xref: /linux/kernel/kexec_core.c (revision e1c4c5436b4ad579762fbe78bfabc8aef59bd5b1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec system call core code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <linux/utsname.h>
25 #include <linux/numa.h>
26 #include <linux/suspend.h>
27 #include <linux/device.h>
28 #include <linux/freezer.h>
29 #include <linux/panic_notifier.h>
30 #include <linux/pm.h>
31 #include <linux/cpu.h>
32 #include <linux/uaccess.h>
33 #include <linux/io.h>
34 #include <linux/console.h>
35 #include <linux/vmalloc.h>
36 #include <linux/swap.h>
37 #include <linux/syscore_ops.h>
38 #include <linux/compiler.h>
39 #include <linux/hugetlb.h>
40 #include <linux/objtool.h>
41 #include <linux/kmsg_dump.h>
42 
43 #include <asm/page.h>
44 #include <asm/sections.h>
45 
46 #include <crypto/hash.h>
47 #include "kexec_internal.h"
48 
49 atomic_t __kexec_lock = ATOMIC_INIT(0);
50 
51 /* Per cpu memory for storing cpu states in case of system crash. */
52 note_buf_t __percpu *crash_notes;
53 
54 /* Flag to indicate we are going to kexec a new kernel */
55 bool kexec_in_progress = false;
56 
57 
58 /* Location of the reserved area for the crash kernel */
59 struct resource crashk_res = {
60 	.name  = "Crash kernel",
61 	.start = 0,
62 	.end   = 0,
63 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
64 	.desc  = IORES_DESC_CRASH_KERNEL
65 };
66 struct resource crashk_low_res = {
67 	.name  = "Crash kernel",
68 	.start = 0,
69 	.end   = 0,
70 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
71 	.desc  = IORES_DESC_CRASH_KERNEL
72 };
73 
74 int kexec_should_crash(struct task_struct *p)
75 {
76 	/*
77 	 * If crash_kexec_post_notifiers is enabled, don't run
78 	 * crash_kexec() here yet, which must be run after panic
79 	 * notifiers in panic().
80 	 */
81 	if (crash_kexec_post_notifiers)
82 		return 0;
83 	/*
84 	 * There are 4 panic() calls in make_task_dead() path, each of which
85 	 * corresponds to each of these 4 conditions.
86 	 */
87 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88 		return 1;
89 	return 0;
90 }
91 
92 int kexec_crash_loaded(void)
93 {
94 	return !!kexec_crash_image;
95 }
96 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
97 
98 /*
99  * When kexec transitions to the new kernel there is a one-to-one
100  * mapping between physical and virtual addresses.  On processors
101  * where you can disable the MMU this is trivial, and easy.  For
102  * others it is still a simple predictable page table to setup.
103  *
104  * In that environment kexec copies the new kernel to its final
105  * resting place.  This means I can only support memory whose
106  * physical address can fit in an unsigned long.  In particular
107  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
108  * If the assembly stub has more restrictive requirements
109  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
110  * defined more restrictively in <asm/kexec.h>.
111  *
112  * The code for the transition from the current kernel to the
113  * new kernel is placed in the control_code_buffer, whose size
114  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
115  * page of memory is necessary, but some architectures require more.
116  * Because this memory must be identity mapped in the transition from
117  * virtual to physical addresses it must live in the range
118  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
119  * modifiable.
120  *
121  * The assembly stub in the control code buffer is passed a linked list
122  * of descriptor pages detailing the source pages of the new kernel,
123  * and the destination addresses of those source pages.  As this data
124  * structure is not used in the context of the current OS, it must
125  * be self-contained.
126  *
127  * The code has been made to work with highmem pages and will use a
128  * destination page in its final resting place (if it happens
129  * to allocate it).  The end product of this is that most of the
130  * physical address space, and most of RAM can be used.
131  *
132  * Future directions include:
133  *  - allocating a page table with the control code buffer identity
134  *    mapped, to simplify machine_kexec and make kexec_on_panic more
135  *    reliable.
136  */
137 
138 /*
139  * KIMAGE_NO_DEST is an impossible destination address..., for
140  * allocating pages whose destination address we do not care about.
141  */
142 #define KIMAGE_NO_DEST (-1UL)
143 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
144 
145 static struct page *kimage_alloc_page(struct kimage *image,
146 				       gfp_t gfp_mask,
147 				       unsigned long dest);
148 
149 int sanity_check_segment_list(struct kimage *image)
150 {
151 	int i;
152 	unsigned long nr_segments = image->nr_segments;
153 	unsigned long total_pages = 0;
154 	unsigned long nr_pages = totalram_pages();
155 
156 	/*
157 	 * Verify we have good destination addresses.  The caller is
158 	 * responsible for making certain we don't attempt to load
159 	 * the new image into invalid or reserved areas of RAM.  This
160 	 * just verifies it is an address we can use.
