xref: /linux/kernel/kexec_file.c (revision 5496197f9b084f086cb410dd566648b0896fcc74)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include "kexec_internal.h"
30 
31 static int kexec_calculate_store_digests(struct kimage *image);
32 
33 /*
34  * Currently this is the only default function that is exported as some
35  * architectures need it to do additional handlings.
36  * In the future, other default functions may be exported too if required.
37  */
38 int kexec_image_probe_default(struct kimage *image, void *buf,
39 			      unsigned long buf_len)
40 {
41 	const struct kexec_file_ops * const *fops;
42 	int ret = -ENOEXEC;
43 
44 	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45 		ret = (*fops)->probe(buf, buf_len);
46 		if (!ret) {
47 			image->fops = *fops;
48 			return ret;
49 		}
50 	}
51 
52 	return ret;
53 }
54 
55 /* Architectures can provide this probe function */
56 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57 					 unsigned long buf_len)
58 {
59 	return kexec_image_probe_default(image, buf, buf_len);
60 }
61 
62 static void *kexec_image_load_default(struct kimage *image)
63 {
64 	if (!image->fops || !image->fops->load)
65 		return ERR_PTR(-ENOEXEC);
66 
67 	return image->fops->load(image, image->kernel_buf,
68 				 image->kernel_buf_len, image->initrd_buf,
69 				 image->initrd_buf_len, image->cmdline_buf,
70 				 image->cmdline_buf_len);
71 }
72 
73 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74 {
75 	return kexec_image_load_default(image);
76 }
77 
78 int kexec_image_post_load_cleanup_default(struct kimage *image)
79 {
80 	if (!image->fops || !image->fops->cleanup)
81 		return 0;
82 
83 	return image->fops->cleanup(image->image_loader_data);
84 }
85 
86 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87 {
88 	return kexec_image_post_load_cleanup_default(image);
89 }
90 
91 #ifdef CONFIG_KEXEC_SIG
92 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93 					  unsigned long buf_len)
94 {
95 	if (!image->fops || !image->fops->verify_sig) {
96 		pr_debug("kernel loader does not support signature verification.\n");
97 		return -EKEYREJECTED;
98 	}
99 
100 	return image->fops->verify_sig(buf, buf_len);
101 }
102 
103 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104 					unsigned long buf_len)
105 {
106 	return kexec_image_verify_sig_default(image, buf, buf_len);
107 }
108 #endif
109 
110 /*
111  * arch_kexec_apply_relocations_add - apply relocations of type RELA
112  * @pi:		Purgatory to be relocated.
113  * @section:	Section relocations applying to.
114  * @relsec:	Section containing RELAs.
115  * @symtab:	Corresponding symtab.
116  *
117  * Return: 0 on success, negative errno on error.
118  */
119 int __weak
120 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
121 				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
122 {
123 	pr_err("RELA relocation unsupported.\n");
124 	return -ENOEXEC;
125 }
126 
127 /*
128  * arch_kexec_apply_relocations - apply relocations of type REL
129  * @pi:		Purgatory to be relocated.
130  * @section:	Section relocations applying to.
131  * @relsec:	Section containing RELs.
132  * @symtab:	Corresponding symtab.
133  *
134  * Return: 0 on success, negative errno on error.
135  */
136 int __weak
137 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
138 			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
139 {
140 	pr_err("REL relocation unsupported.\n");
141 	return -ENOEXEC;
142 }
143 
144 /*
145  * Free up memory used by kernel, initrd, and command line. This is temporary
146  * memory allocation which is not needed any more after these buffers have
147  * been loaded into separate segments and have been copied elsewhere.
148  */
149 void kimage_file_post_load_cleanup(struct kimage *image)
150 {
151 	struct purgatory_info *pi = &image->purgatory_info;
152 
153 	vfree(image->kernel_buf);
154 	image->kernel_buf = NULL;
155 
156 	vfree(image->initrd_buf);
157 	image->initrd_buf = NULL;
158 
159 	kfree(image->cmdline_buf);
160 	image->cmdline_buf = NULL;
161 
162 	vfree(pi->purgatory_buf);
163 	pi->purgatory_buf = NULL;
164 
165 	vfree(pi->sechdrs);
166 	pi->sechdrs = NULL;
167 
168 	/* See if architecture has anything to cleanup post load */
169 	arch_kimage_file_post_load_cleanup(image);
170 
171 	/*
172 	 * Above call should have called into bootloader to free up
173 	 * any data stored in kimage->image_loader_data. It should
174 	 * be ok now to free it up.
175 	 */
176 	kfree(image->image_loader_data);
177 	image->image_loader_data = NULL;
178 }
179 
180 #ifdef CONFIG_KEXEC_SIG
181 static int
182 kimage_validate_signature(struct kimage *image)
183 {
184 	const char *reason;
185 	int ret;
186 
187 	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
188 					   image->kernel_buf_len);
189 	switch (ret) {
190 	case 0:
191 		break;
192 
193 		/* Certain verification errors are non-fatal if we're not
194 		 * checking errors, provided we aren't mandating that there
195 		 * must be a valid signature.
