1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec: kexec_file_load system call 4 * 5 * Copyright (C) 2014 Red Hat Inc. 6 * Authors: 7 * Vivek Goyal <vgoyal@redhat.com> 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/capability.h> 13 #include <linux/mm.h> 14 #include <linux/file.h> 15 #include <linux/slab.h> 16 #include <linux/kexec.h> 17 #include <linux/memblock.h> 18 #include <linux/mutex.h> 19 #include <linux/list.h> 20 #include <linux/fs.h> 21 #include <linux/ima.h> 22 #include <crypto/sha2.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/kernel.h> 26 #include <linux/kernel_read_file.h> 27 #include <linux/syscalls.h> 28 #include <linux/vmalloc.h> 29 #include <linux/dma-map-ops.h> 30 #include "kexec_internal.h" 31 32 #ifdef CONFIG_KEXEC_SIG 33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE); 34 35 void set_kexec_sig_enforced(void) 36 { 37 sig_enforce = true; 38 } 39 #endif 40 41 #ifdef CONFIG_IMA_KEXEC 42 static bool check_ima_segment_index(struct kimage *image, int i) 43 { 44 if (image->is_ima_segment_index_set && i == image->ima_segment_index) 45 return true; 46 else 47 return false; 48 } 49 #else 50 static bool check_ima_segment_index(struct kimage *image, int i) 51 { 52 return false; 53 } 54 #endif 55 56 static int kexec_calculate_store_digests(struct kimage *image); 57 58 /* Maximum size in bytes for kernel/initrd files. */ 59 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX) 60 61 /* 62 * Currently this is the only default function that is exported as some 63 * architectures need it to do additional handlings. 64 * In the future, other default functions may be exported too if required. 65 */ 66 int kexec_image_probe_default(struct kimage *image, void *buf, 67 unsigned long buf_len) 68 { 69 const struct kexec_file_ops * const *fops; 70 int ret = -ENOEXEC; 71 72 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) { 73 ret = (*fops)->probe(buf, buf_len); 74 if (!ret) { 75 image->fops = *fops; 76 return ret; 77 } 78 } 79 80 return ret; 81 } 82 83 static void *kexec_image_load_default(struct kimage *image) 84 { 85 if (!image->fops || !image->fops->load) 86 return ERR_PTR(-ENOEXEC); 87 88 return image->fops->load(image, image->kernel_buf, 89 image->kernel_buf_len, image->initrd_buf, 90 image->initrd_buf_len, image->cmdline_buf, 91 image->cmdline_buf_len); 92 } 93 94 int kexec_image_post_load_cleanup_default(struct kimage *image) 95 { 96 if (!image->fops || !image->fops->cleanup) 97 return 0; 98 99 return image->fops->cleanup(image->image_loader_data); 100 } 101 102 /* 103 * Free up memory used by kernel, initrd, and command line. This is temporary 104 * memory allocation which is not needed any more after these buffers have 105 * been loaded into separate segments and have been copied elsewhere. 106 */ 107 void kimage_file_post_load_cleanup(struct kimage *image) 108 { 109 struct purgatory_info *pi = &image->purgatory_info; 110 111 vfree(image->kernel_buf); 112 image->kernel_buf = NULL; 113 114 vfree(image->initrd_buf); 115 image->initrd_buf = NULL; 116 117 kfree(image->cmdline_buf); 118 image->cmdline_buf = NULL; 119 120 vfree(pi->purgatory_buf); 121 pi->purgatory_buf = NULL; 122 123 vfree(pi->sechdrs); 124 pi->sechdrs = NULL; 125 126 #ifdef CONFIG_IMA_KEXEC 127 vfree(image->ima_buffer); 128 image->ima_buffer = NULL; 129 #endif /* CONFIG_IMA_KEXEC */ 130 131 /* See if architecture has anything to cleanup post load */ 132 arch_kimage_file_post_load_cleanup(image); 133 134 /* 135 * Above call should have called into bootloader to free up 136 * any data stored in kimage->image_loader_data. It should 137 * be ok now to free it up. 138 */ 139 kfree(image->image_loader_data); 140 image->image_loader_data = NULL; 141 142 kexec_file_dbg_print = false; 143 } 144 145 #ifdef CONFIG_KEXEC_SIG 146 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION 147 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len) 148 { 149 int ret; 150 151 ret = verify_pefile_signature(kernel, kernel_len, 152 VERIFY_USE_SECONDARY_KEYRING, 153 VERIFYING_KEXEC_PE_SIGNATURE); 154 if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) { 155 ret = verify_pefile_signature(kernel, kernel_len, 156 VERIFY_USE_PLATFORM_KEYRING, 157 VERIFYING_KEXEC_PE_SIGNATURE); 158 } 159 return ret; 160 } 161 #endif 162 163 static int kexec_image_verify_sig(struct kimage *image, void *buf, 164 unsigned long buf_len) 165 { 166 if (!image->fops || !image->fops->verify_sig) { 167 pr_debug("kernel loader does not support signature verification.