161 	 *
162 	 * Since the kernel does everything in page size chunks ensure
163 	 * the destination addresses are page aligned.  Too many
164 	 * special cases crop of when we don't do this.  The most
165 	 * insidious is getting overlapping destination addresses
166 	 * simply because addresses are changed to page size
167 	 * granularity.
168 	 */
169 	for (i = 0; i < nr_segments; i++) {
170 		unsigned long mstart, mend;
171 
172 		mstart = image->segment[i].mem;
173 		mend   = mstart + image->segment[i].memsz;
174 		if (mstart > mend)
175 			return -EADDRNOTAVAIL;
176 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
177 			return -EADDRNOTAVAIL;
178 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
179 			return -EADDRNOTAVAIL;
180 	}
181 
182 	/* Verify our destination addresses do not overlap.
183 	 * If we alloed overlapping destination addresses
184 	 * through very weird things can happen with no
185 	 * easy explanation as one segment stops on another.
186 	 */
187 	for (i = 0; i < nr_segments; i++) {
188 		unsigned long mstart, mend;
189 		unsigned long j;
190 
191 		mstart = image->segment[i].mem;
192 		mend   = mstart + image->segment[i].memsz;
193 		for (j = 0; j < i; j++) {
194 			unsigned long pstart, pend;
195 
196 			pstart = image->segment[j].mem;
197 			pend   = pstart + image->segment[j].memsz;
198 			/* Do the segments overlap ? */
199 			if ((mend > pstart) && (mstart < pend))
200 				return -EINVAL;
201 		}
202 	}
203 
204 	/* Ensure our buffer sizes are strictly less than
205 	 * our memory sizes.  This should always be the case,
206 	 * and it is easier to check up front than to be surprised
207 	 * later on.
208 	 */
209 	for (i = 0; i < nr_segments; i++) {
210 		if (image->segment[i].bufsz > image->segment[i].memsz)
211 			return -EINVAL;
212 	}
213 
214 	/*
215 	 * Verify that no more than half of memory will be consumed. If the
216 	 * request from userspace is too large, a large amount of time will be
217 	 * wasted allocating pages, which can cause a soft lockup.
218 	 */
219 	for (i = 0; i < nr_segments; i++) {
220 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
221 			return -EINVAL;
222 
223 		total_pages += PAGE_COUNT(image->segment[i].memsz);
224 	}
225 
226 	if (total_pages > nr_pages / 2)
227 		return -EINVAL;
228 
229 	/*
230 	 * Verify we have good destination addresses.  Normally
231 	 * the caller is responsible for making certain we don't
232 	 * attempt to load the new image into invalid or reserved
233 	 * areas of RAM.  But crash kernels are preloaded into a
234 	 * reserved area of ram.  We must ensure the addresses
235 	 * are in the reserved area otherwise preloading the
236 	 * kernel could corrupt things.
237 	 */
238 
239 	if (image->type == KEXEC_TYPE_CRASH) {
240 		for (i = 0; i < nr_segments; i++) {
241 			unsigned long mstart, mend;
242 
243 			mstart = image->segment[i].mem;
244 			mend = mstart + image->segment[i].memsz - 1;
245 			/* Ensure we are within the crash kernel limits */
246 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
247 			    (mend > phys_to_boot_phys(crashk_res.end)))
248 				return -EADDRNOTAVAIL;
249 		}
250 	}
251 
252 	return 0;
253 }
254 
255 struct kimage *do_kimage_alloc_init(void)
256 {
257 	struct kimage *image;
258 
259 	/* Allocate a controlling structure */
260 	image = kzalloc(sizeof(*image), GFP_KERNEL);
261 	if (!image)
262 		return NULL;
263 
264 	image->head = 0;
265 	image->entry = &image->head;
266 	image->last_entry = &image->head;
267 	image->control_page = ~0; /* By default this does not apply */
268 	image->type = KEXEC_TYPE_DEFAULT;
269 
270 	/* Initialize the list of control pages */
271 	INIT_LIST_HEAD(&image->control_pages);
272 
273 	/* Initialize the list of destination pages */
274 	INIT_LIST_HEAD(&image->dest_pages);
275 
276 	/* Initialize the list of unusable pages */
277 	INIT_LIST_HEAD(&image->unusable_pages);
278 
279 	return image;
280 }
281 
282 int kimage_is_destination_range(struct kimage *image,
283 					unsigned long start,
284 					unsigned long end)
285 {
286 	unsigned long i;
287 
288 	for (i = 0; i < image->nr_segments; i++) {
289 		unsigned long mstart, mend;
290 
291 		mstart = image->segment[i].mem;
292 		mend = mstart + image->segment[i].memsz;
293 		if ((end > mstart) && (start < mend))
294 			return 1;
295 	}
296 
297 	return 0;
298 }
299 
300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
301 {
302 	struct page *pages;
