xref: /linux/kernel/kexec_file.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <crypto/hash.h>
22 #include <crypto/sha.h>
23 #include <linux/syscalls.h>
24 #include <linux/vmalloc.h>
25 #include "kexec_internal.h"
26 
27 /*
28  * Declare these symbols weak so that if architecture provides a purgatory,
29  * these will be overridden.
30  */
31 char __weak kexec_purgatory[0];
32 size_t __weak kexec_purgatory_size = 0;
33 
34 static int kexec_calculate_store_digests(struct kimage *image);
35 
36 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len)
37 {
38 	struct fd f = fdget(fd);
39 	int ret;
40 	struct kstat stat;
41 	loff_t pos;
42 	ssize_t bytes = 0;
43 
44 	if (!f.file)
45 		return -EBADF;
46 
47 	ret = vfs_getattr(&f.file->f_path, &stat);
48 	if (ret)
49 		goto out;
50 
51 	if (stat.size > INT_MAX) {
52 		ret = -EFBIG;
53 		goto out;
54 	}
55 
56 	/* Don't hand 0 to vmalloc, it whines. */
57 	if (stat.size == 0) {
58 		ret = -EINVAL;
59 		goto out;
60 	}
61 
62 	*buf = vmalloc(stat.size);
63 	if (!*buf) {
64 		ret = -ENOMEM;
65 		goto out;
66 	}
67 
68 	pos = 0;
69 	while (pos < stat.size) {
70 		bytes = kernel_read(f.file, pos, (char *)(*buf) + pos,
71 				    stat.size - pos);
72 		if (bytes < 0) {
73 			vfree(*buf);
74 			ret = bytes;
75 			goto out;
76 		}
77 
78 		if (bytes == 0)
79 			break;
80 		pos += bytes;
81 	}
82 
83 	if (pos != stat.size) {
84 		ret = -EBADF;
85 		vfree(*buf);
86 		goto out;
87 	}
88 
89 	*buf_len = pos;
90 out:
91 	fdput(f);
92 	return ret;
93 }
94 
95 /* Architectures can provide this probe function */
96 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
97 					 unsigned long buf_len)
98 {
99 	return -ENOEXEC;
100 }
101 
102 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
103 {
104 	return ERR_PTR(-ENOEXEC);
105 }
106 
107 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
108 {
109 	return -EINVAL;
110 }
111 
112 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
113 					unsigned long buf_len)
114 {
115 	return -EKEYREJECTED;
116 }
117 
118 /* Apply relocations of type RELA */
119 int __weak
120 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
121 				 unsigned int relsec)
122 {
123 	pr_err("RELA relocation unsupported.\n");
124 	return -ENOEXEC;
125 }
126 
127 /* Apply relocations of type REL */
128 int __weak
129 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
130 			     unsigned int relsec)
131 {
132 	pr_err("REL relocation unsupported.\n");
133 	return -ENOEXEC;
134 }
135 
136 /*
137  * Free up memory used by kernel, initrd, and command line. This is temporary
138  * memory allocation which is not needed any more after these buffers have
139  * been loaded into separate segments and have been copied elsewhere.
140  */
141 void kimage_file_post_load_cleanup(struct kimage *image)
142 {
143 	struct purgatory_info *pi = &image->purgatory_info;
144 
145 	vfree(image->kernel_buf);
146 	image->kernel_buf = NULL;
147 
148 	vfree(image->initrd_buf);
149 	image->initrd_buf = NULL;
150 
151 	kfree(image->cmdline_buf);
152 	image->cmdline_buf = NULL;
153 
154 	vfree(pi->purgatory_buf);
155 	pi->purgatory_buf = NULL;
156 
157 	vfree(pi->sechdrs);
158 	pi->sechdrs = NULL;
159 
160 	/* See if architecture has anything to cleanup post load */
161 	arch_kimage_file_post_load_cleanup(image);
162 
163 	/*
164 	 * Above call should have called into bootloader to free up
165 	 * any data stored in kimage->image_loader_data. It should
166 	 * be ok now to free it up.
