xref: /linux/kernel/kexec_core.c (revision dd5b2498d845f925904cb2afabb6ba11bfc317c5)
1 /*
2  * kexec.c - kexec system call core code.
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/frame.h>
42 
43 #include <asm/page.h>
44 #include <asm/sections.h>
45 
46 #include <crypto/hash.h>
47 #include <crypto/sha.h>
48 #include "kexec_internal.h"
49 
50 DEFINE_MUTEX(kexec_mutex);
51 
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t __percpu *crash_notes;
54 
55 /* Flag to indicate we are going to kexec a new kernel */
56 bool kexec_in_progress = false;
57 
58 
59 /* Location of the reserved area for the crash kernel */
60 struct resource crashk_res = {
61 	.name  = "Crash kernel",
62 	.start = 0,
63 	.end   = 0,
64 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
65 	.desc  = IORES_DESC_CRASH_KERNEL
66 };
67 struct resource crashk_low_res = {
68 	.name  = "Crash kernel",
69 	.start = 0,
70 	.end   = 0,
71 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
72 	.desc  = IORES_DESC_CRASH_KERNEL
73 };
74 
75 int kexec_should_crash(struct task_struct *p)
76 {
77 	/*
78 	 * If crash_kexec_post_notifiers is enabled, don't run
79 	 * crash_kexec() here yet, which must be run after panic
80 	 * notifiers in panic().
81 	 */
82 	if (crash_kexec_post_notifiers)
83 		return 0;
84 	/*
85 	 * There are 4 panic() calls in do_exit() path, each of which
86 	 * corresponds to each of these 4 conditions.
87 	 */
88 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
89 		return 1;
90 	return 0;
91 }
92 
93 int kexec_crash_loaded(void)
94 {
95 	return !!kexec_crash_image;
96 }
97 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
98 
99 /*
100  * When kexec transitions to the new kernel there is a one-to-one
101  * mapping between physical and virtual addresses.  On processors
102  * where you can disable the MMU this is trivial, and easy.  For
103  * others it is still a simple predictable page table to setup.
104  *
105  * In that environment kexec copies the new kernel to its final
106  * resting place.  This means I can only support memory whose
107  * physical address can fit in an unsigned long.  In particular
108  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
109  * If the assembly stub has more restrictive requirements
110  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
111  * defined more restrictively in <asm/kexec.h>.
112  *
113  * The code for the transition from the current kernel to the
114  * the new kernel is placed in the control_code_buffer, whose size
115  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
116  * page of memory is necessary, but some architectures require more.
117  * Because this memory must be identity mapped in the transition from
118  * virtual to physical addresses it must live in the range
119  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
120  * modifiable.
121  *
122  * The assembly stub in the control code buffer is passed a linked list
123  * of descriptor pages detailing the source pages of the new kernel,
124  * and the destination addresses of those source pages.  As this data
125  * structure is not used in the context of the current OS, it must
126  * be self-contained.
127  *
128  * The code has been made to work with highmem pages and will use a
129  * destination page in its final resting place (if it happens
130  * to allocate it).  The end product of this is that most of the
131  * physical address space, and most of RAM can be used.
132  *
133  * Future directions include:
134  *  - allocating a page table with the control code buffer identity
135  *    mapped, to simplify machine_kexec and make kexec_on_panic more
136  *    reliable.
137  */
138 
139 /*
140  * KIMAGE_NO_DEST is an impossible destination address..., for
141  * allocating pages whose destination address we do not care about.
142  */
143 #define KIMAGE_NO_DEST (-1UL)
144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
145 
146 static struct page *kimage_alloc_page(struct kimage *image,
147 				       gfp_t gfp_mask,
148 				       unsigned long dest);
149 
150 int sanity_check_segment_list(struct kimage *image)
151 {
152 	int i;
153 	unsigned long nr_segments = image->nr_segments;
154 	unsigned long total_pages = 0;
155 	unsigned long nr_pages = totalram_pages();
156 
157 	/*
158 	 * Verify we have good destination addresses.  The caller is
159 	 * responsible for making certain we don't attempt to load
160 	 * the new image into invalid or reserved areas of RAM.  This
161 	 * just verifies it is an address we can use.
162 	 *
163 	 * Since the kernel does everything in page size chunks ensure
164 	 * the destination addresses are page aligned.  Too many
165 	 * special cases crop of when we don't do this.  The most
166 	 * insidious is getting overlapping destination addresses
167 	 * simply because addresses are changed to page size
168 	 * granularity.
