xref: /linux/kernel/kexec_core.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * kexec.c - kexec system call core code.
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 
42 #include <asm/page.h>
43 #include <asm/sections.h>
44 
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47 #include "kexec_internal.h"
48 
49 DEFINE_MUTEX(kexec_mutex);
50 
51 /* Per cpu memory for storing cpu states in case of system crash. */
52 note_buf_t __percpu *crash_notes;
53 
54 /* Flag to indicate we are going to kexec a new kernel */
55 bool kexec_in_progress = false;
56 
57 
58 /* Location of the reserved area for the crash kernel */
59 struct resource crashk_res = {
60 	.name  = "Crash kernel",
61 	.start = 0,
62 	.end   = 0,
63 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
64 	.desc  = IORES_DESC_CRASH_KERNEL
65 };
66 struct resource crashk_low_res = {
67 	.name  = "Crash kernel",
68 	.start = 0,
69 	.end   = 0,
70 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
71 	.desc  = IORES_DESC_CRASH_KERNEL
72 };
73 
74 int kexec_should_crash(struct task_struct *p)
75 {
76 	/*
77 	 * If crash_kexec_post_notifiers is enabled, don't run
78 	 * crash_kexec() here yet, which must be run after panic
79 	 * notifiers in panic().
80 	 */
81 	if (crash_kexec_post_notifiers)
82 		return 0;
83 	/*
84 	 * There are 4 panic() calls in do_exit() path, each of which
85 	 * corresponds to each of these 4 conditions.
86 	 */
87 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88 		return 1;
89 	return 0;
90 }
91 
92 int kexec_crash_loaded(void)
93 {
94 	return !!kexec_crash_image;
95 }
96 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
97 
98 /*
99  * When kexec transitions to the new kernel there is a one-to-one
100  * mapping between physical and virtual addresses.  On processors
101  * where you can disable the MMU this is trivial, and easy.  For
102  * others it is still a simple predictable page table to setup.
103  *
104  * In that environment kexec copies the new kernel to its final
105  * resting place.  This means I can only support memory whose
106  * physical address can fit in an unsigned long.  In particular
107  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
108  * If the assembly stub has more restrictive requirements
109  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
110  * defined more restrictively in <asm/kexec.h>.
111  *
112  * The code for the transition from the current kernel to the
113  * the new kernel is placed in the control_code_buffer, whose size
114  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
115  * page of memory is necessary, but some architectures require more.
116  * Because this memory must be identity mapped in the transition from
117  * virtual to physical addresses it must live in the range
118  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
119  * modifiable.
120  *
121  * The assembly stub in the control code buffer is passed a linked list
122  * of descriptor pages detailing the source pages of the new kernel,
123  * and the destination addresses of those source pages.  As this data
124  * structure is not used in the context of the current OS, it must
125  * be self-contained.
126  *
127  * The code has been made to work with highmem pages and will use a
128  * destination page in its final resting place (if it happens
129  * to allocate it).  The end product of this is that most of the
130  * physical address space, and most of RAM can be used.
131  *
132  * Future directions include:
133  *  - allocating a page table with the control code buffer identity
134  *    mapped, to simplify machine_kexec and make kexec_on_panic more
135  *    reliable.
136  */
137 
138 /*
139  * KIMAGE_NO_DEST is an impossible destination address..., for
140  * allocating pages whose destination address we do not care about.
141  */
142 #define KIMAGE_NO_DEST (-1UL)
143 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
144 
145 static struct page *kimage_alloc_page(struct kimage *image,
146 				       gfp_t gfp_mask,
147 				       unsigned long dest);
148 
149 int sanity_check_segment_list(struct kimage *image)
150 {
151 	int i;
152 	unsigned long nr_segments = image->nr_segments;
153 	unsigned long total_pages = 0;
154 
155 	/*
156 	 * Verify we have good destination addresses.  The caller is
157 	 * responsible for making certain we don't attempt to load
158 	 * the new image into invalid or reserved areas of RAM.  This
159 	 * just verifies it is an address we can use.
160 	 *
161 	 * Since the kernel does everything in page size chunks ensure
162 	 * the destination addresses are page aligned.  Too many
163 	 * special cases crop of when we don't do this.  The most
164 	 * insidious is getting overlapping destination addresses
165 	 * simply because addresses are changed to page size
166 	 * granularity.