196 		 */
197 	case -ENODATA:
198 		reason = "kexec of unsigned image";
199 		goto decide;
200 	case -ENOPKG:
201 		reason = "kexec of image with unsupported crypto";
202 		goto decide;
203 	case -ENOKEY:
204 		reason = "kexec of image with unavailable key";
205 	decide:
206 		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
207 			pr_notice("%s rejected\n", reason);
208 			return ret;
209 		}
210 
211 		/* If IMA is guaranteed to appraise a signature on the kexec
212 		 * image, permit it even if the kernel is otherwise locked
213 		 * down.
214 		 */
215 		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
216 		    security_locked_down(LOCKDOWN_KEXEC))
217 			return -EPERM;
218 
219 		return 0;
220 
221 		/* All other errors are fatal, including nomem, unparseable
222 		 * signatures and signature check failures - even if signatures
223 		 * aren't required.
224 		 */
225 	default:
226 		pr_notice("kernel signature verification failed (%d).\n", ret);
227 	}
228 
229 	return ret;
230 }
231 #endif
232 
233 /*
234  * In file mode list of segments is prepared by kernel. Copy relevant
235  * data from user space, do error checking, prepare segment list
236  */
237 static int
238 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
239 			     const char __user *cmdline_ptr,
240 			     unsigned long cmdline_len, unsigned flags)
241 {
242 	int ret;
243 	void *ldata;
244 	loff_t size;
245 
246 	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
247 				       &size, INT_MAX, READING_KEXEC_IMAGE);
248 	if (ret)
249 		return ret;
250 	image->kernel_buf_len = size;
251 
252 	/* IMA needs to pass the measurement list to the next kernel. */
253 	ima_add_kexec_buffer(image);
254 
255 	/* Call arch image probe handlers */
256 	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
257 					    image->kernel_buf_len);
258 	if (ret)
259 		goto out;
260 
261 #ifdef CONFIG_KEXEC_SIG
262 	ret = kimage_validate_signature(image);
263 
264 	if (ret)
265 		goto out;
266 #endif
267 	/* It is possible that there no initramfs is being loaded */
268 	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
269 		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
270 					       &size, INT_MAX,
271 					       READING_KEXEC_INITRAMFS);
272 		if (ret)
273 			goto out;
274 		image->initrd_buf_len = size;
275 	}
276 
277 	if (cmdline_len) {
278 		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
279 		if (IS_ERR(image->cmdline_buf)) {
280 			ret = PTR_ERR(image->cmdline_buf);
281 			image->cmdline_buf = NULL;
282 			goto out;
283 		}
284 
285 		image->cmdline_buf_len = cmdline_len;
286 
287 		/* command line should be a string with last byte null */
288 		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
289 			ret = -EINVAL;
290 			goto out;
291 		}
292 	}
293 
294 	/* Call arch image load handlers */
295 	ldata = arch_kexec_kernel_image_load(image);
296 
297 	if (IS_ERR(ldata)) {
298 		ret = PTR_ERR(ldata);
299 		goto out;
300 	}
301 
302 	image->image_loader_data = ldata;
303 out:
304 	/* In case of error, free up all allocated memory in this function */
305 	if (ret)
306 		kimage_file_post_load_cleanup(image);
307 	return ret;
308 }
309 
310 static int
311 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
312 		       int initrd_fd, const char __user *cmdline_ptr,
313 		       unsigned long cmdline_len, unsigned long flags)
314 {
315 	int ret;
316 	struct kimage *image;
317 	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
318 
319 	image = do_kimage_alloc_init();
320 	if (!image)
321 		return -ENOMEM;
322 
323 	image->file_mode = 1;
324 
325 	if (kexec_on_panic) {
326 		/* Enable special crash kernel control page alloc policy. */
327 		image->control_page = crashk_res.start;
328 		image->type = KEXEC_TYPE_CRASH;
329 	}
330 
331 	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
332 					   cmdline_ptr, cmdline_len, flags);
333 	if (ret)
334 		goto out_free_image;
335 
336 	ret = sanity_check_segment_list(image);
337 	if (ret)
338 		goto out_free_post_load_bufs;
339 
340 	ret = -ENOMEM;
341 	image->control_code_page = kimage_alloc_control_pages(image,
342 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
343 	if (!image->control_code_page) {
344 		pr_err("Could not allocate control_code_buffer\n");
345 		goto out_free_post_load_bufs;
346 	}
347 
348 	if (!kexec_on_panic) {
349 		image->swap_page = kimage_alloc_control_pages(image, 0);
350 		if (!image->swap_page) {
351 			pr_err("Could not allocate swap buffer\n");
352 			goto out_free_control_pages;
353 		}
354 	}
355 
356 	*rimage = image;
357 	return 0;
358 out_free_control_pages:
359 	kimage_free_page_list(&image->control_pages);
360 out_free_post_load_bufs:
361 	kimage_file_post_load_cleanup(image);
362 out_free_image:
363 	kfree(image);
364 	return ret;
365 }
366 
367 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
368 		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
369 		unsigned long, flags)
370 {
371 	int ret = 0, i;
372 	struct kimage **dest_image, *image;
373 
374 	/* We only trust the superuser with rebooting the system. */
375 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
376 		return -EPERM;
377 
378 	/* Make sure we have a legal set of flags */
379 	if (flags != (flags & KEXEC_FILE_FLAGS))
380 		return -EINVAL;
381 
382 	image = NULL;
383 
384 	if (!mutex_trylock(&kexec_mutex))
385 		return -EBUSY;
386 
387 	dest_image = &kexec_image;
388 	if (flags & KEXEC_FILE_ON_CRASH) {
389 		dest_image = &kexec_crash_image;
390 		if (kexec_crash_image)
391 			arch_kexec_unprotect_crashkres();
392 	}
393 
394 	if (flags & KEXEC_FILE_UNLOAD)
395 		goto exchange;
396 
397 	/*
398 	 * In case of crash, new kernel gets loaded in reserved region. It is
399 	 * same memory where old crash kernel might be loaded. Free any
400 	 * current crash dump kernel before we corrupt it.
