xref: /linux/kernel/kexec_file.c (revision 9263969a46fc899092ba4f8c4206fa2340c9a64e)
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/syscalls.h>
26 #include <linux/vmalloc.h>
27 #include "kexec_internal.h"
28 
29 /*
30  * Declare these symbols weak so that if architecture provides a purgatory,
31  * these will be overridden.
32  */
33 char __weak kexec_purgatory[0];
34 size_t __weak kexec_purgatory_size = 0;
35 
36 static int kexec_calculate_store_digests(struct kimage *image);
37 
38 /* Architectures can provide this probe function */
39 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
40 					 unsigned long buf_len)
41 {
42 	return -ENOEXEC;
43 }
44 
45 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
46 {
47 	return ERR_PTR(-ENOEXEC);
48 }
49 
50 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
51 {
52 	return -EINVAL;
53 }
54 
55 #ifdef CONFIG_KEXEC_VERIFY_SIG
56 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
57 					unsigned long buf_len)
58 {
59 	return -EKEYREJECTED;
60 }
61 #endif
62 
63 /* Apply relocations of type RELA */
64 int __weak
65 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
66 				 unsigned int relsec)
67 {
68 	pr_err("RELA relocation unsupported.\n");
69 	return -ENOEXEC;
70 }
71 
72 /* Apply relocations of type REL */
73 int __weak
74 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
75 			     unsigned int relsec)
76 {
77 	pr_err("REL relocation unsupported.\n");
78 	return -ENOEXEC;
79 }
80 
81 /*
82  * Free up memory used by kernel, initrd, and command line. This is temporary
83  * memory allocation which is not needed any more after these buffers have
84  * been loaded into separate segments and have been copied elsewhere.
85  */
86 void kimage_file_post_load_cleanup(struct kimage *image)
87 {
88 	struct purgatory_info *pi = &image->purgatory_info;
89 
90 	vfree(image->kernel_buf);
91 	image->kernel_buf = NULL;
92 
93 	vfree(image->initrd_buf);
94 	image->initrd_buf = NULL;
95 
96 	kfree(image->cmdline_buf);
97 	image->cmdline_buf = NULL;
98 
99 	vfree(pi->purgatory_buf);
100 	pi->purgatory_buf = NULL;
101 
102 	vfree(pi->sechdrs);
103 	pi->sechdrs = NULL;
104 
105 	/* See if architecture has anything to cleanup post load */
106 	arch_kimage_file_post_load_cleanup(image);
107 
108 	/*
109 	 * Above call should have called into bootloader to free up
110 	 * any data stored in kimage->image_loader_data. It should
111 	 * be ok now to free it up.
112 	 */
113 	kfree(image->image_loader_data);
114 	image->image_loader_data = NULL;
115 }
116 
117 /*
118  * In file mode list of segments is prepared by kernel. Copy relevant
119  * data from user space, do error checking, prepare segment list
120  */
121 static int
122 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
123 			     const char __user *cmdline_ptr,
124 			     unsigned long cmdline_len, unsigned flags)
125 {
126 	int ret = 0;
127 	void *ldata;
128 	loff_t size;
129 
130 	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
131 				       &size, INT_MAX, READING_KEXEC_IMAGE);
132 	if (ret)
133 		return ret;
134 	image->kernel_buf_len = size;
135 
136 	/* IMA needs to pass the measurement list to the next kernel. */
137 	ima_add_kexec_buffer(image);
138 
139 	/* Call arch image probe handlers */
140 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
141 					    image->kernel_buf_len);
142 	if (ret)
143 		goto out;
144 
145 #ifdef CONFIG_KEXEC_VERIFY_SIG
146 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
147 					   image->kernel_buf_len);
148 	if (ret) {
149 		pr_debug("kernel signature verification failed.\n");
150 		goto out;
151 	}
152 	pr_debug("kernel signature verification successful.\n");
153 #endif
154 	/* It is possible that there no initramfs is being loaded */