\n"); 168 return -EKEYREJECTED; 169 } 170 171 return image->fops->verify_sig(buf, buf_len); 172 } 173 174 static int 175 kimage_validate_signature(struct kimage *image) 176 { 177 int ret; 178 179 ret = kexec_image_verify_sig(image, image->kernel_buf, 180 image->kernel_buf_len); 181 if (ret) { 182 183 if (sig_enforce) { 184 pr_notice("Enforced kernel signature verification failed (%d).\n", ret); 185 return ret; 186 } 187 188 /* 189 * If IMA is guaranteed to appraise a signature on the kexec 190 * image, permit it even if the kernel is otherwise locked 191 * down. 192 */ 193 if (!ima_appraise_signature(READING_KEXEC_IMAGE) && 194 security_locked_down(LOCKDOWN_KEXEC)) 195 return -EPERM; 196 197 pr_debug("kernel signature verification failed (%d).\n", ret); 198 } 199 200 return 0; 201 } 202 #endif 203 204 static int kexec_post_load(struct kimage *image, unsigned long flags) 205 { 206 #ifdef CONFIG_IMA_KEXEC 207 if (!(flags & KEXEC_FILE_ON_CRASH)) 208 ima_kexec_post_load(image); 209 #endif 210 return machine_kexec_post_load(image); 211 } 212 213 /* 214 * In file mode list of segments is prepared by kernel. Copy relevant 215 * data from user space, do error checking, prepare segment list 216 */ 217 static int 218 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 219 const char __user *cmdline_ptr, 220 unsigned long cmdline_len, unsigned flags) 221 { 222 ssize_t ret; 223 void *ldata; 224 225 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf, 226 KEXEC_FILE_SIZE_MAX, NULL, 227 READING_KEXEC_IMAGE); 228 if (ret < 0) 229 return ret; 230 image->kernel_buf_len = ret; 231 kexec_dprintk("kernel: %p kernel_size: %#lx\n", 232 image->kernel_buf, image->kernel_buf_len); 233 234 /* Call arch image probe handlers */ 235 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 236 image->kernel_buf_len); 237 if (ret) 238 goto out; 239 240 #ifdef CONFIG_KEXEC_SIG 241 ret = kimage_validate_signature(image); 242 243 if (ret) 244 goto out; 245 #endif 246 /* It is possible that there no initramfs is being loaded */ 247 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 248 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf, 249 KEXEC_FILE_SIZE_MAX, NULL, 250 READING_KEXEC_INITRAMFS); 251 if (ret < 0) 252 goto out; 253 image->initrd_buf_len = ret; 254 ret = 0; 255 } 256 257 image->no_cma = !!(flags & KEXEC_FILE_NO_CMA); 258 259 if (cmdline_len) { 260 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len); 261 if (IS_ERR(image->cmdline_buf)) { 262 ret = PTR_ERR(image->cmdline_buf); 263 image->cmdline_buf = NULL; 264 goto out; 265 } 266 267 image->cmdline_buf_len = cmdline_len; 268 269 /* command line should be a string with last byte null */ 270 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 271 ret = -EINVAL; 272 goto out; 273 } 274 275 ima_kexec_cmdline(kernel_fd, image->cmdline_buf, 276 image->cmdline_buf_len - 1); 277 } 278 279 /* IMA needs to pass the measurement list to the next kernel. */ 280 ima_add_kexec_buffer(image); 281 282 /* If KHO is active, add its images to the list */ 283 ret = kho_fill_kimage(image); 284 if (ret) 285 goto out; 286 287 /* Call image load handler */ 288 ldata = kexec_image_load_default(image); 289 290 if (IS_ERR(ldata)) { 291 ret = PTR_ERR(ldata); 292 goto out; 293 } 294 295 image->image_loader_data = ldata; 296 out: 297 /* In case of error, free up all allocated memory in this function */ 298 if (ret) 299 kimage_file_post_load_cleanup(image); 300 return ret; 301 } 302 303 static int 304 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 305 int initrd_fd, const char __user *cmdline_ptr, 306 unsigned long cmdline_len, unsigned long flags) 307 { 308 int ret; 309 struct kimage *image; 310 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 311 312 image = do_kimage_alloc_init(); 313 if (!image) 314 return -ENOMEM; 315 316 kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG); 317 image->file_mode = 1; 318 319 #ifdef CONFIG_CRASH_DUMP 320 if (kexec_on_panic) { 321 /* Enable special crash kernel control page alloc policy. */ 322 image->control_page = crashk_res.start; 323 image->type = KEXEC_TYPE_CRASH; 324 } 325 #endif 326 