401 	 */
402 	if (flags & KEXEC_FILE_ON_CRASH)
403 		kimage_free(xchg(&kexec_crash_image, NULL));
404 
405 	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
406 				     cmdline_len, flags);
407 	if (ret)
408 		goto out;
409 
410 	ret = machine_kexec_prepare(image);
411 	if (ret)
412 		goto out;
413 
414 	/*
415 	 * Some architecture(like S390) may touch the crash memory before
416 	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
417 	 */
418 	ret = kimage_crash_copy_vmcoreinfo(image);
419 	if (ret)
420 		goto out;
421 
422 	ret = kexec_calculate_store_digests(image);
423 	if (ret)
424 		goto out;
425 
426 	for (i = 0; i < image->nr_segments; i++) {
427 		struct kexec_segment *ksegment;
428 
429 		ksegment = &image->segment[i];
430 		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
431 			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
432 			 ksegment->memsz);
433 
434 		ret = kimage_load_segment(image, &image->segment[i]);
435 		if (ret)
436 			goto out;
437 	}
438 
439 	kimage_terminate(image);
440 
441 	/*
442 	 * Free up any temporary buffers allocated which are not needed
443 	 * after image has been loaded
444 	 */
445 	kimage_file_post_load_cleanup(image);
446 exchange:
447 	image = xchg(dest_image, image);
448 out:
449 	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
450 		arch_kexec_protect_crashkres();
451 
452 	mutex_unlock(&kexec_mutex);
453 	kimage_free(image);
454 	return ret;
455 }
456 
457 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
458 				    struct kexec_buf *kbuf)
459 {
460 	struct kimage *image = kbuf->image;
461 	unsigned long temp_start, temp_end;
462 
463 	temp_end = min(end, kbuf->buf_max);
464 	temp_start = temp_end - kbuf->memsz;
465 
466 	do {
467 		/* align down start */
468 		temp_start = temp_start & (~(kbuf->buf_align - 1));
469 
470 		if (temp_start < start || temp_start < kbuf->buf_min)
471 			return 0;
472 
473 		temp_end = temp_start + kbuf->memsz - 1;
474 
475 		/*
476 		 * Make sure this does not conflict with any of existing
477 		 * segments
478 		 */
479 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
480 			temp_start = temp_start - PAGE_SIZE;
481 			continue;
482 		}
483 
484 		/* We found a suitable memory range */
485 		break;
486 	} while (1);
487 
488 	/* If we are here, we found a suitable memory range */
489 	kbuf->mem = temp_start;
490 
491 	/* Success, stop navigating through remaining System RAM ranges */
492 	return 1;
493 }
494 
495 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
496 				     struct kexec_buf *kbuf)
497 {
498 	struct kimage *image = kbuf->image;
499 	unsigned long temp_start, temp_end;
500 
501 	temp_start = max(start, kbuf->buf_min);
502 
503 	do {
504 		temp_start = ALIGN(temp_start, kbuf->buf_align);
505 		temp_end = temp_start + kbuf->memsz - 1;
506 
507 		if (temp_end > end || temp_end > kbuf->buf_max)
508 			return 0;
509 		/*
510 		 * Make sure this does not conflict with any of existing
511 		 * segments
512 		 */
513 		if (kimage_is_destination_range(image, temp_start, temp_end)) {
514 			temp_start = temp_start + PAGE_SIZE;
515 			continue;
516 		}
517 
518 		/* We found a suitable memory range */
519 		break;
520 	} while (1);
521 
522 	/* If we are here, we found a suitable memory range */
523 	kbuf->mem = temp_start;
524 
525 	/* Success, stop navigating through remaining System RAM ranges */
526 	return 1;
527 }
528 
529 static int locate_mem_hole_callback(struct resource *res, void *arg)
530 {
531 	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
532 	u64 start = res->start, end = res->end;
533 	unsigned long sz = end - start + 1;
534 
535 	/* Returning 0 will take to next memory range */
536 	if (sz < kbuf->memsz)
537 		return 0;
538 
539 	if (end < kbuf->buf_min || start > kbuf->buf_max)
540 		return 0;
541 
542 	/*
543 	 * Allocate memory top down with-in ram range. Otherwise bottom up
544 	 * allocation.
