1 /* 2 * kexec: kexec_file_load system call 3 * 4 * Copyright (C) 2014 Red Hat Inc. 5 * Authors: 6 * Vivek Goyal <vgoyal@redhat.com> 7 * 8 * This source code is licensed under the GNU General Public License, 9 * Version 2. See the file COPYING for more details. 10 */ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/capability.h> 15 #include <linux/mm.h> 16 #include <linux/file.h> 17 #include <linux/slab.h> 18 #include <linux/kexec.h> 19 #include <linux/mutex.h> 20 #include <linux/list.h> 21 #include <linux/fs.h> 22 #include <linux/ima.h> 23 #include <crypto/hash.h> 24 #include <crypto/sha.h> 25 #include <linux/syscalls.h> 26 #include <linux/vmalloc.h> 27 #include "kexec_internal.h" 28 29 /* 30 * Declare these symbols weak so that if architecture provides a purgatory, 31 * these will be overridden. 32 */ 33 char __weak kexec_purgatory[0]; 34 size_t __weak kexec_purgatory_size = 0; 35 36 static int kexec_calculate_store_digests(struct kimage *image); 37 38 /* Architectures can provide this probe function */ 39 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 40 unsigned long buf_len) 41 { 42 return -ENOEXEC; 43 } 44 45 void * __weak arch_kexec_kernel_image_load(struct kimage *image) 46 { 47 return ERR_PTR(-ENOEXEC); 48 } 49 50 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image) 51 { 52 return -EINVAL; 53 } 54 55 #ifdef CONFIG_KEXEC_VERIFY_SIG 56 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, 57 unsigned long buf_len) 58 { 59 return -EKEYREJECTED; 60 } 61 #endif 62 63 /* Apply relocations of type RELA */ 64 int __weak 65 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, 66 unsigned int relsec) 67 { 68 pr_err("RELA relocation unsupported.\n"); 69 return -ENOEXEC; 70 } 71 72 /* Apply relocations of type REL */ 73 int __weak 74 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, 75 unsigned int relsec) 76 { 77 pr_err("REL relocation unsupported.\n"); 78 return -ENOEXEC; 79 } 80 81 /* 82 * Free up memory used by kernel, initrd, and command line. This is temporary 83 * memory allocation which is not needed any more after these buffers have 84 * been loaded into separate segments and have been copied elsewhere. 85 */ 86 void kimage_file_post_load_cleanup(struct kimage *image) 87 { 88 struct purgatory_info *pi = &image->purgatory_info; 89 90 vfree(image->kernel_buf); 91 image->kernel_buf = NULL; 92 93 vfree(image->initrd_buf); 94 image->initrd_buf = NULL; 95 96 kfree(image->cmdline_buf); 97 image->cmdline_buf = NULL; 98 99 vfree(pi->purgatory_buf); 100 pi->purgatory_buf = NULL; 101 102 vfree(pi->sechdrs); 103 pi->sechdrs = NULL; 104 105 /* See if architecture has anything to cleanup post load */ 106 arch_kimage_file_post_load_cleanup(image); 107 108 /* 109 * Above call should have called into bootloader to free up 110 * any data stored in kimage->image_loader_data. It should 111 * be ok now to free it up. 112 */ 113 kfree(image->image_loader_data); 114 image->image_loader_data = NULL; 115 } 116 117 /* 118 * In file mode list of segments is prepared by kernel. Copy relevant 119 * data from user space, do error checking, prepare segment list 120 */ 121 static int 122 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 123 const char __user *cmdline_ptr, 124 unsigned long cmdline_len, unsigned flags) 125 { 126 int ret = 0; 127 void *ldata; 128 loff_t size; 129 130 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf, 131 &size, INT_MAX, READING_KEXEC_IMAGE); 132 if (ret) 133 return ret; 134 image->kernel_buf_len = size; 135 136 /* IMA needs to pass the measurement list to the next kernel. */ 137 ima_add_kexec_buffer(image); 138 139 /* Call arch image probe handlers */ 140 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 141 image->kernel_buf_len); 142 if (ret) 143 goto out; 144 145 #ifdef CONFIG_KEXEC_VERIFY_SIG 146 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, 147 image->kernel_buf_len); 148 if (ret) { 149 pr_debug("kernel signature verification failed.\n"); 150 goto out; 151 } 152 pr_debug("kernel signature verification successful.