303 
304 	if (fatal_signal_pending(current))
305 		return NULL;
306 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
307 	if (pages) {
308 		unsigned int count, i;
309 
310 		pages->mapping = NULL;
311 		set_page_private(pages, order);
312 		count = 1 << order;
313 		for (i = 0; i < count; i++)
314 			SetPageReserved(pages + i);
315 
316 		arch_kexec_post_alloc_pages(page_address(pages), count,
317 					    gfp_mask);
318 
319 		if (gfp_mask & __GFP_ZERO)
320 			for (i = 0; i < count; i++)
321 				clear_highpage(pages + i);
322 	}
323 
324 	return pages;
325 }
326 
327 static void kimage_free_pages(struct page *page)
328 {
329 	unsigned int order, count, i;
330 
331 	order = page_private(page);
332 	count = 1 << order;
333 
334 	arch_kexec_pre_free_pages(page_address(page), count);
335 
336 	for (i = 0; i < count; i++)
337 		ClearPageReserved(page + i);
338 	__free_pages(page, order);
339 }
340 
341 void kimage_free_page_list(struct list_head *list)
342 {
343 	struct page *page, *next;
344 
345 	list_for_each_entry_safe(page, next, list, lru) {
346 		list_del(&page->lru);
347 		kimage_free_pages(page);
348 	}
349 }
350 
351 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
352 							unsigned int order)
353 {
354 	/* Control pages are special, they are the intermediaries
355 	 * that are needed while we copy the rest of the pages
356 	 * to their final resting place.  As such they must
357 	 * not conflict with either the destination addresses
358 	 * or memory the kernel is already using.
359 	 *
360 	 * The only case where we really need more than one of
361 	 * these are for architectures where we cannot disable
362 	 * the MMU and must instead generate an identity mapped
363 	 * page table for all of the memory.
364 	 *
365 	 * At worst this runs in O(N) of the image size.
366 	 */
367 	struct list_head extra_pages;
368 	struct page *pages;
369 	unsigned int count;
370 
371 	count = 1 << order;
372 	INIT_LIST_HEAD(&extra_pages);
373 
374 	/* Loop while I can allocate a page and the page allocated
375 	 * is a destination page.
376 	 */
377 	do {
378 		unsigned long pfn, epfn, addr, eaddr;
379 
380 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
381 		if (!pages)
382 			break;
383 		pfn   = page_to_boot_pfn(pages);
384 		epfn  = pfn + count;
385 		addr  = pfn << PAGE_SHIFT;
386 		eaddr = epfn << PAGE_SHIFT;
387 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
388 			      kimage_is_destination_range(image, addr, eaddr)) {
389 			list_add(&pages->lru, &extra_pages);
390 			pages = NULL;
391 		}
392 	} while (!pages);
393 
394 	if (pages) {
395 		/* Remember the allocated page... */
396 		list_add(&pages->lru, &image->control_pages);
397 
398 		/* Because the page is already in it's destination
399 		 * location we will never allocate another page at
400 		 * that address.  Therefore kimage_alloc_pages
401 		 * will not return it (again) and we don't need
402 		 * to give it an entry in image->segment[].
403 		 */
404 	}
405 	/* Deal with the destination pages I have inadvertently allocated.
406 	 *
407 	 * Ideally I would convert multi-page allocations into single
408 	 * page allocations, and add everything to image->dest_pages.
409 	 *
410 	 * For now it is simpler to just free the pages.
411 	 */
412 	kimage_free_page_list(&extra_pages);
413 
414 	return pages;
415 }
416 
417 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
418 						      unsigned int order)
419 {
420 	/* Control pages are special, they are the intermediaries
421 	 * that are needed while we copy the rest of the pages
422 	 * to their final resting place.  As such they must
423 	 * not conflict with either the destination addresses
424 	 * or memory the kernel is already using.
425 	 *
426 	 * Control pages are also the only pags we must allocate
427 	 * when loading a crash kernel.  All of the other pages
428 	 * are specified by the segments and we just memcpy
429 	 * into them directly.
430 	 *
431 	 * The only case where we really need more than one of
432 	 * these are for architectures where we cannot disable
433 	 * the MMU and must instead generate an identity mapped
434 	 * page table for all of the memory.
435 	 *
436 	 * Given the low demand this implements a very simple
437 	 * allocator that finds the first hole of the appropriate
438 	 * size in the reserved memory region, and allocates all
439 	 * of the memory up to and including the hole.