169 	 */
170 	for (i = 0; i < nr_segments; i++) {
171 		unsigned long mstart, mend;
172 
173 		mstart = image->segment[i].mem;
174 		mend   = mstart + image->segment[i].memsz;
175 		if (mstart > mend)
176 			return -EADDRNOTAVAIL;
177 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
178 			return -EADDRNOTAVAIL;
179 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
180 			return -EADDRNOTAVAIL;
181 	}
182 
183 	/* Verify our destination addresses do not overlap.
184 	 * If we alloed overlapping destination addresses
185 	 * through very weird things can happen with no
186 	 * easy explanation as one segment stops on another.
187 	 */
188 	for (i = 0; i < nr_segments; i++) {
189 		unsigned long mstart, mend;
190 		unsigned long j;
191 
192 		mstart = image->segment[i].mem;
193 		mend   = mstart + image->segment[i].memsz;
194 		for (j = 0; j < i; j++) {
195 			unsigned long pstart, pend;
196 
197 			pstart = image->segment[j].mem;
198 			pend   = pstart + image->segment[j].memsz;
199 			/* Do the segments overlap ? */
200 			if ((mend > pstart) && (mstart < pend))
201 				return -EINVAL;
202 		}
203 	}
204 
205 	/* Ensure our buffer sizes are strictly less than
206 	 * our memory sizes.  This should always be the case,
207 	 * and it is easier to check up front than to be surprised
208 	 * later on.
209 	 */
210 	for (i = 0; i < nr_segments; i++) {
211 		if (image->segment[i].bufsz > image->segment[i].memsz)
212 			return -EINVAL;
213 	}
214 
215 	/*
216 	 * Verify that no more than half of memory will be consumed. If the
217 	 * request from userspace is too large, a large amount of time will be
218 	 * wasted allocating pages, which can cause a soft lockup.
219 	 */
220 	for (i = 0; i < nr_segments; i++) {
221 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
222 			return -EINVAL;
223 
224 		total_pages += PAGE_COUNT(image->segment[i].memsz);
225 	}
226 
227 	if (total_pages > nr_pages / 2)
228 		return -EINVAL;
229 
230 	/*
231 	 * Verify we have good destination addresses.  Normally
232 	 * the caller is responsible for making certain we don't
233 	 * attempt to load the new image into invalid or reserved
234 	 * areas of RAM.  But crash kernels are preloaded into a
235 	 * reserved area of ram.  We must ensure the addresses
236 	 * are in the reserved area otherwise preloading the
237 	 * kernel could corrupt things.
238 	 */
239 
240 	if (image->type == KEXEC_TYPE_CRASH) {
241 		for (i = 0; i < nr_segments; i++) {
242 			unsigned long mstart, mend;
243 
244 			mstart = image->segment[i].mem;
245 			mend = mstart + image->segment[i].memsz - 1;
246 			/* Ensure we are within the crash kernel limits */
247 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
248 			    (mend > phys_to_boot_phys(crashk_res.end)))
249 				return -EADDRNOTAVAIL;
250 		}
251 	}
252 
253 	return 0;
254 }
255 
256 struct kimage *do_kimage_alloc_init(void)
257 {
258 	struct kimage *image;
259 
260 	/* Allocate a controlling structure */
261 	image = kzalloc(sizeof(*image), GFP_KERNEL);
262 	if (!image)
263 		return NULL;
264 
265 	image->head = 0;
266 	image->entry = &image->head;
267 	image->last_entry = &image->head;
268 	image->control_page = ~0; /* By default this does not apply */
269 	image->type = KEXEC_TYPE_DEFAULT;
270 
271 	/* Initialize the list of control pages */
272 	INIT_LIST_HEAD(&image->control_pages);
273 
274 	/* Initialize the list of destination pages */
275 	INIT_LIST_HEAD(&image->dest_pages);
276 
277 	/* Initialize the list of unusable pages */
278 	INIT_LIST_HEAD(&image->unusable_pages);
279 
280 	return image;
281 }
282 
283 int kimage_is_destination_range(struct kimage *image,
284 					unsigned long start,
285 					unsigned long end)
286 {
287 	unsigned long i;
288 
289 	for (i = 0; i < image->nr_segments; i++) {
290 		unsigned long mstart, mend;
291 
292 		mstart = image->segment[i].mem;
293 		mend = mstart + image->segment[i].memsz;
294 		if ((end > mstart) && (start < mend))
295 			return 1;
296 	}
297 
298 	return 0;
299 }
300 
301 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
302 {
303 	struct page *pages;
304 
305 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
306 	if (pages) {
307 		unsigned int count, i;
308 
309 		pages->mapping = NULL;