\n"); 153 #endif 154 /* It is possible that there no initramfs is being loaded */ 155 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 156 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf, 157 &size, INT_MAX, 158 READING_KEXEC_INITRAMFS); 159 if (ret) 160 goto out; 161 image->initrd_buf_len = size; 162 } 163 164 if (cmdline_len) { 165 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 166 if (IS_ERR(image->cmdline_buf)) { 167 ret = PTR_ERR(image->cmdline_buf); 168 image->cmdline_buf = NULL; 169 goto out; 170 } 171 172 image->cmdline_buf_len = cmdline_len; 173 174 /* command line should be a string with last byte null */ 175 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 176 ret = -EINVAL; 177 goto out; 178 } 179 } 180 181 /* Call arch image load handlers */ 182 ldata = arch_kexec_kernel_image_load(image); 183 184 if (IS_ERR(ldata)) { 185 ret = PTR_ERR(ldata); 186 goto out; 187 } 188 189 image->image_loader_data = ldata; 190 out: 191 /* In case of error, free up all allocated memory in this function */ 192 if (ret) 193 kimage_file_post_load_cleanup(image); 194 return ret; 195 } 196 197 static int 198 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 199 int initrd_fd, const char __user *cmdline_ptr, 200 unsigned long cmdline_len, unsigned long flags) 201 { 202 int ret; 203 struct kimage *image; 204 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 205 206 image = do_kimage_alloc_init(); 207 if (!image) 208 return -ENOMEM; 209 210 image->file_mode = 1; 211 212 if (kexec_on_panic) { 213 /* Enable special crash kernel control page alloc policy. */ 214 image->control_page = crashk_res.start; 215 image->type = KEXEC_TYPE_CRASH; 216 } 217 218 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 219 cmdline_ptr, cmdline_len, flags); 220 if (ret) 221 goto out_free_image; 222 223 ret = sanity_check_segment_list(image); 224 if (ret) 225 goto out_free_post_load_bufs; 226 227 ret = -ENOMEM; 228 image->control_code_page = kimage_alloc_control_pages(image, 229 get_order(KEXEC_CONTROL_PAGE_SIZE)); 230 if (!image->control_code_page) { 231 pr_err("Could not allocate control_code_buffer\n"); 232 goto out_free_post_load_bufs; 233 } 234 235 if (!kexec_on_panic) { 236 image->swap_page = kimage_alloc_control_pages(image, 0); 237 if (!image->swap_page) { 238 pr_err("Could not allocate swap buffer\n"); 239 goto out_free_control_pages; 240 } 241 } 242 243 *rimage = image; 244 return 0; 245 out_free_control_pages: 246 kimage_free_page_list(&image->control_pages); 247 out_free_post_load_bufs: 248 kimage_file_post_load_cleanup(image); 249 out_free_image: 250 kfree(image); 251 return ret; 252 } 253 254 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 255 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 256 unsigned long, flags) 257 { 258 int ret = 0, i; 259 struct kimage **dest_image, *image; 260 261 /* We only trust the superuser with rebooting the system. */ 262 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 263 return -EPERM; 264 265 /* Make sure we have a legal set of flags */ 266 if (flags != (flags & KEXEC_FILE_FLAGS)) 267 return -EINVAL; 268 269 image = NULL; 270 271 if (!mutex_trylock(&kexec_mutex)) 272 return -EBUSY; 273 274 dest_image = &kexec_image; 275 if (flags & KEXEC_FILE_ON_CRASH) { 276 dest_image = &kexec_crash_image; 277 if (kexec_crash_image) 278 arch_kexec_unprotect_crashkres(); 279 } 280 281 if (flags & KEXEC_FILE_UNLOAD) 282 goto exchange; 283 284 /* 285 * In case of crash, new kernel gets loaded in reserved region. It is 286 * same memory where old crash kernel might be loaded. Free any 287 * current crash dump kernel before we corrupt it. 288 */ 289 if (flags & KEXEC_FILE_ON_CRASH) 290 kimage_free(xchg(&kexec_crash_image, NULL)); 291 292 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 293 cmdline_len, flags); 294 if (ret) 295 goto out; 296 297 ret = machine_kexec_prepare(image); 298 if (ret) 299 goto out; 300 301 /* 302 * Some architecture(like S390) may touch the crash memory before 303 