167 	 */
168 	kfree(image->image_loader_data);
169 	image->image_loader_data = NULL;
170 }
171 
172 /*
173  * In file mode list of segments is prepared by kernel. Copy relevant
174  * data from user space, do error checking, prepare segment list
175  */
176 static int
177 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
178 			     const char __user *cmdline_ptr,
179 			     unsigned long cmdline_len, unsigned flags)
180 {
181 	int ret = 0;
182 	void *ldata;
183 
184 	ret = copy_file_from_fd(kernel_fd, &image->kernel_buf,
185 				&image->kernel_buf_len);
186 	if (ret)
187 		return ret;
188 
189 	/* Call arch image probe handlers */
190 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
191 					    image->kernel_buf_len);
192 
193 	if (ret)
194 		goto out;
195 
196 #ifdef CONFIG_KEXEC_VERIFY_SIG
197 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
198 					   image->kernel_buf_len);
199 	if (ret) {
200 		pr_debug("kernel signature verification failed.\n");
201 		goto out;
202 	}
203 	pr_debug("kernel signature verification successful.\n");
204 #endif
205 	/* It is possible that there no initramfs is being loaded */
206 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
207 		ret = copy_file_from_fd(initrd_fd, &image->initrd_buf,
208 					&image->initrd_buf_len);
209 		if (ret)
210 			goto out;
211 	}
212 
213 	if (cmdline_len) {
214 		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
215 		if (!image->cmdline_buf) {
216 			ret = -ENOMEM;
217 			goto out;
218 		}
219 
220 		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
221 				     cmdline_len);
222 		if (ret) {
223 			ret = -EFAULT;
224 			goto out;
225 		}
226 
227 		image->cmdline_buf_len = cmdline_len;
228 
229 		/* command line should be a string with last byte null */
230 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
231 			ret = -EINVAL;
232 			goto out;
233 		}
234 	}
235 
236 	/* Call arch image load handlers */
237 	ldata = arch_kexec_kernel_image_load(image);
238 
239 	if (IS_ERR(ldata)) {
240 		ret = PTR_ERR(ldata);
241 		goto out;
242 	}
243 
244 	image->image_loader_data = ldata;
245 out:
246 	/* In case of error, free up all allocated memory in this function */
247 	if (ret)
248 		kimage_file_post_load_cleanup(image);
249 	return ret;
250 }
251 
252 static int
253 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
254 		       int initrd_fd, const char __user *cmdline_ptr,
255 		       unsigned long cmdline_len, unsigned long flags)
256 {
257 	int ret;
258 	struct kimage *image;
259 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
260 
261 	image = do_kimage_alloc_init();
262 	if (!image)
263 		return -ENOMEM;
264 
265 	image->file_mode = 1;
266 
267 	if (kexec_on_panic) {
268 		/* Enable special crash kernel control page alloc policy. */
269 		image->control_page = crashk_res.start;
270 		image->type = KEXEC_TYPE_CRASH;
271 	}
272 
273 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
274 					   cmdline_ptr, cmdline_len, flags);
275 	if (ret)
276 		goto out_free_image;
277 
278 	ret = sanity_check_segment_list(image);
279 	if (ret)
280 		goto out_free_post_load_bufs;
281 
282 	ret = -ENOMEM;
283 	image->control_code_page = kimage_alloc_control_pages(image,
284 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
285 	if (!image->control_code_page) {
286 		pr_err("Could not allocate control_code_buffer\n");
287 		goto out_free_post_load_bufs;
288 	}
289 
290 	if (!kexec_on_panic) {
291 		image->swap_page = kimage_alloc_control_pages(image, 0);
292 		if (!image->swap_page) {
293 			pr_err("Could not allocate swap buffer\n");
294 			goto out_free_control_pages;
295 		}
296 	}
297 
298 	*rimage = image;
299 	return 0;
300 out_free_control_pages:
301 	kimage_free_page_list(&image->control_pages);
302 out_free_post_load_bufs:
303 	kimage_file_post_load_cleanup(image);
304 out_free_image:
305 	kfree(image);
306 	return ret;
307 }
308 
309 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
310 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
311 		unsigned long, flags)
312 {
313 	int ret = 0, i;
314 	struct kimage **dest_image, *image;
315 
316 	/* We only trust the superuser with rebooting the system. */