310 		set_page_private(pages, order);
311 		count = 1 << order;
312 		for (i = 0; i < count; i++)
313 			SetPageReserved(pages + i);
314 
315 		arch_kexec_post_alloc_pages(page_address(pages), count,
316 					    gfp_mask);
317 
318 		if (gfp_mask & __GFP_ZERO)
319 			for (i = 0; i < count; i++)
320 				clear_highpage(pages + i);
321 	}
322 
323 	return pages;
324 }
325 
326 static void kimage_free_pages(struct page *page)
327 {
328 	unsigned int order, count, i;
329 
330 	order = page_private(page);
331 	count = 1 << order;
332 
333 	arch_kexec_pre_free_pages(page_address(page), count);
334 
335 	for (i = 0; i < count; i++)
336 		ClearPageReserved(page + i);
337 	__free_pages(page, order);
338 }
339 
340 void kimage_free_page_list(struct list_head *list)
341 {
342 	struct page *page, *next;
343 
344 	list_for_each_entry_safe(page, next, list, lru) {
345 		list_del(&page->lru);
346 		kimage_free_pages(page);
347 	}
348 }
349 
350 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
351 							unsigned int order)
352 {
353 	/* Control pages are special, they are the intermediaries
354 	 * that are needed while we copy the rest of the pages
355 	 * to their final resting place.  As such they must
356 	 * not conflict with either the destination addresses
357 	 * or memory the kernel is already using.
358 	 *
359 	 * The only case where we really need more than one of
360 	 * these are for architectures where we cannot disable
361 	 * the MMU and must instead generate an identity mapped
362 	 * page table for all of the memory.
363 	 *
364 	 * At worst this runs in O(N) of the image size.
365 	 */
366 	struct list_head extra_pages;
367 	struct page *pages;
368 	unsigned int count;
369 
370 	count = 1 << order;
371 	INIT_LIST_HEAD(&extra_pages);
372 
373 	/* Loop while I can allocate a page and the page allocated
374 	 * is a destination page.
375 	 */
376 	do {
377 		unsigned long pfn, epfn, addr, eaddr;
378 
379 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
380 		if (!pages)
381 			break;
382 		pfn   = page_to_boot_pfn(pages);
383 		epfn  = pfn + count;
384 		addr  = pfn << PAGE_SHIFT;
385 		eaddr = epfn << PAGE_SHIFT;
386 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
387 			      kimage_is_destination_range(image, addr, eaddr)) {
388 			list_add(&pages->lru, &extra_pages);
389 			pages = NULL;
390 		}
391 	} while (!pages);
392 
393 	if (pages) {
394 		/* Remember the allocated page... */
395 		list_add(&pages->lru, &image->control_pages);
396 
397 		/* Because the page is already in it's destination
398 		 * location we will never allocate another page at
399 		 * that address.  Therefore kimage_alloc_pages
400 		 * will not return it (again) and we don't need
401 		 * to give it an entry in image->segment[].
402 		 */
403 	}
404 	/* Deal with the destination pages I have inadvertently allocated.
405 	 *
406 	 * Ideally I would convert multi-page allocations into single
407 	 * page allocations, and add everything to image->dest_pages.
408 	 *
409 	 * For now it is simpler to just free the pages.
410 	 */
411 	kimage_free_page_list(&extra_pages);
412 
413 	return pages;
414 }
415 
416 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
417 						      unsigned int order)
418 {
419 	/* Control pages are special, they are the intermediaries
420 	 * that are needed while we copy the rest of the pages
421 	 * to their final resting place.  As such they must
422 	 * not conflict with either the destination addresses
423 	 * or memory the kernel is already using.
424 	 *
425 	 * Control pages are also the only pags we must allocate
426 	 * when loading a crash kernel.  All of the other pages
427 	 * are specified by the segments and we just memcpy
428 	 * into them directly.
429 	 *
430 	 * The only case where we really need more than one of
431 	 * these are for architectures where we cannot disable
432 	 * the MMU and must instead generate an identity mapped
433 	 * page table for all of the memory.
434 	 *
435 	 * Given the low demand this implements a very simple
436 	 * allocator that finds the first hole of the appropriate
437 	 * size in the reserved memory region, and allocates all
438 	 * of the memory up to and including the hole.