167 	 */
168 	for (i = 0; i < nr_segments; i++) {
169 		unsigned long mstart, mend;
170 
171 		mstart = image->segment[i].mem;
172 		mend   = mstart + image->segment[i].memsz;
173 		if (mstart > mend)
174 			return -EADDRNOTAVAIL;
175 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
176 			return -EADDRNOTAVAIL;
177 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
178 			return -EADDRNOTAVAIL;
179 	}
180 
181 	/* Verify our destination addresses do not overlap.
182 	 * If we alloed overlapping destination addresses
183 	 * through very weird things can happen with no
184 	 * easy explanation as one segment stops on another.
185 	 */
186 	for (i = 0; i < nr_segments; i++) {
187 		unsigned long mstart, mend;
188 		unsigned long j;
189 
190 		mstart = image->segment[i].mem;
191 		mend   = mstart + image->segment[i].memsz;
192 		for (j = 0; j < i; j++) {
193 			unsigned long pstart, pend;
194 
195 			pstart = image->segment[j].mem;
196 			pend   = pstart + image->segment[j].memsz;
197 			/* Do the segments overlap ? */
198 			if ((mend > pstart) && (mstart < pend))
199 				return -EINVAL;
200 		}
201 	}
202 
203 	/* Ensure our buffer sizes are strictly less than
204 	 * our memory sizes.  This should always be the case,
205 	 * and it is easier to check up front than to be surprised
206 	 * later on.
207 	 */
208 	for (i = 0; i < nr_segments; i++) {
209 		if (image->segment[i].bufsz > image->segment[i].memsz)
210 			return -EINVAL;
211 	}
212 
213 	/*
214 	 * Verify that no more than half of memory will be consumed. If the
215 	 * request from userspace is too large, a large amount of time will be
216 	 * wasted allocating pages, which can cause a soft lockup.
217 	 */
218 	for (i = 0; i < nr_segments; i++) {
219 		if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
220 			return -EINVAL;
221 
222 		total_pages += PAGE_COUNT(image->segment[i].memsz);
223 	}
224 
225 	if (total_pages > totalram_pages / 2)
226 		return -EINVAL;
227 
228 	/*
229 	 * Verify we have good destination addresses.  Normally
230 	 * the caller is responsible for making certain we don't
231 	 * attempt to load the new image into invalid or reserved
232 	 * areas of RAM.  But crash kernels are preloaded into a
233 	 * reserved area of ram.  We must ensure the addresses
234 	 * are in the reserved area otherwise preloading the
235 	 * kernel could corrupt things.
236 	 */
237 
238 	if (image->type == KEXEC_TYPE_CRASH) {
239 		for (i = 0; i < nr_segments; i++) {
240 			unsigned long mstart, mend;
241 
242 			mstart = image->segment[i].mem;
243 			mend = mstart + image->segment[i].memsz - 1;
244 			/* Ensure we are within the crash kernel limits */
245 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
246 			    (mend > phys_to_boot_phys(crashk_res.end)))
247 				return -EADDRNOTAVAIL;
248 		}
249 	}
250 
251 	return 0;
252 }
253 
254 struct kimage *do_kimage_alloc_init(void)
255 {
256 	struct kimage *image;
257 
258 	/* Allocate a controlling structure */
259 	image = kzalloc(sizeof(*image), GFP_KERNEL);
260 	if (!image)
261 		return NULL;
262 
263 	image->head = 0;
264 	image->entry = &image->head;
265 	image->last_entry = &image->head;
266 	image->control_page = ~0; /* By default this does not apply */
267 	image->type = KEXEC_TYPE_DEFAULT;
268 
269 	/* Initialize the list of control pages */
270 	INIT_LIST_HEAD(&image->control_pages);
271 
272 	/* Initialize the list of destination pages */
273 	INIT_LIST_HEAD(&image->dest_pages);
274 
275 	/* Initialize the list of unusable pages */
276 	INIT_LIST_HEAD(&image->unusable_pages);
277 
278 	return image;
279 }
280 
281 int kimage_is_destination_range(struct kimage *image,
282 					unsigned long start,
283 					unsigned long end)
284 {
285 	unsigned long i;
286 
287 	for (i = 0; i < image->nr_segments; i++) {
288 		unsigned long mstart, mend;
289 
290 		mstart = image->segment[i].mem;
291 		mend = mstart + image->segment[i].memsz;
292 		if ((end > mstart) && (start < mend))
293 			return 1;
294 	}
295 
296 	return 0;
297 }
298 
299 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
300 {
301 	struct page *pages;
302 
303 	pages = alloc_pages(gfp_mask, order);
304 	if (pages) {
305 		unsigned int count, i;
306 
307 		pages->mapping = NULL;
308 		set_page_private(pages, order);
309 		count = 1 << order;
310 		for (i = 0; i < count; i++)
311 			SetPageReserved(pages + i);
312 	}
313 
314 	return pages;
315 }
316 
317 static void kimage_free_pages(struct page *page)
318 {
319 	unsigned int order, count, i;
320 
321 	order = page_private(page);
322 	count = 1 << order;
323 	for (i = 0; i < count; i++)
324 		ClearPageReserved(page + i);
325 	__free_pages(page, order);
326 }
327 
328 void kimage_free_page_list(struct list_head *list)
329 {
330 	struct page *page, *next;
331 
332 	list_for_each_entry_safe(page, next, list, lru) {
333 		list_del(&page->lru);
334 		kimage_free_pages(page);
335 	}
336 }
337 
338 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
339 							unsigned int order)
340 {
341 	/* Control pages are special, they are the intermediaries
342 	 * that are needed while we copy the rest of the pages
343 	 * to their final resting place.  As such they must
344 	 * not conflict with either the destination addresses
345 	 * or memory the kernel is already using.