317 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
318 		return -EPERM;
319 
320 	/* Make sure we have a legal set of flags */
321 	if (flags != (flags & KEXEC_FILE_FLAGS))
322 		return -EINVAL;
323 
324 	image = NULL;
325 
326 	if (!mutex_trylock(&kexec_mutex))
327 		return -EBUSY;
328 
329 	dest_image = &kexec_image;
330 	if (flags & KEXEC_FILE_ON_CRASH)
331 		dest_image = &kexec_crash_image;
332 
333 	if (flags & KEXEC_FILE_UNLOAD)
334 		goto exchange;
335 
336 	/*
337 	 * In case of crash, new kernel gets loaded in reserved region. It is
338 	 * same memory where old crash kernel might be loaded. Free any
339 	 * current crash dump kernel before we corrupt it.
340 	 */
341 	if (flags & KEXEC_FILE_ON_CRASH)
342 		kimage_free(xchg(&kexec_crash_image, NULL));
343 
344 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
345 				     cmdline_len, flags);
346 	if (ret)
347 		goto out;
348 
349 	ret = machine_kexec_prepare(image);
350 	if (ret)
351 		goto out;
352 
353 	ret = kexec_calculate_store_digests(image);
354 	if (ret)
355 		goto out;
356 
357 	for (i = 0; i < image->nr_segments; i++) {
358 		struct kexec_segment *ksegment;
359 
360 		ksegment = &image->segment[i];
361 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
362 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
363 			 ksegment->memsz);
364 
365 		ret = kimage_load_segment(image, &image->segment[i]);
366 		if (ret)
367 			goto out;
368 	}
369 
370 	kimage_terminate(image);
371 
372 	/*
373 	 * Free up any temporary buffers allocated which are not needed
374 	 * after image has been loaded
375 	 */
376 	kimage_file_post_load_cleanup(image);
377 exchange:
378 	image = xchg(dest_image, image);
379 out:
380 	mutex_unlock(&kexec_mutex);
381 	kimage_free(image);
382 	return ret;
383 }
384 
385 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
386 				    struct kexec_buf *kbuf)
387 {
388 	struct kimage *image = kbuf->image;
389 	unsigned long temp_start, temp_end;
390 
391 	temp_end = min(end, kbuf->buf_max);
392 	temp_start = temp_end - kbuf->memsz;
393 
394 	do {
395 		/* align down start */
396 		temp_start = temp_start & (~(kbuf->buf_align - 1));
397 
398 		if (temp_start < start || temp_start < kbuf->buf_min)
399 			return 0;
400 
401 		temp_end = temp_start + kbuf->memsz - 1;
402 
403 		/*
404 		 * Make sure this does not conflict with any of existing
405 		 * segments
406 		 */
407 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
408 			temp_start = temp_start - PAGE_SIZE;
409 			continue;
410 		}
411 
412 		/* We found a suitable memory range */
413 		break;
414 	} while (1);
415 
416 	/* If we are here, we found a suitable memory range */
417 	kbuf->mem = temp_start;
418 
419 	/* Success, stop navigating through remaining System RAM ranges */
420 	return 1;
421 }
422 
423 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
424 				     struct kexec_buf *kbuf)
425 {
426 	struct kimage *image = kbuf->image;
427 	unsigned long temp_start, temp_end;
428 
429 	temp_start = max(start, kbuf->buf_min);
430 
431 	do {
432 		temp_start = ALIGN(temp_start, kbuf->buf_align);
433 		temp_end = temp_start + kbuf->memsz - 1;
434 
435 		if (temp_end > end || temp_end > kbuf->buf_max)
436 			return 0;
437 		/*
438 		 * Make sure this does not conflict with any of existing
439 		 * segments
440 		 */
441 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
442 			temp_start = temp_start + PAGE_SIZE;
443 			continue;
444 		}
445 
446 		/* We found a suitable memory range */
447 		break;
448 	} while (1);
449 
450 	/* If we are here, we found a suitable memory range */
451 	kbuf->mem = temp_start;
452 
453 	/* Success, stop navigating through remaining System RAM ranges */
454 	return 1;
455 }
456 
457 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
458 {
459 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
460 	unsigned long sz = end - start + 1;
461 
462 	/* Returning 0 will take to next memory range */
463 	if (sz < kbuf->memsz)
464 		return 0;
465 
466 	if (end < kbuf->buf_min || start > kbuf->buf_max)
467 		return 0;
468 
469 	/*
470 	 * Allocate memory top down with-in ram range. Otherwise bottom up
471 	 * allocation.
