1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/btf.h> 10 #include <linux/capability.h> 11 #include <linux/mm.h> 12 #include <linux/file.h> 13 #include <linux/slab.h> 14 #include <linux/fs.h> 15 #include <linux/kexec.h> 16 #include <linux/mutex.h> 17 #include <linux/list.h> 18 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 21 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 26 #include <linux/numa.h> 27 #include <linux/suspend.h> 28 #include <linux/device.h> 29 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> 42 #include <linux/kmsg_dump.h> 43 44 #include <asm/page.h> 45 #include <asm/sections.h> 46 47 #include <crypto/hash.h> 48 #include "kexec_internal.h" 49 50 atomic_t __kexec_lock = ATOMIC_INIT(0); 51 52 /* Flag to indicate we are going to kexec a new kernel */ 53 bool kexec_in_progress = false; 54 55 bool kexec_file_dbg_print; 56 57 /* 58 * When kexec transitions to the new kernel there is a one-to-one 59 * mapping between physical and virtual addresses. On processors 60 * where you can disable the MMU this is trivial, and easy. For 61 * others it is still a simple predictable page table to setup. 62 * 63 * In that environment kexec copies the new kernel to its final 64 * resting place. This means I can only support memory whose 65 * physical address can fit in an unsigned long. In particular 66 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 67 * If the assembly stub has more restrictive requirements 68 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 69 * defined more restrictively in <asm/kexec.h>. 70 * 71 * The code for the transition from the current kernel to the 72 * new kernel is placed in the control_code_buffer, whose size 73 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 74 * page of memory is necessary, but some architectures require more. 75 * Because this memory must be identity mapped in the transition from 76 * virtual to physical addresses it must live in the range 77 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 78 * modifiable. 79 * 80 * The assembly stub in the control code buffer is passed a linked list 81 * of descriptor pages detailing the source pages of the new kernel, 82 * and the destination addresses of those source pages. As this data 83 * structure is not used in the context of the current OS, it must 84 * be self-contained. 85 * 86 * The code has been made to work with highmem pages and will use a 87 * destination page in its final resting place (if it happens 88 * to allocate it). The end product of this is that most of the 89 * physical address space, and most of RAM can be used. 90 * 91 * Future directions include: 92 * - allocating a page table with the control code buffer identity 93 * mapped, to simplify machine_kexec and make kexec_on_panic more 94 * reliable. 95 */ 96 97 /* 98 * KIMAGE_NO_DEST is an impossible destination address..., for 99 * allocating pages whose destination address we do not care about. 100 */ 101 #define KIMAGE_NO_DEST (-1UL) 102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 103 104 static struct page *kimage_alloc_page(struct kimage *image, 105 gfp_t gfp_mask, 106 unsigned long dest); 107 108 int sanity_check_segment_list(struct kimage *image) 109 { 110 int i; 111 unsigned long nr_segments = image->nr_segments; 112 unsigned long total_pages = 0; 113 unsigned long nr_pages = totalram_pages(); 114 115 /* 116 * Verify we have good destination addresses. The caller is 117 * responsible for making certain we don't attempt to load 118 * the new image into invalid or reserved areas of RAM. This 119 * just verifies it is an address we can use. 120 * 121 * Since the kernel does everything in page size chunks ensure 122 * the destination addresses are page aligned. Too many 123 * special cases crop of when we don't do this. The most 124 * insidious is getting overlapping destination addresses 125 * simply because addresses are changed to page size 126 * granularity. 