545 	 */
546 	if (kbuf->top_down)
547 		return locate_mem_hole_top_down(start, end, kbuf);
548 	return locate_mem_hole_bottom_up(start, end, kbuf);
549 }
550 
551 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
552 static int kexec_walk_memblock(struct kexec_buf *kbuf,
553 			       int (*func)(struct resource *, void *))
554 {
555 	int ret = 0;
556 	u64 i;
557 	phys_addr_t mstart, mend;
558 	struct resource res = { };
559 
560 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
561 		return func(&crashk_res, kbuf);
562 
563 	if (kbuf->top_down) {
564 		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
565 						&mstart, &mend, NULL) {
566 			/*
567 			 * In memblock, end points to the first byte after the
568 			 * range while in kexec, end points to the last byte
569 			 * in the range.
570 			 */
571 			res.start = mstart;
572 			res.end = mend - 1;
573 			ret = func(&res, kbuf);
574 			if (ret)
575 				break;
576 		}
577 	} else {
578 		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
579 					&mstart, &mend, NULL) {
580 			/*
581 			 * In memblock, end points to the first byte after the
582 			 * range while in kexec, end points to the last byte
583 			 * in the range.
584 			 */
585 			res.start = mstart;
586 			res.end = mend - 1;
587 			ret = func(&res, kbuf);
588 			if (ret)
589 				break;
590 		}
591 	}
592 
593 	return ret;
594 }
595 #else
596 static int kexec_walk_memblock(struct kexec_buf *kbuf,
597 			       int (*func)(struct resource *, void *))
598 {
599 	return 0;
600 }
601 #endif
602 
603 /**
604  * kexec_walk_resources - call func(data) on free memory regions
605  * @kbuf:	Context info for the search. Also passed to @func.
606  * @func:	Function to call for each memory region.
607  *
608  * Return: The memory walk will stop when func returns a non-zero value
609  * and that value will be returned. If all free regions are visited without
610  * func returning non-zero, then zero will be returned.
611  */
612 static int kexec_walk_resources(struct kexec_buf *kbuf,
613 				int (*func)(struct resource *, void *))
614 {
615 	if (kbuf->image->type == KEXEC_TYPE_CRASH)
616 		return walk_iomem_res_desc(crashk_res.desc,
617 					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
618 					   crashk_res.start, crashk_res.end,
619 					   kbuf, func);
620 	else
621 		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
622 }
623 
624 /**
625  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
626  * @kbuf:	Parameters for the memory search.
627  *
628  * On success, kbuf->mem will have the start address of the memory region found.
629  *
630  * Return: 0 on success, negative errno on error.
631  */
632 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
633 {
634 	int ret;
635 
636 	/* Arch knows where to place */
637 	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
638 		return 0;
639 
640 	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
641 		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
642 	else
643 		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
644 
645 	return ret == 1 ? 0 : -EADDRNOTAVAIL;
646 }
647 
648 /**
649  * kexec_add_buffer - place a buffer in a kexec segment
650  * @kbuf:	Buffer contents and memory parameters.
651  *
652  * This function assumes that kexec_mutex is held.
653  * On successful return, @kbuf->mem will have the physical address of
654  * the buffer in memory.
655  *
656  * Return: 0 on success, negative errno on error.
657  */
658 int kexec_add_buffer(struct kexec_buf *kbuf)
659 {
660 
661 	struct kexec_segment *ksegment;
662 	int ret;
663 
664 	/* Currently adding segment this way is allowed only in file mode */
665 	if (!kbuf->image->file_mode)
666 		return -EINVAL;
667 
668 	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
669 		return -EINVAL;
670 
671 	/*
672 	 * Make sure we are not trying to add buffer after allocating
673 	 * control pages. All segments need to be placed first before
674 	 * any control pages are allocated. As control page allocation
675 	 * logic goes through list of segments to make sure there are
676 	 * no destination overlaps.