472 	 */
473 	if (kbuf->top_down)
474 		return locate_mem_hole_top_down(start, end, kbuf);
475 	return locate_mem_hole_bottom_up(start, end, kbuf);
476 }
477 
478 /*
479  * Helper function for placing a buffer in a kexec segment. This assumes
480  * that kexec_mutex is held.
481  */
482 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
483 		     unsigned long memsz, unsigned long buf_align,
484 		     unsigned long buf_min, unsigned long buf_max,
485 		     bool top_down, unsigned long *load_addr)
486 {
487 
488 	struct kexec_segment *ksegment;
489 	struct kexec_buf buf, *kbuf;
490 	int ret;
491 
492 	/* Currently adding segment this way is allowed only in file mode */
493 	if (!image->file_mode)
494 		return -EINVAL;
495 
496 	if (image->nr_segments >= KEXEC_SEGMENT_MAX)
497 		return -EINVAL;
498 
499 	/*
500 	 * Make sure we are not trying to add buffer after allocating
501 	 * control pages. All segments need to be placed first before
502 	 * any control pages are allocated. As control page allocation
503 	 * logic goes through list of segments to make sure there are
504 	 * no destination overlaps.
505 	 */
506 	if (!list_empty(&image->control_pages)) {
507 		WARN_ON(1);
508 		return -EINVAL;
509 	}
510 
511 	memset(&buf, 0, sizeof(struct kexec_buf));
512 	kbuf = &buf;
513 	kbuf->image = image;
514 	kbuf->buffer = buffer;
515 	kbuf->bufsz = bufsz;
516 
517 	kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
518 	kbuf->buf_align = max(buf_align, PAGE_SIZE);
519 	kbuf->buf_min = buf_min;
520 	kbuf->buf_max = buf_max;
521 	kbuf->top_down = top_down;
522 
523 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
524 	if (image->type == KEXEC_TYPE_CRASH)
525 		ret = walk_iomem_res("Crash kernel",
526 				     IORESOURCE_MEM | IORESOURCE_BUSY,
527 				     crashk_res.start, crashk_res.end, kbuf,
528 				     locate_mem_hole_callback);
529 	else
530 		ret = walk_system_ram_res(0, -1, kbuf,
531 					  locate_mem_hole_callback);
532 	if (ret != 1) {
533 		/* A suitable memory range could not be found for buffer */
534 		return -EADDRNOTAVAIL;
535 	}
536 
537 	/* Found a suitable memory range */
538 	ksegment = &image->segment[image->nr_segments];
539 	ksegment->kbuf = kbuf->buffer;
540 	ksegment->bufsz = kbuf->bufsz;
541 	ksegment->mem = kbuf->mem;
542 	ksegment->memsz = kbuf->memsz;
543 	image->nr_segments++;
544 	*load_addr = ksegment->mem;
545 	return 0;
546 }
547 
548 /* Calculate and store the digest of segments */
549 static int kexec_calculate_store_digests(struct kimage *image)
550 {
551 	struct crypto_shash *tfm;
552 	struct shash_desc *desc;
553 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
554 	size_t desc_size, nullsz;
555 	char *digest;
556 	void *zero_buf;
557 	struct kexec_sha_region *sha_regions;
558 	struct purgatory_info *pi = &image->purgatory_info;
559 
560 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
561 	zero_buf_sz = PAGE_SIZE;
562 
563 	tfm = crypto_alloc_shash("sha256", 0, 0);