327 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 328 cmdline_ptr, cmdline_len, flags); 329 if (ret) 330 goto out_free_image; 331 332 ret = sanity_check_segment_list(image); 333 if (ret) 334 goto out_free_post_load_bufs; 335 336 ret = -ENOMEM; 337 image->control_code_page = kimage_alloc_control_pages(image, 338 get_order(KEXEC_CONTROL_PAGE_SIZE)); 339 if (!image->control_code_page) { 340 pr_err("Could not allocate control_code_buffer\n"); 341 goto out_free_post_load_bufs; 342 } 343 344 if (!kexec_on_panic) { 345 image->swap_page = kimage_alloc_control_pages(image, 0); 346 if (!image->swap_page) { 347 pr_err("Could not allocate swap buffer\n"); 348 goto out_free_control_pages; 349 } 350 } 351 352 *rimage = image; 353 return 0; 354 out_free_control_pages: 355 kimage_free_page_list(&image->control_pages); 356 out_free_post_load_bufs: 357 kimage_file_post_load_cleanup(image); 358 out_free_image: 359 kfree(image); 360 return ret; 361 } 362 363 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 364 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 365 unsigned long, flags) 366 { 367 int image_type = (flags & KEXEC_FILE_ON_CRASH) ? 368 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT; 369 struct kimage **dest_image, *image; 370 int ret = 0, i; 371 372 /* We only trust the superuser with rebooting the system. */ 373 if (!kexec_load_permitted(image_type)) 374 return -EPERM; 375 376 /* Make sure we have a legal set of flags */ 377 if (flags != (flags & KEXEC_FILE_FLAGS)) 378 return -EINVAL; 379 380 image = NULL; 381 382 if (!kexec_trylock()) 383 return -EBUSY; 384 385 #ifdef CONFIG_CRASH_DUMP 386 if (image_type == KEXEC_TYPE_CRASH) { 387 dest_image = &kexec_crash_image; 388 if (kexec_crash_image) 389 arch_kexec_unprotect_crashkres(); 390 } else 391 #endif 392 dest_image = &kexec_image; 393 394 if (flags & KEXEC_FILE_UNLOAD) 395 goto exchange; 396 397 /* 398 * In case of crash, new kernel gets loaded in reserved region. It is 399 * same memory where old crash kernel might be loaded. Free any 400 * current crash dump kernel before we corrupt it. 401 */ 402 if (flags & KEXEC_FILE_ON_CRASH) 403 kimage_free(xchg(&kexec_crash_image, NULL)); 404 405 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 406 cmdline_len, flags); 407 if (ret) 408 goto out; 409 410 #ifdef CONFIG_CRASH_HOTPLUG 411 if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags)) 412 image->hotplug_support = 1; 413 #endif 414 415 ret = machine_kexec_prepare(image); 416 if (ret) 417 goto out; 418 419 /* 420 * Some architecture(like S390) may touch the crash memory before 421 * machine_kexec_prepare(), we must copy vmcoreinfo data after it. 422 */ 423 ret = kimage_crash_copy_vmcoreinfo(image); 424 if (ret) 425 goto out; 426 427 ret = kexec_calculate_store_digests(image); 428 if (ret) 429 goto out; 430 431 kexec_dprintk("nr_segments = %lu\n", image->nr_segments); 432 for (i = 0; i < image->nr_segments; i++) { 433 struct kexec_segment *ksegment; 434 435 ksegment = &image->segment[i]; 436 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 437 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 438 ksegment->memsz); 439 440 ret = kimage_load_segment(image, i); 441 if (ret) 442 goto out; 443 } 444 445 kimage_terminate(image); 446 447 ret = kexec_post_load(image, flags); 448 if (ret) 449 goto out; 450 451 kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n", 452 image->type, image->start, image->head, flags); 453 /* 454 * Free up any temporary buffers allocated which are not needed 455 * after image has been loaded 456 */ 457 kimage_file_post_load_cleanup(image); 458 exchange: 459 image = xchg(dest_image, image); 460 out: 461 #ifdef CONFIG_CRASH_DUMP 462 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image) 463 arch_kexec_protect_crashkres(); 464 #endif 465 466 kexec_unlock(); 467 kimage_free(image); 468 return ret; 469 } 470 471 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 472 struct kexec_buf *kbuf) 473 { 474 struct kimage *image = kbuf->image; 475 unsigned long temp_start, temp_end; 476 477 temp_end = min(end, kbuf->buf_max); 478 temp_start = temp_end - kbuf->memsz + 1; 479 kexec_random_range_start(temp_start, temp_end, kbuf, &temp_start); 480 481 do { 482 /* align down start */ 483 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align); 