677 	 */
678 	if (!list_empty(&kbuf->image->control_pages)) {
679 		WARN_ON(1);
680 		return -EINVAL;
681 	}
682 
683 	/* Ensure minimum alignment needed for segments. */
684 	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
685 	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
686 
687 	/* Walk the RAM ranges and allocate a suitable range for the buffer */
688 	ret = kexec_locate_mem_hole(kbuf);
689 	if (ret)
690 		return ret;
691 
692 	/* Found a suitable memory range */
693 	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
694 	ksegment->kbuf = kbuf->buffer;
695 	ksegment->bufsz = kbuf->bufsz;
696 	ksegment->mem = kbuf->mem;
697 	ksegment->memsz = kbuf->memsz;
698 	kbuf->image->nr_segments++;
699 	return 0;
700 }
701 
702 /* Calculate and store the digest of segments */
703 static int kexec_calculate_store_digests(struct kimage *image)
704 {
705 	struct crypto_shash *tfm;
706 	struct shash_desc *desc;
707 	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
708 	size_t desc_size, nullsz;
709 	char *digest;
710 	void *zero_buf;
711 	struct kexec_sha_region *sha_regions;
712 	struct purgatory_info *pi = &image->purgatory_info;
713 
714 	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
715 		return 0;
716 
717 	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
718 	zero_buf_sz = PAGE_SIZE;
719 
720 	tfm = crypto_alloc_shash("sha256", 0, 0);
721 	if (IS_ERR(tfm)) {
722 		ret = PTR_ERR(tfm);
723 		goto out;
724 	}
725 
726 	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
727 	desc = kzalloc(desc_size, GFP_KERNEL);
728 	if (!desc) {
729 		ret = -ENOMEM;
730 		goto out_free_tfm;
731 	}
732 
733 	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
734 	sha_regions = vzalloc(sha_region_sz);
735 	if (!sha_regions)
736 		goto out_free_desc;
737 
738 	desc->tfm   = tfm;
739 
740 	ret = crypto_shash_init(desc);
741 	if (ret < 0)
742 		goto out_free_sha_regions;
743 
744 	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
745 	if (!digest) {
746 		ret = -ENOMEM;
747 		goto out_free_sha_regions;
748 	}
749 
750 	for (j = i = 0; i < image->nr_segments; i++) {
751 		struct kexec_segment *ksegment;
752 
753 		ksegment = &image->segment[i];
754 		/*
755 		 * Skip purgatory as it will be modified once we put digest
756 		 * info in purgatory.
757 		 */
758 		if (ksegment->kbuf == pi->purgatory_buf)
759 			continue;
760 
761 		ret = crypto_shash_update(desc, ksegment->kbuf,
762 					  ksegment->bufsz);
763 		if (ret)
764 			break;
765 
766 		/*
767 		 * Assume rest of the buffer is filled with zero and
768 		 * update digest accordingly.
769 		 */
770 		nullsz = ksegment->memsz - ksegment->bufsz;
771 		while (nullsz) {
772 			unsigned long bytes = nullsz;
773 
774 			if (bytes > zero_buf_sz)
775 				bytes = zero_buf_sz;
776 			ret = crypto_shash_update(desc, zero_buf, bytes);
777 			if (ret)
778 				break;
779 			nullsz -= bytes;
780 		}
781 
782 		if (ret)
783 			break;
784 
785 		sha_regions[j].start = ksegment->mem;
786 		sha_regions[j].len = ksegment->memsz;
787 		j++;
788 	}
789 
790 	if (!ret) {
791 		ret = crypto_shash_final(desc, digest);
792 		if (ret)
793 			goto out_free_digest;
794 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
795 						     sha_regions, sha_region_sz, 0);
796 		if (ret)
797 			goto out_free_digest;
798 
799 		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
800 						     digest, SHA256_DIGEST_SIZE, 0);
801 		if (ret)
802 			goto out_free_digest;
803 	}
804 
805 out_free_digest:
806 	kfree(digest);
807 out_free_sha_regions:
808 	vfree(sha_regions);
809 out_free_desc:
810 	kfree(desc);
811 out_free_tfm:
812 	kfree(tfm);
813 out:
814 	return ret;
815 }
816 
817 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
818 /*
819  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
820  * @pi:		Purgatory to be loaded.
821  * @kbuf:	Buffer to setup.
822  *
823  * Allocates the memory needed for the buffer. Caller is responsible to free
824  * the memory after use.
825  *
826  * Return: 0 on success, negative errno on error.
827  */
828 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
829 				      struct kexec_buf *kbuf)
830 {
831 	const Elf_Shdr *sechdrs;
832 	unsigned long bss_align;
833 	unsigned long bss_sz;
834 	unsigned long align;
835 	int i, ret;
836 
837 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
838 	kbuf->buf_align = bss_align = 1;
839 	kbuf->bufsz = bss_sz = 0;
840 
841 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
842 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
843 			continue;
844 
845 		align = sechdrs[i].sh_addralign;
846 		if (sechdrs[i].sh_type != SHT_NOBITS) {
847 			if (kbuf->buf_align < align)
848 				kbuf->buf_align = align;
849 			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
850 			kbuf->bufsz += sechdrs[i].sh_size;
851 		} else {
852 			if (bss_align < align)
853 				bss_align = align;
854 			bss_sz = ALIGN(bss_sz, align);
855 			bss_sz += sechdrs[i].sh_size;
856 		}
857 	}
858 	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
859 	kbuf->memsz = kbuf->bufsz + bss_sz;
860 	if (kbuf->buf_align < bss_align)
861 		kbuf->buf_align = bss_align;
862 
863 	kbuf->buffer = vzalloc(kbuf->bufsz);
864 	if (!kbuf->buffer)
865 		return -ENOMEM;
866 	pi->purgatory_buf = kbuf->buffer;
867 
868 	ret = kexec_add_buffer(kbuf);
869 	if (ret)
870 		goto out;
871 
872 	return 0;
873 out:
874 	vfree(pi->purgatory_buf);
875 	pi->purgatory_buf = NULL;
876 	return ret;
877 }
878 
879 /*
880  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
881  * @pi:		Purgatory to be loaded.