439 	 */
440 	unsigned long hole_start, hole_end, size;
441 	struct page *pages;
442 
443 	pages = NULL;
444 	size = (1 << order) << PAGE_SHIFT;
445 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
446 	hole_end   = hole_start + size - 1;
447 	while (hole_end <= crashk_res.end) {
448 		unsigned long i;
449 
450 		cond_resched();
451 
452 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
453 			break;
454 		/* See if I overlap any of the segments */
455 		for (i = 0; i < image->nr_segments; i++) {
456 			unsigned long mstart, mend;
457 
458 			mstart = image->segment[i].mem;
459 			mend   = mstart + image->segment[i].memsz - 1;
460 			if ((hole_end >= mstart) && (hole_start <= mend)) {
461 				/* Advance the hole to the end of the segment */
462 				hole_start = (mend + (size - 1)) & ~(size - 1);
463 				hole_end   = hole_start + size - 1;
464 				break;
465 			}
466 		}
467 		/* If I don't overlap any segments I have found my hole! */
468 		if (i == image->nr_segments) {
469 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
470 			image->control_page = hole_end;
471 			break;
472 		}
473 	}
474 
475 	/* Ensure that these pages are decrypted if SME is enabled. */
476 	if (pages)
477 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
478 
479 	return pages;
480 }
481 
482 
483 struct page *kimage_alloc_control_pages(struct kimage *image,
484 					 unsigned int order)
485 {
486 	struct page *pages = NULL;
487 
488 	switch (image->type) {
489 	case KEXEC_TYPE_DEFAULT:
490 		pages = kimage_alloc_normal_control_pages(image, order);
491 		break;
492 	case KEXEC_TYPE_CRASH:
493 		pages = kimage_alloc_crash_control_pages(image, order);
494 		break;
495 	}
496 
497 	return pages;
498 }
499 
500 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
501 {
502 	struct page *vmcoreinfo_page;
503 	void *safecopy;
504 
505 	if (image->type != KEXEC_TYPE_CRASH)
506 		return 0;
507 
508 	/*
509 	 * For kdump, allocate one vmcoreinfo safe copy from the
510 	 * crash memory. as we have arch_kexec_protect_crashkres()
511 	 * after kexec syscall, we naturally protect it from write
512 	 * (even read) access under kernel direct mapping. But on
513 	 * the other hand, we still need to operate it when crash
514 	 * happens to generate vmcoreinfo note, hereby we rely on
515 	 * vmap for this purpose.
516 	 */
517 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
518 	if (!vmcoreinfo_page) {
519 		pr_warn("Could not allocate vmcoreinfo buffer\n");
520 		return -ENOMEM;
521 	}
522 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
523 	if (!safecopy) {
524 		pr_warn("Could not vmap vmcoreinfo buffer\n");
525 		return -ENOMEM;
526 	}
527 
528 	image->vmcoreinfo_data_copy = safecopy;
529 	crash_update_vmcoreinfo_safecopy(safecopy);
530 
531 	return 0;
532 }
533 
534 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
535 {
536 	if (*image->entry != 0)
537 		image->entry++;
538 
539 	if (image->entry == image->last_entry) {
540 		kimage_entry_t *ind_page;
541 		struct page *page;
542 
543 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
544 		if (!page)
545 			return -ENOMEM;
546 
547 		ind_page = page_address(page);
548 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
549 		image->entry = ind_page;
550 		image->last_entry = ind_page +
551 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
552 	}
553 	*image->entry = entry;
554 	image->entry++;
555 	*image->entry = 0;
556 
557 	return 0;
558 }
559 
560 static int kimage_set_destination(struct kimage *image,
561 				   unsigned long destination)
562 {
563 	int result;
564 
565 	destination &= PAGE_MASK;
566 	result = kimage_add_entry(image, destination | IND_DESTINATION);
567 
568 	return result;
569 }
570 
571 
572 static int kimage_add_page(struct kimage *image, unsigned long page)
573 {
574 	int result;
575 
576 	page &= PAGE_MASK;
577 	result = kimage_add_entry(image, page | IND_SOURCE);
578 
579 	return result;
580 }
581 
582 
583 static void kimage_free_extra_pages(struct kimage *image)
584 {
585 	/* Walk through and free any extra destination pages I may have */
586 	kimage_free_page_list(&image->dest_pages);
587 
588 	/* Walk through and free any unusable pages I have cached */
589 	kimage_free_page_list(&image->unusable_pages);
590 
591 }
592 void kimage_terminate(struct kimage *image)
593 {
594 	if (*image->entry != 0)
595 		image->entry++;
596 
597 	*image->entry = IND_DONE;
598 }
599 
600 #define for_each_kimage_entry(image, ptr, entry) \
601 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
602 		ptr = (entry & IND_INDIRECTION) ? \
603 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
604 
605 static void kimage_free_entry(kimage_entry_t entry)
606 {
607 	struct page *page;
608 
609 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
610 	kimage_free_pages(page);
611 }
612 
613 void kimage_free(struct kimage *image)
614 {
615 	kimage_entry_t *ptr, entry;
616 	kimage_entry_t ind = 0;
617 
618 	if (!image)
619 		return;
620 
621 	if (image->vmcoreinfo_data_copy) {
622 		crash_update_vmcoreinfo_safecopy(NULL);
623 		vunmap(image->vmcoreinfo_data_copy);
624 	}
625 
626 	kimage_free_extra_pages(image);
627 	for_each_kimage_entry(image, ptr, entry) {
628 		if (entry & IND_INDIRECTION) {
629 			/* Free the previous indirection page */
630 			if (ind & IND_INDIRECTION)
631 				kimage_free_entry(ind);
632 			/* Save this indirection page until we are
633 			 * done with it.