484 485 if (temp_start < start || temp_start < kbuf->buf_min) 486 return 0; 487 488 temp_end = temp_start + kbuf->memsz - 1; 489 490 /* 491 * Make sure this does not conflict with any of existing 492 * segments 493 */ 494 if (kimage_is_destination_range(image, temp_start, temp_end)) { 495 temp_start = temp_start - PAGE_SIZE; 496 continue; 497 } 498 499 /* Make sure this does not conflict with exclude range */ 500 if (arch_check_excluded_range(image, temp_start, temp_end)) { 501 temp_start = temp_start - PAGE_SIZE; 502 continue; 503 } 504 505 /* We found a suitable memory range */ 506 break; 507 } while (1); 508 509 /* If we are here, we found a suitable memory range */ 510 kbuf->mem = temp_start; 511 512 /* Success, stop navigating through remaining System RAM ranges */ 513 return 1; 514 } 515 516 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 517 struct kexec_buf *kbuf) 518 { 519 struct kimage *image = kbuf->image; 520 unsigned long temp_start, temp_end; 521 522 temp_start = max(start, kbuf->buf_min); 523 524 kexec_random_range_start(temp_start, end, kbuf, &temp_start); 525 526 do { 527 temp_start = ALIGN(temp_start, kbuf->buf_align); 528 temp_end = temp_start + kbuf->memsz - 1; 529 530 if (temp_end > end || temp_end > kbuf->buf_max) 531 return 0; 532 /* 533 * Make sure this does not conflict with any of existing 534 * segments 535 */ 536 if (kimage_is_destination_range(image, temp_start, temp_end)) { 537 temp_start = temp_start + PAGE_SIZE; 538 continue; 539 } 540 541 /* Make sure this does not conflict with exclude range */ 542 if (arch_check_excluded_range(image, temp_start, temp_end)) { 543 temp_start = temp_start + PAGE_SIZE; 544 continue; 545 } 546 547 /* We found a suitable memory range */ 548 break; 549 } while (1); 550 551 /* If we are here, we found a suitable memory range */ 552 kbuf->mem = temp_start; 553 554 /* Success, stop navigating through remaining System RAM ranges */ 555 return 1; 556 } 557 558 static int locate_mem_hole_callback(struct resource *res, void *arg) 559 { 560 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 561 u64 start = res->start, end = res->end; 562 unsigned long sz = end - start + 1; 563 564 /* Returning 0 will take to next memory range */ 565 566 /* Don't use memory that will be detected and handled by a driver. */ 567 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED) 568 return 0; 569 570 if (sz < kbuf->memsz) 571 return 0; 572 573 if (end < kbuf->buf_min || start > kbuf->buf_max) 574 return 0; 575 576 /* 577 * Allocate memory top down with-in ram range. Otherwise bottom up 578 * allocation. 579 */ 580 if (kbuf->top_down) 581 return locate_mem_hole_top_down(start, end, kbuf); 582 return locate_mem_hole_bottom_up(start, end, kbuf); 583 } 584 585 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK 586 static int kexec_walk_memblock(struct kexec_buf *kbuf, 587 int (*func)(struct resource *, void *)) 588 { 589 int ret = 0; 590 u64 i; 591 phys_addr_t mstart, mend; 592 struct resource res = { }; 593 594 #ifdef CONFIG_CRASH_DUMP 595 if (kbuf->image->type == KEXEC_TYPE_CRASH) 596 return func(&crashk_res, kbuf); 597 #endif 598 599 /* 600 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See 601 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in 602 * locate_mem_hole_callback(). 603 */ 604 if (kbuf->top_down) { 605 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE, 606 &mstart, &mend, NULL) { 607 /* 608 * In memblock, end points to the first byte after the 609 * range while in kexec, end points to the last byte 610 * in the range. 611 */ 612 res.start = mstart; 613 res.end = mend - 1; 614 ret = func(&res, kbuf); 615 if (ret) 616 break; 617 } 618 } else { 619 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, 620 &mstart, &mend, NULL) { 621 /* 622 * In memblock, end points to the first byte after the 623 * range while in kexec, end points to the last byte 624 * in the range. 625 */ 626 res.start = mstart; 627 res.end = mend - 1; 628 ret = func(&res, kbuf); 629 if (ret) 630 break; 631 } 632 } 633 634 return ret; 635 } 636 #else 637 static int kexec_walk_memblock(struct kexec_buf *kbuf, 638 int (*func)(struct resource *, void *)) 639 { 640 return 0; 641 } 642 #endif 643 644 /** 645 * kexec_walk_resources - call func(data) on free memory regions 646 * @kbuf: Context info for the search. Also passed to @func. 647 * @func: Function to call for each memory region. 