xref: /linux/kernel/kexec_core.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * kexec.c - kexec system call core code.
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 
42 #include <asm/page.h>
43 #include <asm/sections.h>
44 
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47 #include "kexec_internal.h"
48 
49 DEFINE_MUTEX(kexec_mutex);
50 
51 /* Per cpu memory for storing cpu states in case of system crash. */
52 note_buf_t __percpu *crash_notes;
53 
54 /* vmcoreinfo stuff */
55 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
56 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
57 size_t vmcoreinfo_size;
58 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
59 
60 /* Flag to indicate we are going to kexec a new kernel */
61 bool kexec_in_progress = false;
62 
63 
64 /* Location of the reserved area for the crash kernel */
65 struct resource crashk_res = {
66 	.name  = "Crash kernel",
67 	.start = 0,
68 	.end   = 0,
69 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
70 	.desc  = IORES_DESC_CRASH_KERNEL
71 };
72 struct resource crashk_low_res = {
73 	.name  = "Crash kernel",
74 	.start = 0,
75 	.end   = 0,
76 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
77 	.desc  = IORES_DESC_CRASH_KERNEL
78 };
79 
80 int kexec_should_crash(struct task_struct *p)
81 {
82 	/*
83 	 * If crash_kexec_post_notifiers is enabled, don't run
84 	 * crash_kexec() here yet, which must be run after panic
85 	 * notifiers in panic().
86 	 */
87 	if (crash_kexec_post_notifiers)
88 		return 0;
89 	/*
90 	 * There are 4 panic() calls in do_exit() path, each of which
91 	 * corresponds to each of these 4 conditions.
92 	 */
93 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
94 		return 1;
95 	return 0;
96 }
97 
98 int kexec_crash_loaded(void)
99 {
100 	return !!kexec_crash_image;
101 }
102 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
103 
104 /*
105  * When kexec transitions to the new kernel there is a one-to-one
106  * mapping between physical and virtual addresses.  On processors
107  * where you can disable the MMU this is trivial, and easy.  For
108  * others it is still a simple predictable page table to setup.
109  *
110  * In that environment kexec copies the new kernel to its final
111  * resting place.  This means I can only support memory whose
112  * physical address can fit in an unsigned long.  In particular
113  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
114  * If the assembly stub has more restrictive requirements
115  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
116  * defined more restrictively in <asm/kexec.h>.
117  *
118  * The code for the transition from the current kernel to the
119  * the new kernel is placed in the control_code_buffer, whose size
120  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
121  * page of memory is necessary, but some architectures require more.
122  * Because this memory must be identity mapped in the transition from
123  * virtual to physical addresses it must live in the range
124  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
125  * modifiable.
126  *
127  * The assembly stub in the control code buffer is passed a linked list
128  * of descriptor pages detailing the source pages of the new kernel,
129  * and the destination addresses of those source pages.  As this data
130  * structure is not used in the context of the current OS, it must
131  * be self-contained.
132  *
133  * The code has been made to work with highmem pages and will use a
134  * destination page in its final resting place (if it happens
135  * to allocate it).  The end product of this is that most of the
136  * physical address space, and most of RAM can be used.
137  *
138  * Future directions include:
139  *  - allocating a page table with the control code buffer identity
140  *    mapped, to simplify machine_kexec and make kexec_on_panic more
141  *    reliable.
142  */
143 
144 /*
145  * KIMAGE_NO_DEST is an impossible destination address..., for
146  * allocating pages whose destination address we do not care about.
147  */
148 #define KIMAGE_NO_DEST (-1UL)
149 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
150 
151 static struct page *kimage_alloc_page(struct kimage *image,
152 				       gfp_t gfp_mask,
153 				       unsigned long dest);
154 
155 int sanity_check_segment_list(struct kimage *image)
156 {
157 	int i;
158 	unsigned long nr_segments = image->nr_segments;
159 	unsigned long total_pages = 0;
160 
161 	/*
162 	 * Verify we have good destination addresses.  The caller is
163 	 * responsible for making certain we don't attempt to load
164 	 * the new image into invalid or reserved areas of RAM.  This
165 	 * just verifies it is an address we can use.
166 	 *
167 	 * Since the kernel does everything in page size chunks ensure
168 	 * the destination addresses are page aligned.  Too many
169 	 * special cases crop of when we don't do this.  The most
170 	 * insidious is getting overlapping destination addresses
171 	 * simply because addresses are changed to page size
172 	 * granularity.
173 	 */
174 	for (i = 0; i < nr_segments; i++) {
175 		unsigned long mstart, mend;
176 
177 		mstart = image->segment[i].mem;
178 		mend   = mstart + image->segment[i].memsz;
179 		if (mstart > mend)
180 			return -EADDRNOTAVAIL;
181 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
182 			return -EADDRNOTAVAIL;
183 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
184 			return -EADDRNOTAVAIL;
185 	}
186 
187 	/* Verify our destination addresses do not overlap.
188 	 * If we alloed overlapping destination addresses
189 	 * through very weird things can happen with no
190 	 * easy explanation as one segment stops on another.
191 	 */
192 	for (i = 0; i < nr_segments; i++) {
193 		unsigned long mstart, mend;
194 		unsigned long j;
195 
196 		mstart = image->segment[i].mem;
197 		mend   = mstart + image->segment[i].memsz;
198 		for (j = 0; j < i; j++) {
199 			unsigned long pstart, pend;
200 
201 			pstart = image->segment[j].mem;
202 			pend   = pstart + image->segment[j].memsz;
203 			/* Do the segments overlap ? */
204 			if ((mend > pstart) && (mstart < pend))
205 				return -EINVAL;
206 		}
207 	}
208 
209 	/* Ensure our buffer sizes are strictly less than
210 	 * our memory sizes.  This should always be the case,
211 	 * and it is easier to check up front than to be surprised
212 	 * later on.
213 	 */
214 	for (i = 0; i < nr_segments; i++) {
215 		if (image->segment[i].bufsz > image->segment[i].memsz)
216 			return -EINVAL;
217 	}
218 
219 	/*
220 	 * Verify that no more than half of memory will be consumed. If the
221 	 * request from userspace is too large, a large amount of time will be
222 	 * wasted allocating pages, which can cause a soft lockup.