155 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
156 		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
157 					       &size, INT_MAX,
158 					       READING_KEXEC_INITRAMFS);
159 		if (ret)
160 			goto out;
161 		image->initrd_buf_len = size;
162 	}
163 
164 	if (cmdline_len) {
165 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
166 		if (IS_ERR(image->cmdline_buf)) {
167 			ret = PTR_ERR(image->cmdline_buf);
168 			image->cmdline_buf = NULL;
169 			goto out;
170 		}
171 
172 		image->cmdline_buf_len = cmdline_len;
173 
174 		/* command line should be a string with last byte null */
175 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
176 			ret = -EINVAL;
177 			goto out;
178 		}
179 	}
180 
181 	/* Call arch image load handlers */
182 	ldata = arch_kexec_kernel_image_load(image);
183 
184 	if (IS_ERR(ldata)) {
185 		ret = PTR_ERR(ldata);
186 		goto out;
187 	}
188 
189 	image->image_loader_data = ldata;
190 out:
191 	/* In case of error, free up all allocated memory in this function */
192 	if (ret)
193 		kimage_file_post_load_cleanup(image);
194 	return ret;
195 }
196 
197 static int
198 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
199 		       int initrd_fd, const char __user *cmdline_ptr,
200 		       unsigned long cmdline_len, unsigned long flags)
201 {
202 	int ret;
203 	struct kimage *image;
204 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
205 
206 	image = do_kimage_alloc_init();
207 	if (!image)
208 		return -ENOMEM;
209 
210 	image->file_mode = 1;
211 
212 	if (kexec_on_panic) {
213 		/* Enable special crash kernel control page alloc policy. */
214 		image->control_page = crashk_res.start;
215 		image->type = KEXEC_TYPE_CRASH;
216 	}
217 
218 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
219 					   cmdline_ptr, cmdline_len, flags);
220 	if (ret)
221 		goto out_free_image;
222 
223 	ret = sanity_check_segment_list(image);
224 	if (ret)
225 		goto out_free_post_load_bufs;
226 
227 	ret = -ENOMEM;
228 	image->control_code_page = kimage_alloc_control_pages(image,
229 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
230 	if (!image->control_code_page) {
231 		pr_err("Could not allocate control_code_buffer\n");
232 		goto out_free_post_load_bufs;
233 	}
234 
235 	if (!kexec_on_panic) {
236 		image->swap_page = kimage_alloc_control_pages(image, 0);
237 		if (!image->swap_page) {
238 			pr_err("Could not allocate swap buffer\n");
239 			goto out_free_control_pages;
240 		}
241 	}
242 
243 	*rimage = image;
244 	return 0;
245 out_free_control_pages:
246 	kimage_free_page_list(&image->control_pages);
247 out_free_post_load_bufs:
248 	kimage_file_post_load_cleanup(image);
249 out_free_image:
250 	kfree(image);
251 	return ret;
252 }
253 
254 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
255 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
256 		unsigned long, flags)
257 {
258 	int ret = 0, i;
259 	struct kimage **dest_image, *image;
260 
261 	/* We only trust the superuser with rebooting the system. */
262 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
263 		return -EPERM;
264 
265 	/* Make sure we have a legal set of flags */
266 	if (flags != (flags & KEXEC_FILE_FLAGS))
267 		return -EINVAL;
268 
269 	image = NULL;
270 
271 	if (!mutex_trylock(&kexec_mutex))
272 		return -EBUSY;
273 
274 	dest_image = &kexec_image;
275 	if (flags & KEXEC_FILE_ON_CRASH) {
276 		dest_image = &kexec_crash_image;
277 		if (kexec_crash_image)
278 			arch_kexec_unprotect_crashkres();
279 	}
280 
281 	if (flags & KEXEC_FILE_UNLOAD)
282 		goto exchange;
283 
284 	/*
285 	 * In case of crash, new kernel gets loaded in reserved region. It is
286 	 * same memory where old crash kernel might be loaded. Free any
287 	 * current crash dump kernel before we corrupt it.