634 			 */
635 			ind = entry;
636 		} else if (entry & IND_SOURCE)
637 			kimage_free_entry(entry);
638 	}
639 	/* Free the final indirection page */
640 	if (ind & IND_INDIRECTION)
641 		kimage_free_entry(ind);
642 
643 	/* Handle any machine specific cleanup */
644 	machine_kexec_cleanup(image);
645 
646 	/* Free the kexec control pages... */
647 	kimage_free_page_list(&image->control_pages);
648 
649 	/*
650 	 * Free up any temporary buffers allocated. This might hit if
651 	 * error occurred much later after buffer allocation.
652 	 */
653 	if (image->file_mode)
654 		kimage_file_post_load_cleanup(image);
655 
656 	kfree(image);
657 }
658 
659 static kimage_entry_t *kimage_dst_used(struct kimage *image,
660 					unsigned long page)
661 {
662 	kimage_entry_t *ptr, entry;
663 	unsigned long destination = 0;
664 
665 	for_each_kimage_entry(image, ptr, entry) {
666 		if (entry & IND_DESTINATION)
667 			destination = entry & PAGE_MASK;
668 		else if (entry & IND_SOURCE) {
669 			if (page == destination)
670 				return ptr;
671 			destination += PAGE_SIZE;
672 		}
673 	}
674 
675 	return NULL;
676 }
677 
678 static struct page *kimage_alloc_page(struct kimage *image,
679 					gfp_t gfp_mask,
680 					unsigned long destination)
681 {
682 	/*
683 	 * Here we implement safeguards to ensure that a source page
684 	 * is not copied to its destination page before the data on
685 	 * the destination page is no longer useful.
686 	 *
687 	 * To do this we maintain the invariant that a source page is
688 	 * either its own destination page, or it is not a
689 	 * destination page at all.
690 	 *
691 	 * That is slightly stronger than required, but the proof
692 	 * that no problems will not occur is trivial, and the
693 	 * implementation is simply to verify.
694 	 *
695 	 * When allocating all pages normally this algorithm will run
696 	 * in O(N) time, but in the worst case it will run in O(N^2)
697 	 * time.   If the runtime is a problem the data structures can
698 	 * be fixed.
699 	 */
700 	struct page *page;
701 	unsigned long addr;
702 
703 	/*
704 	 * Walk through the list of destination pages, and see if I
705 	 * have a match.
706 	 */
707 	list_for_each_entry(page, &image->dest_pages, lru) {
708 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
709 		if (addr == destination) {
710 			list_del(&page->lru);
711 			return page;
712 		}
713 	}
714 	page = NULL;
715 	while (1) {
716 		kimage_entry_t *old;
717 
718 		/* Allocate a page, if we run out of memory give up */
719 		page = kimage_alloc_pages(gfp_mask, 0);
720 		if (!page)
721 			return NULL;
722 		/* If the page cannot be used file it away */
723 		if (page_to_boot_pfn(page) >
724 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
725 			list_add(&page->lru, &image->unusable_pages);
726 			continue;
727 		}
728 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
729 
730 		/* If it is the destination page we want use it */
731 		if (addr == destination)
732 			break;
733 
734 		/* If the page is not a destination page use it */
735 		if (!kimage_is_destination_range(image, addr,
736 						  addr + PAGE_SIZE))
737 			break;
738 
739 		/*
740 		 * I know that the page is someones destination page.