648 * 649 * Return: The memory walk will stop when func returns a non-zero value 650 * and that value will be returned. If all free regions are visited without 651 * func returning non-zero, then zero will be returned. 652 */ 653 static int kexec_walk_resources(struct kexec_buf *kbuf, 654 int (*func)(struct resource *, void *)) 655 { 656 #ifdef CONFIG_CRASH_DUMP 657 if (kbuf->image->type == KEXEC_TYPE_CRASH) 658 return walk_iomem_res_desc(crashk_res.desc, 659 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY, 660 crashk_res.start, crashk_res.end, 661 kbuf, func); 662 #endif 663 if (kbuf->top_down) 664 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func); 665 else 666 return walk_system_ram_res(0, ULONG_MAX, kbuf, func); 667 } 668 669 static int kexec_alloc_contig(struct kexec_buf *kbuf) 670 { 671 size_t nr_pages = kbuf->memsz >> PAGE_SHIFT; 672 unsigned long mem; 673 struct page *p; 674 675 /* User space disabled CMA allocations, bail out. */ 676 if (kbuf->image->no_cma) 677 return -EPERM; 678 679 /* Skip CMA logic for crash kernel */ 680 if (kbuf->image->type == KEXEC_TYPE_CRASH) 681 return -EPERM; 682 683 p = dma_alloc_from_contiguous(NULL, nr_pages, get_order(kbuf->buf_align), true); 684 if (!p) 685 return -ENOMEM; 686 687 pr_debug("allocated %zu DMA pages at 0x%lx", nr_pages, page_to_boot_pfn(p)); 688 689 mem = page_to_boot_pfn(p) << PAGE_SHIFT; 690 691 if (kimage_is_destination_range(kbuf->image, mem, mem + kbuf->memsz)) { 692 /* Our region is already in use by a statically defined one. Bail out. */ 693 pr_debug("CMA overlaps existing mem: 0x%lx+0x%lx\n", mem, kbuf->memsz); 694 dma_release_from_contiguous(NULL, p, nr_pages); 695 return -EBUSY; 696 } 697 698 kbuf->mem = page_to_boot_pfn(p) << PAGE_SHIFT; 699 kbuf->cma = p; 700 701 arch_kexec_post_alloc_pages(page_address(p), (int)nr_pages, 0); 702 703 return 0; 704 } 705 706 /** 707 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel 708 * @kbuf: Parameters for the memory search. 709 * 710 * On success, kbuf->mem will have the start address of the memory region found. 711 * 712 * Return: 0 on success, negative errno on error. 713 */ 714 int kexec_locate_mem_hole(struct kexec_buf *kbuf) 715 { 716 int ret; 717 718 /* Arch knows where to place */ 719 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN) 720 return 0; 721 722 /* 723 * If KHO is active, only use KHO scratch memory. All other memory 724 * could potentially be handed over. 725 */ 726 ret = kho_locate_mem_hole(kbuf, locate_mem_hole_callback); 727 if (ret <= 0) 728 return ret; 729 730 /* 731 * Try to find a free physically contiguous block of memory first. With that, we 732 * can avoid any copying at kexec time. 733 */ 734 if (!kexec_alloc_contig(kbuf)) 735 return 0; 736 737 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) 738 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback); 739 else 740 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback); 741 742 return ret == 1 ? 0 : -EADDRNOTAVAIL; 743 } 744 745 /** 746 * kexec_add_buffer - place a buffer in a kexec segment 747 * @kbuf: Buffer contents and memory parameters. 748 * 749 * This function assumes that kexec_lock is held. 750 * On successful return, @kbuf->mem will have the physical address of 751 * the buffer in memory. 752 * 753 * Return: 0 on success, negative errno on error. 754 */ 755 int kexec_add_buffer(struct kexec_buf *kbuf) 756 { 757 struct kexec_segment *ksegment; 758 int ret; 759 760 /* Currently adding segment this way is allowed only in file mode */ 761 if (!kbuf->image->file_mode) 762 return -EINVAL; 763 764 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX) 765 return -EINVAL; 766 767 /* 768 * Make sure we are not trying to add buffer after allocating 769 * control pages. All segments need to be placed first before 770 * any control pages are allocated. As control page allocation 771 * logic goes through list of segments to make sure there are 772 * no destination overlaps. 