127 */ 128 for (i = 0; i < nr_segments; i++) { 129 unsigned long mstart, mend; 130 131 mstart = image->segment[i].mem; 132 mend = mstart + image->segment[i].memsz; 133 if (mstart > mend) 134 return -EADDRNOTAVAIL; 135 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 136 return -EADDRNOTAVAIL; 137 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 138 return -EADDRNOTAVAIL; 139 } 140 141 /* Verify our destination addresses do not overlap. 142 * If we alloed overlapping destination addresses 143 * through very weird things can happen with no 144 * easy explanation as one segment stops on another. 145 */ 146 for (i = 0; i < nr_segments; i++) { 147 unsigned long mstart, mend; 148 unsigned long j; 149 150 mstart = image->segment[i].mem; 151 mend = mstart + image->segment[i].memsz; 152 for (j = 0; j < i; j++) { 153 unsigned long pstart, pend; 154 155 pstart = image->segment[j].mem; 156 pend = pstart + image->segment[j].memsz; 157 /* Do the segments overlap ? */ 158 if ((mend > pstart) && (mstart < pend)) 159 return -EINVAL; 160 } 161 } 162 163 /* Ensure our buffer sizes are strictly less than 164 * our memory sizes. This should always be the case, 165 * and it is easier to check up front than to be surprised 166 * later on. 167 */ 168 for (i = 0; i < nr_segments; i++) { 169 if (image->segment[i].bufsz > image->segment[i].memsz) 170 return -EINVAL; 171 } 172 173 /* 174 * Verify that no more than half of memory will be consumed. If the 175 * request from userspace is too large, a large amount of time will be 176 * wasted allocating pages, which can cause a soft lockup. 177 */ 178 for (i = 0; i < nr_segments; i++) { 179 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 180 return -EINVAL; 181 182 total_pages += PAGE_COUNT(image->segment[i].memsz); 183 } 184 185 if (total_pages > nr_pages / 2) 186 return -EINVAL; 187 188 #ifdef CONFIG_CRASH_DUMP 189 /* 190 * Verify we have good destination addresses. Normally 191 * the caller is responsible for making certain we don't 192 * attempt to load the new image into invalid or reserved 193 * areas of RAM. But crash kernels are preloaded into a 194 * reserved area of ram. We must ensure the addresses 195 * are in the reserved area otherwise preloading the 196 * kernel could corrupt things. 197 */ 198 199 if (image->type == KEXEC_TYPE_CRASH) { 200 for (i = 0; i < nr_segments; i++) { 201 unsigned long mstart, mend; 202 203 mstart = image->segment[i].mem; 204 mend = mstart + image->segment[i].memsz - 1; 205 /* Ensure we are within the crash kernel limits */ 206 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 207 (mend > phys_to_boot_phys(crashk_res.end))) 208 return -EADDRNOTAVAIL; 209 } 210 } 211 #endif 212 213 return 0; 214 } 215 216 struct kimage *do_kimage_alloc_init(void) 217 { 218 struct kimage *image; 219 220 /* Allocate a controlling structure */ 221 image = kzalloc(sizeof(*image), GFP_KERNEL); 222 if (!image) 223 return NULL; 224 225 image->head = 0; 226 image->entry = &image->head; 227 image->last_entry = &image->head; 228 image->control_page = ~0; /* By default this does not apply */ 229 image->type = KEXEC_TYPE_DEFAULT; 230 231 /* Initialize the list of control pages */ 232 INIT_LIST_HEAD(&image->control_pages); 233 234 /* Initialize the list of destination pages */ 235 INIT_LIST_HEAD(&image->dest_pages); 236 237 /* Initialize the list of unusable pages */ 238 INIT_LIST_HEAD(&image->unusable_pages); 239 240 #ifdef CONFIG_CRASH_HOTPLUG 241 image->hp_action = KEXEC_CRASH_HP_NONE; 242 image->elfcorehdr_index = -1; 243 image->elfcorehdr_updated = false; 244 #endif 245 246 return image; 247 } 248 249 int kimage_is_destination_range(struct kimage *image, 250 unsigned long start, 251 unsigned long end) 252 { 253 unsigned long i; 254 255 for (i = 0; i < image->nr_segments; i++) { 256 unsigned long mstart, mend; 257 258 mstart = image->segment[i].mem; 259 mend = mstart + image->segment[i].memsz - 1; 260 if ((end >= mstart) && (start <= mend)) 261 return 1; 262 } 263 264 return 0; 265 } 266 267 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 268 { 269 struct page *pages; 270 271 if (fatal_signal_pending(current)) 272 return NULL; 273 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 274 if (pages) { 275 unsigned int count, i; 276 277 pages->mapping = NULL; 278 set_page_private(pages, order); 279 count = 1 << order; 280 for (i = 0; i < count; i++) 281 SetPageReserved(pages + i); 282 283 arch_kexec_post_alloc_pages(page_address(pages), count, 284 gfp_mask); 285 286 if (gfp_mask & __GFP_ZERO) 287 for (i = 0; i < count; i++) 288 clear_highpage(pages + i); 289 } 290 291 return pages; 292 } 293 294 static void kimage_free_pages(struct page *page) 295 { 296 unsigned int order, count, i; 297 298 order = page_private(page); 299 count = 1 << order; 300 301 arch_kexec_pre_free_pages(page_address(page), count); 302 303 for (i = 0; i < count; i++) 304 ClearPageReserved(page + i); 305 __free_pages(page, order); 306 } 307 308 void kimage_free_page_list(struct list_head *list) 309 { 310 struct page *page, *next; 311 312 list_for_each_entry_safe(page, next, list, lru) { 313 list_del(&page->lru); 314 kimage_free_pages(page); 315 } 316 } 317 318 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 319 unsigned int order) 320 { 321 /* Control pages are special, they are the intermediaries 322 * that are needed while we copy the rest of the pages 323 * to their final resting place. As such they must 324 * not conflict with either the destination addresses 325 * or memory the kernel is already using. 326 * 327 * The only case where we really need more than one of 328 * these are for architectures where we cannot disable 329 * the MMU and must instead generate an identity mapped 330 * page table for all of the memory. 331 * 332 * At worst this runs in O(N) of the image size. 333 */ 334 struct list_head extra_pages; 335 struct page *pages; 336 unsigned int count; 337 338 count = 1 << order; 339 INIT_LIST_HEAD(&extra_pages); 340 341 /* Loop while I can allocate a page and the page allocated 342 * is a destination page. 343 */ 344 do { 345 unsigned long pfn, epfn, addr, eaddr; 346 347 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 348 if (!pages) 349 break; 350 pfn = page_to_boot_pfn(pages); 351 epfn = pfn + count; 352 addr = pfn << PAGE_SHIFT; 353 eaddr = (epfn << PAGE_SHIFT) - 1; 354 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 355 kimage_is_destination_range(image, addr, eaddr)) { 356 list_add(&pages->lru, &extra_pages); 357 pages = NULL; 358 } 359 } while (!pages); 360 361 if (pages) { 362 /* Remember the allocated page... */ 363 list_add(&pages->lru, &image->control_pages); 364 365 /* Because the page is already in it's destination 366 * location we will never allocate another page at 367 * that address. Therefore kimage_alloc_pages 368 * will not return it (again) and we don't need 369 * to give it an entry in image->segment[]. 370 */ 371 } 372 /* Deal with the destination pages I have inadvertently allocated. 