223 	 */
224 	for (i = 0; i < nr_segments; i++) {
225 		if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
226 			return -EINVAL;
227 
228 		total_pages += PAGE_COUNT(image->segment[i].memsz);
229 	}
230 
231 	if (total_pages > totalram_pages / 2)
232 		return -EINVAL;
233 
234 	/*
235 	 * Verify we have good destination addresses.  Normally
236 	 * the caller is responsible for making certain we don't
237 	 * attempt to load the new image into invalid or reserved
238 	 * areas of RAM.  But crash kernels are preloaded into a
239 	 * reserved area of ram.  We must ensure the addresses
240 	 * are in the reserved area otherwise preloading the
241 	 * kernel could corrupt things.
242 	 */
243 
244 	if (image->type == KEXEC_TYPE_CRASH) {
245 		for (i = 0; i < nr_segments; i++) {
246 			unsigned long mstart, mend;
247 
248 			mstart = image->segment[i].mem;
249 			mend = mstart + image->segment[i].memsz - 1;
250 			/* Ensure we are within the crash kernel limits */
251 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
252 			    (mend > phys_to_boot_phys(crashk_res.end)))
253 				return -EADDRNOTAVAIL;
254 		}
255 	}
256 
257 	return 0;
258 }
259 
260 struct kimage *do_kimage_alloc_init(void)
261 {
262 	struct kimage *image;
263 
264 	/* Allocate a controlling structure */
265 	image = kzalloc(sizeof(*image), GFP_KERNEL);
266 	if (!image)
267 		return NULL;
268 
269 	image->head = 0;
270 	image->entry = &image->head;
271 	image->last_entry = &image->head;
272 	image->control_page = ~0; /* By default this does not apply */
273 	image->type = KEXEC_TYPE_DEFAULT;
274 
275 	/* Initialize the list of control pages */
276 	INIT_LIST_HEAD(&image->control_pages);
277 
278 	/* Initialize the list of destination pages */
279 	INIT_LIST_HEAD(&image->dest_pages);
280 
281 	/* Initialize the list of unusable pages */
282 	INIT_LIST_HEAD(&image->unusable_pages);
283 
284 	return image;
285 }
286 
287 int kimage_is_destination_range(struct kimage *image,
288 					unsigned long start,
289 					unsigned long end)
290 {
291 	unsigned long i;
292 
293 	for (i = 0; i < image->nr_segments; i++) {
294 		unsigned long mstart, mend;
295 
296 		mstart = image->segment[i].mem;
297 		mend = mstart + image->segment[i].memsz;
298 		if ((end > mstart) && (start < mend))
299 			return 1;
300 	}
301 
302 	return 0;
303 }
304 
305 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
306 {
307 	struct page *pages;
308 
309 	pages = alloc_pages(gfp_mask, order);
310 	if (pages) {
311 		unsigned int count, i;
312 
313 		pages->mapping = NULL;
314 		set_page_private(pages, order);
315 		count = 1 << order;
316 		for (i = 0; i < count; i++)
317 			SetPageReserved(pages + i);
318 	}
319 
320 	return pages;
321 }
322 
323 static void kimage_free_pages(struct page *page)
324 {
325 	unsigned int order, count, i;
326 
327 	order = page_private(page);
328 	count = 1 << order;
329 	for (i = 0; i < count; i++)
330 		ClearPageReserved(page + i);
331 	__free_pages(page, order);
332 }
333 
334 void kimage_free_page_list(struct list_head *list)
335 {
336 	struct page *page, *next;
337 
338 	list_for_each_entry_safe(page, next, list, lru) {
339 		list_del(&page->lru);
340 		kimage_free_pages(page);
341 	}
342 }
343 
344 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
345 							unsigned int order)
346 {
347 	/* Control pages are special, they are the intermediaries
348 	 * that are needed while we copy the rest of the pages
349 	 * to their final resting place.  As such they must
350 	 * not conflict with either the destination addresses
351 	 * or memory the kernel is already using.
352 	 *
353 	 * The only case where we really need more than one of
354 	 * these are for architectures where we cannot disable
355 	 * the MMU and must instead generate an identity mapped
356 	 * page table for all of the memory.
357 	 *
358 	 * At worst this runs in O(N) of the image size.
359 	 */
360 	struct list_head extra_pages;
361 	struct page *pages;
362 	unsigned int count;
363 
364 	count = 1 << order;
365 	INIT_LIST_HEAD(&extra_pages);
366 
367 	/* Loop while I can allocate a page and the page allocated
368 	 * is a destination page.
369 	 */
370 	do {
371 		unsigned long pfn, epfn, addr, eaddr;
372 
373 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
374 		if (!pages)
375 			break;
376 		pfn   = page_to_boot_pfn(pages);
377 		epfn  = pfn + count;
378 		addr  = pfn << PAGE_SHIFT;
379 		eaddr = epfn << PAGE_SHIFT;
380 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
381 			      kimage_is_destination_range(image, addr, eaddr)) {
382 			list_add(&pages->lru, &extra_pages);
383 			pages = NULL;
384 		}
385 	} while (!pages);
386 
387 	if (pages) {
388 		/* Remember the allocated page... */
389 		list_add(&pages->lru, &image->control_pages);
390 
391 		/* Because the page is already in it's destination
392 		 * location we will never allocate another page at
393 		 * that address.  Therefore kimage_alloc_pages
394 		 * will not return it (again) and we don't need
395 		 * to give it an entry in image->segment[].
396 		 */
397 	}
398 	/* Deal with the destination pages I have inadvertently allocated.
399 	 *
400 	 * Ideally I would convert multi-page allocations into single
401 	 * page allocations, and add everything to image->dest_pages.
402 	 *
403 	 * For now it is simpler to just free the pages.
404 	 */
405 	kimage_free_page_list(&extra_pages);
406 
407 	return pages;
408 }
409 
410 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
411 						      unsigned int order)
412 {
413 	/* Control pages are special, they are the intermediaries
414 	 * that are needed while we copy the rest of the pages
415 	 * to their final resting place.  As such they must
416 	 * not conflict with either the destination addresses
417 	 * or memory the kernel is already using.
418 	 *
419 	 * Control pages are also the only pags we must allocate
420 	 * when loading a crash kernel.  All of the other pages
421 	 * are specified by the segments and we just memcpy
422 	 * into them directly.