440 	 */
441 	unsigned long hole_start, hole_end, size;
442 	struct page *pages;
443 
444 	pages = NULL;
445 	size = (1 << order) << PAGE_SHIFT;
446 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
447 	hole_end   = hole_start + size - 1;
448 	while (hole_end <= crashk_res.end) {
449 		unsigned long i;
450 
451 		cond_resched();
452 
453 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
454 			break;
455 		/* See if I overlap any of the segments */
456 		for (i = 0; i < image->nr_segments; i++) {
457 			unsigned long mstart, mend;
458 
459 			mstart = image->segment[i].mem;
460 			mend   = mstart + image->segment[i].memsz - 1;
461 			if ((hole_end >= mstart) && (hole_start <= mend)) {
462 				/* Advance the hole to the end of the segment */
463 				hole_start = (mend + (size - 1)) & ~(size - 1);
464 				hole_end   = hole_start + size - 1;
465 				break;
466 			}
467 		}
468 		/* If I don't overlap any segments I have found my hole! */
469 		if (i == image->nr_segments) {
470 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
471 			image->control_page = hole_end;
472 			break;
473 		}
474 	}
475 
476 	/* Ensure that these pages are decrypted if SME is enabled. */
477 	if (pages)
478 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
479 
480 	return pages;
481 }
482 
483 
484 struct page *kimage_alloc_control_pages(struct kimage *image,
485 					 unsigned int order)
486 {
487 	struct page *pages = NULL;
488 
489 	switch (image->type) {
490 	case KEXEC_TYPE_DEFAULT:
491 		pages = kimage_alloc_normal_control_pages(image, order);
492 		break;
493 	case KEXEC_TYPE_CRASH:
494 		pages = kimage_alloc_crash_control_pages(image, order);
495 		break;
496 	}
497 
498 	return pages;
499 }
500 
501 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
502 {
503 	struct page *vmcoreinfo_page;
504 	void *safecopy;
505 
506 	if (image->type != KEXEC_TYPE_CRASH)
507 		return 0;
508 
509 	/*
510 	 * For kdump, allocate one vmcoreinfo safe copy from the
511 	 * crash memory. as we have arch_kexec_protect_crashkres()
512 	 * after kexec syscall, we naturally protect it from write
513 	 * (even read) access under kernel direct mapping. But on
514 	 * the other hand, we still need to operate it when crash
515 	 * happens to generate vmcoreinfo note, hereby we rely on
516 	 * vmap for this purpose.
517 	 */
518 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
519 	if (!vmcoreinfo_page) {
520 		pr_warn("Could not allocate vmcoreinfo buffer\n");
521 		return -ENOMEM;
522 	}
523 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
524 	if (!safecopy) {
525 		pr_warn("Could not vmap vmcoreinfo buffer\n");
526 		return -ENOMEM;
527 	}
528 
529 	image->vmcoreinfo_data_copy = safecopy;
530 	crash_update_vmcoreinfo_safecopy(safecopy);
531 
532 	return 0;
533 }
534 
535 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
536 {
537 	if (*image->entry != 0)
538 		image->entry++;
539 
540 	if (image->entry == image->last_entry) {
541 		kimage_entry_t *ind_page;
542 		struct page *page;
543 
544 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
545 		if (!page)
546 			return -ENOMEM;
547 
548 		ind_page = page_address(page);
549 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
550 		image->entry = ind_page;
551 		image->last_entry = ind_page +
552 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
553 	}
554 	*image->entry = entry;
555 	image->entry++;
556 	*image->entry = 0;
557 
558 	return 0;
559 }
560 
561 static int kimage_set_destination(struct kimage *image,
562 				   unsigned long destination)
563 {
564 	int result;
565 
566 	destination &= PAGE_MASK;
567 	result = kimage_add_entry(image, destination | IND_DESTINATION);
568 
569 	return result;
570 }
571 
572 
573 static int kimage_add_page(struct kimage *image, unsigned long page)
574 {
575 	int result;
576 
577 	page &= PAGE_MASK;
578 	result = kimage_add_entry(image, page | IND_SOURCE);
579 
580 	return result;
581 }
582 
583 
584 static void kimage_free_extra_pages(struct kimage *image)
585 {
586 	/* Walk through and free any extra destination pages I may have */
587 	kimage_free_page_list(&image->dest_pages);
588 
589 	/* Walk through and free any unusable pages I have cached */
590 	kimage_free_page_list(&image->unusable_pages);
591 
592 }
593 
594 void kimage_terminate(struct kimage *image)
595 {
596 	if (*image->entry != 0)
597 		image->entry++;
598 
599 	*image->entry = IND_DONE;
600 }
601 
602 #define for_each_kimage_entry(image, ptr, entry) \
603 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
604 		ptr = (entry & IND_INDIRECTION) ? \
605 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
606 
607 static void kimage_free_entry(kimage_entry_t entry)
608 {
609 	struct page *page;
610 
611 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
612 	kimage_free_pages(page);
613 }
614 
615 void kimage_free(struct kimage *image)
616 {
617 	kimage_entry_t *ptr, entry;
618 	kimage_entry_t ind = 0;
619 
620 	if (!image)
621 		return;
622 
623 	if (image->vmcoreinfo_data_copy) {
624 		crash_update_vmcoreinfo_safecopy(NULL);
625 		vunmap(image->vmcoreinfo_data_copy);
626 	}
627 
628 	kimage_free_extra_pages(image);
629 	for_each_kimage_entry(image, ptr, entry) {
630 		if (entry & IND_INDIRECTION) {
631 			/* Free the previous indirection page */
632 			if (ind & IND_INDIRECTION)
633 				kimage_free_entry(ind);
634 			/* Save this indirection page until we are
635 			 * done with it.