741 		 * See if there is already a source page for this
742 		 * destination page.  And if so swap the source pages.
743 		 */
744 		old = kimage_dst_used(image, addr);
745 		if (old) {
746 			/* If so move it */
747 			unsigned long old_addr;
748 			struct page *old_page;
749 
750 			old_addr = *old & PAGE_MASK;
751 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
752 			copy_highpage(page, old_page);
753 			*old = addr | (*old & ~PAGE_MASK);
754 
755 			/* The old page I have found cannot be a
756 			 * destination page, so return it if it's
757 			 * gfp_flags honor the ones passed in.
758 			 */
759 			if (!(gfp_mask & __GFP_HIGHMEM) &&
760 			    PageHighMem(old_page)) {
761 				kimage_free_pages(old_page);
762 				continue;
763 			}
764 			addr = old_addr;
765 			page = old_page;
766 			break;
767 		}
768 		/* Place the page on the destination list, to be used later */
769 		list_add(&page->lru, &image->dest_pages);
770 	}
771 
772 	return page;
773 }
774 
775 static int kimage_load_normal_segment(struct kimage *image,
776 					 struct kexec_segment *segment)
777 {
778 	unsigned long maddr;
779 	size_t ubytes, mbytes;
780 	int result;
781 	unsigned char __user *buf = NULL;
782 	unsigned char *kbuf = NULL;
783 
784 	result = 0;
785 	if (image->file_mode)
786 		kbuf = segment->kbuf;
787 	else
788 		buf = segment->buf;
789 	ubytes = segment->bufsz;
790 	mbytes = segment->memsz;
791 	maddr = segment->mem;
792 
793 	result = kimage_set_destination(image, maddr);
794 	if (result < 0)
795 		goto out;
796 
797 	while (mbytes) {
798 		struct page *page;
799 		char *ptr;
800 		size_t uchunk, mchunk;
801 
802 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
803 		if (!page) {
804 			result  = -ENOMEM;
805 			goto out;
806 		}
807 		result = kimage_add_page(image, page_to_boot_pfn(page)
808 								<< PAGE_SHIFT);
809 		if (result < 0)
810 			goto out;
811 
812 		ptr = kmap(page);
813 		/* Start with a clear page */
814 		clear_page(ptr);
815 		ptr += maddr & ~PAGE_MASK;
816 		mchunk = min_t(size_t, mbytes,
817 				PAGE_SIZE - (maddr & ~PAGE_MASK));
818 		uchunk = min(ubytes, mchunk);
819 
820 		/* For file based kexec, source pages are in kernel memory */
821 		if (image->file_mode)
822 			memcpy(ptr, kbuf, uchunk);
823 		else
824 			result = copy_from_user(ptr, buf, uchunk);
825 		kunmap(page);
826 		if (result) {
827 			result = -EFAULT;
828 			goto out;
829 		}
830 		ubytes -= uchunk;
831 		maddr  += mchunk;
832 		if (image->file_mode)
833 			kbuf += mchunk;
834 		else
835 			buf += mchunk;
836 		mbytes -= mchunk;
837 
838 		cond_resched();
839 	}
840 out:
841 	return result;
842 }
843 
844 static int kimage_load_crash_segment(struct kimage *image,
845 					struct kexec_segment *segment)
846 {
847 	/* For crash dumps kernels we simply copy the data from
848 	 * user space to it's destination.
849 	 * We do things a page at a time for the sake of kmap.