564 	if (IS_ERR(tfm)) {
565 		ret = PTR_ERR(tfm);
566 		goto out;
567 	}
568 
569 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
570 	desc = kzalloc(desc_size, GFP_KERNEL);
571 	if (!desc) {
572 		ret = -ENOMEM;
573 		goto out_free_tfm;
574 	}
575 
576 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
577 	sha_regions = vzalloc(sha_region_sz);
578 	if (!sha_regions)
579 		goto out_free_desc;
580 
581 	desc->tfm   = tfm;
582 	desc->flags = 0;
583 
584 	ret = crypto_shash_init(desc);
585 	if (ret < 0)
586 		goto out_free_sha_regions;
587 
588 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
589 	if (!digest) {
590 		ret = -ENOMEM;
591 		goto out_free_sha_regions;
592 	}
593 
594 	for (j = i = 0; i < image->nr_segments; i++) {
595 		struct kexec_segment *ksegment;
596 
597 		ksegment = &image->segment[i];
598 		/*
599 		 * Skip purgatory as it will be modified once we put digest
600 		 * info in purgatory.
601 		 */
602 		if (ksegment->kbuf == pi->purgatory_buf)
603 			continue;
604 
605 		ret = crypto_shash_update(desc, ksegment->kbuf,
606 					  ksegment->bufsz);
607 		if (ret)
608 			break;
609 
610 		/*
611 		 * Assume rest of the buffer is filled with zero and
612 		 * update digest accordingly.
613 		 */
614 		nullsz = ksegment->memsz - ksegment->bufsz;
615 		while (nullsz) {
616 			unsigned long bytes = nullsz;
617 
618 			if (bytes > zero_buf_sz)
619 				bytes = zero_buf_sz;
620 			ret = crypto_shash_update(desc, zero_buf, bytes);
621 			if (ret)
622 				break;
623 			nullsz -= bytes;
624 		}
625 
626 		if (ret)
627 			break;
628 
629 		sha_regions[j].start = ksegment->mem;
630 		sha_regions[j].len = ksegment->memsz;
631 		j++;
632 	}
633 
634 	if (!ret) {
635 		ret = crypto_shash_final(desc, digest);
636 		if (ret)
637 			goto out_free_digest;
638 		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
639 						sha_regions, sha_region_sz, 0);
640 		if (ret)
641 			goto out_free_digest;
642 
643 		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
644 						digest, SHA256_DIGEST_SIZE, 0);
645 		if (ret)
646 			goto out_free_digest;
647 	}
648 
649 out_free_digest:
650 	kfree(digest);
651 out_free_sha_regions:
652 	vfree(sha_regions);
653 out_free_desc:
654 	kfree(desc);
655 out_free_tfm:
656 	kfree(tfm);
657 out:
658 	return ret;
659 }
660 
661 /* Actually load purgatory. Lot of code taken from kexec-tools */
662 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
663 				  unsigned long max, int top_down)
664 {
665 	struct purgatory_info *pi = &image->purgatory_info;
666 	unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
667 	unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
668 	unsigned char *buf_addr, *src;
669 	int i, ret = 0, entry_sidx = -1;
670 	const Elf_Shdr *sechdrs_c;
671 	Elf_Shdr *sechdrs = NULL;
672 	void *purgatory_buf = NULL;
673 
674 	/*
675 	 * sechdrs_c points to section headers in purgatory and are read
676 	 * only. No modifications allowed.