636 			 */
637 			ind = entry;
638 		} else if (entry & IND_SOURCE)
639 			kimage_free_entry(entry);
640 	}
641 	/* Free the final indirection page */
642 	if (ind & IND_INDIRECTION)
643 		kimage_free_entry(ind);
644 
645 	/* Handle any machine specific cleanup */
646 	machine_kexec_cleanup(image);
647 
648 	/* Free the kexec control pages... */
649 	kimage_free_page_list(&image->control_pages);
650 
651 	/*
652 	 * Free up any temporary buffers allocated. This might hit if
653 	 * error occurred much later after buffer allocation.
654 	 */
655 	if (image->file_mode)
656 		kimage_file_post_load_cleanup(image);
657 
658 	kfree(image);
659 }
660 
661 static kimage_entry_t *kimage_dst_used(struct kimage *image,
662 					unsigned long page)
663 {
664 	kimage_entry_t *ptr, entry;
665 	unsigned long destination = 0;
666 
667 	for_each_kimage_entry(image, ptr, entry) {
668 		if (entry & IND_DESTINATION)
669 			destination = entry & PAGE_MASK;
670 		else if (entry & IND_SOURCE) {
671 			if (page == destination)
672 				return ptr;
673 			destination += PAGE_SIZE;
674 		}
675 	}
676 
677 	return NULL;
678 }
679 
680 static struct page *kimage_alloc_page(struct kimage *image,
681 					gfp_t gfp_mask,
682 					unsigned long destination)
683 {
684 	/*
685 	 * Here we implement safeguards to ensure that a source page
686 	 * is not copied to its destination page before the data on
687 	 * the destination page is no longer useful.
688 	 *
689 	 * To do this we maintain the invariant that a source page is
690 	 * either its own destination page, or it is not a
691 	 * destination page at all.
692 	 *
693 	 * That is slightly stronger than required, but the proof
694 	 * that no problems will not occur is trivial, and the
695 	 * implementation is simply to verify.
696 	 *
697 	 * When allocating all pages normally this algorithm will run
698 	 * in O(N) time, but in the worst case it will run in O(N^2)
699 	 * time.   If the runtime is a problem the data structures can
700 	 * be fixed.
701 	 */
702 	struct page *page;
703 	unsigned long addr;
704 
705 	/*
706 	 * Walk through the list of destination pages, and see if I
707 	 * have a match.
708 	 */
709 	list_for_each_entry(page, &image->dest_pages, lru) {
710 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
711 		if (addr == destination) {
712 			list_del(&page->lru);
713 			return page;
714 		}
715 	}
716 	page = NULL;
717 	while (1) {
718 		kimage_entry_t *old;
719 
720 		/* Allocate a page, if we run out of memory give up */
721 		page = kimage_alloc_pages(gfp_mask, 0);
722 		if (!page)
723 			return NULL;
724 		/* If the page cannot be used file it away */
725 		if (page_to_boot_pfn(page) >
726 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
727 			list_add(&page->lru, &image->unusable_pages);
728 			continue;
729 		}
730 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
731 
732 		/* If it is the destination page we want use it */
733 		if (addr == destination)
734 			break;
735 
736 		/* If the page is not a destination page use it */
737 		if (!kimage_is_destination_range(image, addr,
738 						  addr + PAGE_SIZE))
739 			break;
740 
741 		/*
742 		 * I know that the page is someones destination page.
743 		 * See if there is already a source page for this
744 		 * destination page.  And if so swap the source pages.
745 		 */
746 		old = kimage_dst_used(image, addr);
747 		if (old) {
748 			/* If so move it */
749 			unsigned long old_addr;
750 			struct page *old_page;
751 
752 			old_addr = *old & PAGE_MASK;
753 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
754 			copy_highpage(page, old_page);
755 			*old = addr | (*old & ~PAGE_MASK);
756 
757 			/* The old page I have found cannot be a
758 			 * destination page, so return it if it's
759 			 * gfp_flags honor the ones passed in.