346 	 *
347 	 * The only case where we really need more than one of
348 	 * these are for architectures where we cannot disable
349 	 * the MMU and must instead generate an identity mapped
350 	 * page table for all of the memory.
351 	 *
352 	 * At worst this runs in O(N) of the image size.
353 	 */
354 	struct list_head extra_pages;
355 	struct page *pages;
356 	unsigned int count;
357 
358 	count = 1 << order;
359 	INIT_LIST_HEAD(&extra_pages);
360 
361 	/* Loop while I can allocate a page and the page allocated
362 	 * is a destination page.
363 	 */
364 	do {
365 		unsigned long pfn, epfn, addr, eaddr;
366 
367 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
368 		if (!pages)
369 			break;
370 		pfn   = page_to_boot_pfn(pages);
371 		epfn  = pfn + count;
372 		addr  = pfn << PAGE_SHIFT;
373 		eaddr = epfn << PAGE_SHIFT;
374 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
375 			      kimage_is_destination_range(image, addr, eaddr)) {
376 			list_add(&pages->lru, &extra_pages);
377 			pages = NULL;
378 		}
379 	} while (!pages);
380 
381 	if (pages) {
382 		/* Remember the allocated page... */
383 		list_add(&pages->lru, &image->control_pages);
384 
385 		/* Because the page is already in it's destination
386 		 * location we will never allocate another page at
387 		 * that address.  Therefore kimage_alloc_pages
388 		 * will not return it (again) and we don't need
389 		 * to give it an entry in image->segment[].
390 		 */
391 	}
392 	/* Deal with the destination pages I have inadvertently allocated.
393 	 *
394 	 * Ideally I would convert multi-page allocations into single
395 	 * page allocations, and add everything to image->dest_pages.
396 	 *
397 	 * For now it is simpler to just free the pages.
398 	 */
399 	kimage_free_page_list(&extra_pages);
400 
401 	return pages;
402 }
403 
404 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
405 						      unsigned int order)
406 {
407 	/* Control pages are special, they are the intermediaries
408 	 * that are needed while we copy the rest of the pages
409 	 * to their final resting place.  As such they must
410 	 * not conflict with either the destination addresses
411 	 * or memory the kernel is already using.
412 	 *
413 	 * Control pages are also the only pags we must allocate
414 	 * when loading a crash kernel.  All of the other pages
415 	 * are specified by the segments and we just memcpy
416 	 * into them directly.
417 	 *
418 	 * The only case where we really need more than one of
419 	 * these are for architectures where we cannot disable
420 	 * the MMU and must instead generate an identity mapped
421 	 * page table for all of the memory.
422 	 *
423 	 * Given the low demand this implements a very simple
424 	 * allocator that finds the first hole of the appropriate
425 	 * size in the reserved memory region, and allocates all
426 	 * of the memory up to and including the hole.