773 */ 774 if (!list_empty(&kbuf->image->control_pages)) { 775 WARN_ON(1); 776 return -EINVAL; 777 } 778 779 /* Ensure minimum alignment needed for segments. */ 780 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE); 781 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE); 782 kbuf->cma = NULL; 783 784 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 785 ret = arch_kexec_locate_mem_hole(kbuf); 786 if (ret) 787 return ret; 788 789 /* Found a suitable memory range */ 790 ksegment = &kbuf->image->segment[kbuf->image->nr_segments]; 791 ksegment->kbuf = kbuf->buffer; 792 ksegment->bufsz = kbuf->bufsz; 793 ksegment->mem = kbuf->mem; 794 ksegment->memsz = kbuf->memsz; 795 kbuf->image->segment_cma[kbuf->image->nr_segments] = kbuf->cma; 796 kbuf->image->nr_segments++; 797 return 0; 798 } 799 800 /* Calculate and store the digest of segments */ 801 static int kexec_calculate_store_digests(struct kimage *image) 802 { 803 struct sha256_ctx sctx; 804 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 805 size_t nullsz; 806 u8 digest[SHA256_DIGEST_SIZE]; 807 void *zero_buf; 808 struct kexec_sha_region *sha_regions; 809 struct purgatory_info *pi = &image->purgatory_info; 810 811 if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY)) 812 return 0; 813 814 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 815 zero_buf_sz = PAGE_SIZE; 816 817 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 818 sha_regions = vzalloc(sha_region_sz); 819 if (!sha_regions) 820 return -ENOMEM; 821 822 sha256_init(&sctx); 823 824 for (j = i = 0; i < image->nr_segments; i++) { 825 struct kexec_segment *ksegment; 826 827 #ifdef CONFIG_CRASH_HOTPLUG 828 /* Exclude elfcorehdr segment to allow future changes via hotplug */ 829 if (i == image->elfcorehdr_index) 830 continue; 831 #endif 832 833 ksegment = &image->segment[i]; 834 /* 835 * Skip purgatory as it will be modified once we put digest 836 * info in purgatory. 837 */ 838 if (ksegment->kbuf == pi->purgatory_buf) 839 continue; 840 841 /* 842 * Skip the segment if ima_segment_index is set and matches 843 * the current index 844 */ 845 if (check_ima_segment_index(image, i)) 846 continue; 847 848 sha256_update(&sctx, ksegment->kbuf, ksegment->bufsz); 849 850 /* 851 * Assume rest of the buffer is filled with zero and 852 * update digest accordingly. 853 */ 854 nullsz = ksegment->memsz - ksegment->bufsz; 855 while (nullsz) { 856 unsigned long bytes = nullsz; 857 858 if (bytes > zero_buf_sz) 859 bytes = zero_buf_sz; 860 sha256_update(&sctx, zero_buf, bytes); 861 nullsz -= bytes; 862 } 863 864 sha_regions[j].start = ksegment->mem; 865 sha_regions[j].len = ksegment->memsz; 866 j++; 867 } 868 869 sha256_final(&sctx, digest); 870 871 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions", 872 sha_regions, sha_region_sz, 0); 873 if (ret) 874 goto out_free_sha_regions; 875 876 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest", 877 digest, SHA256_DIGEST_SIZE, 0); 878 out_free_sha_regions: 879 vfree(sha_regions); 880 return ret; 881 } 882 883 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY 884 /* 885 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory. 886 * @pi: Purgatory to be loaded. 887 * @kbuf: Buffer to setup. 888 * 889 * Allocates the memory needed for the buffer. Caller is responsible to free 890 * the memory after use. 891 * 892 * Return: 0 on success, negative errno on error. 893 */ 894 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi, 895 struct kexec_buf *kbuf) 896 { 897 const Elf_Shdr *sechdrs; 898 unsigned long bss_align; 899 unsigned long bss_sz; 900 unsigned long align; 901 int i, ret; 902 903 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 904 kbuf->buf_align = bss_align = 1; 905 kbuf->bufsz = bss_sz = 0; 906 907 for (i = 0; i < pi->ehdr->e_shnum; i++) { 908 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 909 continue; 910 911 align = sechdrs[i].sh_addralign; 912 if (sechdrs[i].sh_type != SHT_NOBITS) { 913 if (kbuf->buf_align < align) 914 kbuf->buf_align = align; 915 kbuf->bufsz = ALIGN(kbuf->bufsz, align); 916 kbuf->bufsz += sechdrs[i].sh_size; 917 } else { 918 if (bss_align < align) 919 bss_align = align; 920 bss_sz = ALIGN(bss_sz, align); 921 bss_sz += sechdrs[i].sh_size; 922 } 923 } 924 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align); 925 kbuf->memsz = kbuf->bufsz + bss_sz; 926 if (kbuf->buf_align < bss_align) 927 kbuf->buf_align = bss_align; 928 929 kbuf->buffer = vzalloc(kbuf->bufsz); 930 if (!kbuf->buffer) 931 return -ENOMEM; 932 pi->purgatory_buf = kbuf->buffer; 933 934 ret = kexec_add_buffer(kbuf); 935 if (ret) 936 goto out; 937 938 return 0; 939 out: 940 vfree(pi->purgatory_buf); 941 pi->purgatory_buf = NULL; 942 return ret; 943 } 944 945 /* 946 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer. 947 * @pi: Purgatory to be loaded. 