1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec: kexec_file_load system call 4 * 5 * Copyright (C) 2014 Red Hat Inc. 6 * Authors: 7 * Vivek Goyal <vgoyal@redhat.com> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/capability.h> 13 #include <linux/mm.h> 14 #include <linux/file.h> 15 #include <linux/slab.h> 16 #include <linux/kexec.h> 17 #include <linux/memblock.h> 18 #include <linux/mutex.h> 19 #include <linux/list.h> 20 #include <linux/fs.h> 21 #include <linux/ima.h> 22 #include <crypto/hash.h> 23 #include <crypto/sha2.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/kernel.h> 27 #include <linux/kernel_read_file.h> 28 #include <linux/syscalls.h> 29 #include <linux/vmalloc.h> 30 #include "kexec_internal.h" 31 32 #ifdef CONFIG_KEXEC_SIG 33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE); 34 35 void set_kexec_sig_enforced(void) 36 { 37 sig_enforce = true; 38 } 39 #endif 40 41 #ifdef CONFIG_IMA_KEXEC 42 static bool check_ima_segment_index(struct kimage *image, int i) 43 { 44 if (image->is_ima_segment_index_set && i == image->ima_segment_index) 45 return true; 46 else 47 return false; 48 } 49 #else 50 static bool check_ima_segment_index(struct kimage *image, int i) 51 { 52 return false; 53 } 54 #endif 55 56 static int kexec_calculate_store_digests(struct kimage *image); 57 58 /* Maximum size in bytes for kernel/initrd files. */ 59 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX) 60 61 /* 62 * Currently this is the only default function that is exported as some 63 * architectures need it to do additional handlings. 64 * In the future, other default functions may be exported too if required. 65 */ 66 int kexec_image_probe_default(struct kimage *image, void *buf, 67 unsigned long buf_len) 68 { 69 const struct kexec_file_ops * const *fops; 70 int ret = -ENOEXEC; 71 72 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { 73 ret = (*fops)->probe(buf, buf_len); 74 if (!ret) { 75 image->fops = *fops; 76 return ret; 77 } 78 } 79 80 return ret; 81 } 82 83 static void *kexec_image_load_default(struct kimage *image) 84 { 85 if (!image->fops || !image->fops->load) 86 return ERR_PTR(-ENOEXEC); 87 88 return image->fops->load(image, image->kernel_buf, 89 image->kernel_buf_len, image->initrd_buf, 90 image->initrd_buf_len, image->cmdline_buf, 91 image->cmdline_buf_len); 92 } 93 94 int kexec_image_post_load_cleanup_default(struct kimage *image) 95 { 96 if (!image->fops || !image->fops->cleanup) 97 return 0; 98 99 return image->fops->cleanup(image->image_loader_data); 100 } 101 102 /* 103 * Free up memory used by kernel, initrd, and command line. This is temporary 104 * memory allocation which is not needed any more after these buffers have 105 * been loaded into separate segments and have been copied elsewhere. 106 */ 107 void kimage_file_post_load_cleanup(struct kimage *image) 108 { 109 struct purgatory_info *pi = &image->purgatory_info; 110 111 vfree(image->kernel_buf); 112 image->kernel_buf = NULL; 113 114 vfree(image->initrd_buf); 115 image->initrd_buf = NULL; 116 117 kfree(image->cmdline_buf); 118 image->cmdline_buf = NULL; 119 120 vfree(pi->purgatory_buf); 121 pi->purgatory_buf = NULL; 122 123 vfree(pi->sechdrs); 124 pi->sechdrs = NULL; 125 126 #ifdef CONFIG_IMA_KEXEC 127 vfree(image->ima_buffer); 128 image->ima_buffer = NULL; 129 #endif /* CONFIG_IMA_KEXEC */ 130 131 /* See if architecture has anything to cleanup post load */ 132 arch_kimage_file_post_load_cleanup(image); 133 134 /* 135 * Above call should have called into bootloader to free up 136 * any data stored in kimage->image_loader_data. It should 137 * be ok now to free it up. 138 */ 139 kfree(image->image_loader_data); 140 image->image_loader_data = NULL; 141 142 kexec_file_dbg_print = false; 143 } 144 145 #ifdef CONFIG_KEXEC_SIG 146 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION 147 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len) 148 { 149 int ret; 150 151 ret = verify_pefile_signature(kernel, kernel_len, 152 VERIFY_USE_SECONDARY_KEYRING, 153 VERIFYING_KEXEC_PE_SIGNATURE); 154 if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) { 155 ret = verify_pefile_signature(kernel, kernel_len, 156 VERIFY_USE_PLATFORM_KEYRING, 157 VERIFYING_KEXEC_PE_SIGNATURE); 158 } 159 return ret; 160 } 161 #endif 162 163 static int kexec_image_verify_sig(struct kimage *image, void *buf, 164 unsigned long buf_len) 165 { 166 if (!image->fops || !image->fops->verify_sig) { 167 pr_debug("kernel loader does not support signature verification.