882  * @kbuf:	Buffer prepared to store purgatory.
883  *
884  * Allocates the memory needed for the buffer. Caller is responsible to free
885  * the memory after use.
886  *
887  * Return: 0 on success, negative errno on error.
888  */
889 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
890 					 struct kexec_buf *kbuf)
891 {
892 	unsigned long bss_addr;
893 	unsigned long offset;
894 	Elf_Shdr *sechdrs;
895 	int i;
896 
897 	/*
898 	 * The section headers in kexec_purgatory are read-only. In order to
899 	 * have them modifiable make a temporary copy.
900 	 */
901 	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
902 	if (!sechdrs)
903 		return -ENOMEM;
904 	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
905 	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
906 	pi->sechdrs = sechdrs;
907 
908 	offset = 0;
909 	bss_addr = kbuf->mem + kbuf->bufsz;
910 	kbuf->image->start = pi->ehdr->e_entry;
911 
912 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
913 		unsigned long align;
914 		void *src, *dst;
915 
916 		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
917 			continue;
918 
919 		align = sechdrs[i].sh_addralign;
920 		if (sechdrs[i].sh_type == SHT_NOBITS) {
921 			bss_addr = ALIGN(bss_addr, align);
922 			sechdrs[i].sh_addr = bss_addr;
923 			bss_addr += sechdrs[i].sh_size;
924 			continue;
925 		}
926 
927 		offset = ALIGN(offset, align);
928 		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
929 		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
930 		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
931 					 + sechdrs[i].sh_size)) {
932 			kbuf->image->start -= sechdrs[i].sh_addr;
933 			kbuf->image->start += kbuf->mem + offset;
934 		}
935 
936 		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
937 		dst = pi->purgatory_buf + offset;
938 		memcpy(dst, src, sechdrs[i].sh_size);
939 
940 		sechdrs[i].sh_addr = kbuf->mem + offset;
941 		sechdrs[i].sh_offset = offset;
942 		offset += sechdrs[i].sh_size;
943 	}
944 
945 	return 0;
946 }
947 
948 static int kexec_apply_relocations(struct kimage *image)
949 {
950 	int i, ret;
951 	struct purgatory_info *pi = &image->purgatory_info;
952 	const Elf_Shdr *sechdrs;
953 
954 	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
955 
956 	for (i = 0; i < pi->ehdr->e_shnum; i++) {
957 		const Elf_Shdr *relsec;
958 		const Elf_Shdr *symtab;
959 		Elf_Shdr *section;
960 
961 		relsec = sechdrs + i;
962 
963 		if (relsec->sh_type != SHT_RELA &&
964 		    relsec->sh_type != SHT_REL)
965 			continue;
966 
967 		/*
968 		 * For section of type SHT_RELA/SHT_REL,
969 		 * ->sh_link contains section header index of associated
970 		 * symbol table. And ->sh_info contains section header
971 		 * index of section to which relocations apply.
972 		 */
973 		if (relsec->sh_info >= pi->ehdr->e_shnum ||
974 		    relsec->sh_link >= pi->ehdr->e_shnum)
975 			return -ENOEXEC;
976 
977 		section = pi->sechdrs + relsec->sh_info;
978 		symtab = sechdrs + relsec->sh_link;
979 
980 		if (!(section->sh_flags & SHF_ALLOC))
981 			continue;
982 
983 		/*
984 		 * symtab->sh_link contain section header index of associated
985 		 * string table.
986 		 */
987 		if (symtab->sh_link >= pi->ehdr->e_shnum)
988 			/* Invalid section number? */
989 			continue;
990 
991 		/*
992 		 * Respective architecture needs to provide support for applying
993 		 * relocations of type SHT_RELA/SHT_REL.
994 		 */
995 		if (relsec->sh_type == SHT_RELA)
996 			ret = arch_kexec_apply_relocations_add(pi, section,
997 							       relsec, symtab);
998 		else if (relsec->sh_type == SHT_REL)
999 			ret = arch_kexec_apply_relocations(pi, section,
1000 							   relsec, symtab);
1001 		if (ret)
1002 			return ret;
1003 	}
1004 
1005 	return 0;
1006 }
1007 
1008 /*
1009  * kexec_load_purgatory - Load and relocate the purgatory object.
1010  * @image:	Image to add the purgatory to.
1011  * @kbuf:	Memory parameters to use.
1012  *
1013  * Allocates the memory needed for image->purgatory_info.sechdrs and
1014  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1015  * to free the memory after use.
1016  *
1017  * Return: 0 on success, negative errno on error.