288 	 */
289 	if (flags & KEXEC_FILE_ON_CRASH)
290 		kimage_free(xchg(&kexec_crash_image, NULL));
291 
292 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
293 				     cmdline_len, flags);
294 	if (ret)
295 		goto out;
296 
297 	ret = machine_kexec_prepare(image);
298 	if (ret)
299 		goto out;
300 
301 	/*
302 	 * Some architecture(like S390) may touch the crash memory before
303 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
304 	 */
305 	ret = kimage_crash_copy_vmcoreinfo(image);
306 	if (ret)
307 		goto out;
308 
309 	ret = kexec_calculate_store_digests(image);
310 	if (ret)
311 		goto out;
312 
313 	for (i = 0; i < image->nr_segments; i++) {
314 		struct kexec_segment *ksegment;
315 
316 		ksegment = &image->segment[i];
317 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
318 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
319 			 ksegment->memsz);
320 
321 		ret = kimage_load_segment(image, &image->segment[i]);
322 		if (ret)
323 			goto out;
324 	}
325 
326 	kimage_terminate(image);
327 
328 	/*
329 	 * Free up any temporary buffers allocated which are not needed
330 	 * after image has been loaded
331 	 */
332 	kimage_file_post_load_cleanup(image);
333 exchange:
334 	image = xchg(dest_image, image);
335 out:
336 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
337 		arch_kexec_protect_crashkres();
338 
339 	mutex_unlock(&kexec_mutex);
340 	kimage_free(image);
341 	return ret;
342 }
343 
344 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
345 				    struct kexec_buf *kbuf)
346 {
347 	struct kimage *image = kbuf->image;
348 	unsigned long temp_start, temp_end;
349 
350 	temp_end = min(end, kbuf->buf_max);
351 	temp_start = temp_end - kbuf->memsz;
352 
353 	do {
354 		/* align down start */
355 		temp_start = temp_start & (~(kbuf->buf_align - 1));
356 
357 		if (temp_start < start || temp_start < kbuf->buf_min)
358 			return 0;
359 
360 		temp_end = temp_start + kbuf->memsz - 1;
361 
362 		/*
363 		 * Make sure this does not conflict with any of existing
364 		 * segments
365 		 */
366 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
367 			temp_start = temp_start - PAGE_SIZE;
368 			continue;
369 		}
370 
371 		/* We found a suitable memory range */
372 		break;
373 	} while (1);
374 
375 	/* If we are here, we found a suitable memory range */
376 	kbuf->mem = temp_start;
377 
378 	/* Success, stop navigating through remaining System RAM ranges */
379 	return 1;
380 }
381 
382 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
383 				     struct kexec_buf *kbuf)
384 {
385 	struct kimage *image = kbuf->image;
386 	unsigned long temp_start, temp_end;
387 
388 	temp_start = max(start, kbuf->buf_min);
389 
390 	do {
391 		temp_start = ALIGN(temp_start, kbuf->buf_align);
392 		temp_end = temp_start + kbuf->memsz - 1;
393 
394 		if (temp_end > end || temp_end > kbuf->buf_max)
395 			return 0;
396 		/*
397 		 * Make sure this does not conflict with any of existing
398 		 * segments
399 		 */
400 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
401 			temp_start = temp_start + PAGE_SIZE;
402 			continue;
403 		}
404 
405 		/* We found a suitable memory range */
406 		break;
407 	} while (1);
408 
409 	/* If we are here, we found a suitable memory range */
410 	kbuf->mem = temp_start;
411 
412 	/* Success, stop navigating through remaining System RAM ranges */
413 	return 1;
414 }
415 
416 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
417 {
418 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
419 	unsigned long sz = end - start + 1;
420 
421 	/* Returning 0 will take to next memory range */
422 	if (sz < kbuf->memsz)
423 		return 0;
424 
425 	if (end < kbuf->buf_min || start > kbuf->buf_max)
426 		return 0;
427 
428 	/*
429 	 * Allocate memory top down with-in ram range. Otherwise bottom up
430 	 * allocation.
431 	 */
432 	if (kbuf->top_down)
433 		return locate_mem_hole_top_down(start, end, kbuf);
434 	return locate_mem_hole_bottom_up(start, end, kbuf);
435 }
436 
437 /**
438  * arch_kexec_walk_mem - call func(data) on free memory regions
439  * @kbuf:	Context info for the search. Also passed to @func.
440  * @func:	Function to call for each memory region.
441  *
442  * Return: The memory walk will stop when func returns a non-zero value
443  * and that value will be returned. If all free regions are visited without
444  * func returning non-zero, then zero will be returned.
445  */
446 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
447 			       int (*func)(u64, u64, void *))
448 {
449 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
450 		return walk_iomem_res_desc(crashk_res.desc,
451 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
452 					   crashk_res.start, crashk_res.end,
453 					   kbuf, func);
454 	else
455 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
456 }
457 
458 /**
459  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
460  * @kbuf:	Parameters for the memory search.
461  *
462  * On success, kbuf->mem will have the start address of the memory region found.
463  *
464  * Return: 0 on success, negative errno on error.
465  */
466 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
467 {
468 	int ret;
469 
470 	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
471 
472 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
473 }
474 
475 /**
476  * kexec_add_buffer - place a buffer in a kexec segment
477  * @kbuf:	Buffer contents and memory parameters.