423 	 *
424 	 * The only case where we really need more than one of
425 	 * these are for architectures where we cannot disable
426 	 * the MMU and must instead generate an identity mapped
427 	 * page table for all of the memory.
428 	 *
429 	 * Given the low demand this implements a very simple
430 	 * allocator that finds the first hole of the appropriate
431 	 * size in the reserved memory region, and allocates all
432 	 * of the memory up to and including the hole.
433 	 */
434 	unsigned long hole_start, hole_end, size;
435 	struct page *pages;
436 
437 	pages = NULL;
438 	size = (1 << order) << PAGE_SHIFT;
439 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
440 	hole_end   = hole_start + size - 1;
441 	while (hole_end <= crashk_res.end) {
442 		unsigned long i;
443 
444 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
445 			break;
446 		/* See if I overlap any of the segments */
447 		for (i = 0; i < image->nr_segments; i++) {
448 			unsigned long mstart, mend;
449 
450 			mstart = image->segment[i].mem;
451 			mend   = mstart + image->segment[i].memsz - 1;
452 			if ((hole_end >= mstart) && (hole_start <= mend)) {
453 				/* Advance the hole to the end of the segment */
454 				hole_start = (mend + (size - 1)) & ~(size - 1);
455 				hole_end   = hole_start + size - 1;
456 				break;
457 			}
458 		}
459 		/* If I don't overlap any segments I have found my hole! */
460 		if (i == image->nr_segments) {
461 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
462 			image->control_page = hole_end;
463 			break;
464 		}
465 	}
466 
467 	return pages;
468 }
469 
470 
471 struct page *kimage_alloc_control_pages(struct kimage *image,
472 					 unsigned int order)
473 {
474 	struct page *pages = NULL;
475 
476 	switch (image->type) {
477 	case KEXEC_TYPE_DEFAULT:
478 		pages = kimage_alloc_normal_control_pages(image, order);
479 		break;
480 	case KEXEC_TYPE_CRASH:
481 		pages = kimage_alloc_crash_control_pages(image, order);
482 		break;
483 	}
484 
485 	return pages;
486 }
487 
488 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
489 {
490 	if (*image->entry != 0)
491 		image->entry++;
492 
493 	if (image->entry == image->last_entry) {
494 		kimage_entry_t *ind_page;
495 		struct page *page;
496 
497 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
498 		if (!page)
499 			return -ENOMEM;
500 
501 		ind_page = page_address(page);
502 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
503 		image->entry = ind_page;
504 		image->last_entry = ind_page +
505 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
506 	}
507 	*image->entry = entry;
508 	image->entry++;
509 	*image->entry = 0;
510 
511 	return 0;
512 }
513 
514 static int kimage_set_destination(struct kimage *image,
515 				   unsigned long destination)
516 {
517 	int result;
518 
519 	destination &= PAGE_MASK;
520 	result = kimage_add_entry(image, destination | IND_DESTINATION);
521 
522 	return result;
523 }
524 
525 
526 static int kimage_add_page(struct kimage *image, unsigned long page)
527 {
528 	int result;
529 
530 	page &= PAGE_MASK;
531 	result = kimage_add_entry(image, page | IND_SOURCE);
532 
533 	return result;
534 }
535 
536 
537 static void kimage_free_extra_pages(struct kimage *image)
538 {
539 	/* Walk through and free any extra destination pages I may have */
540 	kimage_free_page_list(&image->dest_pages);
541 
542 	/* Walk through and free any unusable pages I have cached */
543 	kimage_free_page_list(&image->unusable_pages);
544 
545 }
546 void kimage_terminate(struct kimage *image)
547 {
548 	if (*image->entry != 0)
549 		image->entry++;
550 
551 	*image->entry = IND_DONE;
552 }
553 
554 #define for_each_kimage_entry(image, ptr, entry) \
555 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
556 		ptr = (entry & IND_INDIRECTION) ? \
557 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
558 
559 static void kimage_free_entry(kimage_entry_t entry)
560 {
561 	struct page *page;
562 
563 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
564 	kimage_free_pages(page);
565 }
566 
567 void kimage_free(struct kimage *image)
568 {
569 	kimage_entry_t *ptr, entry;
570 	kimage_entry_t ind = 0;
571 
572 	if (!image)
573 		return;
574 
575 	kimage_free_extra_pages(image);
576 	for_each_kimage_entry(image, ptr, entry) {
577 		if (entry & IND_INDIRECTION) {
578 			/* Free the previous indirection page */
579 			if (ind & IND_INDIRECTION)
580 				kimage_free_entry(ind);
581 			/* Save this indirection page until we are
582 			 * done with it.
583 			 */
584 			ind = entry;
585 		} else if (entry & IND_SOURCE)
586 			kimage_free_entry(entry);
587 	}
588 	/* Free the final indirection page */
589 	if (ind & IND_INDIRECTION)
590 		kimage_free_entry(ind);
591 
592 	/* Handle any machine specific cleanup */
593 	machine_kexec_cleanup(image);
594 
595 	/* Free the kexec control pages... */
596 	kimage_free_page_list(&image->control_pages);
597 
598 	/*
599 	 * Free up any temporary buffers allocated. This might hit if
600 	 * error occurred much later after buffer allocation.
601 	 */
602 	if (image->file_mode)
603 		kimage_file_post_load_cleanup(image);
604 
605 	kfree(image);
606 }
607 
608 static kimage_entry_t *kimage_dst_used(struct kimage *image,
609 					unsigned long page)
610 {
611 	kimage_entry_t *ptr, entry;
612 	unsigned long destination = 0;
613 
614 	for_each_kimage_entry(image, ptr, entry) {
615 		if (entry & IND_DESTINATION)
616 			destination = entry & PAGE_MASK;
617 		else if (entry & IND_SOURCE) {
618 			if (page == destination)
619 				return ptr;
620 			destination += PAGE_SIZE;
621 		}
622 	}
623 
624 	return NULL;
625 }
626 
627 static struct page *kimage_alloc_page(struct kimage *image,
628 					gfp_t gfp_mask,
629 					unsigned long destination)
630 {
631 	/*
632 	 * Here we implement safeguards to ensure that a source page
633 	 * is not copied to its destination page before the data on
634 	 * the destination page is no longer useful.