\n"); 168 return -EKEYREJECTED; 169 } 170 171 return image->fops->verify_sig(buf, buf_len); 172 } 173 174 static int 175 kimage_validate_signature(struct kimage *image) 176 { 177 int ret; 178 179 ret = kexec_image_verify_sig(image, image->kernel_buf, 180 image->kernel_buf_len); 181 if (ret) { 182 183 if (sig_enforce) { 184 pr_notice("Enforced kernel signature verification failed (%d).\n", ret); 185 return ret; 186 } 187 188 /* 189 * If IMA is guaranteed to appraise a signature on the kexec 190 * image, permit it even if the kernel is otherwise locked 191 * down. 192 */ 193 if (!ima_appraise_signature(READING_KEXEC_IMAGE) && 194 security_locked_down(LOCKDOWN_KEXEC)) 195 return -EPERM; 196 197 pr_debug("kernel signature verification failed (%d).\n", ret); 198 } 199 200 return 0; 201 } 202 #endif 203 204 static int kexec_post_load(struct kimage *image, unsigned long flags) 205 { 206 #ifdef CONFIG_IMA_KEXEC 207 if (!(flags & KEXEC_FILE_ON_CRASH)) 208 ima_kexec_post_load(image); 209 #endif 210 return machine_kexec_post_load(image); 211 } 212 213 /* 214 * In file mode list of segments is prepared by kernel. Copy relevant 215 * data from user space, do error checking, prepare segment list 216 */ 217 static int 218 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 219 const char __user *cmdline_ptr, 220 unsigned long cmdline_len, unsigned flags) 221 { 222 ssize_t ret; 223 void *ldata; 224 225 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf, 226 KEXEC_FILE_SIZE_MAX, NULL, 227 READING_KEXEC_IMAGE); 228 if (ret < 0) 229 return ret; 230 image->kernel_buf_len = ret; 231 kexec_dprintk("kernel: %p kernel_size: %#lx\n", 232 image->kernel_buf, image->kernel_buf_len); 233 234 /* Call arch image probe handlers */ 235 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 236 image->kernel_buf_len); 237 if (ret) 238 goto out; 239 240 #ifdef CONFIG_KEXEC_SIG 241 ret = kimage_validate_signature(image); 242 243 if (ret) 244 goto out; 245 #endif 246 /* It is possible that there no initramfs is being loaded */ 247 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 248 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf, 249 KEXEC_FILE_SIZE_MAX, NULL, 250 READING_KEXEC_INITRAMFS); 251 if (ret < 0) 252 goto out; 253 image->initrd_buf_len = ret; 254 ret = 0; 255 } 256 257 if (cmdline_len) { 258 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 259 if (IS_ERR(image->cmdline_buf)) { 260 ret = PTR_ERR(image->cmdline_buf); 261 image->cmdline_buf = NULL; 262 goto out; 263 } 264 265 image->cmdline_buf_len = cmdline_len; 266 267 /* command line should be a string with last byte null */ 268 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 269 ret = -EINVAL; 270 goto out; 271 } 272 273 ima_kexec_cmdline(kernel_fd, image->cmdline_buf, 274 image->cmdline_buf_len - 1); 275 } 276 277 /* IMA needs to pass the measurement list to the next kernel. */ 278 ima_add_kexec_buffer(image); 279 280 /* Call image load handler */ 281 ldata = kexec_image_load_default(image); 282 283 if (IS_ERR(ldata)) { 284 ret = PTR_ERR(ldata); 285 goto out; 286 } 287 288 image->image_loader_data = ldata; 289 out: 290 /* In case of error, free up all allocated memory in this function */ 291 if (ret) 292 kimage_file_post_load_cleanup(image); 293 return ret; 294 } 295 296 static int 297 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 298 int initrd_fd, const char __user *cmdline_ptr, 299 unsigned long cmdline_len, unsigned long flags) 300 { 301 int ret; 302 struct kimage *image; 303 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 304 305 image = do_kimage_alloc_init(); 306 if (!image) 307 return -ENOMEM; 308 309 kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG); 310 image->file_mode = 1; 311 312 #ifdef CONFIG_CRASH_DUMP 313 if (kexec_on_panic) { 314 /* Enable special crash kernel control page alloc policy. */ 