427 	 */
428 	unsigned long hole_start, hole_end, size;
429 	struct page *pages;
430 
431 	pages = NULL;
432 	size = (1 << order) << PAGE_SHIFT;
433 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
434 	hole_end   = hole_start + size - 1;
435 	while (hole_end <= crashk_res.end) {
436 		unsigned long i;
437 
438 		cond_resched();
439 
440 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
441 			break;
442 		/* See if I overlap any of the segments */
443 		for (i = 0; i < image->nr_segments; i++) {
444 			unsigned long mstart, mend;
445 
446 			mstart = image->segment[i].mem;
447 			mend   = mstart + image->segment[i].memsz - 1;
448 			if ((hole_end >= mstart) && (hole_start <= mend)) {
449 				/* Advance the hole to the end of the segment */
450 				hole_start = (mend + (size - 1)) & ~(size - 1);
451 				hole_end   = hole_start + size - 1;
452 				break;
453 			}
454 		}
455 		/* If I don't overlap any segments I have found my hole! */
456 		if (i == image->nr_segments) {
457 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
458 			image->control_page = hole_end;
459 			break;
460 		}
461 	}
462 
463 	return pages;
464 }
465 
466 
467 struct page *kimage_alloc_control_pages(struct kimage *image,
468 					 unsigned int order)
469 {
470 	struct page *pages = NULL;
471 
472 	switch (image->type) {
473 	case KEXEC_TYPE_DEFAULT:
474 		pages = kimage_alloc_normal_control_pages(image, order);
475 		break;
476 	case KEXEC_TYPE_CRASH:
477 		pages = kimage_alloc_crash_control_pages(image, order);
478 		break;
479 	}
480 
481 	return pages;
482 }
483 
484 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
485 {
486 	if (*image->entry != 0)
487 		image->entry++;
488 
489 	if (image->entry == image->last_entry) {
490 		kimage_entry_t *ind_page;
491 		struct page *page;
492 
493 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
494 		if (!page)
495 			return -ENOMEM;
496 
497 		ind_page = page_address(page);
498 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
499 		image->entry = ind_page;
500 		image->last_entry = ind_page +
501 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
502 	}
503 	*image->entry = entry;
504 	image->entry++;
505 	*image->entry = 0;
506 
507 	return 0;
508 }
509 
510 static int kimage_set_destination(struct kimage *image,
511 				   unsigned long destination)
512 {
513 	int result;
514 
515 	destination &= PAGE_MASK;
516 	result = kimage_add_entry(image, destination | IND_DESTINATION);
517 
518 	return result;
519 }
520 
521 
522 static int kimage_add_page(struct kimage *image, unsigned long page)
523 {
524 	int result;
525 
526 	page &= PAGE_MASK;
527 	result = kimage_add_entry(image, page | IND_SOURCE);
528 
529 	return result;
530 }
531 
532 
533 static void kimage_free_extra_pages(struct kimage *image)
534 {
535 	/* Walk through and free any extra destination pages I may have */
536 	kimage_free_page_list(&image->dest_pages);
537 
538 	/* Walk through and free any unusable pages I have cached */
539 	kimage_free_page_list(&image->unusable_pages);
540 
541 }
542 void kimage_terminate(struct kimage *image)
543 {
544 	if (*image->entry != 0)
545 		image->entry++;
546 
547 	*image->entry = IND_DONE;
548 }
549 
550 #define for_each_kimage_entry(image, ptr, entry) \
551 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
552 		ptr = (entry & IND_INDIRECTION) ? \
553 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
554 
555 static void kimage_free_entry(kimage_entry_t entry)
556 {
557 	struct page *page;
558 
559 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
560 	kimage_free_pages(page);
561 }
562 
563 void kimage_free(struct kimage *image)
564 {
565 	kimage_entry_t *ptr, entry;
566 	kimage_entry_t ind = 0;
567 
568 	if (!image)
569 		return;
570 
571 	kimage_free_extra_pages(image);
572 	for_each_kimage_entry(image, ptr, entry) {
573 		if (entry & IND_INDIRECTION) {
574 			/* Free the previous indirection page */
575 			if (ind & IND_INDIRECTION)
576 				kimage_free_entry(ind);
577 			/* Save this indirection page until we are
578 			 * done with it.
579 			 */
580 			ind = entry;
581 		} else if (entry & IND_SOURCE)
582 			kimage_free_entry(entry);
583 	}
584 	/* Free the final indirection page */
585 	if (ind & IND_INDIRECTION)
586 		kimage_free_entry(ind);
587 
588 	/* Handle any machine specific cleanup */
589 	machine_kexec_cleanup(image);
590 
591 	/* Free the kexec control pages... */
592 	kimage_free_page_list(&image->control_pages);
593 
594 	/*
595 	 * Free up any temporary buffers allocated. This might hit if
596 	 * error occurred much later after buffer allocation.