850 	 */
851 	unsigned long maddr;
852 	size_t ubytes, mbytes;
853 	int result;
854 	unsigned char __user *buf = NULL;
855 	unsigned char *kbuf = NULL;
856 
857 	result = 0;
858 	if (image->file_mode)
859 		kbuf = segment->kbuf;
860 	else
861 		buf = segment->buf;
862 	ubytes = segment->bufsz;
863 	mbytes = segment->memsz;
864 	maddr = segment->mem;
865 	while (mbytes) {
866 		struct page *page;
867 		char *ptr;
868 		size_t uchunk, mchunk;
869 
870 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
871 		if (!page) {
872 			result  = -ENOMEM;
873 			goto out;
874 		}
875 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
876 		ptr = kmap(page);
877 		ptr += maddr & ~PAGE_MASK;
878 		mchunk = min_t(size_t, mbytes,
879 				PAGE_SIZE - (maddr & ~PAGE_MASK));
880 		uchunk = min(ubytes, mchunk);
881 		if (mchunk > uchunk) {
882 			/* Zero the trailing part of the page */
883 			memset(ptr + uchunk, 0, mchunk - uchunk);
884 		}
885 
886 		/* For file based kexec, source pages are in kernel memory */
887 		if (image->file_mode)
888 			memcpy(ptr, kbuf, uchunk);
889 		else
890 			result = copy_from_user(ptr, buf, uchunk);
891 		kexec_flush_icache_page(page);
892 		kunmap(page);
893 		arch_kexec_pre_free_pages(page_address(page), 1);
894 		if (result) {
895 			result = -EFAULT;
896 			goto out;
897 		}
898 		ubytes -= uchunk;
899 		maddr  += mchunk;
900 		if (image->file_mode)
901 			kbuf += mchunk;
902 		else
903 			buf += mchunk;
904 		mbytes -= mchunk;
905 
906 		cond_resched();
907 	}
908 out:
909 	return result;
910 }
911 
912 int kimage_load_segment(struct kimage *image,
913 				struct kexec_segment *segment)
914 {
915 	int result = -ENOMEM;
916 
917 	switch (image->type) {
918 	case KEXEC_TYPE_DEFAULT:
919 		result = kimage_load_normal_segment(image, segment);
920 		break;
921 	case KEXEC_TYPE_CRASH:
922 		result = kimage_load_crash_segment(image, segment);
923 		break;
924 	}
925 
926 	return result;
927 }
928 
929 struct kimage *kexec_image;
930 struct kimage *kexec_crash_image;
931 int kexec_load_disabled;
932 
933 /*
934  * No panic_cpu check version of crash_kexec().  This function is called
935  * only when panic_cpu holds the current CPU number; this is the only CPU
936  * which processes crash_kexec routines.
937  */
938 void __noclone __crash_kexec(struct pt_regs *regs)
939 {
940 	/* Take the kexec_mutex here to prevent sys_kexec_load
941 	 * running on one cpu from replacing the crash kernel
942 	 * we are using after a panic on a different cpu.
943 	 *
944 	 * If the crash kernel was not located in a fixed area
945 	 * of memory the xchg(&kexec_crash_image) would be
946 	 * sufficient.  But since I reuse the memory...
947 	 */
948 	if (mutex_trylock(&kexec_mutex)) {
949 		if (kexec_crash_image) {
950 			struct pt_regs fixed_regs;
951 
952 			crash_setup_regs(&fixed_regs, regs);
953 			crash_save_vmcoreinfo();
954 			machine_crash_shutdown(&fixed_regs);
955 			machine_kexec(kexec_crash_image);
956 		}
957 		mutex_unlock(&kexec_mutex);
958 	}
959 }
960 STACK_FRAME_NON_STANDARD(__crash_kexec);
961 
962 void crash_kexec(struct pt_regs *regs)
963 {
964 	int old_cpu, this_cpu;
965 
966 	/*
967 	 * Only one CPU is allowed to execute the crash_kexec() code as with
968 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
969 	 * may stop each other.  To exclude them, we use panic_cpu here too.
970 	 */
971 	this_cpu = raw_smp_processor_id();
972 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
973 	if (old_cpu == PANIC_CPU_INVALID) {
974 		/* This is the 1st CPU which comes here, so go ahead. */
975 		printk_safe_flush_on_panic();
976 		__crash_kexec(regs);
977 
978 		/*
979 		 * Reset panic_cpu to allow another panic()/crash_kexec()
980 		 * call.