1018  */
1019 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1020 {
1021 	struct purgatory_info *pi = &image->purgatory_info;
1022 	int ret;
1023 
1024 	if (kexec_purgatory_size <= 0)
1025 		return -EINVAL;
1026 
1027 	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1028 
1029 	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1030 	if (ret)
1031 		return ret;
1032 
1033 	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1034 	if (ret)
1035 		goto out_free_kbuf;
1036 
1037 	ret = kexec_apply_relocations(image);
1038 	if (ret)
1039 		goto out;
1040 
1041 	return 0;
1042 out:
1043 	vfree(pi->sechdrs);
1044 	pi->sechdrs = NULL;
1045 out_free_kbuf:
1046 	vfree(pi->purgatory_buf);
1047 	pi->purgatory_buf = NULL;
1048 	return ret;
1049 }
1050 
1051 /*
1052  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1053  * @pi:		Purgatory to search in.
1054  * @name:	Name of the symbol.
1055  *
1056  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1057  */
1058 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1059 						  const char *name)
1060 {
1061 	const Elf_Shdr *sechdrs;
1062 	const Elf_Ehdr *ehdr;
1063 	const Elf_Sym *syms;
1064 	const char *strtab;
1065 	int i, k;
1066 
1067 	if (!pi->ehdr)
1068 		return NULL;
1069 
1070 	ehdr = pi->ehdr;
1071 	sechdrs = (void *)ehdr + ehdr->e_shoff;
1072 
1073 	for (i = 0; i < ehdr->e_shnum; i++) {
1074 		if (sechdrs[i].sh_type != SHT_SYMTAB)
1075 			continue;
1076 
1077 		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1078 			/* Invalid strtab section number */
1079 			continue;
1080 		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1081 		syms = (void *)ehdr + sechdrs[i].sh_offset;
1082 
1083 		/* Go through symbols for a match */
1084 		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1085 			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1086 				continue;
1087 
1088 			if (strcmp(strtab + syms[k].st_name, name) != 0)
1089 				continue;
1090 
1091 			if (syms[k].st_shndx == SHN_UNDEF ||
1092 			    syms[k].st_shndx >= ehdr->e_shnum) {
1093 				pr_debug("Symbol: %s has bad section index %d.\n",
1094 						name, syms[k].st_shndx);
1095 				return NULL;
1096 			}
1097 
1098 			/* Found the symbol we are looking for */
1099 			return &syms[k];
1100 		}
1101 	}
1102 
1103 	return NULL;
1104 }
1105 
1106 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1107 {
1108 	struct purgatory_info *pi = &image->purgatory_info;
1109 	const Elf_Sym *sym;
1110 	Elf_Shdr *sechdr;
1111 
1112 	sym = kexec_purgatory_find_symbol(pi, name);
1113 	if (!sym)
1114 		return ERR_PTR(-EINVAL);
1115 
1116 	sechdr = &pi->sechdrs[sym->st_shndx];
1117 
1118 	/*
1119 	 * Returns the address where symbol will finally be loaded after
1120 	 * kexec_load_segment()
1121 	 */
1122 	return (void *)(sechdr->sh_addr + sym->st_value);
1123 }
1124 
1125 /*
1126  * Get or set value of a symbol. If "get_value" is true, symbol value is
1127  * returned in buf otherwise symbol value is set based on value in buf.
1128  */
1129 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1130 				   void *buf, unsigned int size, bool get_value)
1131 {
1132 	struct purgatory_info *pi = &image->purgatory_info;
1133 	const Elf_Sym *sym;
1134 	Elf_Shdr *sec;
1135 	char *sym_buf;
1136 
1137 	sym = kexec_purgatory_find_symbol(pi, name);
1138 	if (!sym)
1139 		return -EINVAL;
1140 
1141 	if (sym->st_size != size) {
1142 		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1143 		       name, (unsigned long)sym->st_size, size);
1144 		return -EINVAL;
1145 	}
1146 
1147 	sec = pi->sechdrs + sym->st_shndx;
1148 
1149 	if (sec->sh_type == SHT_NOBITS) {
1150 		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1151 		       get_value ? "get" : "set");
1152 		return -EINVAL;
1153 	}
1154 
1155 	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1156 
1157 	if (get_value)
1158 		memcpy((void *)buf, sym_buf, size);
1159 	else
1160 		memcpy((void *)sym_buf, buf, size);
1161 
1162 	return 0;
1163 }
1164 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1165 
1166 int crash_exclude_mem_range(struct crash_mem *mem,
1167 			    unsigned long long mstart, unsigned long long mend)
1168 {
1169 	int i, j;
1170 	unsigned long long start, end;
1171 	struct crash_mem_range temp_range = {0, 0};
1172 
1173 	for (i = 0; i < mem->nr_ranges; i++) {
1174 		start = mem->ranges[i].start;
1175 		end = mem->ranges[i].end;
1176 
1177 		if (mstart > end || mend < start)
1178 			continue;
1179 
1180 		/* Truncate any area outside of range */
1181 		if (mstart < start)
1182 			mstart = start;
1183 		if (mend > end)
1184 			mend = end;
1185 
1186 		/* Found completely overlapping range */
1187 		if (mstart == start && mend == end) {
1188 			mem->ranges[i].start = 0;
1189 			mem->ranges[i].end = 0;