315 image->control_page = crashk_res.start; 316 image->type = KEXEC_TYPE_CRASH; 317 } 318 #endif 319 320 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 321 cmdline_ptr, cmdline_len, flags); 322 if (ret) 323 goto out_free_image; 324 325 ret = sanity_check_segment_list(image); 326 if (ret) 327 goto out_free_post_load_bufs; 328 329 ret = -ENOMEM; 330 image->control_code_page = kimage_alloc_control_pages(image, 331 get_order(KEXEC_CONTROL_PAGE_SIZE)); 332 if (!image->control_code_page) { 333 pr_err("Could not allocate control_code_buffer\n"); 334 goto out_free_post_load_bufs; 335 } 336 337 if (!kexec_on_panic) { 338 image->swap_page = kimage_alloc_control_pages(image, 0); 339 if (!image->swap_page) { 340 pr_err("Could not allocate swap buffer\n"); 341 goto out_free_control_pages; 342 } 343 } 344 345 *rimage = image; 346 return 0; 347 out_free_control_pages: 348 kimage_free_page_list(&image->control_pages); 349 out_free_post_load_bufs: 350 kimage_file_post_load_cleanup(image); 351 out_free_image: 352 kfree(image); 353 return ret; 354 } 355 356 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 357 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 358 unsigned long, flags) 359 { 360 int image_type = (flags & KEXEC_FILE_ON_CRASH) ? 361 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT; 362 struct kimage **dest_image, *image; 363 int ret = 0, i; 364 365 /* We only trust the superuser with rebooting the system. */ 366 if (!kexec_load_permitted(image_type)) 367 return -EPERM; 368 369 /* Make sure we have a legal set of flags */ 370 if (flags != (flags & KEXEC_FILE_FLAGS)) 371 return -EINVAL; 372 373 image = NULL; 374 375 if (!kexec_trylock()) 376 return -EBUSY; 377 378 #ifdef CONFIG_CRASH_DUMP 379 if (image_type == KEXEC_TYPE_CRASH) { 380 dest_image = &kexec_crash_image; 381 if (kexec_crash_image) 382 arch_kexec_unprotect_crashkres(); 383 } else 384 #endif 385 dest_image = &kexec_image; 386 387 if (flags & KEXEC_FILE_UNLOAD) 388 goto exchange; 389 390 /* 391 * In case of crash, new kernel gets loaded in reserved region. It is 392 * same memory where old crash kernel might be loaded. Free any 393 * current crash dump kernel before we corrupt it. 394 */ 395 if (flags & KEXEC_FILE_ON_CRASH) 396 kimage_free(xchg(&kexec_crash_image, NULL)); 397 398 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 399 cmdline_len, flags); 400 if (ret) 401 goto out; 402 403 #ifdef CONFIG_CRASH_HOTPLUG 404 if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags)) 405 image->hotplug_support = 1; 406 #endif 407 408 ret = machine_kexec_prepare(image); 409 if (ret) 410 goto out; 411 412 /* 413 * Some architecture(like S390) may touch the crash memory before 414 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 415 */ 416 ret = kimage_crash_copy_vmcoreinfo(image); 417 if (ret) 418 goto out; 419 420 ret = kexec_calculate_store_digests(image); 421 if (ret) 422 goto out; 423 424 kexec_dprintk("nr_segments = %lu\n", image->nr_segments); 425 for (i = 0; i < image->nr_segments; i++) { 426 struct kexec_segment *ksegment; 427 428 ksegment = &image->segment[i]; 429 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 430 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 431 ksegment->memsz); 432 433 ret = kimage_load_segment(image, &image->segment[i]); 434 if (ret) 435 goto out; 436 } 437 438 kimage_terminate(image); 439 440 ret = kexec_post_load(image, flags); 441 if (ret) 442 goto out; 443 444 kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n", 445 image->type, image->start, image->head, flags); 446 /* 447 * Free up any temporary buffers allocated which are not needed 448 * after image has been loaded 449 */ 450 kimage_file_post_load_cleanup(image); 451 exchange: 452 image = xchg(dest_image, image); 453 out: 454 #ifdef CONFIG_CRASH_DUMP 455 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 456 arch_kexec_protect_crashkres(); 457 #endif 458 459 kexec_unlock(); 460 kimage_free(image); 461 return ret; 462 } 463 464 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 465 struct kexec_buf *kbuf) 466 { 467 struct kimage *image = kbuf->image; 468 unsigned long temp_start, temp_end; 469 470 temp_end = min(end, kbuf->buf_max); 471 temp_start = temp_end - kbuf->memsz + 1; 472 473 do { 474 /* align down start */ 475 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align); 476 477 if (temp_start < start || temp_start < kbuf->buf_min) 478 return 0; 479 480 temp_end = temp_start + kbuf->memsz - 1; 481 482 /* 483 * Make sure this does not conflict with any of existing 484 * segments 485 */ 486 if (kimage_is_destination_range(image, temp_start, temp_end)) { 487 temp_start = temp_start - PAGE_SIZE; 488 continue; 489 } 490 491 /* Make sure this does not conflict with exclude range */ 492 if (arch_check_excluded_range(image, temp_start, temp_end)) { 493 temp_start = temp_start - PAGE_SIZE; 494 continue; 495 } 496 497 /* We found a suitable memory range */ 498 break; 499 } while (1); 500 501 /* If we are here, we found a suitable memory range */ 502 kbuf->mem = temp_start; 503 504 /* Success, stop navigating through remaining System RAM ranges */ 505 return 1; 506 } 507 508 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 509 struct kexec_buf *kbuf) 510 { 511 struct kimage *image = kbuf->image; 512 unsigned long temp_start, temp_end; 513 514 temp_start = max(start, kbuf->buf_min); 515 516 do { 517 temp_start = ALIGN(temp_start, kbuf->buf_align); 518 temp_end = temp_start + kbuf->memsz - 1; 519 520 if (temp_end > end || temp_end > kbuf->buf_max) 521 return 0; 522 /* 523 * Make sure this does not conflict with any of existing 524 * segments 525 */ 526 if (kimage_is_destination_range(image, temp_start, temp_end)) { 527 temp_start = temp_start + PAGE_SIZE; 528 continue; 529 } 530 531 /* Make sure this does not conflict with exclude range */ 532 if (arch_check_excluded_range(image, temp_start, temp_end)) { 533 temp_start = temp_start + PAGE_SIZE; 534 continue; 535 } 536 537 /* We found a suitable memory range */ 538 break; 539 } while (1); 540 541 /* If we are here, we found a suitable memory range */ 542 kbuf->mem = temp_start; 543 544 /* Success, stop navigating through remaining System RAM ranges */ 545 return 1; 546 } 547 548 static int locate_mem_hole_callback(struct resource *res, void *arg) 549 { 550 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 551 u64 start = res->start, end = res->end; 552 unsigned long sz = end - start + 1; 553 554 /* Returning 0 will take to next memory range */ 555 556 /* Don't use memory that will be detected and handled by a driver. */ 557 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 558 return 0; 559 560 if (sz < kbuf->memsz) 561 return 0; 562 563 if (end < kbuf->buf_min || start > kbuf->buf_max) 564 return 0; 565 566 /* 567 * Allocate memory top down with-in ram range. Otherwise bottom up 568 * allocation. 569 */ 570 if (kbuf->top_down) 571 return locate_mem_hole_top_down(start, end, kbuf); 572 return locate_mem_hole_bottom_up(start, end, kbuf); 573 } 574 575 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK 576 static int kexec_walk_memblock(struct kexec_buf *kbuf, 577 int (*func)(struct resource *, void *)) 578 { 579 int ret = 0; 580 u64 i; 581 phys_addr_t mstart, mend; 582 struct resource res = { }; 583 584 #ifdef CONFIG_CRASH_DUMP 585 if (kbuf->image->type == KEXEC_TYPE_CRASH) 586 return func(&crashk_res, kbuf); 587 #endif 588 589 /* 590 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See 591 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in 592 * locate_mem_hole_callback(). 593 */ 594 if (kbuf->top_down) { 595 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, 596 &mstart, &mend, NULL) { 597 /* 598 * In memblock, end points to the first byte after the 599 * range while in kexec, end points to the last byte 600 * in the range. 601 */ 602 res.start = mstart; 603 res.end = mend - 1; 604 ret = func(&res, kbuf); 605 if (ret) 606 break; 607 } 608 } else { 609 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 610 &mstart, &mend, NULL) { 611 /* 612 * In memblock, end points to the first byte after the 613 * range while in kexec, end points to the last byte 614 * in the range. 