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 304 */ 305 ret = kimage_crash_copy_vmcoreinfo(image); 306 if (ret) 307 goto out; 308 309 ret = kexec_calculate_store_digests(image); 310 if (ret) 311 goto out; 312 313 for (i = 0; i < image->nr_segments; i++) { 314 struct kexec_segment *ksegment; 315 316 ksegment = &image->segment[i]; 317 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 318 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 319 ksegment->memsz); 320 321 ret = kimage_load_segment(image, &image->segment[i]); 322 if (ret) 323 goto out; 324 } 325 326 kimage_terminate(image); 327 328 /* 329 * Free up any temporary buffers allocated which are not needed 330 * after image has been loaded 331 */ 332 kimage_file_post_load_cleanup(image); 333 exchange: 334 image = xchg(dest_image, image); 335 out: 336 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 337 arch_kexec_protect_crashkres(); 338 339 mutex_unlock(&kexec_mutex); 340 kimage_free(image); 341 return ret; 342 } 343 344 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 345 struct kexec_buf *kbuf) 346 { 347 struct kimage *image = kbuf->image; 348 unsigned long temp_start, temp_end; 349 350 temp_end = min(end, kbuf->buf_max); 351 temp_start = temp_end - kbuf->memsz; 352 353 do { 354 /* align down start */ 355 temp_start = temp_start & (~(kbuf->buf_align - 1)); 356 357 if (temp_start < start || temp_start < kbuf->buf_min) 358 return 0; 359 360 temp_end = temp_start + kbuf->memsz - 1; 361 362 /* 363 * Make sure this does not conflict with any of existing 364 * segments 365 */ 366 if (kimage_is_destination_range(image, temp_start, temp_end)) { 367 temp_start = temp_start - PAGE_SIZE; 368 continue; 369 } 370 371 /* We found a suitable memory range */ 372 break; 373 } while (1); 374 375 /* If we are here, we found a suitable memory range */ 376 kbuf->mem = temp_start; 377 378 /* Success, stop navigating through remaining System RAM ranges */ 379 return 1; 380 } 381 382 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 383 struct kexec_buf *kbuf) 384 { 385 struct kimage *image = kbuf->image; 386 unsigned long temp_start, temp_end; 387 388 temp_start = max(start, kbuf->buf_min); 389 390 do { 391 temp_start = ALIGN(temp_start, kbuf->buf_align); 392 temp_end = temp_start + kbuf->memsz - 1; 393 394 if (temp_end > end || temp_end > kbuf->buf_max) 395 return 0; 396 /* 397 * Make sure this does not conflict with any of existing 398 * segments 399 */ 400 if (kimage_is_destination_range(image, temp_start, temp_end)) { 401 temp_start = temp_start + PAGE_SIZE; 402 continue; 403 } 404 405 /* We found a suitable memory range */ 406 break; 407 } while (1); 408 409 /* If we are here, we found a suitable memory range */ 410 kbuf->mem = temp_start; 411 412 /* Success, stop navigating through remaining System RAM ranges */ 413 return 1; 414 } 415 416 static int locate_mem_hole_callback(u64 start, u64 end, void *arg) 417 { 418 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 419 unsigned long sz = end - start + 1; 420 421 /* Returning 0 will take to next memory range */ 422 if (sz < kbuf->memsz) 423 return 0; 424 425 if (end < kbuf->buf_min || start > kbuf->buf_max) 426 return 0; 427 428 /* 429 * Allocate memory top down with-in ram range. Otherwise bottom up 430 * allocation. 431 */ 432 if (kbuf->top_down) 433 return locate_mem_hole_top_down(start, end, kbuf); 434 return locate_mem_hole_bottom_up(start, end, kbuf); 435 } 436 437 /** 438 * arch_kexec_walk_mem - call func(data) on free memory regions 439 * @kbuf: Context info for the search. Also passed to @func. 440 * @func: Function to call for each memory region. 441 * 442 * Return: The memory walk will stop when func returns a non-zero value 443 * and that value will be returned. If all free regions are visited without 444 * func returning non-zero, then zero will be returned. 