760 			 */
761 			if (!(gfp_mask & __GFP_HIGHMEM) &&
762 			    PageHighMem(old_page)) {
763 				kimage_free_pages(old_page);
764 				continue;
765 			}
766 			page = old_page;
767 			break;
768 		}
769 		/* Place the page on the destination list, to be used later */
770 		list_add(&page->lru, &image->dest_pages);
771 	}
772 
773 	return page;
774 }
775 
776 static int kimage_load_normal_segment(struct kimage *image,
777 					 struct kexec_segment *segment)
778 {
779 	unsigned long maddr;
780 	size_t ubytes, mbytes;
781 	int result;
782 	unsigned char __user *buf = NULL;
783 	unsigned char *kbuf = NULL;
784 
785 	if (image->file_mode)
786 		kbuf = segment->kbuf;
787 	else
788 		buf = segment->buf;
789 	ubytes = segment->bufsz;
790 	mbytes = segment->memsz;
791 	maddr = segment->mem;
792 
793 	result = kimage_set_destination(image, maddr);
794 	if (result < 0)
795 		goto out;
796 
797 	while (mbytes) {
798 		struct page *page;
799 		char *ptr;
800 		size_t uchunk, mchunk;
801 
802 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
803 		if (!page) {
804 			result  = -ENOMEM;
805 			goto out;
806 		}
807 		result = kimage_add_page(image, page_to_boot_pfn(page)
808 								<< PAGE_SHIFT);
809 		if (result < 0)
810 			goto out;
811 
812 		ptr = kmap_local_page(page);
813 		/* Start with a clear page */
814 		clear_page(ptr);
815 		ptr += maddr & ~PAGE_MASK;
816 		mchunk = min_t(size_t, mbytes,
817 				PAGE_SIZE - (maddr & ~PAGE_MASK));
818 		uchunk = min(ubytes, mchunk);
819 
820 		/* For file based kexec, source pages are in kernel memory */
821 		if (image->file_mode)
822 			memcpy(ptr, kbuf, uchunk);
823 		else
824 			result = copy_from_user(ptr, buf, uchunk);
825 		kunmap_local(ptr);
826 		if (result) {
827 			result = -EFAULT;
828 			goto out;
829 		}
830 		ubytes -= uchunk;
831 		maddr  += mchunk;
832 		if (image->file_mode)
833 			kbuf += mchunk;
834 		else
835 			buf += mchunk;
836 		mbytes -= mchunk;
837 
838 		cond_resched();
839 	}
840 out:
841 	return result;
842 }
843 
844 static int kimage_load_crash_segment(struct kimage *image,
845 					struct kexec_segment *segment)
846 {
847 	/* For crash dumps kernels we simply copy the data from
848 	 * user space to it's destination.
849 	 * We do things a page at a time for the sake of kmap.
850 	 */
851 	unsigned long maddr;
852 	size_t ubytes, mbytes;
853 	int result;
854 	unsigned char __user *buf = NULL;
855 	unsigned char *kbuf = NULL;
856 
857 	result = 0;
858 	if (image->file_mode)
859 		kbuf = segment->kbuf;
860 	else
861 		buf = segment->buf;
862 	ubytes = segment->bufsz;
863 	mbytes = segment->memsz;
864 	maddr = segment->mem;
865 	while (mbytes) {
866 		struct page *page;
867 		char *ptr;
868 		size_t uchunk, mchunk;
869 
870 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
871 		if (!page) {
872 			result  = -ENOMEM;
873 			goto out;
874 		}
875 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
876 		ptr = kmap_local_page(page);
877 		ptr += maddr & ~PAGE_MASK;
878 		mchunk = min_t(size_t, mbytes,
879 				PAGE_SIZE - (maddr & ~PAGE_MASK));
880 		uchunk = min(ubytes, mchunk);
881 		if (mchunk > uchunk) {
882 			/* Zero the trailing part of the page */
883 			memset(ptr + uchunk, 0, mchunk - uchunk);
884 		}
885 
886 		/* For file based kexec, source pages are in kernel memory */
887 		if (image->file_mode)
888 			memcpy(ptr, kbuf, uchunk);
889 		else
890 			result = copy_from_user(ptr, buf, uchunk);
891 		kexec_flush_icache_page(page);
892 		kunmap_local(ptr);
893 		arch_kexec_pre_free_pages(page_address(page), 1);
894 		if (result) {
895 			result = -EFAULT;
896 			goto out;
897 		}
898 		ubytes -= uchunk;
899 		maddr  += mchunk;
900 		if (image->file_mode)
901 			kbuf += mchunk;
902 		else
903 			buf += mchunk;
904 		mbytes -= mchunk;
905 
906 		cond_resched();
907 	}
908 out:
909 	return result;
910 }
911 
912 int kimage_load_segment(struct kimage *image,
913 				struct kexec_segment *segment)
914 {
915 	int result = -ENOMEM;
916 
917 	switch (image->type) {
918 	case KEXEC_TYPE_DEFAULT:
919 		result = kimage_load_normal_segment(image, segment);
920 		break;
921 	case KEXEC_TYPE_CRASH:
922 		result = kimage_load_crash_segment(image, segment);
923 		break;
924 	}
925 
926 	return result;
927 }
928 
929 struct kimage *kexec_image;
930 struct kimage *kexec_crash_image;
931 int kexec_load_disabled;
932 #ifdef CONFIG_SYSCTL
933 static struct ctl_table kexec_core_sysctls[] = {
934 	{
935 		.procname	= "kexec_load_disabled",
936 		.data		= &kexec_load_disabled,
937 		.maxlen		= sizeof(int),
938 		.mode		= 0644,
939 		/* only handle a transition from default "0" to "1" */
940 		.proc_handler	= proc_dointvec_minmax,
941 		.extra1		= SYSCTL_ONE,
942 		.extra2		= SYSCTL_ONE,
943 	},
944 	{ }
945 };
946 
947 static int __init kexec_core_sysctl_init(void)
948 {
949 	register_sysctl_init("kernel", kexec_core_sysctls);
950 	return 0;
951 }
952 late_initcall(kexec_core_sysctl_init);
953 #endif
954 
955 /*
956  * No panic_cpu check version of crash_kexec().  This function is called
957  * only when panic_cpu holds the current CPU number; this is the only CPU
958  * which processes crash_kexec routines.