373 * 374 * Ideally I would convert multi-page allocations into single 375 * page allocations, and add everything to image->dest_pages. 376 * 377 * For now it is simpler to just free the pages. 378 */ 379 kimage_free_page_list(&extra_pages); 380 381 return pages; 382 } 383 384 #ifdef CONFIG_CRASH_DUMP 385 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 386 unsigned int order) 387 { 388 /* Control pages are special, they are the intermediaries 389 * that are needed while we copy the rest of the pages 390 * to their final resting place. As such they must 391 * not conflict with either the destination addresses 392 * or memory the kernel is already using. 393 * 394 * Control pages are also the only pags we must allocate 395 * when loading a crash kernel. All of the other pages 396 * are specified by the segments and we just memcpy 397 * into them directly. 398 * 399 * The only case where we really need more than one of 400 * these are for architectures where we cannot disable 401 * the MMU and must instead generate an identity mapped 402 * page table for all of the memory. 403 * 404 * Given the low demand this implements a very simple 405 * allocator that finds the first hole of the appropriate 406 * size in the reserved memory region, and allocates all 407 * of the memory up to and including the hole. 408 */ 409 unsigned long hole_start, hole_end, size; 410 struct page *pages; 411 412 pages = NULL; 413 size = (1 << order) << PAGE_SHIFT; 414 hole_start = ALIGN(image->control_page, size); 415 hole_end = hole_start + size - 1; 416 while (hole_end <= crashk_res.end) { 417 unsigned long i; 418 419 cond_resched(); 420 421 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 422 break; 423 /* See if I overlap any of the segments */ 424 for (i = 0; i < image->nr_segments; i++) { 425 unsigned long mstart, mend; 426 427 mstart = image->segment[i].mem; 428 mend = mstart + image->segment[i].memsz - 1; 429 if ((hole_end >= mstart) && (hole_start <= mend)) { 430 /* Advance the hole to the end of the segment */ 431 hole_start = ALIGN(mend, size); 432 hole_end = hole_start + size - 1; 433 break; 434 } 435 } 436 /* If I don't overlap any segments I have found my hole! */ 437 if (i == image->nr_segments) { 438 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 439 image->control_page = hole_end + 1; 440 break; 441 } 442 } 443 444 /* Ensure that these pages are decrypted if SME is enabled. */ 445 if (pages) 446 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 447 448 return pages; 449 } 450 #endif 451 452 453 struct page *kimage_alloc_control_pages(struct kimage *image, 454 unsigned int order) 455 { 456 struct page *pages = NULL; 457 458 switch (image->type) { 459 case KEXEC_TYPE_DEFAULT: 460 pages = kimage_alloc_normal_control_pages(image, order); 461 break; 462 #ifdef CONFIG_CRASH_DUMP 463 case KEXEC_TYPE_CRASH: 464 pages = kimage_alloc_crash_control_pages(image, order); 465 break; 466 #endif 467 } 468 469 return pages; 470 } 471 472 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 473 { 474 if (*image->entry != 0) 475 image->entry++; 476 477 if (image->entry == image->last_entry) { 478 kimage_entry_t *ind_page; 479 struct page *page; 480 481 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 482 if (!page) 483 return -ENOMEM; 484 485 ind_page = page_address(page); 486 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 487 image->entry = ind_page; 488 image->last_entry = ind_page + 489 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 490 } 491 *image->entry = entry; 492 image->entry++; 493 *image->entry = 0; 494 495 return 0; 496 } 497 498 static int kimage_set_destination(struct kimage *image, 499 unsigned long