597 	 */
598 	if (image->file_mode)
599 		kimage_file_post_load_cleanup(image);
600 
601 	kfree(image);
602 }
603 
604 static kimage_entry_t *kimage_dst_used(struct kimage *image,
605 					unsigned long page)
606 {
607 	kimage_entry_t *ptr, entry;
608 	unsigned long destination = 0;
609 
610 	for_each_kimage_entry(image, ptr, entry) {
611 		if (entry & IND_DESTINATION)
612 			destination = entry & PAGE_MASK;
613 		else if (entry & IND_SOURCE) {
614 			if (page == destination)
615 				return ptr;
616 			destination += PAGE_SIZE;
617 		}
618 	}
619 
620 	return NULL;
621 }
622 
623 static struct page *kimage_alloc_page(struct kimage *image,
624 					gfp_t gfp_mask,
625 					unsigned long destination)
626 {
627 	/*
628 	 * Here we implement safeguards to ensure that a source page
629 	 * is not copied to its destination page before the data on
630 	 * the destination page is no longer useful.
631 	 *
632 	 * To do this we maintain the invariant that a source page is
633 	 * either its own destination page, or it is not a
634 	 * destination page at all.
635 	 *
636 	 * That is slightly stronger than required, but the proof
637 	 * that no problems will not occur is trivial, and the
638 	 * implementation is simply to verify.
639 	 *
640 	 * When allocating all pages normally this algorithm will run
641 	 * in O(N) time, but in the worst case it will run in O(N^2)
642 	 * time.   If the runtime is a problem the data structures can
643 	 * be fixed.
644 	 */
645 	struct page *page;
646 	unsigned long addr;
647 
648 	/*
649 	 * Walk through the list of destination pages, and see if I
650 	 * have a match.
651 	 */
652 	list_for_each_entry(page, &image->dest_pages, lru) {
653 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
654 		if (addr == destination) {
655 			list_del(&page->lru);
656 			return page;
657 		}
658 	}
659 	page = NULL;
660 	while (1) {
661 		kimage_entry_t *old;
662 
663 		/* Allocate a page, if we run out of memory give up */
664 		page = kimage_alloc_pages(gfp_mask, 0);
665 		if (!page)
666 			return NULL;
667 		/* If the page cannot be used file it away */
668 		if (page_to_boot_pfn(page) >
669 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
670 			list_add(&page->lru, &image->unusable_pages);
671 			continue;
672 		}
673 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
674 
675 		/* If it is the destination page we want use it */
676 		if (addr == destination)
677 			break;
678 
679 		/* If the page is not a destination page use it */
680 		if (!kimage_is_destination_range(image, addr,
681 						  addr + PAGE_SIZE))
682 			break;
683 
684 		/*
685 		 * I know that the page is someones destination page.
686 		 * See if there is already a source page for this
687 		 * destination page.  And if so swap the source pages.
688 		 */
689 		old = kimage_dst_used(image, addr);
690 		if (old) {
691 			/* If so move it */
692 			unsigned long old_addr;
693 			struct page *old_page;
694 
695 			old_addr = *old & PAGE_MASK;
696 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
697 			copy_highpage(page, old_page);
698 			*old = addr | (*old & ~PAGE_MASK);
699 
700 			/* The old page I have found cannot be a
701 			 * destination page, so return it if it's
702 			 * gfp_flags honor the ones passed in.