635 	 *
636 	 * To do this we maintain the invariant that a source page is
637 	 * either its own destination page, or it is not a
638 	 * destination page at all.
639 	 *
640 	 * That is slightly stronger than required, but the proof
641 	 * that no problems will not occur is trivial, and the
642 	 * implementation is simply to verify.
643 	 *
644 	 * When allocating all pages normally this algorithm will run
645 	 * in O(N) time, but in the worst case it will run in O(N^2)
646 	 * time.   If the runtime is a problem the data structures can
647 	 * be fixed.
648 	 */
649 	struct page *page;
650 	unsigned long addr;
651 
652 	/*
653 	 * Walk through the list of destination pages, and see if I
654 	 * have a match.
655 	 */
656 	list_for_each_entry(page, &image->dest_pages, lru) {
657 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
658 		if (addr == destination) {
659 			list_del(&page->lru);
660 			return page;
661 		}
662 	}
663 	page = NULL;
664 	while (1) {
665 		kimage_entry_t *old;
666 
667 		/* Allocate a page, if we run out of memory give up */
668 		page = kimage_alloc_pages(gfp_mask, 0);
669 		if (!page)
670 			return NULL;
671 		/* If the page cannot be used file it away */
672 		if (page_to_boot_pfn(page) >
673 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
674 			list_add(&page->lru, &image->unusable_pages);
675 			continue;
676 		}
677 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
678 
679 		/* If it is the destination page we want use it */
680 		if (addr == destination)
681 			break;
682 
683 		/* If the page is not a destination page use it */
684 		if (!kimage_is_destination_range(image, addr,
685 						  addr + PAGE_SIZE))
686 			break;
687 
688 		/*
689 		 * I know that the page is someones destination page.
690 		 * See if there is already a source page for this
691 		 * destination page.  And if so swap the source pages.
692 		 */
693 		old = kimage_dst_used(image, addr);
694 		if (old) {
695 			/* If so move it */
696 			unsigned long old_addr;
697 			struct page *old_page;
698 
699 			old_addr = *old & PAGE_MASK;
700 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
701 			copy_highpage(page, old_page);
702 			*old = addr | (*old & ~PAGE_MASK);
703 
704 			/* The old page I have found cannot be a
705 			 * destination page, so return it if it's
706 			 * gfp_flags honor the ones passed in.
707 			 */
708 			if (!(gfp_mask & __GFP_HIGHMEM) &&
709 			    PageHighMem(old_page)) {
710 				kimage_free_pages(old_page);
711 				continue;
712 			}
713 			addr = old_addr;
714 			page = old_page;
715 			break;
716 		}
717 		/* Place the page on the destination list, to be used later */
718 		list_add(&page->lru, &image->dest_pages);
719 	}
720 
721 	return page;
722 }
723 
724 static int kimage_load_normal_segment(struct kimage *image,
725 					 struct kexec_segment *segment)
726 {
727 	unsigned long maddr;
728 	size_t ubytes, mbytes;
729 	int result;
730 	unsigned char __user *buf = NULL;
731 	unsigned char *kbuf = NULL;
732 
733 	result = 0;
734 	if (image->file_mode)
735 		kbuf = segment->kbuf;
736 	else
737 		buf = segment->buf;
738 	ubytes = segment->bufsz;
739 	mbytes = segment->memsz;
740 	maddr = segment->mem;
741 
742 	result = kimage_set_destination(image, maddr);
743 	if (result < 0)
744 		goto out;
745 
746 	while (mbytes) {
747 		struct page *page;
748 		char *ptr;
749 		size_t uchunk, mchunk;
750 
751 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
752 		if (!page) {
753 			result  = -ENOMEM;
754 			goto out;
755 		}
756 		result = kimage_add_page(image, page_to_boot_pfn(page)
757 								<< PAGE_SHIFT);
758 		if (result < 0)
759 			goto out;
760 
761 		ptr = kmap(page);
762 		/* Start with a clear page */
763 		clear_page(ptr);
764 		ptr += maddr & ~PAGE_MASK;
765 		mchunk = min_t(size_t, mbytes,
766 				PAGE_SIZE - (maddr & ~PAGE_MASK));
767 		uchunk = min(ubytes, mchunk);
768 
769 		/* For file based kexec, source pages are in kernel memory */
770 		if (image->file_mode)
771 			memcpy(ptr, kbuf, uchunk);
772 		else
773 			result = copy_from_user(ptr, buf, uchunk);
774 		kunmap(page);
775 		if (result) {
776 			result = -EFAULT;
777 			goto out;
778 		}
779 		ubytes -= uchunk;
780 		maddr  += mchunk;
781 		if (image->file_mode)
782 			kbuf += mchunk;
783 		else
784 			buf += mchunk;
785 		mbytes -= mchunk;
786 	}
787 out:
788 	return result;
789 }
790 
791 static int kimage_load_crash_segment(struct kimage *image,
792 					struct kexec_segment *segment)
793 {
794 	/* For crash dumps kernels we simply copy the data from
795 	 * user space to it's destination.
796 	 * We do things a page at a time for the sake of kmap.