948 * @kbuf: Buffer prepared to store purgatory. 949 * 950 * Allocates the memory needed for the buffer. Caller is responsible to free 951 * the memory after use. 952 * 953 * Return: 0 on success, negative errno on error. 954 */ 955 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi, 956 struct kexec_buf *kbuf) 957 { 958 unsigned long bss_addr; 959 unsigned long offset; 960 size_t sechdrs_size; 961 Elf_Shdr *sechdrs; 962 int i; 963 964 /* 965 * The section headers in kexec_purgatory are read-only. In order to 966 * have them modifiable make a temporary copy. 967 */ 968 sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum); 969 sechdrs = vzalloc(sechdrs_size); 970 if (!sechdrs) 971 return -ENOMEM; 972 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size); 973 pi->sechdrs = sechdrs; 974 975 offset = 0; 976 bss_addr = kbuf->mem + kbuf->bufsz; 977 kbuf->image->start = pi->ehdr->e_entry; 978 979 for (i = 0; i < pi->ehdr->e_shnum; i++) { 980 unsigned long align; 981 void *src, *dst; 982 983 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 984 continue; 985 986 align = sechdrs[i].sh_addralign; 987 if (sechdrs[i].sh_type == SHT_NOBITS) { 988 bss_addr = ALIGN(bss_addr, align); 989 sechdrs[i].sh_addr = bss_addr; 990 bss_addr += sechdrs[i].sh_size; 991 continue; 992 } 993 994 offset = ALIGN(offset, align); 995 996 /* 997 * Check if the segment contains the entry point, if so, 998 * calculate the value of image->start based on it. 999 * If the compiler has produced more than one .text section 1000 * (Eg: .text.hot), they are generally after the main .text 1001 * section, and they shall not be used to calculate 1002 * image->start. So do not re-calculate image->start if it 1003 * is not set to the initial value, and warn the user so they 1004 * have a chance to fix their purgatory's linker script. 1005 */ 1006 if (sechdrs[i].sh_flags & SHF_EXECINSTR && 1007 pi->ehdr->e_entry >= sechdrs[i].sh_addr && 1008 pi->ehdr->e_entry < (sechdrs[i].sh_addr 1009 + sechdrs[i].sh_size) && 1010 !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) { 1011 kbuf->image->start -= sechdrs[i].sh_addr; 1012 kbuf->image->start += kbuf->mem + offset; 1013 } 1014 1015 src = (void *)pi->ehdr + sechdrs[i].sh_offset; 1016 dst = pi->purgatory_buf + offset; 1017 memcpy(dst, src, sechdrs[i].sh_size); 1018 1019 sechdrs[i].sh_addr = kbuf->mem + offset; 1020 sechdrs[i].sh_offset = offset; 1021 offset += sechdrs[i].sh_size; 1022 } 1023 1024 return 0; 1025 } 1026 1027 static int kexec_apply_relocations(struct kimage *image) 1028 { 1029 int i, ret; 1030 struct purgatory_info *pi = &image->purgatory_info; 1031 const Elf_Shdr *sechdrs; 1032 1033 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff; 1034 1035 for (i = 0; i < pi->ehdr->e_shnum; i++) { 1036 const Elf_Shdr *relsec; 1037 const Elf_Shdr *symtab; 1038 Elf_Shdr *section; 1039 1040 relsec = sechdrs + i; 1041 1042 if (relsec->sh_type != SHT_RELA && 1043 relsec->sh_type != SHT_REL) 1044 continue; 1045 1046 /* 1047 * For section of type SHT_RELA/SHT_REL, 1048 * ->sh_link contains section header index of associated 1049 * symbol table. And ->sh_info contains section header 1050 * index of section to which relocations apply. 1051 */ 1052 if (relsec->sh_info >= pi->ehdr->e_shnum || 1053 relsec->sh_link >= pi->ehdr->e_shnum) 1054 return -ENOEXEC; 1055 1056 section = pi->sechdrs + relsec->sh_info; 1057 symtab = sechdrs + relsec->sh_link; 1058 1059 if (!(section->sh_flags & SHF_ALLOC)) 1060 continue; 1061 1062 /* 1063 * symtab->sh_link contain section header index of associated 1064 * string table. 1065 */ 1066 if (symtab->sh_link >= pi->ehdr->e_shnum) 1067 /* Invalid section number? */ 1068 continue; 1069 1070 /* 1071 * Respective architecture needs to provide support for applying 1072 * relocations of type SHT_RELA/SHT_REL. 1073 */ 1074 if (relsec->sh_type == SHT_RELA) 1075 ret = arch_kexec_apply_relocations_add(pi, section, 1076 relsec, symtab); 1077 else if (relsec->sh_type == SHT_REL) 1078 ret = arch_kexec_apply_relocations(pi, section, 1079 relsec, symtab); 1080 if (ret) 1081 return ret; 1082 } 1083 1084 return 0; 1085 } 1086 1087 /* 1088 * kexec_load_purgatory - Load and relocate the purgatory object. 