677 	 */
678 	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
679 
680 	/*
681 	 * We can not modify sechdrs_c[] and its fields. It is read only.
682 	 * Copy it over to a local copy where one can store some temporary
683 	 * data and free it at the end. We need to modify ->sh_addr and
684 	 * ->sh_offset fields to keep track of permanent and temporary
685 	 * locations of sections.
686 	 */
687 	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
688 	if (!sechdrs)
689 		return -ENOMEM;
690 
691 	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
692 
693 	/*
694 	 * We seem to have multiple copies of sections. First copy is which
695 	 * is embedded in kernel in read only section. Some of these sections
696 	 * will be copied to a temporary buffer and relocated. And these
697 	 * sections will finally be copied to their final destination at
698 	 * segment load time.
699 	 *
700 	 * Use ->sh_offset to reflect section address in memory. It will
701 	 * point to original read only copy if section is not allocatable.
702 	 * Otherwise it will point to temporary copy which will be relocated.
703 	 *
704 	 * Use ->sh_addr to contain final address of the section where it
705 	 * will go during execution time.
706 	 */
707 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
708 		if (sechdrs[i].sh_type == SHT_NOBITS)
709 			continue;
710 
711 		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
712 						sechdrs[i].sh_offset;
713 	}
714 
715 	/*
716 	 * Identify entry point section and make entry relative to section
717 	 * start.
718 	 */
719 	entry = pi->ehdr->e_entry;
720 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
721 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
722 			continue;
723 
724 		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
725 			continue;
726 
727 		/* Make entry section relative */
728 		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
729 		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
730 		     pi->ehdr->e_entry)) {
731 			entry_sidx = i;
732 			entry -= sechdrs[i].sh_addr;
733 			break;
734 		}
735 	}
736 
737 	/* Determine how much memory is needed to load relocatable object. */
738 	buf_align = 1;
739 	bss_align = 1;
740 	buf_sz = 0;
741 	bss_sz = 0;
742 
743 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
744 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
745 			continue;
746 
747 		align = sechdrs[i].sh_addralign;
748 		if (sechdrs[i].sh_type != SHT_NOBITS) {
749 			if (buf_align < align)
750 				buf_align = align;
751 			buf_sz = ALIGN(buf_sz, align);
752 			buf_sz += sechdrs[i].sh_size;
753 		} else {
754 			/* bss section */
755 			if (bss_align < align)
756 				bss_align = align;
757 			bss_sz = ALIGN(bss_sz, align);
758 			bss_sz += sechdrs[i].sh_size;
759 		}
760 	}
761 
762 	/* Determine the bss padding required to align bss properly */
763 	bss_pad = 0;
764 	if (buf_sz & (bss_align - 1))
765 		bss_pad = bss_align - (buf_sz & (bss_align - 1));
766 
767 	memsz = buf_sz + bss_pad + bss_sz;
768 
769 	/* Allocate buffer for purgatory */
770 	purgatory_buf = vzalloc(buf_sz);
771 	if (!purgatory_buf) {
772 		ret = -ENOMEM;
773 		goto out;
774 	}
775 
776 	if (buf_align < bss_align)
777 		buf_align = bss_align;
778 
779 	/* Add buffer to segment list */
780 	ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
781 				buf_align, min, max, top_down,
782 				&pi->purgatory_load_addr);
783 	if (ret)
784 		goto out;
785 
786 	/* Load SHF_ALLOC sections */
787 	buf_addr = purgatory_buf;
788 	load_addr = curr_load_addr = pi->purgatory_load_addr;
789 	bss_addr = load_addr + buf_sz + bss_pad;
790 
791 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
792 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
793 			continue;
794 
795 		align = sechdrs[i].sh_addralign;
796 		if (sechdrs[i].sh_type != SHT_NOBITS) {
797 			curr_load_addr = ALIGN(curr_load_addr, align);
798 			offset = curr_load_addr - load_addr;
799 			/* We already modifed ->sh_offset to keep src addr */
800 			src = (char *) sechdrs[i].sh_offset;
801 			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
802 
803 			/* Store load address and source address of section */
804 			sechdrs[i].sh_addr = curr_load_addr;
805 
806 			/*
807 			 * This section got copied to temporary buffer. Update
808 			 * ->sh_offset accordingly.