797 	 */
798 	unsigned long maddr;
799 	size_t ubytes, mbytes;
800 	int result;
801 	unsigned char __user *buf = NULL;
802 	unsigned char *kbuf = NULL;
803 
804 	result = 0;
805 	if (image->file_mode)
806 		kbuf = segment->kbuf;
807 	else
808 		buf = segment->buf;
809 	ubytes = segment->bufsz;
810 	mbytes = segment->memsz;
811 	maddr = segment->mem;
812 	while (mbytes) {
813 		struct page *page;
814 		char *ptr;
815 		size_t uchunk, mchunk;
816 
817 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
818 		if (!page) {
819 			result  = -ENOMEM;
820 			goto out;
821 		}
822 		ptr = kmap(page);
823 		ptr += maddr & ~PAGE_MASK;
824 		mchunk = min_t(size_t, mbytes,
825 				PAGE_SIZE - (maddr & ~PAGE_MASK));
826 		uchunk = min(ubytes, mchunk);
827 		if (mchunk > uchunk) {
828 			/* Zero the trailing part of the page */
829 			memset(ptr + uchunk, 0, mchunk - uchunk);
830 		}
831 
832 		/* For file based kexec, source pages are in kernel memory */
833 		if (image->file_mode)
834 			memcpy(ptr, kbuf, uchunk);
835 		else
836 			result = copy_from_user(ptr, buf, uchunk);
837 		kexec_flush_icache_page(page);
838 		kunmap(page);
839 		if (result) {
840 			result = -EFAULT;
841 			goto out;
842 		}
843 		ubytes -= uchunk;
844 		maddr  += mchunk;
845 		if (image->file_mode)
846 			kbuf += mchunk;
847 		else
848 			buf += mchunk;
849 		mbytes -= mchunk;
850 	}
851 out:
852 	return result;
853 }
854 
855 int kimage_load_segment(struct kimage *image,
856 				struct kexec_segment *segment)
857 {
858 	int result = -ENOMEM;
859 
860 	switch (image->type) {
861 	case KEXEC_TYPE_DEFAULT:
862 		result = kimage_load_normal_segment(image, segment);
863 		break;
864 	case KEXEC_TYPE_CRASH:
865 		result = kimage_load_crash_segment(image, segment);
866 		break;
867 	}
868 
869 	return result;
870 }
871 
872 struct kimage *kexec_image;
873 struct kimage *kexec_crash_image;
874 int kexec_load_disabled;
875 
876 /*
877  * No panic_cpu check version of crash_kexec().  This function is called
878  * only when panic_cpu holds the current CPU number; this is the only CPU
879  * which processes crash_kexec routines.
880  */
881 void __crash_kexec(struct pt_regs *regs)
882 {
883 	/* Take the kexec_mutex here to prevent sys_kexec_load
884 	 * running on one cpu from replacing the crash kernel
885 	 * we are using after a panic on a different cpu.
886 	 *
887 	 * If the crash kernel was not located in a fixed area
888 	 * of memory the xchg(&kexec_crash_image) would be
889 	 * sufficient.  But since I reuse the memory...
890 	 */
891 	if (mutex_trylock(&kexec_mutex)) {
892 		if (kexec_crash_image) {
893 			struct pt_regs fixed_regs;
894 
895 			crash_setup_regs(&fixed_regs, regs);
896 			crash_save_vmcoreinfo();
897 			machine_crash_shutdown(&fixed_regs);
898 			machine_kexec(kexec_crash_image);
899 		}
900 		mutex_unlock(&kexec_mutex);
901 	}
902 }
903 
904 void crash_kexec(struct pt_regs *regs)
905 {
906 	int old_cpu, this_cpu;
907 
908 	/*
909 	 * Only one CPU is allowed to execute the crash_kexec() code as with
910 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
911 	 * may stop each other.  To exclude them, we use panic_cpu here too.
912 	 */
913 	this_cpu = raw_smp_processor_id();
914 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
915 	if (old_cpu == PANIC_CPU_INVALID) {
916 		/* This is the 1st CPU which comes here, so go ahead. */
917 		printk_nmi_flush_on_panic();
918 		__crash_kexec(regs);
919 
920 		/*
921 		 * Reset panic_cpu to allow another panic()/crash_kexec()
922 		 * call.
923 		 */
924 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
925 	}
926 }
927 
928 size_t crash_get_memory_size(void)
929 {
930 	size_t size = 0;
931 
932 	mutex_lock(&kexec_mutex);
933 	if (crashk_res.end != crashk_res.start)
934 		size = resource_size(&crashk_res);
935 	mutex_unlock(&kexec_mutex);
936 	return size;
937 }
938 
939 void __weak crash_free_reserved_phys_range(unsigned long begin,
940 					   unsigned long end)
941 {
942 	unsigned long addr;
943 
944 	for (addr = begin; addr < end; addr += PAGE_SIZE)
945 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
946 }
947 
948 int crash_shrink_memory(unsigned long new_size)
949 {
950 	int ret = 0;
951 	unsigned long start, end;
952 	unsigned long old_size;
953 	struct resource *ram_res;
954 
955 	mutex_lock(&kexec_mutex);
956 
957 	if (kexec_crash_image) {
958 		ret = -ENOENT;
959 		goto unlock;
960 	}
961 	start = crashk_res.start;
962 	end = crashk_res.end;
963 	old_size = (end == 0) ? 0 : end - start + 1;
964 	if (new_size >= old_size) {
965 		ret = (new_size == old_size) ? 0 : -EINVAL;
966 		goto unlock;
967 	}
968 
969 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
970 	if (!ram_res) {
971 		ret = -ENOMEM;
972 		goto unlock;
973 	}
974 
975 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
976 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
977 
978 	crash_free_reserved_phys_range(end, crashk_res.end);
979 
980 	if ((start == end) && (crashk_res.parent != NULL))
981 		release_resource(&crashk_res);
982 
983 	ram_res->start = end;
984 	ram_res->end = crashk_res.end;
985 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
986 	ram_res->name = "System RAM";
987 
988 	crashk_res.end = end - 1;
989 
990 	insert_resource(&iomem_resource, ram_res);
991 
992 unlock:
993 	mutex_unlock(&kexec_mutex);
994 	return ret;
995 }
996 
997 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
998 			    size_t data_len)
999 {
1000 	struct elf_note note;
1001 
1002 	note.n_namesz = strlen(name) + 1;
1003 	note.n_descsz = data_len;
1004 	note.n_type   = type;
1005 	memcpy(buf, &note, sizeof(note));
1006 	buf += (sizeof(note) + 3)/4;
1007 	memcpy(buf, name, note.n_namesz);
1008 	buf += (note.n_namesz + 3)/4;
1009 	memcpy(buf, data, note.n_descsz);
1010 	buf += (note.n_descsz + 3)/4;
1011 
1012 	return buf;
1013 }
1014 
1015 static void final_note(u32 *buf)
1016 {
1017 	struct elf_note note;
1018 
1019 	note.n_namesz = 0;
1020 	note.n_descsz = 0;
1021 	note.n_type   = 0;
1022 	memcpy(buf, &note, sizeof(note));
1023 }
1024 
1025 void crash_save_cpu(struct pt_regs *regs, int cpu)
1026 {
1027 	struct elf_prstatus prstatus;
1028 	u32 *buf;
1029 
1030 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1031 		return;
1032 
1033 	/* Using ELF notes here is opportunistic.
1034 	 * I need a well defined structure format
1035 	 * for the data I pass, and I need tags
1036 	 * on the data to indicate what information I have
1037 	 * squirrelled away.  ELF notes happen to provide
1038 	 * all of that, so there is no need to invent something new.