959  */
960 void __noclone __crash_kexec(struct pt_regs *regs)
961 {
962 	/* Take the kexec_lock here to prevent sys_kexec_load
963 	 * running on one cpu from replacing the crash kernel
964 	 * we are using after a panic on a different cpu.
965 	 *
966 	 * If the crash kernel was not located in a fixed area
967 	 * of memory the xchg(&kexec_crash_image) would be
968 	 * sufficient.  But since I reuse the memory...
969 	 */
970 	if (kexec_trylock()) {
971 		if (kexec_crash_image) {
972 			struct pt_regs fixed_regs;
973 
974 			crash_setup_regs(&fixed_regs, regs);
975 			crash_save_vmcoreinfo();
976 			machine_crash_shutdown(&fixed_regs);
977 			machine_kexec(kexec_crash_image);
978 		}
979 		kexec_unlock();
980 	}
981 }
982 STACK_FRAME_NON_STANDARD(__crash_kexec);
983 
984 void crash_kexec(struct pt_regs *regs)
985 {
986 	int old_cpu, this_cpu;
987 
988 	/*
989 	 * Only one CPU is allowed to execute the crash_kexec() code as with
990 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
991 	 * may stop each other.  To exclude them, we use panic_cpu here too.
992 	 */
993 	this_cpu = raw_smp_processor_id();
994 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
995 	if (old_cpu == PANIC_CPU_INVALID) {
996 		/* This is the 1st CPU which comes here, so go ahead. */
997 		__crash_kexec(regs);
998 
999 		/*
1000 		 * Reset panic_cpu to allow another panic()/crash_kexec()
1001 		 * call.
1002 		 */
1003 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
1004 	}
1005 }
1006 
1007 ssize_t crash_get_memory_size(void)
1008 {
1009 	ssize_t size = 0;
1010 
1011 	if (!kexec_trylock())
1012 		return -EBUSY;
1013 
1014 	if (crashk_res.end != crashk_res.start)
1015 		size = resource_size(&crashk_res);
1016 
1017 	kexec_unlock();
1018 	return size;
1019 }
1020 
1021 int crash_shrink_memory(unsigned long new_size)
1022 {
1023 	int ret = 0;
1024 	unsigned long start, end;
1025 	unsigned long old_size;
1026 	struct resource *ram_res;
1027 
1028 	if (!kexec_trylock())
1029 		return -EBUSY;
1030 
1031 	if (kexec_crash_image) {
1032 		ret = -ENOENT;
1033 		goto unlock;
1034 	}
1035 	start = crashk_res.start;
1036 	end = crashk_res.end;
1037 	old_size = (end == 0) ? 0 : end - start + 1;
1038 	if (new_size >= old_size) {
1039 		ret = (new_size == old_size) ? 0 : -EINVAL;
1040 		goto unlock;
1041 	}
1042 
1043 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1044 	if (!ram_res) {
1045 		ret = -ENOMEM;
1046 		goto unlock;
1047 	}
1048 
1049 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1050 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1051 
1052 	crash_free_reserved_phys_range(end, crashk_res.end);
1053 
1054 	if ((start == end) && (crashk_res.parent != NULL))
1055 		release_resource(&crashk_res);
1056 
1057 	ram_res->start = end;
1058 	ram_res->end = crashk_res.end;
1059 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1060 	ram_res->name = "System RAM";
1061 
1062 	crashk_res.end = end - 1;
1063 
1064 	insert_resource(&iomem_resource, ram_res);
1065 
1066 unlock:
1067 	kexec_unlock();
1068 	return ret;
1069 }
1070 
1071 void crash_save_cpu(struct pt_regs *regs, int cpu)
1072 {
1073 	struct elf_prstatus prstatus;
1074 	u32 *buf;
1075 
1076 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1077 		return;
1078 
1079 	/* Using ELF notes here is opportunistic.