703 			 */
704 			if (!(gfp_mask & __GFP_HIGHMEM) &&
705 			    PageHighMem(old_page)) {
706 				kimage_free_pages(old_page);
707 				continue;
708 			}
709 			addr = old_addr;
710 			page = old_page;
711 			break;
712 		}
713 		/* Place the page on the destination list, to be used later */
714 		list_add(&page->lru, &image->dest_pages);
715 	}
716 
717 	return page;
718 }
719 
720 static int kimage_load_normal_segment(struct kimage *image,
721 					 struct kexec_segment *segment)
722 {
723 	unsigned long maddr;
724 	size_t ubytes, mbytes;
725 	int result;
726 	unsigned char __user *buf = NULL;
727 	unsigned char *kbuf = NULL;
728 
729 	result = 0;
730 	if (image->file_mode)
731 		kbuf = segment->kbuf;
732 	else
733 		buf = segment->buf;
734 	ubytes = segment->bufsz;
735 	mbytes = segment->memsz;
736 	maddr = segment->mem;
737 
738 	result = kimage_set_destination(image, maddr);
739 	if (result < 0)
740 		goto out;
741 
742 	while (mbytes) {
743 		struct page *page;
744 		char *ptr;
745 		size_t uchunk, mchunk;
746 
747 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
748 		if (!page) {
749 			result  = -ENOMEM;
750 			goto out;
751 		}
752 		result = kimage_add_page(image, page_to_boot_pfn(page)
753 								<< PAGE_SHIFT);
754 		if (result < 0)
755 			goto out;
756 
757 		ptr = kmap(page);
758 		/* Start with a clear page */
759 		clear_page(ptr);
760 		ptr += maddr & ~PAGE_MASK;
761 		mchunk = min_t(size_t, mbytes,
762 				PAGE_SIZE - (maddr & ~PAGE_MASK));
763 		uchunk = min(ubytes, mchunk);
764 
765 		/* For file based kexec, source pages are in kernel memory */
766 		if (image->file_mode)
767 			memcpy(ptr, kbuf, uchunk);
768 		else
769 			result = copy_from_user(ptr, buf, uchunk);
770 		kunmap(page);
771 		if (result) {
772 			result = -EFAULT;
773 			goto out;
774 		}
775 		ubytes -= uchunk;
776 		maddr  += mchunk;
777 		if (image->file_mode)
778 			kbuf += mchunk;
779 		else
780 			buf += mchunk;
781 		mbytes -= mchunk;
782 	}
783 out:
784 	return result;
785 }
786 
787 static int kimage_load_crash_segment(struct kimage *image,
788 					struct kexec_segment *segment)
789 {
790 	/* For crash dumps kernels we simply copy the data from
791 	 * user space to it's destination.
792 	 * We do things a page at a time for the sake of kmap.
793 	 */
794 	unsigned long maddr;
795 	size_t ubytes, mbytes;
796 	int result;
797 	unsigned char __user *buf = NULL;
798 	unsigned char *kbuf = NULL;
799 
800 	result = 0;
801 	if (image->file_mode)
802 		kbuf = segment->kbuf;
803 	else
804 		buf = segment->buf;
805 	ubytes = segment->bufsz;
806 	mbytes = segment->memsz;
807 	maddr = segment->mem;
808 	while (mbytes) {
809 		struct page *page;
810 		char *ptr;
811 		size_t uchunk, mchunk;
812 
813 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
814 		if (!page) {
815 			result  = -ENOMEM;
816 			goto out;
817 		}
818 		ptr = kmap(page);
819 		ptr += maddr & ~PAGE_MASK;
820 		mchunk = min_t(size_t, mbytes,
821 				PAGE_SIZE - (maddr & ~PAGE_MASK));
822 		uchunk = min(ubytes, mchunk);
823 		if (mchunk > uchunk) {
824 			/* Zero the trailing part of the page */
825 			memset(ptr + uchunk, 0, mchunk - uchunk);
826 		}
827 
828 		/* For file based kexec, source pages are in kernel memory */
829 		if (image->file_mode)
830 			memcpy(ptr, kbuf, uchunk);
831 		else
832 			result = copy_from_user(ptr, buf, uchunk);
833 		kexec_flush_icache_page(page);
834 		kunmap(page);
835 		if (result) {
836 			result = -EFAULT;
837 			goto out;
838 		}
839 		ubytes -= uchunk;
840 		maddr  += mchunk;
841 		if (image->file_mode)
842 			kbuf += mchunk;
843 		else
844 			buf += mchunk;
845 		mbytes -= mchunk;
846 	}
847 out:
848 	return result;
849 }
850 
851 int kimage_load_segment(struct kimage *image,
852 				struct kexec_segment *segment)
853 {
854 	int result = -ENOMEM;
855 
856 	switch (image->type) {
857 	case KEXEC_TYPE_DEFAULT:
858 		result = kimage_load_normal_segment(image, segment);
859 		break;
860 	case KEXEC_TYPE_CRASH:
861 		result = kimage_load_crash_segment(image, segment);
862 		break;
863 	}
864 
865 	return result;
866 }
867 
868 struct kimage *kexec_image;
869 struct kimage *kexec_crash_image;
870 int kexec_load_disabled;
871 
872 /*
873  * No panic_cpu check version of crash_kexec().  This function is called
874  * only when panic_cpu holds the current CPU number; this is the only CPU
875  * which processes crash_kexec routines.
876  */
877 void __crash_kexec(struct pt_regs *regs)
878 {
879 	/* Take the kexec_mutex here to prevent sys_kexec_load
880 	 * running on one cpu from replacing the crash kernel
881 	 * we are using after a panic on a different cpu.