1190 			if (i < mem->nr_ranges - 1) {
1191 				/* Shift rest of the ranges to left */
1192 				for (j = i; j < mem->nr_ranges - 1; j++) {
1193 					mem->ranges[j].start =
1194 						mem->ranges[j+1].start;
1195 					mem->ranges[j].end =
1196 							mem->ranges[j+1].end;
1197 				}
1198 			}
1199 			mem->nr_ranges--;
1200 			return 0;
1201 		}
1202 
1203 		if (mstart > start && mend < end) {
1204 			/* Split original range */
1205 			mem->ranges[i].end = mstart - 1;
1206 			temp_range.start = mend + 1;
1207 			temp_range.end = end;
1208 		} else if (mstart != start)
1209 			mem->ranges[i].end = mstart - 1;
1210 		else
1211 			mem->ranges[i].start = mend + 1;
1212 		break;
1213 	}
1214 
1215 	/* If a split happened, add the split to array */
1216 	if (!temp_range.end)
1217 		return 0;
1218 
1219 	/* Split happened */
1220 	if (i == mem->max_nr_ranges - 1)
1221 		return -ENOMEM;
1222 
1223 	/* Location where new range should go */
1224 	j = i + 1;
1225 	if (j < mem->nr_ranges) {
1226 		/* Move over all ranges one slot towards the end */
1227 		for (i = mem->nr_ranges - 1; i >= j; i--)
1228 			mem->ranges[i + 1] = mem->ranges[i];
1229 	}
1230 
1231 	mem->ranges[j].start = temp_range.start;
1232 	mem->ranges[j].end = temp_range.end;
1233 	mem->nr_ranges++;
1234 	return 0;
1235 }
1236 
1237 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1238 			  void **addr, unsigned long *sz)
1239 {
1240 	Elf64_Ehdr *ehdr;
1241 	Elf64_Phdr *phdr;
1242 	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1243 	unsigned char *buf;
1244 	unsigned int cpu, i;
1245 	unsigned long long notes_addr;
1246 	unsigned long mstart, mend;
1247 
1248 	/* extra phdr for vmcoreinfo elf note */
1249 	nr_phdr = nr_cpus + 1;
1250 	nr_phdr += mem->nr_ranges;
1251 
1252 	/*
1253 	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1254 	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1255 	 * I think this is required by tools like gdb. So same physical
1256 	 * memory will be mapped in two elf headers. One will contain kernel
1257 	 * text virtual addresses and other will have __va(physical) addresses.
1258 	 */
1259 
1260 	nr_phdr++;
1261 	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1262 	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1263 
1264 	buf = vzalloc(elf_sz);
1265 	if (!buf)
1266 		return -ENOMEM;
1267 
1268 	ehdr = (Elf64_Ehdr *)buf;
1269 	phdr = (Elf64_Phdr *)(ehdr + 1);
1270 	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1271 	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1272 	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1273 	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1274 	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1275 	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1276 	ehdr->e_type = ET_CORE;
1277 	ehdr->e_machine = ELF_ARCH;
1278 	ehdr->e_version = EV_CURRENT;
1279 	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1280 	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1281 	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1282 
1283 	/* Prepare one phdr of type PT_NOTE for each present cpu */
1284 	for_each_present_cpu(cpu) {
1285 		phdr->p_type = PT_NOTE;
1286 		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1287 		phdr->p_offset = phdr->p_paddr = notes_addr;
1288 		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1289 		(ehdr->e_phnum)++;
1290 		phdr++;
1291 	}
1292 
1293 	/* Prepare one PT_NOTE header for vmcoreinfo */
1294 	phdr->p_type = PT_NOTE;
1295 	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1296 	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1297 	(ehdr->e_phnum)++;
1298 	phdr++;
1299 
1300 	/* Prepare PT_LOAD type program header for kernel text region */
1301 	if (kernel_map) {
1302 		phdr->p_type = PT_LOAD;
1303 		phdr->p_flags = PF_R|PF_W|PF_X;
1304 		phdr->p_vaddr = (Elf64_Addr)_text;
1305 		phdr->p_filesz = phdr->p_memsz = _end - _text;
1306 		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1307 		ehdr->e_phnum++;
1308 		phdr++;
1309 	}
1310 
1311 	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1312 	for (i = 0; i < mem->nr_ranges; i++) {
1313 		mstart = mem->ranges[i].start;
1314 		mend = mem->ranges[i].end;
1315 
1316 		phdr->p_type = PT_LOAD;
1317 		phdr->p_flags = PF_R|PF_W|PF_X;
1318 		phdr->p_offset  = mstart;
1319 
1320 		phdr->p_paddr = mstart;
1321 		phdr->p_vaddr = (unsigned long long) __va(mstart);
1322 		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1323 		phdr->p_align = 0;
1324 		ehdr->e_phnum++;
1325 		phdr++;
1326 		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1327 			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1328 			ehdr->e_phnum, phdr->p_offset);
1329 	}
1330 
1331 	*addr = buf;
1332 	*sz = elf_sz;
1333 	return 0;
1334 }
1335