615 */ 616 res.start = mstart; 617 res.end = mend - 1; 618 ret = func(&res, kbuf); 619 if (ret) 620 break; 621 } 622 } 623 624 return ret; 625 } 626 #else 627 static int kexec_walk_memblock(struct kexec_buf *kbuf, 628 int (*func)(struct resource *, void *)) 629 { 630 return 0; 631 } 632 #endif 633 634 /** 635 * kexec_walk_resources - call func(data) on free memory regions 636 * @kbuf: Context info for the search. Also passed to @func. 637 * @func: Function to call for each memory region. 638 * 639 * Return: The memory walk will stop when func returns a non-zero value 640 * and that value will be returned. If all free regions are visited without 641 * func returning non-zero, then zero will be returned. 642 */ 643 static int kexec_walk_resources(struct kexec_buf *kbuf, 644 int (*func)(struct resource *, void *)) 645 { 646 #ifdef CONFIG_CRASH_DUMP 647 if (kbuf->image->type == KEXEC_TYPE_CRASH) 648 return walk_iomem_res_desc(crashk_res.desc, 649 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 650 crashk_res.start, crashk_res.end, 651 kbuf, func); 652 #endif 653 if (kbuf->top_down) 654 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func); 655 else 656 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 657 } 658 659 /** 660 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 661 * @kbuf: Parameters for the memory search. 662 * 663 * On success, kbuf->mem will have the start address of the memory region found. 664 * 665 * Return: 0 on success, negative errno on error. 666 */ 667 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 668 { 669 int ret; 670 671 /* Arch knows where to place */ 672 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) 673 return 0; 674 675 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 676 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); 677 else 678 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); 679 680 return ret == 1 ? 0 : -EADDRNOTAVAIL; 681 } 682 683 /** 684 * kexec_add_buffer - place a buffer in a kexec segment 685 * @kbuf: Buffer contents and memory parameters. 686 * 687 * This function assumes that kexec_lock is held. 688 * On successful return, @kbuf->mem will have the physical address of 689 * the buffer in memory. 690 * 691 * Return: 0 on success, negative errno on error. 692 */ 693 int kexec_add_buffer(struct kexec_buf *kbuf) 694 { 695 struct kexec_segment *ksegment; 696 int ret; 697 698 /* Currently adding segment this way is allowed only in file mode */ 699 if (!kbuf->image->file_mode) 700 return -EINVAL; 701 702 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 703 return -EINVAL; 704 705 /* 706 * Make sure we are not trying to add buffer after allocating 707 * control pages. All segments need to be placed first before 708 * any control pages are allocated. As control page allocation 709 * logic goes through list of segments to make sure there are 710 * no destination overlaps. 711 */ 712 if (!list_empty(&kbuf->image->control_pages)) { 713 WARN_ON(1); 714 return -EINVAL; 715 } 716 717 /* Ensure minimum alignment needed for segments. */ 718 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 719 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 720 721 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 722 ret = arch_kexec_locate_mem_hole(kbuf); 723 if (ret) 724 return ret; 725 726 /* Found a suitable memory range */ 727 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 728 ksegment->kbuf = kbuf->buffer; 729 ksegment->bufsz = kbuf->bufsz; 730 ksegment->mem = kbuf->mem; 731 ksegment->memsz = kbuf->memsz; 732 kbuf->image->nr_segments++; 733 return 0; 734 } 735 736 /* Calculate and store the digest of segments */ 737 static int kexec_calculate_store_digests(struct kimage *image) 738 { 739 struct crypto_shash *tfm; 740 struct shash_desc *desc; 741 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 742 size_t desc_size, nullsz; 743 char *digest; 744 void *zero_buf; 745 struct kexec_sha_region *sha_regions; 746 struct purgatory_info *pi = &image->purgatory_info; 747 748 if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY)) 749 return 0; 750 751 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 752 zero_buf_sz = PAGE_SIZE; 753 754 tfm = crypto_alloc_shash("sha256", 0, 0); 755 if (IS_ERR(tfm)) { 756 ret = PTR_ERR(tfm); 757 goto out; 758 } 759 760 