809 			 */
810 			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
811 
812 			/* Advance to the next address */
813 			curr_load_addr += sechdrs[i].sh_size;
814 		} else {
815 			bss_addr = ALIGN(bss_addr, align);
816 			sechdrs[i].sh_addr = bss_addr;
817 			bss_addr += sechdrs[i].sh_size;
818 		}
819 	}
820 
821 	/* Update entry point based on load address of text section */
822 	if (entry_sidx >= 0)
823 		entry += sechdrs[entry_sidx].sh_addr;
824 
825 	/* Make kernel jump to purgatory after shutdown */
826 	image->start = entry;
827 
828 	/* Used later to get/set symbol values */
829 	pi->sechdrs = sechdrs;
830 
831 	/*
832 	 * Used later to identify which section is purgatory and skip it
833 	 * from checksumming.
834 	 */
835 	pi->purgatory_buf = purgatory_buf;
836 	return ret;
837 out:
838 	vfree(sechdrs);
839 	vfree(purgatory_buf);
840 	return ret;
841 }
842 
843 static int kexec_apply_relocations(struct kimage *image)
844 {
845 	int i, ret;
846 	struct purgatory_info *pi = &image->purgatory_info;
847 	Elf_Shdr *sechdrs = pi->sechdrs;
848 
849 	/* Apply relocations */
850 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
851 		Elf_Shdr *section, *symtab;
852 
853 		if (sechdrs[i].sh_type != SHT_RELA &&
854 		    sechdrs[i].sh_type != SHT_REL)
855 			continue;
856 
857 		/*
858 		 * For section of type SHT_RELA/SHT_REL,
859 		 * ->sh_link contains section header index of associated
860 		 * symbol table. And ->sh_info contains section header
861 		 * index of section to which relocations apply.
862 		 */
863 		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
864 		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
865 			return -ENOEXEC;
866 
867 		section = &sechdrs[sechdrs[i].sh_info];
868 		symtab = &sechdrs[sechdrs[i].sh_link];
869 
870 		if (!(section->sh_flags & SHF_ALLOC))
871 			continue;
872 
873 		/*
874 		 * symtab->sh_link contain section header index of associated
875 		 * string table.
876 		 */
877 		if (symtab->sh_link >= pi->ehdr->e_shnum)
878 			/* Invalid section number? */
879 			continue;
880 
881 		/*
882 		 * Respective architecture needs to provide support for applying
883 		 * relocations of type SHT_RELA/SHT_REL.