445 */ 446 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf, 447 int (*func)(u64, u64, void *)) 448 { 449 if (kbuf->image->type == KEXEC_TYPE_CRASH) 450 return walk_iomem_res_desc(crashk_res.desc, 451 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 452 crashk_res.start, crashk_res.end, 453 kbuf, func); 454 else 455 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 456 } 457 458 /** 459 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 460 * @kbuf: Parameters for the memory search. 461 * 462 * On success, kbuf->mem will have the start address of the memory region found. 463 * 464 * Return: 0 on success, negative errno on error. 465 */ 466 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 467 { 468 int ret; 469 470 ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback); 471 472 return ret == 1 ? 0 : -EADDRNOTAVAIL; 473 } 474 475 /** 476 * kexec_add_buffer - place a buffer in a kexec segment 477 * @kbuf: Buffer contents and memory parameters. 478 * 479 * This function assumes that kexec_mutex is held. 480 * On successful return, @kbuf->mem will have the physical address of 481 * the buffer in memory. 482 * 483 * Return: 0 on success, negative errno on error. 484 */ 485 int kexec_add_buffer(struct kexec_buf *kbuf) 486 { 487 488 struct kexec_segment *ksegment; 489 int ret; 490 491 /* Currently adding segment this way is allowed only in file mode */ 492 if (!kbuf->image->file_mode) 493 return -EINVAL; 494 495 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 496 return -EINVAL; 497 498 /* 499 * Make sure we are not trying to add buffer after allocating 500 * control pages. All segments need to be placed first before 501 * any control pages are allocated. As control page allocation 502 * logic goes through list of segments to make sure there are 503 * no destination overlaps. 504 */ 505 if (!list_empty(&kbuf->image->control_pages)) { 506 WARN_ON(1); 507 return -EINVAL; 508 } 509 510 /* Ensure minimum alignment needed for segments. */ 511 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 512 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 513 514 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 515 ret = kexec_locate_mem_hole(kbuf); 516 if (ret) 517 return ret; 518 519 /* Found a suitable memory range */ 520 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 521 ksegment->kbuf = kbuf->buffer; 522 ksegment->bufsz = kbuf->bufsz; 523 ksegment->mem = kbuf->mem; 524 ksegment->memsz = kbuf->memsz; 525 kbuf->image->nr_segments++; 526 return 0; 527 } 528 529 /* Calculate and store the digest of segments */ 530 static int kexec_calculate_store_digests(struct kimage *image) 531 { 532 struct crypto_shash *tfm; 533 struct shash_desc *desc; 534 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 535 size_t desc_size, nullsz; 536 char *digest; 537 void *zero_buf; 538 struct kexec_sha_region *sha_regions; 539 struct purgatory_info *pi = &image->purgatory_info; 540 541 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 542 zero_buf_sz = PAGE_SIZE; 543 544 tfm = crypto_alloc_shash("sha256", 0, 0); 545 if (IS_ERR(tfm)) { 546 ret = PTR_ERR(tfm); 547 goto out; 548 } 549 550 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 551 desc = kzalloc(desc_size, GFP_KERNEL); 552 if (!desc) { 553 ret = -ENOMEM; 554 goto out_free_tfm; 555 } 556 557 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 558 sha_regions = vzalloc(sha_region_sz); 559 if (!sha_regions) 560 goto out_free_desc; 561 562 desc->tfm = tfm; 563 desc->flags = 0; 564 565 ret = crypto_shash_init(desc); 566 if (ret < 0) 567 goto out_free_sha_regions; 568 569 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 570 if (!digest) { 571 ret = -ENOMEM; 572 goto out_free_sha_regions; 573 } 574 575 for (j = i = 0; i < image->nr_segments; i++) { 576 struct kexec_segment *ksegment; 577 578 ksegment = &image->segment[i]; 579 /* 580 * Skip purgatory as it will be modified once we put digest 581 * info in purgatory. 582 */ 583 if (ksegment->kbuf == pi->purgatory_buf) 584 continue; 585 586 ret = crypto_shash_update(desc, ksegment->kbuf, 587 ksegment->bufsz); 588 if (ret) 589 break; 590 591 /* 592 * Assume rest of the buffer is filled with zero and 593 * update digest accordingly. 