_relocations_add(pi, section, 1041 relsec, symtab); 1042 else if (relsec->sh_type == SHT_REL) 1043 ret = arch_kexec_apply_relocations(pi, section, 1044 relsec, symtab); 1045 if (ret) 1046 return ret; 1047 } 1048 1049 return 0; 1050 } 1051 1052 /* 1053 * kexec_load_purgatory - Load and relocate the purgatory object. 1054 * @image: Image to add the purgatory to. 1055 * @kbuf: Memory parameters to use. 1056 * 1057 * Allocates the memory needed for image->purgatory_info.sechdrs and 1058 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible 1059 * to free the memory after use. 1060 * 1061 * Return: 0 on success, negative errno on error. 1062 */ 1063 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) 1064 { 1065 struct purgatory_info *pi = &image->purgatory_info; 1066 int ret; 1067 1068 if (kexec_purgatory_size <= 0) 1069 return -EINVAL; 1070 1071 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; 1072 1073 ret = kexec_purgatory_setup_kbuf(pi, kbuf); 1074 if (ret) 1075 return ret; 1076 1077 ret = kexec_purgatory_setup_sechdrs(pi, kbuf); 1078 if (ret) 1079 goto out_free_kbuf; 1080 1081 ret = kexec_apply_relocations(image); 1082 if (ret) 1083 goto out; 1084 1085 return 0; 1086 out: 1087 vfree(pi->sechdrs); 1088 pi->sechdrs = NULL; 1089 out_free_kbuf: 1090 vfree(pi->purgatory_buf); 1091 pi->purgatory_buf = NULL; 1092 return ret; 1093 } 1094 1095 /* 1096 * kexec_purgatory_find_symbol - find a symbol in the purgatory 1097 * @pi: Purgatory to search in. 1098 * @name: Name of the symbol. 1099 * 1100 * Return: pointer to symbol in read-only symtab on success, NULL on error. 1101 */ 1102 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 1103 const char *name) 1104 { 1105 const Elf_Shdr *sechdrs; 1106 const Elf_Ehdr *ehdr; 1107 const Elf_Sym *syms; 1108 const char *strtab; 1109 int i, k; 1110 1111 if (!pi->ehdr) 1112 return NULL; 1113 1114 ehdr = pi->ehdr; 1115 sechdrs = (void *)ehdr + ehdr->e_shoff; 1116 1117 for (i = 0; i < ehdr->e_shnum; i++) { 1118 if (sechdrs[i].sh_type != SHT_SYMTAB) 1119 continue; 1120 1121 if (sechdrs[i].sh_link >= ehdr->e_shnum) 1122 /* Invalid strtab section number */ 1123 continue; 1124 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; 1125 syms = (void *)ehdr + sechdrs[i].sh_offset; 1126 1127 /* Go through symbols for a match */ 1128 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 1129 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 1130 continue; 1131 1132 if (strcmp(strtab + syms[k].st_name, name) != 0) 1133 continue; 1134 1135 if (syms[k].st_shndx == SHN_UNDEF || 1136 syms[k].st_shndx >= ehdr->e_shnum) { 1137 pr_debug("Symbol: %s has bad section index %d.\n", 1138 name, syms[k].st_shndx); 1139 return NULL; 1140 } 1141 1142 /* Found the symbol we are looking for */ 1143 return &syms[k]; 1144 } 1145 } 1146 1147 return NULL; 1148 } 1149 1150 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 1151 { 1152 struct purgatory_info *pi = &image->purgatory_info; 1153 const Elf_Sym *sym; 1154 Elf_Shdr *sechdr; 1155 1156 sym = kexec_purgatory_find_symbol(pi, name); 1157 if (!sym) 1158 return ERR_PTR(-EINVAL); 1159 1160 sechdr = &pi->sechdrs[sym->st_shndx]; 1161 1162 /* 1163 * Returns the address where symbol will finally be loaded after 1164 * kexec_load_segment() 1165 */ 1166 return (void *)(sechdr->sh_addr + sym->st_value); 1167 } 1168 1169 /* 1170 * Get or set value of a symbol. If "get_value" is true, symbol value is 1171 * returned in buf otherwise symbol value is set based on value in buf. 1172 */ 1173 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 1174 void *buf, unsigned int size, bool get_value) 1175 { 1176 struct purgatory_info *pi = &image->purgatory_info; 1177 const Elf_Sym *sym; 1178 Elf_Shdr *sec; 1179 char *sym_buf; 1180 1181 sym = kexec_purgatory_find_symbol(pi, name); 1182 if (!sym) 1183 return -EINVAL; 1184 1185 if (sym->st_size != size) { 1186 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1187 name, (unsigned long)sym->st_size, size); 1188 return -EINVAL; 1189 } 1190 1191 sec = pi->sechdrs + sym->st_shndx; 1192 1193 if (sec->sh_type == SHT_NOBITS) { 1194 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1195 get_value ? "get" : "set"); 1196 return -EINVAL; 1197 } 1198 1199 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; 1200 1201 if (get_value) 1202 memcpy((void *)buf, sym_buf, size); 1203 else 1204 memcpy((void *)sym_buf, buf, size); 1205 1206 return 0; 1207 } 1208 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */ 1209