destination) 500 { 501 destination &= PAGE_MASK; 502 503 return kimage_add_entry(image, destination | IND_DESTINATION); 504 } 505 506 507 static int kimage_add_page(struct kimage *image, unsigned long page) 508 { 509 page &= PAGE_MASK; 510 511 return kimage_add_entry(image, page | IND_SOURCE); 512 } 513 514 515 static void kimage_free_extra_pages(struct kimage *image) 516 { 517 /* Walk through and free any extra destination pages I may have */ 518 kimage_free_page_list(&image->dest_pages); 519 520 /* Walk through and free any unusable pages I have cached */ 521 kimage_free_page_list(&image->unusable_pages); 522 523 } 524 525 void kimage_terminate(struct kimage *image) 526 { 527 if (*image->entry != 0) 528 image->entry++; 529 530 *image->entry = IND_DONE; 531 } 532 533 #define for_each_kimage_entry(image, ptr, entry) \ 534 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 535 ptr = (entry & IND_INDIRECTION) ? \ 536 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 537 538 static void kimage_free_entry(kimage_entry_t entry) 539 { 540 struct page *page; 541 542 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 543 kimage_free_pages(page); 544 } 545 546 void kimage_free(struct kimage *image) 547 { 548 kimage_entry_t *ptr, entry; 549 kimage_entry_t ind = 0; 550 551 if (!image) 552 return; 553 554 #ifdef CONFIG_CRASH_DUMP 555 if (image->vmcoreinfo_data_copy) { 556 crash_update_vmcoreinfo_safecopy(NULL); 557 vunmap(image->vmcoreinfo_data_copy); 558 } 559 #endif 560 561 kimage_free_extra_pages(image); 562 for_each_kimage_entry(image, ptr, entry) { 563 if (entry & IND_INDIRECTION) { 564 /* Free the previous indirection page */ 565 if (ind & IND_INDIRECTION) 566 kimage_free_entry(ind); 567 /* Save this indirection page until we are 568 * done with it. 569 */ 570 ind = entry; 571 } else if (entry & IND_SOURCE) 572 kimage_free_entry(entry); 573 } 574 /* Free the final indirection page */ 575 if (ind & IND_INDIRECTION) 576 kimage_free_entry(ind); 577 578 /* Handle any machine specific cleanup */ 579 machine_kexec_cleanup(image); 580 581 /* Free the kexec control pages... */ 582 kimage_free_page_list(&image->control_pages); 583 584 /* 585 * Free up any temporary buffers allocated. This might hit if 586 * error occurred much later after buffer allocation. 587 */ 588 if (image->file_mode) 589 kimage_file_post_load_cleanup(image); 590 591 kfree(image); 592 } 593 594 static kimage_entry_t *kimage_dst_used(struct kimage *image, 595 unsigned long page) 596 { 597 kimage_entry_t *ptr, entry; 598 unsigned long destination = 0; 599 600 for_each_kimage_entry(image, ptr, entry) { 601 if (entry & IND_DESTINATION) 602 destination = entry & PAGE_MASK; 603 else if (entry & IND_SOURCE) { 604 if (page == destination) 605 return ptr; 606 destination += PAGE_SIZE; 607 } 608 } 609 610 return NULL; 611 } 612 613 static struct page *kimage_alloc_page(struct kimage *image, 614 gfp_t gfp_mask, 615 unsigned long destination) 616 { 617 /* 618 * Here we implement safeguards to ensure that a source page 619 * is not copied to its destination page before the data on 620 * the destination page is no longer useful. 621 * 622 * To do this we maintain the invariant that a source page is 623 * either its own destination page, or it is not a 624 * destination page at all. 625 * 626 * That is slightly stronger than required, but the proof 627 * that no problems will not occur is trivial, and the 628 * implementation is simply to verify. 629 * 630 * When allocating all pages normally this algorithm will run 631 * in O(N) time, but in the worst case it will run in O(N^2) 632 * time. If the runtime is a problem the data structures can 633 * be fixed. 