594 */ 595 nullsz = ksegment->memsz - ksegment->bufsz; 596 while (nullsz) { 597 unsigned long bytes = nullsz; 598 599 if (bytes > zero_buf_sz) 600 bytes = zero_buf_sz; 601 ret = crypto_shash_update(desc, zero_buf, bytes); 602 if (ret) 603 break; 604 nullsz -= bytes; 605 } 606 607 if (ret) 608 break; 609 610 sha_regions[j].start = ksegment->mem; 611 sha_regions[j].len = ksegment->memsz; 612 j++; 613 } 614 615 if (!ret) { 616 ret = crypto_shash_final(desc, digest); 617 if (ret) 618 goto out_free_digest; 619 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 620 sha_regions, sha_region_sz, 0); 621 if (ret) 622 goto out_free_digest; 623 624 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 625 digest, SHA256_DIGEST_SIZE, 0); 626 if (ret) 627 goto out_free_digest; 628 } 629 630 out_free_digest: 631 kfree(digest); 632 out_free_sha_regions: 633 vfree(sha_regions); 634 out_free_desc: 635 kfree(desc); 636 out_free_tfm: 637 kfree(tfm); 638 out: 639 return ret; 640 } 641 642 /* Actually load purgatory. Lot of code taken from kexec-tools */ 643 static int __kexec_load_purgatory(struct kimage *image, unsigned long min, 644 unsigned long max, int top_down) 645 { 646 struct purgatory_info *pi = &image->purgatory_info; 647 unsigned long align, bss_align, bss_sz, bss_pad; 648 unsigned long entry, load_addr, curr_load_addr, bss_addr, offset; 649 unsigned char *buf_addr, *src; 650 int i, ret = 0, entry_sidx = -1; 651 const Elf_Shdr *sechdrs_c; 652 Elf_Shdr *sechdrs = NULL; 653 struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1, 654 .buf_min = min, .buf_max = max, 655 .top_down = top_down }; 656 657 /* 658 * sechdrs_c points to section headers in purgatory and are read 659 * only. No modifications allowed. 660 */ 661 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff; 662 663 /* 664 * We can not modify sechdrs_c[] and its fields. It is read only. 665 * Copy it over to a local copy where one can store some temporary 666 * data and free it at the end. We need to modify ->sh_addr and 667 * ->sh_offset fields to keep track of permanent and temporary 668 * locations of sections. 669 */ 670 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 671 if (!sechdrs) 672 return -ENOMEM; 673 674 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 675 676 /* 677 * We seem to have multiple copies of sections. First copy is which 678 * is embedded in kernel in read only section. Some of these sections 679 * will be copied to a temporary buffer and relocated. And these 680 * sections will finally be copied to their final destination at 681 * segment load time. 682 * 683 * Use ->sh_offset to reflect section address in memory. It will 684 * point to original read only copy if section is not allocatable. 685 * Otherwise it will point to temporary copy which will be relocated. 686 * 687 * Use ->sh_addr to contain final address of the section where it 688 * will go during execution time. 689 */ 690 for (i = 0; i < pi->ehdr->e_shnum; i++) { 691 if (sechdrs[i].sh_type == SHT_NOBITS) 692 continue; 693 694 sechdrs[i].sh_offset = (unsigned long)pi->ehdr + 695 sechdrs[i].sh_offset; 696 } 697 698 /* 699 * Identify entry point section and make entry relative to section 700 * start. 701 */ 702 entry = pi->ehdr->e_entry; 703 for (i = 0; i < pi->ehdr->e_shnum; i++) { 704 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 705 continue; 706 707 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR)) 708 continue; 709 710 /* Make entry section relative */ 711 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry && 712 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) > 713 pi->ehdr->e_entry)) { 714 entry_sidx = i; 715 entry -= sechdrs[i].sh_addr; 716 break; 717 } 718 } 719 720 /* Determine how much memory is needed to load relocatable object. */ 721 bss_align = 1; 722 bss_sz = 0; 723 724 for (i = 0; i < pi->ehdr->e_shnum; i++) { 725 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 726 continue; 727 728 align = sechdrs[i].sh_addralign; 729 if (sechdrs[i].sh_type != SHT_NOBITS) { 