1039 	 */
1040 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1041 	if (!buf)
1042 		return;
1043 	memset(&prstatus, 0, sizeof(prstatus));
1044 	prstatus.pr_pid = current->pid;
1045 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1046 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1047 			      &prstatus, sizeof(prstatus));
1048 	final_note(buf);
1049 }
1050 
1051 static int __init crash_notes_memory_init(void)
1052 {
1053 	/* Allocate memory for saving cpu registers. */
1054 	size_t size, align;
1055 
1056 	/*
1057 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1058 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1059 	 * pages are also on 2 continuous physical pages. In this case the
1060 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1061 	 * starting address and size of crash_notes are exported through sysfs.
1062 	 * Here round up the size of crash_notes to the nearest power of two
1063 	 * and pass it to __alloc_percpu as align value. This can make sure
1064 	 * crash_notes is allocated inside one physical page.
1065 	 */
1066 	size = sizeof(note_buf_t);
1067 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1068 
1069 	/*
1070 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1071 	 * definitely will be in 2 pages with that.
1072 	 */
1073 	BUILD_BUG_ON(size > PAGE_SIZE);
1074 
1075 	crash_notes = __alloc_percpu(size, align);
1076 	if (!crash_notes) {
1077 		pr_warn("Memory allocation for saving cpu register states failed\n");
1078 		return -ENOMEM;
1079 	}
1080 	return 0;
1081 }
1082 subsys_initcall(crash_notes_memory_init);
1083 
1084 
1085 /*
1086  * parsing the "crashkernel" commandline
1087  *
1088  * this code is intended to be called from architecture specific code
1089  */
1090 
1091 
1092 /*
1093  * This function parses command lines in the format
1094  *
1095  *   crashkernel=ramsize-range:size[,...][@offset]
1096  *
1097  * The function returns 0 on success and -EINVAL on failure.
1098  */
1099 static int __init parse_crashkernel_mem(char *cmdline,
1100 					unsigned long long system_ram,
1101 					unsigned long long *crash_size,
1102 					unsigned long long *crash_base)
1103 {
1104 	char *cur = cmdline, *tmp;
1105 
1106 	/* for each entry of the comma-separated list */
1107 	do {
1108 		unsigned long long start, end = ULLONG_MAX, size;
1109 
1110 		/* get the start of the range */
1111 		start = memparse(cur, &tmp);
1112 		if (cur == tmp) {
1113 			pr_warn("crashkernel: Memory value expected\n");
1114 			return -EINVAL;
1115 		}
1116 		cur = tmp;
1117 		if (*cur != '-') {
1118 			pr_warn("crashkernel: '-' expected\n");
1119 			return -EINVAL;
1120 		}
1121 		cur++;
1122 
1123 		/* if no ':' is here, than we read the end */
1124 		if (*cur != ':') {
1125 			end = memparse(cur, &tmp);
1126 			if (cur == tmp) {
1127 				pr_warn("crashkernel: Memory value expected\n");
1128 				return -EINVAL;
1129 			}
1130 			cur = tmp;
1131 			if (end <= start) {
1132 				pr_warn("crashkernel: end <= start\n");
1133 				return -EINVAL;
1134 			}
1135 		}
1136 
1137 		if (*cur != ':') {
1138 			pr_warn("crashkernel: ':' expected\n");
1139 			return -EINVAL;
1140 		}
1141 		cur++;
1142 
1143 		size = memparse(cur, &tmp);
1144 		if (cur == tmp) {
1145 			pr_warn("Memory value expected\n");
1146 			return -EINVAL;
1147 		}
1148 		cur = tmp;
1149 		if (size >= system_ram) {
1150 			pr_warn("crashkernel: invalid size\n");
1151 			return -EINVAL;
1152 		}
1153 
1154 		/* match ? */
1155 		if (system_ram >= start && system_ram < end) {
1156 			*crash_size = size;
1157 			break;
1158 		}
1159 	} while (*cur++ == ',');
1160 
1161 	if (*crash_size > 0) {
1162 		while (*cur && *cur != ' ' && *cur != '@')
1163 			cur++;
1164 		if (*cur == '@') {
1165 			cur++;
1166 			*crash_base = memparse(cur, &tmp);
1167 			if (cur == tmp) {
1168 				pr_warn("Memory value expected after '@'\n");
1169 				return -EINVAL;
1170 			}
1171 		}
1172 	}
1173 
1174 	return 0;
1175 }
1176 
1177 /*
1178  * That function parses "simple" (old) crashkernel command lines like
1179  *
1180  *	crashkernel=size[@offset]
1181  *
1182  * It returns 0 on success and -EINVAL on failure.
1183  */
1184 static int __init parse_crashkernel_simple(char *cmdline,
1185 					   unsigned long long *crash_size,
1186 					   unsigned long long *crash_base)
1187 {
1188 	char *cur = cmdline;
1189 
1190 	*crash_size = memparse(cmdline, &cur);
1191 	if (cmdline == cur) {
1192 		pr_warn("crashkernel: memory value expected\n");
1193 		return -EINVAL;
1194 	}
1195 
1196 	if (*cur == '@')
1197 		*crash_base = memparse(cur+1, &cur);
1198 	else if (*cur != ' ' && *cur != '\0') {
1199 		pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1200 		return -EINVAL;
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 #define SUFFIX_HIGH 0
1207 #define SUFFIX_LOW  1
1208 #define SUFFIX_NULL 2
1209 static __initdata char *suffix_tbl[] = {
1210 	[SUFFIX_HIGH] = ",high",
1211 	[SUFFIX_LOW]  = ",low",
1212 	[SUFFIX_NULL] = NULL,
1213 };
1214 
1215 /*
1216  * That function parses "suffix"  crashkernel command lines like
1217  *
1218  *	crashkernel=size,[high|low]
1219  *
1220  * It returns 0 on success and -EINVAL on failure.