634 */ 635 struct page *page; 636 unsigned long addr; 637 638 /* 639 * Walk through the list of destination pages, and see if I 640 * have a match. 641 */ 642 list_for_each_entry(page, &image->dest_pages, lru) { 643 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 644 if (addr == destination) { 645 list_del(&page->lru); 646 return page; 647 } 648 } 649 page = NULL; 650 while (1) { 651 kimage_entry_t *old; 652 653 /* Allocate a page, if we run out of memory give up */ 654 page = kimage_alloc_pages(gfp_mask, 0); 655 if (!page) 656 return NULL; 657 /* If the page cannot be used file it away */ 658 if (page_to_boot_pfn(page) > 659 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 660 list_add(&page->lru, &image->unusable_pages); 661 continue; 662 } 663 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 664 665 /* If it is the destination page we want use it */ 666 if (addr == destination) 667 break; 668 669 /* If the page is not a destination page use it */ 670 if (!kimage_is_destination_range(image, addr, 671 addr + PAGE_SIZE - 1)) 672 break; 673 674 /* 675 * I know that the page is someones destination page. 676 * See if there is already a source page for this 677 * destination page. And if so swap the source pages. 678 */ 679 old = kimage_dst_used(image, addr); 680 if (old) { 681 /* If so move it */ 682 unsigned long old_addr; 683 struct page *old_page; 684 685 old_addr = *old & PAGE_MASK; 686 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 687 copy_highpage(page, old_page); 688 *old = addr | (*old & ~PAGE_MASK); 689 690 /* The old page I have found cannot be a 691 * destination page, so return it if it's 692 * gfp_flags honor the ones passed in. 693 */ 694 if (!(gfp_mask & __GFP_HIGHMEM) && 695 PageHighMem(old_page)) { 696 kimage_free_pages(old_page); 697 continue; 698 } 699 page = old_page; 700 break; 701 } 702 /* Place the page on the destination list, to be used later */ 703 list_add(&page->lru, &image->dest_pages); 704 } 705 706 return page; 707 } 708 709 static int kimage_load_normal_segment(struct kimage *image, 710 struct kexec_segment *segment) 711 { 712 unsigned long maddr; 713 size_t ubytes, mbytes; 714 int result; 715 unsigned char __user *buf = NULL; 716 unsigned char *kbuf = NULL; 717 718 if (image->file_mode) 719 kbuf = segment->kbuf; 720 else 721 buf = segment->buf; 722 ubytes = segment->bufsz; 723 mbytes = segment->memsz; 724 maddr = segment->mem; 725 726 result = kimage_set_destination(image, maddr); 727 if (result < 0) 728 goto out; 729 730 while (mbytes) { 731 struct page *page; 732 char *ptr; 733 size_t uchunk, mchunk; 734 735 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 736 if (!page) { 737 result = -ENOMEM; 738 goto out; 739 } 740 result = kimage_add_page(image, page_to_boot_pfn(page) 741 << PAGE_SHIFT); 742 if (result < 0) 743 goto out; 744 745 ptr = kmap_local_page(page); 746 /* Start with a clear page */ 747 clear_page(ptr); 748 ptr += maddr & ~PAGE_MASK; 749 mchunk = min_t(size_t, mbytes, 750 PAGE_SIZE - (maddr & ~PAGE_MASK)); 751 uchunk = min(ubytes, mchunk); 752 753 if (uchunk) { 754 /* For file based kexec, source pages are in kernel memory */ 755 if (image->file_mode) 756 memcpy(ptr, kbuf, uchunk); 757 else 758 result = copy_from_user(ptr, buf, uchunk); 759 ubytes -= uchunk; 760 if (image->file_mode) 761 kbuf += uchunk; 762 else 763 buf += uchunk; 764 } 765 kunmap_local(ptr); 766 if (result) { 767 result = -EFAULT; 768 goto out; 769 } 770 maddr += mchunk; 771 mbytes -= mchunk; 772 773 cond_resched(); 774 } 775 out: 776 return result; 777 } 778 779 #ifdef CONFIG_CRASH_DUMP 780 static int kimage_load_crash_segment(struct kimage *image, 781 struct kexec_segment *segment) 782 { 783 /* For crash dumps kernels we simply copy the data from 784 * user space to it's destination. 