730 if (kbuf.buf_align < align) 731 kbuf.buf_align = align; 732 kbuf.bufsz = ALIGN(kbuf.bufsz, align); 733 kbuf.bufsz += sechdrs[i].sh_size; 734 } else { 735 /* bss section */ 736 if (bss_align < align) 737 bss_align = align; 738 bss_sz = ALIGN(bss_sz, align); 739 bss_sz += sechdrs[i].sh_size; 740 } 741 } 742 743 /* Determine the bss padding required to align bss properly */ 744 bss_pad = 0; 745 if (kbuf.bufsz & (bss_align - 1)) 746 bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1)); 747 748 kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz; 749 750 /* Allocate buffer for purgatory */ 751 kbuf.buffer = vzalloc(kbuf.bufsz); 752 if (!kbuf.buffer) { 753 ret = -ENOMEM; 754 goto out; 755 } 756 757 if (kbuf.buf_align < bss_align) 758 kbuf.buf_align = bss_align; 759 760 /* Add buffer to segment list */ 761 ret = kexec_add_buffer(&kbuf); 762 if (ret) 763 goto out; 764 pi->purgatory_load_addr = kbuf.mem; 765 766 /* Load SHF_ALLOC sections */ 767 buf_addr = kbuf.buffer; 768 load_addr = curr_load_addr = pi->purgatory_load_addr; 769 bss_addr = load_addr + kbuf.bufsz + bss_pad; 770 771 for (i = 0; i < pi->ehdr->e_shnum; i++) { 772 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 773 continue; 774 775 align = sechdrs[i].sh_addralign; 776 if (sechdrs[i].sh_type != SHT_NOBITS) { 777 curr_load_addr = ALIGN(curr_load_addr, align); 778 offset = curr_load_addr - load_addr; 779 /* We already modifed ->sh_offset to keep src addr */ 780 src = (char *) sechdrs[i].sh_offset; 781 memcpy(buf_addr + offset, src, sechdrs[i].sh_size); 782 783 /* Store load address and source address of section */ 784 sechdrs[i].sh_addr = curr_load_addr; 785 786 /* 787 * This section got copied to temporary buffer. Update 788 * ->sh_offset accordingly. 789 */ 790 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset); 791 792 /* Advance to the next address */ 793 curr_load_addr += sechdrs[i].sh_size; 794 } else { 795 bss_addr = ALIGN(bss_addr, align); 796 sechdrs[i].sh_addr = bss_addr; 797 bss_addr += sechdrs[i].sh_size; 798 } 799 } 800 801 /* Update entry point based on load address of text section */ 802 if (entry_sidx >= 0) 803 entry += sechdrs[entry_sidx].sh_addr; 804 805 /* Make kernel jump to purgatory after shutdown */ 806 image->start = entry; 807 808 /* Used later to get/set symbol values */ 809 pi->sechdrs = sechdrs; 810 811 /* 812 * Used later to identify which section is purgatory and skip it 813 * from checksumming. 814 */ 815 pi->purgatory_buf = kbuf.buffer; 816 return ret; 817 out: 818 vfree(sechdrs); 819 vfree(kbuf.buffer); 820 return ret; 821 } 822 823 static int kexec_apply_relocations(struct kimage *image) 824 { 825 int i, ret; 826 struct purgatory_info *pi = &image->purgatory_info; 827 Elf_Shdr *sechdrs = pi->sechdrs; 828 829 /* Apply relocations */ 830 for (i = 0; i < pi->ehdr->e_shnum; i++) { 831 Elf_Shdr *section, *symtab; 832 833 if (sechdrs[i].sh_type != SHT_RELA && 834 sechdrs[i].sh_type != SHT_REL) 835 continue; 836 837 /* 838 * For section of type SHT_RELA/SHT_REL, 839 * ->sh_link contains section header index of associated 840 * symbol table. And ->sh_info contains section header 841 * index of section to which relocations apply. 842 */ 843 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum || 844 sechdrs[i].sh_link >= pi->ehdr->e_shnum) 845 return -ENOEXEC; 846 847 section = &sechdrs[sechdrs[i].sh_info]; 848 symtab = &sechdrs[sechdrs[i].sh_link]; 849 850 if (!(section->sh_flags & SHF_ALLOC)) 851 continue; 852 853 /* 854 * symtab->sh_link contain section header index of associated 855 * string table. 