478  *
479  * This function assumes that kexec_mutex is held.
480  * On successful return, @kbuf->mem will have the physical address of
481  * the buffer in memory.
482  *
483  * Return: 0 on success, negative errno on error.
484  */
485 int kexec_add_buffer(struct kexec_buf *kbuf)
486 {
487 
488 	struct kexec_segment *ksegment;
489 	int ret;
490 
491 	/* Currently adding segment this way is allowed only in file mode */
492 	if (!kbuf->image->file_mode)
493 		return -EINVAL;
494 
495 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
496 		return -EINVAL;
497 
498 	/*
499 	 * Make sure we are not trying to add buffer after allocating
500 	 * control pages. All segments need to be placed first before
501 	 * any control pages are allocated. As control page allocation
502 	 * logic goes through list of segments to make sure there are
503 	 * no destination overlaps.
504 	 */
505 	if (!list_empty(&kbuf->image->control_pages)) {
506 		WARN_ON(1);
507 		return -EINVAL;
508 	}
509 
510 	/* Ensure minimum alignment needed for segments. */
511 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
512 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
513 
514 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
515 	ret = kexec_locate_mem_hole(kbuf);
516 	if (ret)
517 		return ret;
518 
519 	/* Found a suitable memory range */
520 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
521 	ksegment->kbuf = kbuf->buffer;
522 	ksegment->bufsz = kbuf->bufsz;
523 	ksegment->mem = kbuf->mem;
524 	ksegment->memsz = kbuf->memsz;
525 	kbuf->image->nr_segments++;
526 	return 0;
527 }
528 
529 /* Calculate and store the digest of segments */
530 static int kexec_calculate_store_digests(struct kimage *image)
531 {
532 	struct crypto_shash *tfm;
533 	struct shash_desc *desc;
534 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
535 	size_t desc_size, nullsz;
536 	char *digest;
537 	void *zero_buf;
538 	struct kexec_sha_region *sha_regions;
539 	struct purgatory_info *pi = &image->purgatory_info;
540 
541 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
542 	zero_buf_sz = PAGE_SIZE;
543 
544 	tfm = crypto_alloc_shash("sha256", 0, 0);
545 	if (IS_ERR(tfm)) {
546 		ret = PTR_ERR(tfm);
547 		goto out;
548 	}
549 
550 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
551 	desc = kzalloc(desc_size, GFP_KERNEL);
552 	if (!desc) {
553 		ret = -ENOMEM;
554 		goto out_free_tfm;
555 	}
556 
557 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
558 	sha_regions = vzalloc(sha_region_sz);
559 	if (!sha_regions)
560 		goto out_free_desc;
561 
562 	desc->tfm   = tfm;
563 	desc->flags = 0;
564 
565 	ret = crypto_shash_init(desc);
566 	if (ret < 0)
567 		goto out_free_sha_regions;
568 
569 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
570 	if (!digest) {
571 		ret = -ENOMEM;
572 		goto out_free_sha_regions;
573 	}
574 
575 	for (j = i = 0; i < image->nr_segments; i++) {
576 		struct kexec_segment *ksegment;
577 
578 		ksegment = &image->segment[i];
579 		/*
580 		 * Skip purgatory as it will be modified once we put digest
581 		 * info in purgatory.
582 		 */
583 		if (ksegment->kbuf == pi->purgatory_buf)
584 			continue;
585 
586 		ret = crypto_shash_update(desc, ksegment->kbuf,
587 					  ksegment->bufsz);
588 		if (ret)
589 			break;
590 
591 		/*
592 		 * Assume rest of the buffer is filled with zero and
593 		 * update digest accordingly.