1221  */
1222 static int __init parse_crashkernel_suffix(char *cmdline,
1223 					   unsigned long long	*crash_size,
1224 					   const char *suffix)
1225 {
1226 	char *cur = cmdline;
1227 
1228 	*crash_size = memparse(cmdline, &cur);
1229 	if (cmdline == cur) {
1230 		pr_warn("crashkernel: memory value expected\n");
1231 		return -EINVAL;
1232 	}
1233 
1234 	/* check with suffix */
1235 	if (strncmp(cur, suffix, strlen(suffix))) {
1236 		pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1237 		return -EINVAL;
1238 	}
1239 	cur += strlen(suffix);
1240 	if (*cur != ' ' && *cur != '\0') {
1241 		pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1242 		return -EINVAL;
1243 	}
1244 
1245 	return 0;
1246 }
1247 
1248 static __init char *get_last_crashkernel(char *cmdline,
1249 			     const char *name,
1250 			     const char *suffix)
1251 {
1252 	char *p = cmdline, *ck_cmdline = NULL;
1253 
1254 	/* find crashkernel and use the last one if there are more */
1255 	p = strstr(p, name);
1256 	while (p) {
1257 		char *end_p = strchr(p, ' ');
1258 		char *q;
1259 
1260 		if (!end_p)
1261 			end_p = p + strlen(p);
1262 
1263 		if (!suffix) {
1264 			int i;
1265 
1266 			/* skip the one with any known suffix */
1267 			for (i = 0; suffix_tbl[i]; i++) {
1268 				q = end_p - strlen(suffix_tbl[i]);
1269 				if (!strncmp(q, suffix_tbl[i],
1270 					     strlen(suffix_tbl[i])))
1271 					goto next;
1272 			}
1273 			ck_cmdline = p;
1274 		} else {
1275 			q = end_p - strlen(suffix);
1276 			if (!strncmp(q, suffix, strlen(suffix)))
1277 				ck_cmdline = p;
1278 		}
1279 next:
1280 		p = strstr(p+1, name);
1281 	}
1282 
1283 	if (!ck_cmdline)
1284 		return NULL;
1285 
1286 	return ck_cmdline;
1287 }
1288 
1289 static int __init __parse_crashkernel(char *cmdline,
1290 			     unsigned long long system_ram,
1291 			     unsigned long long *crash_size,
1292 			     unsigned long long *crash_base,
1293 			     const char *name,
1294 			     const char *suffix)
1295 {
1296 	char	*first_colon, *first_space;
1297 	char	*ck_cmdline;
1298 
1299 	BUG_ON(!crash_size || !crash_base);
1300 	*crash_size = 0;
1301 	*crash_base = 0;
1302 
1303 	ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1304 
1305 	if (!ck_cmdline)
1306 		return -EINVAL;
1307 
1308 	ck_cmdline += strlen(name);
1309 
1310 	if (suffix)
1311 		return parse_crashkernel_suffix(ck_cmdline, crash_size,
1312 				suffix);
1313 	/*
1314 	 * if the commandline contains a ':', then that's the extended
1315 	 * syntax -- if not, it must be the classic syntax
1316 	 */
1317 	first_colon = strchr(ck_cmdline, ':');
1318 	first_space = strchr(ck_cmdline, ' ');
1319 	if (first_colon && (!first_space || first_colon < first_space))
1320 		return parse_crashkernel_mem(ck_cmdline, system_ram,
1321 				crash_size, crash_base);
1322 
1323 	return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1324 }
1325 
1326 /*
1327  * That function is the entry point for command line parsing and should be
1328  * called from the arch-specific code.
1329  */
1330 int __init parse_crashkernel(char *cmdline,
1331 			     unsigned long long system_ram,
1332 			     unsigned long long *crash_size,
1333 			     unsigned long long *crash_base)
1334 {
1335 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1336 					"crashkernel=", NULL);
1337 }
1338 
1339 int __init parse_crashkernel_high(char *cmdline,
1340 			     unsigned long long system_ram,
1341 			     unsigned long long *crash_size,
1342 			     unsigned long long *crash_base)
1343 {
1344 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1345 				"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1346 }
1347 
1348 int __init parse_crashkernel_low(char *cmdline,
1349 			     unsigned long long system_ram,
1350 			     unsigned long long *crash_size,
1351 			     unsigned long long *crash_base)
1352 {
1353 	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1354 				"crashkernel=", suffix_tbl[SUFFIX_LOW]);
1355 }
1356 
1357 static void update_vmcoreinfo_note(void)
1358 {
1359 	u32 *buf = vmcoreinfo_note;
1360 
1361 	if (!vmcoreinfo_size)
1362 		return;
1363 	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1364 			      vmcoreinfo_size);
1365 	final_note(buf);
1366 }
1367 
1368 void crash_save_vmcoreinfo(void)
1369 {
1370 	vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1371 	update_vmcoreinfo_note();
1372 }
1373 
1374 void vmcoreinfo_append_str(const char *fmt, ...)