856 */ 857 if (symtab->sh_link >= pi->ehdr->e_shnum) 858 /* Invalid section number? */ 859 continue; 860 861 /* 862 * Respective architecture needs to provide support for applying 863 * relocations of type SHT_RELA/SHT_REL. 864 */ 865 if (sechdrs[i].sh_type == SHT_RELA) 866 ret = arch_kexec_apply_relocations_add(pi->ehdr, 867 sechdrs, i); 868 else if (sechdrs[i].sh_type == SHT_REL) 869 ret = arch_kexec_apply_relocations(pi->ehdr, 870 sechdrs, i); 871 if (ret) 872 return ret; 873 } 874 875 return 0; 876 } 877 878 /* Load relocatable purgatory object and relocate it appropriately */ 879 int kexec_load_purgatory(struct kimage *image, unsigned long min, 880 unsigned long max, int top_down, 881 unsigned long *load_addr) 882 { 883 struct purgatory_info *pi = &image->purgatory_info; 884 int ret; 885 886 if (kexec_purgatory_size <= 0) 887 return -EINVAL; 888 889 if (kexec_purgatory_size < sizeof(Elf_Ehdr)) 890 return -ENOEXEC; 891 892 pi->ehdr = (Elf_Ehdr *)kexec_purgatory; 893 894 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0 895 || pi->ehdr->e_type != ET_REL 896 || !elf_check_arch(pi->ehdr) 897 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr)) 898 return -ENOEXEC; 899 900 if (pi->ehdr->e_shoff >= kexec_purgatory_size 901 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) > 902 kexec_purgatory_size - pi->ehdr->e_shoff)) 903 return -ENOEXEC; 904 905 ret = __kexec_load_purgatory(image, min, max, top_down); 906 if (ret) 907 return ret; 908 909 ret = kexec_apply_relocations(image); 910 if (ret) 911 goto out; 912 913 *load_addr = pi->purgatory_load_addr; 914 return 0; 915 out: 916 vfree(pi->sechdrs); 917 pi->sechdrs = NULL; 918 919 vfree(pi->purgatory_buf); 920 pi->purgatory_buf = NULL; 921 return ret; 922 } 923 924 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 925 const char *name) 926 { 927 Elf_Sym *syms; 928 Elf_Shdr *sechdrs; 929 Elf_Ehdr *ehdr; 930 int i, k; 931 const char *strtab; 932 933 if (!pi->sechdrs || !pi->ehdr) 934 return NULL; 935 936 sechdrs = pi->sechdrs; 937 ehdr = pi->ehdr; 938 939 for (i = 0; i < ehdr->e_shnum; i++) { 940 if (sechdrs[i].sh_type != SHT_SYMTAB) 941 continue; 942 943 if (sechdrs[i].sh_link >= ehdr->e_shnum) 944 /* Invalid strtab section number */ 945 continue; 946 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset; 947 syms = (Elf_Sym *)sechdrs[i].sh_offset; 948 949 /* Go through symbols for a match */ 950 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 951 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 952 continue; 953 954 if (strcmp(strtab + syms[k].st_name, name) != 0) 955 continue; 956 957 if (syms[k].st_shndx == SHN_UNDEF || 958 syms[k].st_shndx >= ehdr->e_shnum) { 959 pr_debug("Symbol: %s has bad section index %d.\n", 960 name, syms[k].st_shndx); 961 return NULL; 962 } 963 964 /* Found the symbol we are looking for */ 965 return &syms[k]; 966 } 967 } 968 969 return NULL; 970 } 971 972 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 973 { 974 struct purgatory_info *pi = &image->purgatory_info; 975 Elf_Sym *sym; 976 Elf_Shdr *sechdr; 977 978 sym = kexec_purgatory_find_symbol(pi, name); 979 if (!sym) 980 return ERR_PTR(-EINVAL); 981 982 sechdr = &pi->sechdrs[sym->st_shndx]; 983 984 /* 985 * Returns the address where symbol will finally be loaded after 986 * kexec_load_segment() 987 */ 988 return (void *)(sechdr->sh_addr + sym->st_value); 989 } 990 991 /* 992 * Get or set value of a symbol. If "get_value" is true, symbol value is 993 * returned in buf otherwise symbol value is set based on value in buf. 994 */ 995 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 996 void *buf, unsigned int size, bool get_value) 997 { 998 Elf_Sym *sym; 999 Elf_Shdr *sechdrs; 1000 struct purgatory_info *pi = &image->purgatory_info; 1001 char *sym_buf; 1002 1003 sym = kexec_purgatory_find_symbol(pi, name); 1004 if (!sym) 1005 return -EINVAL; 1006 1007 if (sym->st_size != size) { 1008 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1009 name, (unsigned long)sym->st_size, size); 1010 return -EINVAL; 1011 } 1012 1013 sechdrs = pi->sechdrs; 1014 1015 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) { 1016 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1017 get_value ? "get" : "set"); 1018 return -EINVAL; 1019 } 1020 1021 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset + 1022 sym->st_value; 1023 1024 if (get_value) 1025 memcpy((void *)buf, sym_buf, size); 1026 else 1027 memcpy((void *)sym_buf, buf, size); 1028 1029 return 0; 1030 } 1031