594 		 */
595 		nullsz = ksegment->memsz - ksegment->bufsz;
596 		while (nullsz) {
597 			unsigned long bytes = nullsz;
598 
599 			if (bytes > zero_buf_sz)
600 				bytes = zero_buf_sz;
601 			ret = crypto_shash_update(desc, zero_buf, bytes);
602 			if (ret)
603 				break;
604 			nullsz -= bytes;
605 		}
606 
607 		if (ret)
608 			break;
609 
610 		sha_regions[j].start = ksegment->mem;
611 		sha_regions[j].len = ksegment->memsz;
612 		j++;
613 	}
614 
615 	if (!ret) {
616 		ret = crypto_shash_final(desc, digest);
617 		if (ret)
618 			goto out_free_digest;
619 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
620 						     sha_regions, sha_region_sz, 0);
621 		if (ret)
622 			goto out_free_digest;
623 
624 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
625 						     digest, SHA256_DIGEST_SIZE, 0);
626 		if (ret)
627 			goto out_free_digest;
628 	}
629 
630 out_free_digest:
631 	kfree(digest);
632 out_free_sha_regions:
633 	vfree(sha_regions);
634 out_free_desc:
635 	kfree(desc);
636 out_free_tfm:
637 	kfree(tfm);
638 out:
639 	return ret;
640 }
641 
642 /* Actually load purgatory. Lot of code taken from kexec-tools */
643 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
644 				  unsigned long max, int top_down)
645 {
646 	struct purgatory_info *pi = &image->purgatory_info;
647 	unsigned long align, bss_align, bss_sz, bss_pad;
648 	unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
649 	unsigned char *buf_addr, *src;
650 	int i, ret = 0, entry_sidx = -1;
651 	const Elf_Shdr *sechdrs_c;
652 	Elf_Shdr *sechdrs = NULL;
653 	struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
654 				  .buf_min = min, .buf_max = max,
655 				  .top_down = top_down };
656 
657 	/*
658 	 * sechdrs_c points to section headers in purgatory and are read
659 	 * only. No modifications allowed.
660 	 */
661 	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
662 
663 	/*
664 	 * We can not modify sechdrs_c[] and its fields. It is read only.
665 	 * Copy it over to a local copy where one can store some temporary
666 	 * data and free it at the end. We need to modify ->sh_addr and
667 	 * ->sh_offset fields to keep track of permanent and temporary
668 	 * locations of sections.
669 	 */
670 	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
671 	if (!sechdrs)
672 		return -ENOMEM;
673 
674 	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
675 
676 	/*
677 	 * We seem to have multiple copies of sections. First copy is which
678 	 * is embedded in kernel in read only section. Some of these sections
679 	 * will be copied to a temporary buffer and relocated. And these
680 	 * sections will finally be copied to their final destination at
681 	 * segment load time.
682 	 *
683 	 * Use ->sh_offset to reflect section address in memory. It will
684 	 * point to original read only copy if section is not allocatable.
685 	 * Otherwise it will point to temporary copy which will be relocated.
686 	 *
687 	 * Use ->sh_addr to contain final address of the section where it
688 	 * will go during execution time.
689 	 */
690 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
691 		if (sechdrs[i].sh_type == SHT_NOBITS)
692 			continue;
693 
694 		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
695 						sechdrs[i].sh_offset;
696 	}
697 
698 	/*
699 	 * Identify entry point section and make entry relative to section
700 	 * start.
701 	 */
702 	entry = pi->ehdr->e_entry;
703 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
704 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
705 			continue;
706 
707 		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
708 			continue;
709 
710 		/* Make entry section relative */
711 		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
712 		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
713 		     pi->ehdr->e_entry)) {
714 			entry_sidx = i;
715 			entry -= sechdrs[i].sh_addr;
716 			break;
717 		}
718 	}
719 
720 	/* Determine how much memory is needed to load relocatable object. */
721 	bss_align = 1;
722 	bss_sz = 0;
723 
724 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
725 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
726 			continue;
727 
728 		align = sechdrs[i].sh_addralign;
729 		if (sechdrs[i].sh_type != SHT_NOBITS) {
730 			if (kbuf.buf_align < align)
731 				kbuf.buf_align = align;
732 			kbuf.bufsz = ALIGN(kbuf.bufsz, align);
733 			kbuf.bufsz += sechdrs[i].sh_size;
734 		} else {
735 			/* bss section */
736 			if (bss_align < align)
737 				bss_align = align;
738 			bss_sz = ALIGN(bss_sz, align);
739 			bss_sz += sechdrs[i].sh_size;
740 		}
741 	}
742 
743 	/* Determine the bss padding required to align bss properly */
744 	bss_pad = 0;
745 	if (kbuf.bufsz & (bss_align - 1))
746 		bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
747 
748 	kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
749 
750 	/* Allocate buffer for purgatory */
751 	kbuf.buffer = vzalloc(kbuf.bufsz);
752 	if (!kbuf.buffer) {
753 		ret = -ENOMEM;
754 		goto out;
755 	}
756 
757 	if (kbuf.buf_align < bss_align)
758 		kbuf.buf_align = bss_align;
759 
760 	/* Add buffer to segment list */
761 	ret = kexec_add_buffer(&kbuf);
762 	if (ret)
763 		goto out;
764 	pi->purgatory_load_addr = kbuf.mem;
765 
766 	/* Load SHF_ALLOC sections */
767 	buf_addr = kbuf.buffer;
768 	load_addr = curr_load_addr = pi->purgatory_load_addr;
769 	bss_addr = load_addr + kbuf.bufsz + bss_pad;
770 
771 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
772 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
773 			continue;
774 
775 		align = sechdrs[i].sh_addralign;
776 		if (sechdrs[i].sh_type != SHT_NOBITS) {
777 			curr_load_addr = ALIGN(curr_load_addr, align);
778 			offset = curr_load_addr - load_addr;
779 			/* We already modifed ->sh_offset to keep src addr */
780 			src = (char *) sechdrs[i].sh_offset;
781 			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
782 
783 			/* Store load address and source address of section */
784 			sechdrs[i].sh_addr = curr_load_addr;
785 
786 			/*
787 			 * This section got copied to temporary buffer. Update
788 			 * ->sh_offset accordingly.