1375 {
1376 	va_list args;
1377 	char buf[0x50];
1378 	size_t r;
1379 
1380 	va_start(args, fmt);
1381 	r = vscnprintf(buf, sizeof(buf), fmt, args);
1382 	va_end(args);
1383 
1384 	r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1385 
1386 	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1387 
1388 	vmcoreinfo_size += r;
1389 }
1390 
1391 /*
1392  * provide an empty default implementation here -- architecture
1393  * code may override this
1394  */
1395 void __weak arch_crash_save_vmcoreinfo(void)
1396 {}
1397 
1398 phys_addr_t __weak paddr_vmcoreinfo_note(void)
1399 {
1400 	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1401 }
1402 
1403 static int __init crash_save_vmcoreinfo_init(void)
1404 {
1405 	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1406 	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1407 
1408 	VMCOREINFO_SYMBOL(init_uts_ns);
1409 	VMCOREINFO_SYMBOL(node_online_map);
1410 #ifdef CONFIG_MMU
1411 	VMCOREINFO_SYMBOL(swapper_pg_dir);
1412 #endif
1413 	VMCOREINFO_SYMBOL(_stext);
1414 	VMCOREINFO_SYMBOL(vmap_area_list);
1415 
1416 #ifndef CONFIG_NEED_MULTIPLE_NODES
1417 	VMCOREINFO_SYMBOL(mem_map);
1418 	VMCOREINFO_SYMBOL(contig_page_data);
1419 #endif
1420 #ifdef CONFIG_SPARSEMEM
1421 	VMCOREINFO_SYMBOL(mem_section);
1422 	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1423 	VMCOREINFO_STRUCT_SIZE(mem_section);
1424 	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1425 #endif
1426 	VMCOREINFO_STRUCT_SIZE(page);
1427 	VMCOREINFO_STRUCT_SIZE(pglist_data);
1428 	VMCOREINFO_STRUCT_SIZE(zone);
1429 	VMCOREINFO_STRUCT_SIZE(free_area);
1430 	VMCOREINFO_STRUCT_SIZE(list_head);
1431 	VMCOREINFO_SIZE(nodemask_t);
1432 	VMCOREINFO_OFFSET(page, flags);
1433 	VMCOREINFO_OFFSET(page, _refcount);
1434 	VMCOREINFO_OFFSET(page, mapping);
1435 	VMCOREINFO_OFFSET(page, lru);
1436 	VMCOREINFO_OFFSET(page, _mapcount);
1437 	VMCOREINFO_OFFSET(page, private);
1438 	VMCOREINFO_OFFSET(page, compound_dtor);
1439 	VMCOREINFO_OFFSET(page, compound_order);
1440 	VMCOREINFO_OFFSET(page, compound_head);
1441 	VMCOREINFO_OFFSET(pglist_data, node_zones);
1442 	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1443 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1444 	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1445 #endif
1446 	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1447 	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1448 	VMCOREINFO_OFFSET(pglist_data, node_id);
1449 	VMCOREINFO_OFFSET(zone, free_area);
1450 	VMCOREINFO_OFFSET(zone, vm_stat);
1451 	VMCOREINFO_OFFSET(zone, spanned_pages);
1452 	VMCOREINFO_OFFSET(free_area, free_list);
1453 	VMCOREINFO_OFFSET(list_head, next);
1454 	VMCOREINFO_OFFSET(list_head, prev);
1455 	VMCOREINFO_OFFSET(vmap_area, va_start);
1456 	VMCOREINFO_OFFSET(vmap_area, list);
1457 	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1458 	log_buf_kexec_setup();
1459 	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1460 	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1461 	VMCOREINFO_NUMBER(PG_lru);
1462 	VMCOREINFO_NUMBER(PG_private);
1463 	VMCOREINFO_NUMBER(PG_swapcache);
1464 	VMCOREINFO_NUMBER(PG_slab);
1465 #ifdef CONFIG_MEMORY_FAILURE
1466 	VMCOREINFO_NUMBER(PG_hwpoison);
1467 #endif
1468 	VMCOREINFO_NUMBER(PG_head_mask);
1469 	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1470 #ifdef CONFIG_X86
1471 	VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
1472 #endif
1473 #ifdef CONFIG_HUGETLB_PAGE
1474 	VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR);
1475 #endif
1476 
1477 	arch_crash_save_vmcoreinfo();
1478 	update_vmcoreinfo_note();
1479 
1480 	return 0;
1481 }
1482 
1483 subsys_initcall(crash_save_vmcoreinfo_init);
1484 
1485 /*
1486  * Move into place and start executing a preloaded standalone
1487  * executable.  If nothing was preloaded return an error.
1488  */
1489 int kernel_kexec(void)
1490 {
1491 	int error = 0;
1492 
1493 	if (!mutex_trylock(&kexec_mutex))
1494 		return -EBUSY;
1495 	if (!kexec_image) {
1496 		error = -EINVAL;
1497 		goto Unlock;
1498 	}
1499 
1500 #ifdef CONFIG_KEXEC_JUMP
1501 	if (kexec_image->preserve_context) {
1502 		lock_system_sleep();
1503 		pm_prepare_console();
1504 		error = freeze_processes();
1505 		if (error) {
1506 			error = -EBUSY;
1507 			goto Restore_console;
1508 		}
1509 		suspend_console();
1510 		error = dpm_suspend_start(PMSG_FREEZE);
1511 		if (error)
1512 			goto Resume_console;
1513 		/* At this point, dpm_suspend_start() has been called,
1514 		 * but *not* dpm_suspend_end(). We *must* call
1515 		 * dpm_suspend_end() now.  Otherwise, drivers for
1516 		 * some devices (e.g. interrupt controllers) become
1517 		 * desynchronized with the actual state of the
1518 		 * hardware at resume time, and evil weirdness ensues.
1519 		 */
1520 		error = dpm_suspend_end(PMSG_FREEZE);
1521 		if (error)
1522 			goto Resume_devices;
1523 		error = disable_nonboot_cpus();
1524 		if (error)
1525 			goto Enable_cpus;
1526 		local_irq_disable();
1527 		error = syscore_suspend();
1528 		if (error)
1529 			goto Enable_irqs;
1530 	} else
1531 #endif
1532 	{
1533 		kexec_in_progress = true;
1534 		kernel_restart_prepare(NULL);
1535 		migrate_to_reboot_cpu();
1536 
1537 		/*
1538 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1539 		 * no further code needs to use CPU hotplug (which is true in
1540 		 * the reboot case). However, the kexec path depends on using
1541 		 * CPU hotplug again; so re-enable it here.
1542 		 */
1543 		cpu_hotplug_enable();
1544 		pr_emerg("Starting new kernel\n");
1545 		machine_shutdown();
1546 	}
1547 
1548 	machine_kexec(kexec_image);
1549 
1550 #ifdef CONFIG_KEXEC_JUMP
1551 	if (kexec_image->preserve_context) {
1552 		syscore_resume();
1553  Enable_irqs:
1554 		local_irq_enable();
1555  Enable_cpus:
1556 		enable_nonboot_cpus();
1557 		dpm_resume_start(PMSG_RESTORE);
1558  Resume_devices:
1559 		dpm_resume_end(PMSG_RESTORE);
1560  Resume_console:
1561 		resume_console();
1562 		thaw_processes();
1563  Restore_console:
1564 		pm_restore_console();
1565 		unlock_system_sleep();
1566 	}
1567 #endif
1568 
1569  Unlock:
1570 	mutex_unlock(&kexec_mutex);
1571 	return error;
1572 }
1573 
1574 /*
1575  * Protection mechanism for crashkernel reserved memory after
1576  * the kdump kernel is loaded.
1577  *
1578  * Provide an empty default implementation here -- architecture
1579  * code may override this
1580  */
1581 void __weak arch_kexec_protect_crashkres(void)
1582 {}
1583 
1584 void __weak arch_kexec_unprotect_crashkres(void)
1585 {}
1586