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 761 desc = kzalloc(desc_size, GFP_KERNEL); 762 if (!desc) { 763 ret = -ENOMEM; 764 goto out_free_tfm; 765 } 766 767 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 768 sha_regions = vzalloc(sha_region_sz); 769 if (!sha_regions) { 770 ret = -ENOMEM; 771 goto out_free_desc; 772 } 773 774 desc->tfm = tfm; 775 776 ret = crypto_shash_init(desc); 777 if (ret < 0) 778 goto out_free_sha_regions; 779 780 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 781 if (!digest) { 782 ret = -ENOMEM; 783 goto out_free_sha_regions; 784 } 785 786 for (j = i = 0; i < image->nr_segments; i++) { 787 struct kexec_segment *ksegment; 788 789 #ifdef CONFIG_CRASH_HOTPLUG 790 /* Exclude elfcorehdr segment to allow future changes via hotplug */ 791 if (i == image->elfcorehdr_index) 792 continue; 793 #endif 794 795 ksegment = &image->segment[i]; 796 /* 797 * Skip purgatory as it will be modified once we put digest 798 * info in purgatory. 799 */ 800 if (ksegment->kbuf == pi->purgatory_buf) 801 continue; 802 803 /* 804 * Skip the segment if ima_segment_index is set and matches 805 * the current index 806 */ 807 if (check_ima_segment_index(image, i)) 808 continue; 809 810 ret = crypto_shash_update(desc, ksegment->kbuf, 811 ksegment->bufsz); 812 if (ret) 813 break; 814 815 /* 816 * Assume rest of the buffer is filled with zero and 817 * update digest accordingly. 818 */ 819 nullsz = ksegment->memsz - ksegment->bufsz; 820 while (nullsz) { 821 unsigned long bytes = nullsz; 822 823 if (bytes > zero_buf_sz) 824 bytes = zero_buf_sz; 825 ret = crypto_shash_update(desc, zero_buf, bytes); 826 if (ret) 827 break; 828 nullsz -= bytes; 829 } 830 831 if (ret) 832 break; 833 834 sha_regions[j].start = ksegment->mem; 835 sha_regions[j].len = ksegment->memsz; 836 j++; 837 } 838 839 if (!ret) { 840 ret = crypto_shash_final(desc, digest); 841 if (ret) 842 goto out_free_digest; 843 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 844 sha_regions, sha_region_sz, 0); 845 if (ret) 846 goto out_free_digest; 847 848 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 849 digest, SHA256_DIGEST_SIZE, 0); 850 if (ret) 851 goto out_free_digest; 852 } 853 854 out_free_digest: 855 kfree(digest); 856 out_free_sha_regions: 857 vfree(sha_regions); 858 out_free_desc: 859 kfree(desc); 860 out_free_tfm: 861 kfree(tfm); 862 out: 863 return ret; 864 } 865 866 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY 867 /* 868 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. 869 * @pi: Purgatory to be loaded. 870 * @kbuf: Buffer to setup. 871 * 872 * Allocates the memory needed for the buffer. Caller is responsible to free 873 * the memory after use. 874 * 875 * Return: 0 on success, negative errno on error. 876 */ 877 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, 878 struct kexec_buf *kbuf) 879 { 880 const Elf_Shdr *sechdrs; 881 unsigned long bss_align; 882 unsigned long bss_sz; 883 unsigned long align; 884 int i, ret; 885 886 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 887 kbuf->buf_align = bss_align = 1; 888 kbuf->bufsz = bss_sz = 0; 889 890 for (i = 0; i < pi->ehdr->e_shnum; i++) { 891 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 892 continue; 893 894 align = sechdrs[i].sh_addralign; 895 if (sechdrs[i].sh_type != SHT_NOBITS) { 896 if (kbuf->buf_align < align) 897 kbuf->buf_align = align; 898 kbuf->bufsz = ALIGN(kbuf->bufsz, align); 899 kbuf->bufsz += sechdrs[i].sh_size; 900 } else { 901 if (bss_align < align) 902 bss_align = align; 903 bss_sz = ALIGN(bss_sz, align); 904 bss_sz += sechdrs[i].sh_size; 905 } 906 } 907 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); 908 kbuf->memsz = kbuf->bufsz + bss_sz; 909 if (kbuf->buf_align < bss_align) 910 kbuf->buf_align = bss_align; 911 912 kbuf->buffer = vzalloc(kbuf->bufsz); 913 if (!kbuf->buffer) 914 return -ENOMEM; 915 pi->purgatory_buf = kbuf->buffer; 916 917 ret = kexec_add_buffer(kbuf); 918 if (ret) 919 goto out; 920 921 return 0; 922 out: 923 vfree(pi->purgatory_buf); 924 pi->purgatory_buf = NULL; 925 return ret; 926 } 927 928 /* 929 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. 930 * @pi: Purgatory to be loaded. 