1089 * @image: Image to add the purgatory to. 1090 * @kbuf: Memory parameters to use. 1091 * 1092 * Allocates the memory needed for image->purgatory_info.sechdrs and 1093 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible 1094 * to free the memory after use. 1095 * 1096 * Return: 0 on success, negative errno on error. 1097 */ 1098 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf) 1099 { 1100 struct purgatory_info *pi = &image->purgatory_info; 1101 int ret; 1102 1103 if (kexec_purgatory_size <= 0) 1104 return -EINVAL; 1105 1106 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory; 1107 1108 ret = kexec_purgatory_setup_kbuf(pi, kbuf); 1109 if (ret) 1110 return ret; 1111 1112 ret = kexec_purgatory_setup_sechdrs(pi, kbuf); 1113 if (ret) 1114 goto out_free_kbuf; 1115 1116 ret = kexec_apply_relocations(image); 1117 if (ret) 1118 goto out; 1119 1120 return 0; 1121 out: 1122 vfree(pi->sechdrs); 1123 pi->sechdrs = NULL; 1124 out_free_kbuf: 1125 vfree(pi->purgatory_buf); 1126 pi->purgatory_buf = NULL; 1127 return ret; 1128 } 1129 1130 /* 1131 * kexec_purgatory_find_symbol - find a symbol in the purgatory 1132 * @pi: Purgatory to search in. 1133 * @name: Name of the symbol. 1134 * 1135 * Return: pointer to symbol in read-only symtab on success, NULL on error. 1136 */ 1137 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 1138 const char *name) 1139 { 1140 const Elf_Shdr *sechdrs; 1141 const Elf_Ehdr *ehdr; 1142 const Elf_Sym *syms; 1143 const char *strtab; 1144 int i, k; 1145 1146 if (!pi->ehdr) 1147 return NULL; 1148 1149 ehdr = pi->ehdr; 1150 sechdrs = (void *)ehdr + ehdr->e_shoff; 1151 1152 for (i = 0; i < ehdr->e_shnum; i++) { 1153 if (sechdrs[i].sh_type != SHT_SYMTAB) 1154 continue; 1155 1156 if (sechdrs[i].sh_link >= ehdr->e_shnum) 1157 /* Invalid strtab section number */ 1158 continue; 1159 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset; 1160 syms = (void *)ehdr + sechdrs[i].sh_offset; 1161 1162 /* Go through symbols for a match */ 1163 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 1164 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 1165 continue; 1166 1167 if (strcmp(strtab + syms[k].st_name, name) != 0) 1168 continue; 1169 1170 if (syms[k].st_shndx == SHN_UNDEF || 1171 syms[k].st_shndx >= ehdr->e_shnum) { 1172 pr_debug("Symbol: %s has bad section index %d.\n", 1173 name, syms[k].st_shndx); 1174 return NULL; 1175 } 1176 1177 /* Found the symbol we are looking for */ 1178 return &syms[k]; 1179 } 1180 } 1181 1182 return NULL; 1183 } 1184 1185 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 1186 { 1187 struct purgatory_info *pi = &image->purgatory_info; 1188 const Elf_Sym *sym; 1189 Elf_Shdr *sechdr; 1190 1191 sym = kexec_purgatory_find_symbol(pi, name); 1192 if (!sym) 1193 return ERR_PTR(-EINVAL); 1194 1195 sechdr = &pi->sechdrs[sym->st_shndx]; 1196 1197 /* 1198 * Returns the address where symbol will finally be loaded after 1199 * kexec_load_segment() 1200 */ 1201 return (void *)(sechdr->sh_addr + sym->st_value); 1202 } 1203 1204 /* 1205 * Get or set value of a symbol. If "get_value" is true, symbol value is 1206 * returned in buf otherwise symbol value is set based on value in buf. 1207 */ 1208 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 1209 void *buf, unsigned int size, bool get_value) 1210 { 1211 struct purgatory_info *pi = &image->purgatory_info; 1212 const Elf_Sym *sym; 1213 Elf_Shdr *sec; 1214 char *sym_buf; 1215 1216 sym = kexec_purgatory_find_symbol(pi, name); 1217 if (!sym) 1218 return -EINVAL; 1219 1220 if (sym->st_size != size) { 1221 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 1222 name, (unsigned long)sym->st_size, size); 1223 return -EINVAL; 1224 } 1225 1226 sec = pi->sechdrs + sym->st_shndx; 1227 1228 if (sec->sh_type == SHT_NOBITS) { 1229 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 1230 get_value ? "get" : "set"); 1231 return -EINVAL; 1232 } 1233 1234 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value; 1235 1236 if (get_value) 1237 memcpy((void *)buf, sym_buf, size); 1238 else 1239 memcpy((void *)sym_buf, buf, size); 1240 1241 return 0; 1242 } 1243 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */ 1244