1080 	 * I need a well defined structure format
1081 	 * for the data I pass, and I need tags
1082 	 * on the data to indicate what information I have
1083 	 * squirrelled away.  ELF notes happen to provide
1084 	 * all of that, so there is no need to invent something new.
1085 	 */
1086 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1087 	if (!buf)
1088 		return;
1089 	memset(&prstatus, 0, sizeof(prstatus));
1090 	prstatus.common.pr_pid = current->pid;
1091 	elf_core_copy_regs(&prstatus.pr_reg, regs);
1092 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1093 			      &prstatus, sizeof(prstatus));
1094 	final_note(buf);
1095 }
1096 
1097 static int __init crash_notes_memory_init(void)
1098 {
1099 	/* Allocate memory for saving cpu registers. */
1100 	size_t size, align;
1101 
1102 	/*
1103 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1104 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1105 	 * pages are also on 2 continuous physical pages. In this case the
1106 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1107 	 * starting address and size of crash_notes are exported through sysfs.
1108 	 * Here round up the size of crash_notes to the nearest power of two
1109 	 * and pass it to __alloc_percpu as align value. This can make sure
1110 	 * crash_notes is allocated inside one physical page.
1111 	 */
1112 	size = sizeof(note_buf_t);
1113 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1114 
1115 	/*
1116 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1117 	 * definitely will be in 2 pages with that.
1118 	 */
1119 	BUILD_BUG_ON(size > PAGE_SIZE);
1120 
1121 	crash_notes = __alloc_percpu(size, align);
1122 	if (!crash_notes) {
1123 		pr_warn("Memory allocation for saving cpu register states failed\n");
1124 		return -ENOMEM;
1125 	}
1126 	return 0;
1127 }
1128 subsys_initcall(crash_notes_memory_init);
1129 
1130 
1131 /*
1132  * Move into place and start executing a preloaded standalone
1133  * executable.  If nothing was preloaded return an error.
1134  */
1135 int kernel_kexec(void)
1136 {
1137 	int error = 0;
1138 
1139 	if (!kexec_trylock())
1140 		return -EBUSY;
1141 	if (!kexec_image) {
1142 		error = -EINVAL;
1143 		goto Unlock;
1144 	}
1145 
1146 #ifdef CONFIG_KEXEC_JUMP
1147 	if (kexec_image->preserve_context) {
1148 		pm_prepare_console();
1149 		error = freeze_processes();
1150 		if (error) {
1151 			error = -EBUSY;
1152 			goto Restore_console;
1153 		}
1154 		suspend_console();
1155 		error = dpm_suspend_start(PMSG_FREEZE);
1156 		if (error)
1157 			goto Resume_console;
1158 		/* At this point, dpm_suspend_start() has been called,
1159 		 * but *not* dpm_suspend_end(). We *must* call
1160 		 * dpm_suspend_end() now.  Otherwise, drivers for
1161 		 * some devices (e.g. interrupt controllers) become
1162 		 * desynchronized with the actual state of the
1163 		 * hardware at resume time, and evil weirdness ensues.
1164 		 */
1165 		error = dpm_suspend_end(PMSG_FREEZE);
1166 		if (error)
1167 			goto Resume_devices;
1168 		error = suspend_disable_secondary_cpus();
1169 		if (error)
1170 			goto Enable_cpus;
1171 		local_irq_disable();
1172 		error = syscore_suspend();
1173 		if (error)
1174 			goto Enable_irqs;
1175 	} else
1176 #endif
1177 	{
1178 		kexec_in_progress = true;
1179 		kernel_restart_prepare("kexec reboot");
1180 		migrate_to_reboot_cpu();
1181 
1182 		/*
1183 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1184 		 * no further code needs to use CPU hotplug (which is true in
1185 		 * the reboot case). However, the kexec path depends on using
1186 		 * CPU hotplug again; so re-enable it here.
1187 		 */
1188 		cpu_hotplug_enable();
1189 		pr_notice("Starting new kernel\n");
1190 		machine_shutdown();
1191 	}
1192 
1193 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1194 	machine_kexec(kexec_image);
1195 
1196 #ifdef CONFIG_KEXEC_JUMP
1197 	if (kexec_image->preserve_context) {
1198 		syscore_resume();
1199  Enable_irqs:
1200 		local_irq_enable();
1201  Enable_cpus:
1202 		suspend_enable_secondary_cpus();
1203 		dpm_resume_start(PMSG_RESTORE);
1204  Resume_devices:
1205 		dpm_resume_end(PMSG_RESTORE);
1206  Resume_console:
1207 		resume_console();
1208 		thaw_processes();
1209  Restore_console:
1210 		pm_restore_console();
1211 	}
1212 #endif
1213 
1214  Unlock:
1215 	kexec_unlock();
1216 	return error;
1217 }
1218