931 * @kbuf: Buffer prepared to store purgatory. 932 * 933 * Allocates the memory needed for the buffer. Caller is responsible to free 934 * the memory after use. 935 * 936 * Return: 0 on success, negative errno on error. 937 */ 938 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, 939 struct kexec_buf *kbuf) 940 { 941 unsigned long bss_addr; 942 unsigned long offset; 943 size_t sechdrs_size; 944 Elf_Shdr *sechdrs; 945 int i; 946 947 /* 948 * The section headers in kexec_purgatory are read-only. In order to 949 * have them modifiable make a temporary copy. 950 */ 951 sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum); 952 sechdrs = vzalloc(sechdrs_size); 953 if (!sechdrs) 954 return -ENOMEM; 955 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size); 956 pi->sechdrs = sechdrs; 957 958 offset = 0; 959 bss_addr = kbuf->mem + kbuf->bufsz; 960 kbuf->image->start = pi->ehdr->e_entry; 961 962 for (i = 0; i < pi->ehdr->e_shnum; i++) { 963 unsigned long align; 964 void *src, *dst; 965 966 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 967 continue; 968 969 align = sechdrs[i].sh_addralign; 970 if (sechdrs[i].sh_type == SHT_NOBITS) { 971 bss_addr = ALIGN(bss_addr, align); 972 sechdrs[i].sh_addr = bss_addr; 973 bss_addr += sechdrs[i].sh_size; 974 continue; 975 } 976 977 offset = ALIGN(offset, align); 978 979 /* 980 * Check if the segment contains the entry point, if so, 981 * calculate the value of image->start based on it. 982 * If the compiler has produced more than one .text section 983 * (Eg: .text.hot), they are generally after the main .text 984 * section, and they shall not be used to calculate 985 * image->start. So do not re-calculate image->start if it 986 * is not set to the initial value, and warn the user so they 987 * have a chance to fix their purgatory's linker script. 988 */ 989 if (sechdrs[i].sh_flags & SHF_EXECINSTR && 990 pi->ehdr->e_entry >= sechdrs[i].sh_addr && 991 pi->ehdr->e_entry < (sechdrs[i].sh_addr 992 + sechdrs[i].sh_size) && 993 !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) { 994 kbuf->image->start -= sechdrs[i].sh_addr; 995 kbuf->image->start += kbuf->mem + offset; 996 } 997 998 src = (void *)pi->ehdr + sechdrs[i].sh_offset; 999 dst = pi->purgatory_buf + offset; 1000 memcpy(dst, src, sechdrs[i].sh_size); 1001 1002 sechdrs[i].sh_addr = kbuf->mem + offset; 1003 sechdrs[i].sh_offset = offset; 1004 offset += sechdrs[i].sh_size; 1005 } 1006 1007 return 0; 1008 } 1009 1010 static int kexec_apply_relocations(struct kimage *image) 1011 { 1012 int i, ret; 1013 struct purgatory_info *pi = &image->purgatory_info; 1014 const Elf_Shdr *sechdrs; 1015 1016 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 1017 1018 for (i = 0; i < pi->ehdr->e_shnum; i++) { 1019 const Elf_Shdr *relsec; 1020 const Elf_Shdr *symtab; 1021 Elf_Shdr *section; 1022 1023 relsec = sechdrs + i; 1024 1025 if (relsec->sh_type != SHT_RELA && 1026 relsec->sh_type != SHT_REL) 1027 continue; 1028 1029 /* 1030 * For section of type SHT_RELA/SHT_REL, 1031 * ->sh_link contains section header index of associated 1032 * symbol table. And ->sh_info contains section header 1033 * index of section to which relocations apply. 1034 */ 1035 if (relsec->sh_info >= pi->ehdr->e_shnum || 1036 relsec->sh_link >= pi->ehdr->e_shnum) 1037 return -ENOEXEC; 1038 1039 section = pi->sechdrs + relsec->sh_info; 1040 symtab = sechdrs + relsec->sh_link; 1041 1042 if (!(section->sh_flags & SHF_ALLOC)) 1043 continue; 1044 1045 /* 1046 * symtab->sh_link contain section header index of associated 1047 * string table. 1048 */ 1049 if (symtab->sh_link >= pi->ehdr->e_shnum) 1050 /* Invalid section number? */ 1051 continue; 1052 1053 /* 1054 * Respective architecture needs to provide support for applying 1055 * relocations of type SHT_RELA/SHT_REL. 1056 */ 1057 if (relsec->sh_type == SHT_RELA) 1058 ret = arch_kexec_apply_relocations_add(pi, section, 1059 relsec, symtab); 1060 else if (relsec->sh_type == SHT_REL) 1061 ret = arch_kexec_apply_relocations(pi, section, 1062 relsec, symtab); 1063 if (ret) 1064 return ret; 1065 } 1066 1067 return 0; 1068 } 1069 1070 /* 1071 * kexec_load_purgatory - Load and relocate the purgatory object. 