884 		 */
885 		if (sechdrs[i].sh_type == SHT_RELA)
886 			ret = arch_kexec_apply_relocations_add(pi->ehdr,
887 							       sechdrs, i);
888 		else if (sechdrs[i].sh_type == SHT_REL)
889 			ret = arch_kexec_apply_relocations(pi->ehdr,
890 							   sechdrs, i);
891 		if (ret)
892 			return ret;
893 	}
894 
895 	return 0;
896 }
897 
898 /* Load relocatable purgatory object and relocate it appropriately */
899 int kexec_load_purgatory(struct kimage *image, unsigned long min,
900 			 unsigned long max, int top_down,
901 			 unsigned long *load_addr)
902 {
903 	struct purgatory_info *pi = &image->purgatory_info;
904 	int ret;
905 
906 	if (kexec_purgatory_size <= 0)
907 		return -EINVAL;
908 
909 	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
910 		return -ENOEXEC;
911 
912 	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
913 
914 	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
915 	    || pi->ehdr->e_type != ET_REL
916 	    || !elf_check_arch(pi->ehdr)
917 	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
918 		return -ENOEXEC;
919 
920 	if (pi->ehdr->e_shoff >= kexec_purgatory_size
921 	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
922 	    kexec_purgatory_size - pi->ehdr->e_shoff))
923 		return -ENOEXEC;
924 
925 	ret = __kexec_load_purgatory(image, min, max, top_down);
926 	if (ret)
927 		return ret;
928 
929 	ret = kexec_apply_relocations(image);
930 	if (ret)
931 		goto out;
932 
933 	*load_addr = pi->purgatory_load_addr;
934 	return 0;
935 out:
936 	vfree(pi->sechdrs);
937 	vfree(pi->purgatory_buf);
938 	return ret;
939 }
940 
941 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
942 					    const char *name)
943 {
944 	Elf_Sym *syms;
945 	Elf_Shdr *sechdrs;
946 	Elf_Ehdr *ehdr;
947 	int i, k;
948 	const char *strtab;
949 
950 	if (!pi->sechdrs || !pi->ehdr)
951 		return NULL;
952 
953 	sechdrs = pi->sechdrs;
954 	ehdr = pi->ehdr;
955 
956 	for (i = 0; i < ehdr->e_shnum; i++) {
957 		if (sechdrs[i].sh_type != SHT_SYMTAB)
958 			continue;
959 
960 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
961 			/* Invalid strtab section number */
962 			continue;
963 		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
964 		syms = (Elf_Sym *)sechdrs[i].sh_offset;
965 
966 		/* Go through symbols for a match */
967 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
968 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
969 				continue;
970 
971 			if (strcmp(strtab + syms[k].st_name, name) != 0)
972 				continue;
973 
974 			if (syms[k].st_shndx == SHN_UNDEF ||
975 			    syms[k].st_shndx >= ehdr->e_shnum) {
976 				pr_debug("Symbol: %s has bad section index %d.\n",
977 						name, syms[k].st_shndx);
978 				return NULL;
979 			}
980 
981 			/* Found the symbol we are looking for */
982 			return &syms[k];
983 		}
984 	}
985 
986 	return NULL;
987 }
988 
989 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
990 {
991 	struct purgatory_info *pi = &image->purgatory_info;
992 	Elf_Sym *sym;
993 	Elf_Shdr *sechdr;
994 
995 	sym = kexec_purgatory_find_symbol(pi, name);
996 	if (!sym)
997 		return ERR_PTR(-EINVAL);
998 
999 	sechdr = &pi->sechdrs[sym->st_shndx];
1000 
1001 	/*
1002 	 * Returns the address where symbol will finally be loaded after
1003 	 * kexec_load_segment()
1004 	 */
1005 	return (void *)(sechdr->sh_addr + sym->st_value);
1006 }
1007 
1008 /*
1009  * Get or set value of a symbol. If "get_value" is true, symbol value is
1010  * returned in buf otherwise symbol value is set based on value in buf.
1011  */
1012 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1013 				   void *buf, unsigned int size, bool get_value)
1014 {
1015 	Elf_Sym *sym;
1016 	Elf_Shdr *sechdrs;
1017 	struct purgatory_info *pi = &image->purgatory_info;
1018 	char *sym_buf;
1019 
1020 	sym = kexec_purgatory_find_symbol(pi, name);
1021 	if (!sym)
1022 		return -EINVAL;
1023 
1024 	if (sym->st_size != size) {
1025 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1026 		       name, (unsigned long)sym->st_size, size);
1027 		return -EINVAL;
1028 	}
1029 
1030 	sechdrs = pi->sechdrs;
1031 
1032 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1033 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1034 		       get_value ? "get" : "set");
1035 		return -EINVAL;
1036 	}
1037 
1038 	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1039 					sym->st_value;
1040 
1041 	if (get_value)
1042 		memcpy((void *)buf, sym_buf, size);
1043 	else
1044 		memcpy((void *)sym_buf, buf, size);
1045 
1046 	return 0;
1047 }
1048