789 			 */
790 			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
791 
792 			/* Advance to the next address */
793 			curr_load_addr += sechdrs[i].sh_size;
794 		} else {
795 			bss_addr = ALIGN(bss_addr, align);
796 			sechdrs[i].sh_addr = bss_addr;
797 			bss_addr += sechdrs[i].sh_size;
798 		}
799 	}
800 
801 	/* Update entry point based on load address of text section */
802 	if (entry_sidx >= 0)
803 		entry += sechdrs[entry_sidx].sh_addr;
804 
805 	/* Make kernel jump to purgatory after shutdown */
806 	image->start = entry;
807 
808 	/* Used later to get/set symbol values */
809 	pi->sechdrs = sechdrs;
810 
811 	/*
812 	 * Used later to identify which section is purgatory and skip it
813 	 * from checksumming.
814 	 */
815 	pi->purgatory_buf = kbuf.buffer;
816 	return ret;
817 out:
818 	vfree(sechdrs);
819 	vfree(kbuf.buffer);
820 	return ret;
821 }
822 
823 static int kexec_apply_relocations(struct kimage *image)
824 {
825 	int i, ret;
826 	struct purgatory_info *pi = &image->purgatory_info;
827 	Elf_Shdr *sechdrs = pi->sechdrs;
828 
829 	/* Apply relocations */
830 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
831 		Elf_Shdr *section, *symtab;
832 
833 		if (sechdrs[i].sh_type != SHT_RELA &&
834 		    sechdrs[i].sh_type != SHT_REL)
835 			continue;
836 
837 		/*
838 		 * For section of type SHT_RELA/SHT_REL,
839 		 * ->sh_link contains section header index of associated
840 		 * symbol table. And ->sh_info contains section header
841 		 * index of section to which relocations apply.
842 		 */
843 		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
844 		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
845 			return -ENOEXEC;
846 
847 		section = &sechdrs[sechdrs[i].sh_info];
848 		symtab = &sechdrs[sechdrs[i].sh_link];
849 
850 		if (!(section->sh_flags & SHF_ALLOC))
851 			continue;
852 
853 		/*
854 		 * symtab->sh_link contain section header index of associated
855 		 * string table.
856 		 */
857 		if (symtab->sh_link >= pi->ehdr->e_shnum)
858 			/* Invalid section number? */
859 			continue;
860 
861 		/*
862 		 * Respective architecture needs to provide support for applying
863 		 * relocations of type SHT_RELA/SHT_REL.