1072 * @image: Image to add the purgatory to. 1073 * @kbuf: Memory parameters to use. 1074 * 1075 * Allocates the memory needed for image->purgatory_info.sechdrs and 1076 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible 1077 * to free the memory after use. 1078 * 1079 * Return: 0 on success, negative errno on error. 1080 */ 1081 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) 1082 { 1083 struct purgatory_info *pi = &image->purgatory_info; 1084 int ret; 1085 1086 if (kexec_purgatory_size <= 0) 1087 return -EINVAL; 1088 1089 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; 1090 1091 ret = kexec_purgatory_setup_kbuf(pi, kbuf); 1092 if (ret) 1093 return ret; 1094 1095 ret = kexec_purgatory_setup_sechdrs(pi, kbuf); 1096 if (ret) 1097 goto out_free_kbuf; 1098 1099 ret = kexec_apply_relocations(image); 1100 if (ret) 1101 goto out; 1102 1103 return 0; 1104 out: 1105 vfree(pi->sechdrs); 1106 pi->sechdrs = NULL; 1107 out_free_kbuf: 1108 vfree(pi->purgatory_buf); 1109 pi->purgatory_buf = NULL; 1110 return ret; 1111 } 1112 1113 /* 1114 * kexec_purgatory_find_symbol - find a symbol in the purgatory 1115 * @pi: Purgatory to search in. 1116 * @name: Name of the symbol. 1117 * 1118 * Return: pointer to symbol in read-only symtab on success, NULL on error. 1119 */ 1120 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 1121 const char *name) 1122 { 1123 const Elf_Shdr *sechdrs; 1124 const Elf_Ehdr *ehdr; 1125 const Elf_Sym *syms; 1126 const char *strtab; 1127 int i, k; 1128 1129 if (!pi->ehdr) 1130 return NULL; 1131 1132 ehdr = pi->ehdr; 1133 sechdrs = (void *)ehdr + ehdr->e_shoff; 1134 1135 for (i = 0; i < ehdr->e_shnum; i++) { 1136 if (sechdrs[i].sh_type != SHT_SYMTAB) 1137 continue; 1138 1139 if (sechdrs[i].sh_link >= ehdr->e_shnum) 1140 /* Invalid strtab section number */ 1141 continue; 1142 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; 1143 syms = (void *)ehdr + sechdrs[i].sh_offset; 1144 1145 /* Go through symbols for a match */ 1146 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 1147 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 1148 continue; 1149 1150 if (strcmp(strtab + syms[k].st_name, name) != 0) 1151 continue; 1152 1153 if (syms[k].st_shndx == SHN_UNDEF || 1154 syms[k].st_shndx >= ehdr->e_shnum) { 1155 pr_debug("Symbol: %s has bad section index %d.\n", 1156 name, syms[k].st_shndx); 1157 return NULL; 1158 } 1159 1160 /* Found the symbol we are looking for */ 1161 return &syms[k]; 1162 } 1163 } 1164 1165 return NULL; 1166 } 1167 1168 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 1169 { 1170 struct purgatory_info *pi = &image->purgatory_info; 1171 const Elf_Sym *sym; 1172 Elf_Shdr *sechdr; 1173 1174 sym = kexec_purgatory_find_symbol(pi, name); 1175 if (!sym) 1176 return ERR_PTR(-EINVAL); 1177 1178 sechdr = &pi->sechdrs[sym->st_shndx]; 1179 1180 /* 1181 * Returns the address where symbol will finally be loaded after 1182 * kexec_load_segment() 1183 */ 1184 return (void *)(sechdr->sh_addr + sym->st_value); 1185 } 1186 1187 /* 1188 * Get or set value of a symbol. If "get_value" is true, symbol value is 1189 * returned in buf otherwise symbol value is set based on value in buf. 1190 */ 1191 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 1192 void *buf, unsigned int size, bool get_value) 1193 { 1194 struct purgatory_info *pi = &image->purgatory_info; 1195 const Elf_Sym *sym; 1196 Elf_Shdr *sec; 1197 char *sym_buf; 1198 1199 sym = kexec_purgatory_find_symbol(pi, name); 1200 if (!sym) 1201 return -EINVAL; 1202 1203 if (sym->st_size != size) { 1204 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1205 name, (unsigned long)sym->st_size, size); 1206 return -EINVAL; 1207 } 1208 1209 sec = pi->sechdrs + sym->st_shndx; 1210 1211 if (sec->sh_type == SHT_NOBITS) { 1212 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1213 get_value ? "get" : "set"); 1214 return -EINVAL; 1215 } 1216 1217 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; 1218 1219 if (get_value) 1220 memcpy((void *)buf, sym_buf, size); 1221 else 1222 memcpy((void *)sym_buf, buf, size); 1223 1224 return 0; 1225 } 1226 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */ 1227