785 * We do things a page at a time for the sake of kmap. 786 */ 787 unsigned long maddr; 788 size_t ubytes, mbytes; 789 int result; 790 unsigned char __user *buf = NULL; 791 unsigned char *kbuf = NULL; 792 793 result = 0; 794 if (image->file_mode) 795 kbuf = segment->kbuf; 796 else 797 buf = segment->buf; 798 ubytes = segment->bufsz; 799 mbytes = segment->memsz; 800 maddr = segment->mem; 801 while (mbytes) { 802 struct page *page; 803 char *ptr; 804 size_t uchunk, mchunk; 805 806 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 807 if (!page) { 808 result = -ENOMEM; 809 goto out; 810 } 811 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 812 ptr = kmap_local_page(page); 813 ptr += maddr & ~PAGE_MASK; 814 mchunk = min_t(size_t, mbytes, 815 PAGE_SIZE - (maddr & ~PAGE_MASK)); 816 uchunk = min(ubytes, mchunk); 817 if (mchunk > uchunk) { 818 /* Zero the trailing part of the page */ 819 memset(ptr + uchunk, 0, mchunk - uchunk); 820 } 821 822 if (uchunk) { 823 /* For file based kexec, source pages are in kernel memory */ 824 if (image->file_mode) 825 memcpy(ptr, kbuf, uchunk); 826 else 827 result = copy_from_user(ptr, buf, uchunk); 828 ubytes -= uchunk; 829 if (image->file_mode) 830 kbuf += uchunk; 831 else 832 buf += uchunk; 833 } 834 kexec_flush_icache_page(page); 835 kunmap_local(ptr); 836 arch_kexec_pre_free_pages(page_address(page), 1); 837 if (result) { 838 result = -EFAULT; 839 goto out; 840 } 841 maddr += mchunk; 842 mbytes -= mchunk; 843 844 cond_resched(); 845 } 846 out: 847 return result; 848 } 849 #endif 850 851 int kimage_load_segment(struct kimage *image, 852 struct kexec_segment *segment) 853 { 854 int result = -ENOMEM; 855 856 switch (image->type) { 857 case KEXEC_TYPE_DEFAULT: 858 result = kimage_load_normal_segment(image, segment); 859 break; 860 #ifdef CONFIG_CRASH_DUMP 861 case KEXEC_TYPE_CRASH: 862 result = kimage_load_crash_segment(image, segment); 863 break; 864 #endif 865 } 866 867 return result; 868 } 869 870 struct kexec_load_limit { 871 /* Mutex protects the limit count. */ 872 struct mutex mutex; 873 int limit; 874 }; 875 876 static struct kexec_load_limit load_limit_reboot = { 877 .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex), 878 .limit = -1, 879 }; 880 881 static struct kexec_load_limit load_limit_panic = { 882 .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex), 883 .limit = -1, 884 }; 885 886 struct kimage *kexec_image; 887 struct kimage *kexec_crash_image; 888 static int kexec_load_disabled; 889 890 #ifdef CONFIG_SYSCTL 891 static int kexec_limit_handler(struct ctl_table *table, int write, 892 void *buffer, size_t *lenp, loff_t *ppos) 893 { 894 struct kexec_load_limit *limit = table->data; 895 int val; 896 struct ctl_table tmp = { 897 .data = &val, 898 .maxlen = sizeof(val), 899 .mode = table->mode, 900 }; 901 int ret; 902 903 if (write) { 904 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); 905 if (ret) 906 return ret; 907 908 if (val < 0) 909 return -EINVAL; 910 911 mutex_lock(&limit->mutex); 912 if (limit->limit != -1 && val >= limit->limit) 913 ret = -EINVAL; 914 else 915 limit->limit = val; 916 mutex_unlock(&limit->mutex); 917 918 return ret; 919 } 920 921 mutex_lock(&limit->mutex); 922 val = limit->limit; 923 mutex_unlock(&limit->mutex); 924 925 return proc_dointvec(&tmp, write, buffer, lenp, ppos); 926 } 927 928 static struct ctl_table kexec_core_sysctls[] = { 929 { 930 .procname = "kexec_load_disabled", 931 .data = &kexec_load_disabled, 932 .maxlen = sizeof(int), 933 .mode = 0644, 