882 	 *
883 	 * If the crash kernel was not located in a fixed area
884 	 * of memory the xchg(&kexec_crash_image) would be
885 	 * sufficient.  But since I reuse the memory...
886 	 */
887 	if (mutex_trylock(&kexec_mutex)) {
888 		if (kexec_crash_image) {
889 			struct pt_regs fixed_regs;
890 
891 			crash_setup_regs(&fixed_regs, regs);
892 			crash_save_vmcoreinfo();
893 			machine_crash_shutdown(&fixed_regs);
894 			machine_kexec(kexec_crash_image);
895 		}
896 		mutex_unlock(&kexec_mutex);
897 	}
898 }
899 
900 void crash_kexec(struct pt_regs *regs)
901 {
902 	int old_cpu, this_cpu;
903 
904 	/*
905 	 * Only one CPU is allowed to execute the crash_kexec() code as with
906 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
907 	 * may stop each other.  To exclude them, we use panic_cpu here too.
908 	 */
909 	this_cpu = raw_smp_processor_id();
910 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
911 	if (old_cpu == PANIC_CPU_INVALID) {
912 		/* This is the 1st CPU which comes here, so go ahead. */
913 		printk_safe_flush_on_panic();
914 		__crash_kexec(regs);
915 
916 		/*
917 		 * Reset panic_cpu to allow another panic()/crash_kexec()
918 		 * call.
919 		 */
920 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
921 	}
922 }
923 
924 size_t crash_get_memory_size(void)
925 {
926 	size_t size = 0;
927 
928 	mutex_lock(&kexec_mutex);
929 	if (crashk_res.end != crashk_res.start)
930 		size = resource_size(&crashk_res);
931 	mutex_unlock(&kexec_mutex);
932 	return size;
933 }
934 
935 void __weak crash_free_reserved_phys_range(unsigned long begin,
936 					   unsigned long end)
937 {
938 	unsigned long addr;
939 
940 	for (addr = begin; addr < end; addr += PAGE_SIZE)
941 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
942 }
943 
944 int crash_shrink_memory(unsigned long new_size)
945 {
946 	int ret = 0;
947 	unsigned long start, end;
948 	unsigned long old_size;
949 	struct resource *ram_res;
950 
951 	mutex_lock(&kexec_mutex);
952 
953 	if (kexec_crash_image) {
954 		ret = -ENOENT;
955 		goto unlock;
956 	}
957 	start = crashk_res.start;
958 	end = crashk_res.end;
959 	old_size = (end == 0) ? 0 : end - start + 1;
960 	if (new_size >= old_size) {
961 		ret = (new_size == old_size) ? 0 : -EINVAL;
962 		goto unlock;
963 	}
964 
965 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
966 	if (!ram_res) {
967 		ret = -ENOMEM;
968 		goto unlock;
969 	}
970 
971 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
972 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
973 
974 	crash_free_reserved_phys_range(end, crashk_res.end);
975 
976 	if ((start == end) && (crashk_res.parent != NULL))
977 		release_resource(&crashk_res);
978 
979 	ram_res->start = end;
980 	ram_res->end = crashk_res.end;
981 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
982 	ram_res->name = "System RAM";
983 
984 	crashk_res.end = end - 1;
985 
986 	insert_resource(&iomem_resource, ram_res);
987 
988 unlock:
989 	mutex_unlock(&kexec_mutex);
990 	return ret;
991 }
992 
993 void crash_save_cpu(struct pt_regs *regs, int cpu)
994 {
995 	struct elf_prstatus prstatus;
996 	u32 *buf;
997 
998 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
999 		return;
1000 
1001 	/* Using ELF notes here is opportunistic.
1002 	 * I need a well defined structure format
1003 	 * for the data I pass, and I need tags
1004 	 * on the data to indicate what information I have
1005 	 * squirrelled away.  ELF notes happen to provide
1006 	 * all of that, so there is no need to invent something new.
1007 	 */
1008 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1009 	if (!buf)
1010 		return;
1011 	memset(&prstatus, 0, sizeof(prstatus));
1012 	prstatus.pr_pid = current->pid;
1013 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1014 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1015 			      &prstatus, sizeof(prstatus));
1016 	final_note(buf);
1017 }
1018 
1019 static int __init crash_notes_memory_init(void)
1020 {
1021 	/* Allocate memory for saving cpu registers. */
1022 	size_t size, align;
1023 
1024 	/*
1025 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1026 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1027 	 * pages are also on 2 continuous physical pages. In this case the
1028 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1029 	 * starting address and size of crash_notes are exported through sysfs.