864 		 */
865 		if (sechdrs[i].sh_type == SHT_RELA)
866 			ret = arch_kexec_apply_relocations_add(pi->ehdr,
867 							       sechdrs, i);
868 		else if (sechdrs[i].sh_type == SHT_REL)
869 			ret = arch_kexec_apply_relocations(pi->ehdr,
870 							   sechdrs, i);
871 		if (ret)
872 			return ret;
873 	}
874 
875 	return 0;
876 }
877 
878 /* Load relocatable purgatory object and relocate it appropriately */
879 int kexec_load_purgatory(struct kimage *image, unsigned long min,
880 			 unsigned long max, int top_down,
881 			 unsigned long *load_addr)
882 {
883 	struct purgatory_info *pi = &image->purgatory_info;
884 	int ret;
885 
886 	if (kexec_purgatory_size <= 0)
887 		return -EINVAL;
888 
889 	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
890 		return -ENOEXEC;
891 
892 	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
893 
894 	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
895 	    || pi->ehdr->e_type != ET_REL
896 	    || !elf_check_arch(pi->ehdr)
897 	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
898 		return -ENOEXEC;
899 
900 	if (pi->ehdr->e_shoff >= kexec_purgatory_size
901 	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
902 	    kexec_purgatory_size - pi->ehdr->e_shoff))
903 		return -ENOEXEC;
904 
905 	ret = __kexec_load_purgatory(image, min, max, top_down);
906 	if (ret)
907 		return ret;
908 
909 	ret = kexec_apply_relocations(image);
910 	if (ret)
911 		goto out;
912 
913 	*load_addr = pi->purgatory_load_addr;
914 	return 0;
915 out:
916 	vfree(pi->sechdrs);
917 	pi->sechdrs = NULL;
918 
919 	vfree(pi->purgatory_buf);
920 	pi->purgatory_buf = NULL;
921 	return ret;
922 }
923 
924 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
925 					    const char *name)
926 {
927 	Elf_Sym *syms;
928 	Elf_Shdr *sechdrs;
929 	Elf_Ehdr *ehdr;
930 	int i, k;
931 	const char *strtab;
932 
933 	if (!pi->sechdrs || !pi->ehdr)
934 		return NULL;
935 
936 	sechdrs = pi->sechdrs;
937 	ehdr = pi->ehdr;
938 
939 	for (i = 0; i < ehdr->e_shnum; i++) {
940 		if (sechdrs[i].sh_type != SHT_SYMTAB)
941 			continue;
942 
943 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
944 			/* Invalid strtab section number */
945 			continue;
946 		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
947 		syms = (Elf_Sym *)sechdrs[i].sh_offset;
948 
949 		/* Go through symbols for a match */
950 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
951 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
952 				continue;
953 
954 			if (strcmp(strtab + syms[k].st_name, name) != 0)
955 				continue;
956 
957 			if (syms[k].st_shndx == SHN_UNDEF ||
958 			    syms[k].st_shndx >= ehdr->e_shnum) {
959 				pr_debug("Symbol: %s has bad section index %d.\n",
960 						name, syms[k].st_shndx);
961 				return NULL;
962 			}
963 
964 			/* Found the symbol we are looking for */
965 			return &syms[k];
966 		}
967 	}
968 
969 	return NULL;
970 }
971 
972 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
973 {
974 	struct purgatory_info *pi = &image->purgatory_info;
975 	Elf_Sym *sym;
976 	Elf_Shdr *sechdr;
977 
978 	sym = kexec_purgatory_find_symbol(pi, name);
979 	if (!sym)
980 		return ERR_PTR(-EINVAL);
981 
982 	sechdr = &pi->sechdrs[sym->st_shndx];
983 
984 	/*
985 	 * Returns the address where symbol will finally be loaded after
986 	 * kexec_load_segment()
987 	 */
988 	return (void *)(sechdr->sh_addr + sym->st_value);
989 }
990 
991 /*
992  * Get or set value of a symbol. If "get_value" is true, symbol value is
993  * returned in buf otherwise symbol value is set based on value in buf.
994  */
995 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
996 				   void *buf, unsigned int size, bool get_value)
997 {
998 	Elf_Sym *sym;
999 	Elf_Shdr *sechdrs;
1000 	struct purgatory_info *pi = &image->purgatory_info;
1001 	char *sym_buf;
1002 
1003 	sym = kexec_purgatory_find_symbol(pi, name);
1004 	if (!sym)
1005 		return -EINVAL;
1006 
1007 	if (sym->st_size != size) {
1008 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1009 		       name, (unsigned long)sym->st_size, size);
1010 		return -EINVAL;
1011 	}
1012 
1013 	sechdrs = pi->sechdrs;
1014 
1015 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1016 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1017 		       get_value ? "get" : "set");
1018 		return -EINVAL;
1019 	}
1020 
1021 	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1022 					sym->st_value;
1023 
1024 	if (get_value)
1025 		memcpy((void *)buf, sym_buf, size);
1026 	else
1027 		memcpy((void *)sym_buf, buf, size);
1028 
1029 	return 0;
1030 }
1031