934 /* only handle a transition from default "0" to "1" */ 935 .proc_handler = proc_dointvec_minmax, 936 .extra1 = SYSCTL_ONE, 937 .extra2 = SYSCTL_ONE, 938 }, 939 { 940 .procname = "kexec_load_limit_panic", 941 .data = &load_limit_panic, 942 .mode = 0644, 943 .proc_handler = kexec_limit_handler, 944 }, 945 { 946 .procname = "kexec_load_limit_reboot", 947 .data = &load_limit_reboot, 948 .mode = 0644, 949 .proc_handler = kexec_limit_handler, 950 }, 951 { } 952 }; 953 954 static int __init kexec_core_sysctl_init(void) 955 { 956 register_sysctl_init("kernel", kexec_core_sysctls); 957 return 0; 958 } 959 late_initcall(kexec_core_sysctl_init); 960 #endif 961 962 bool kexec_load_permitted(int kexec_image_type) 963 { 964 struct kexec_load_limit *limit; 965 966 /* 967 * Only the superuser can use the kexec syscall and if it has not 968 * been disabled. 969 */ 970 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 971 return false; 972 973 /* Check limit counter and decrease it.*/ 974 limit = (kexec_image_type == KEXEC_TYPE_CRASH) ? 975 &load_limit_panic : &load_limit_reboot; 976 mutex_lock(&limit->mutex); 977 if (!limit->limit) { 978 mutex_unlock(&limit->mutex); 979 return false; 980 } 981 if (limit->limit != -1) 982 limit->limit--; 983 mutex_unlock(&limit->mutex); 984 985 return true; 986 } 987 988 /* 989 * Move into place and start executing a preloaded standalone 990 * executable. If nothing was preloaded return an error. 991 */ 992 int kernel_kexec(void) 993 { 994 int error = 0; 995 996 if (!kexec_trylock()) 997 return -EBUSY; 998 if (!kexec_image) { 999 error = -EINVAL; 1000 goto Unlock; 1001 } 1002 1003 #ifdef CONFIG_KEXEC_JUMP 1004 if (kexec_image->preserve_context) { 1005 pm_prepare_console(); 1006 error = freeze_processes(); 1007 if (error) { 1008 error = -EBUSY; 1009 goto Restore_console; 1010 } 1011 suspend_console(); 1012 error = dpm_suspend_start(PMSG_FREEZE); 1013 if (error) 1014 goto Resume_console; 1015 /* At this point, dpm_suspend_start() has been called, 1016 * but *not* dpm_suspend_end(). We *must* call 1017 * dpm_suspend_end() now. Otherwise, drivers for 1018 * some devices (e.g. interrupt controllers) become 1019 * desynchronized with the actual state of the 1020 * hardware at resume time, and evil weirdness ensues. 1021 */ 1022 error = dpm_suspend_end(PMSG_FREEZE); 1023 if (error) 1024 goto Resume_devices; 1025 error = suspend_disable_secondary_cpus(); 1026 if (error) 1027 goto Enable_cpus; 1028 local_irq_disable(); 1029 error = syscore_suspend(); 1030 if (error) 1031 goto Enable_irqs; 1032 } else 1033 #endif 1034 { 1035 kexec_in_progress = true; 1036 kernel_restart_prepare("kexec reboot"); 1037 migrate_to_reboot_cpu(); 1038 syscore_shutdown(); 1039 1040 /* 1041 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1042 * no further code needs to use CPU hotplug (which is true in 1043 * the reboot case). However, the kexec path depends on using 1044 * CPU hotplug again; so re-enable it here. 1045 */ 1046 cpu_hotplug_enable(); 1047 pr_notice("Starting new kernel\n"); 1048 machine_shutdown(); 1049 } 1050 1051 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1052 machine_kexec(kexec_image); 1053 1054 #ifdef CONFIG_KEXEC_JUMP 1055 if (kexec_image->preserve_context) { 1056 syscore_resume(); 1057 Enable_irqs: 1058 local_irq_enable(); 1059 Enable_cpus: 1060 suspend_enable_secondary_cpus(); 1061 dpm_resume_start(PMSG_RESTORE); 1062 Resume_devices: 1063 dpm_resume_end(PMSG_RESTORE); 1064 Resume_console: 1065 resume_console(); 1066 thaw_processes(); 1067 Restore_console: 1068 pm_restore_console(); 1069 } 1070 #endif 1071 1072 Unlock: 1073 kexec_unlock(); 1074 return error; 1075 } 1076