1030 	 * Here round up the size of crash_notes to the nearest power of two
1031 	 * and pass it to __alloc_percpu as align value. This can make sure
1032 	 * crash_notes is allocated inside one physical page.
1033 	 */
1034 	size = sizeof(note_buf_t);
1035 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1036 
1037 	/*
1038 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1039 	 * definitely will be in 2 pages with that.
1040 	 */
1041 	BUILD_BUG_ON(size > PAGE_SIZE);
1042 
1043 	crash_notes = __alloc_percpu(size, align);
1044 	if (!crash_notes) {
1045 		pr_warn("Memory allocation for saving cpu register states failed\n");
1046 		return -ENOMEM;
1047 	}
1048 	return 0;
1049 }
1050 subsys_initcall(crash_notes_memory_init);
1051 
1052 
1053 /*
1054  * Move into place and start executing a preloaded standalone
1055  * executable.  If nothing was preloaded return an error.
1056  */
1057 int kernel_kexec(void)
1058 {
1059 	int error = 0;
1060 
1061 	if (!mutex_trylock(&kexec_mutex))
1062 		return -EBUSY;
1063 	if (!kexec_image) {
1064 		error = -EINVAL;
1065 		goto Unlock;
1066 	}
1067 
1068 #ifdef CONFIG_KEXEC_JUMP
1069 	if (kexec_image->preserve_context) {
1070 		lock_system_sleep();
1071 		pm_prepare_console();
1072 		error = freeze_processes();
1073 		if (error) {
1074 			error = -EBUSY;
1075 			goto Restore_console;
1076 		}
1077 		suspend_console();
1078 		error = dpm_suspend_start(PMSG_FREEZE);
1079 		if (error)
1080 			goto Resume_console;
1081 		/* At this point, dpm_suspend_start() has been called,
1082 		 * but *not* dpm_suspend_end(). We *must* call
1083 		 * dpm_suspend_end() now.  Otherwise, drivers for
1084 		 * some devices (e.g. interrupt controllers) become
1085 		 * desynchronized with the actual state of the
1086 		 * hardware at resume time, and evil weirdness ensues.
1087 		 */
1088 		error = dpm_suspend_end(PMSG_FREEZE);
1089 		if (error)
1090 			goto Resume_devices;
1091 		error = disable_nonboot_cpus();
1092 		if (error)
1093 			goto Enable_cpus;
1094 		local_irq_disable();
1095 		error = syscore_suspend();
1096 		if (error)
1097 			goto Enable_irqs;
1098 	} else
1099 #endif
1100 	{
1101 		kexec_in_progress = true;
1102 		kernel_restart_prepare(NULL);
1103 		migrate_to_reboot_cpu();
1104 
1105 		/*
1106 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1107 		 * no further code needs to use CPU hotplug (which is true in
1108 		 * the reboot case). However, the kexec path depends on using
1109 		 * CPU hotplug again; so re-enable it here.
1110 		 */
1111 		cpu_hotplug_enable();
1112 		pr_emerg("Starting new kernel\n");
1113 		machine_shutdown();
1114 	}
1115 
1116 	machine_kexec(kexec_image);
1117 
1118 #ifdef CONFIG_KEXEC_JUMP
1119 	if (kexec_image->preserve_context) {
1120 		syscore_resume();
1121  Enable_irqs:
1122 		local_irq_enable();
1123  Enable_cpus:
1124 		enable_nonboot_cpus();
1125 		dpm_resume_start(PMSG_RESTORE);
1126  Resume_devices:
1127 		dpm_resume_end(PMSG_RESTORE);
1128  Resume_console:
1129 		resume_console();
1130 		thaw_processes();
1131  Restore_console:
1132 		pm_restore_console();
1133 		unlock_system_sleep();
1134 	}
1135 #endif
1136 
1137  Unlock:
1138 	mutex_unlock(&kexec_mutex);
1139 	return error;
1140 }
1141 
1142 /*
1143  * Protection mechanism for crashkernel reserved memory after
1144  * the kdump kernel is loaded.
1145  *
1146  * Provide an empty default implementation here -- architecture
1147  * code may override this
1148  */
1149 void __weak arch_kexec_protect_crashkres(void)
1150 {}
1151 
1152 void __weak arch_kexec_unprotect_crashkres(void)
1153 {}
1154