981 		 */
982 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
983 	}
984 }
985 
986 size_t crash_get_memory_size(void)
987 {
988 	size_t size = 0;
989 
990 	mutex_lock(&kexec_mutex);
991 	if (crashk_res.end != crashk_res.start)
992 		size = resource_size(&crashk_res);
993 	mutex_unlock(&kexec_mutex);
994 	return size;
995 }
996 
997 void __weak crash_free_reserved_phys_range(unsigned long begin,
998 					   unsigned long end)
999 {
1000 	unsigned long addr;
1001 
1002 	for (addr = begin; addr < end; addr += PAGE_SIZE)
1003 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1004 }
1005 
1006 int crash_shrink_memory(unsigned long new_size)
1007 {
1008 	int ret = 0;
1009 	unsigned long start, end;
1010 	unsigned long old_size;
1011 	struct resource *ram_res;
1012 
1013 	mutex_lock(&kexec_mutex);
1014 
1015 	if (kexec_crash_image) {
1016 		ret = -ENOENT;
1017 		goto unlock;
1018 	}
1019 	start = crashk_res.start;
1020 	end = crashk_res.end;
1021 	old_size = (end == 0) ? 0 : end - start + 1;
1022 	if (new_size >= old_size) {
1023 		ret = (new_size == old_size) ? 0 : -EINVAL;
1024 		goto unlock;
1025 	}
1026 
1027 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1028 	if (!ram_res) {
1029 		ret = -ENOMEM;
1030 		goto unlock;
1031 	}
1032 
1033 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1034 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1035 
1036 	crash_free_reserved_phys_range(end, crashk_res.end);
1037 
1038 	if ((start == end) && (crashk_res.parent != NULL))
1039 		release_resource(&crashk_res);
1040 
1041 	ram_res->start = end;
1042 	ram_res->end = crashk_res.end;
1043 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1044 	ram_res->name = "System RAM";
1045 
1046 	crashk_res.end = end - 1;
1047 
1048 	insert_resource(&iomem_resource, ram_res);
1049 
1050 unlock:
1051 	mutex_unlock(&kexec_mutex);
1052 	return ret;
1053 }
1054 
1055 void crash_save_cpu(struct pt_regs *regs, int cpu)
1056 {
1057 	struct elf_prstatus prstatus;
1058 	u32 *buf;
1059 
1060 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1061 		return;
1062 
1063 	/* Using ELF notes here is opportunistic.
1064 	 * I need a well defined structure format
1065 	 * for the data I pass, and I need tags
1066 	 * on the data to indicate what information I have
1067 	 * squirrelled away.  ELF notes happen to provide
1068 	 * all of that, so there is no need to invent something new.
1069 	 */
1070 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1071 	if (!buf)
1072 		return;
1073 	memset(&prstatus, 0, sizeof(prstatus));
1074 	prstatus.pr_pid = current->pid;
1075 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1076 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1077 			      &prstatus, sizeof(prstatus));
1078 	final_note(buf);
1079 }
1080 
1081 static int __init crash_notes_memory_init(void)
1082 {
1083 	/* Allocate memory for saving cpu registers. */
1084 	size_t size, align;
1085 
1086 	/*
1087 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1088 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1089 	 * pages are also on 2 continuous physical pages. In this case the
1090 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1091 	 * starting address and size of crash_notes are exported through sysfs.
1092 	 * Here round up the size of crash_notes to the nearest power of two
1093 	 * and pass it to __alloc_percpu as align value. This can make sure
1094 	 * crash_notes is allocated inside one physical page.
1095 	 */
1096 	size = sizeof(note_buf_t);
1097 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1098 
1099 	/*
1100 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1101 	 * definitely will be in 2 pages with that.
1102 	 */
1103 	BUILD_BUG_ON(size > PAGE_SIZE);
1104 
1105 	crash_notes = __alloc_percpu(size, align);
1106 	if (!crash_notes) {
1107 		pr_warn("Memory allocation for saving cpu register states failed\n");
1108 		return -ENOMEM;
1109 	}
1110 	return 0;
1111 }
1112 subsys_initcall(crash_notes_memory_init);
1113 
1114 
1115 /*
1116  * Move into place and start executing a preloaded standalone
1117  * executable.  If nothing was preloaded return an error.
1118  */
1119 int kernel_kexec(void)
1120 {
1121 	int error = 0;
1122 
1123 	if (!mutex_trylock(&kexec_mutex))
1124 		return -EBUSY;
1125 	if (!kexec_image) {
1126 		error = -EINVAL;
1127 		goto Unlock;
1128 	}
1129 
1130 #ifdef CONFIG_KEXEC_JUMP
1131 	if (kexec_image->preserve_context) {
1132 		lock_system_sleep();
1133 		pm_prepare_console();
1134 		error = freeze_processes();
1135 		if (error) {
1136 			error = -EBUSY;
1137 			goto Restore_console;
1138 		}
1139 		suspend_console();
1140 		error = dpm_suspend_start(PMSG_FREEZE);
1141 		if (error)
1142 			goto Resume_console;
1143 		/* At this point, dpm_suspend_start() has been called,
1144 		 * but *not* dpm_suspend_end(). We *must* call
1145 		 * dpm_suspend_end() now.  Otherwise, drivers for
1146 		 * some devices (e.g. interrupt controllers) become
1147 		 * desynchronized with the actual state of the
1148 		 * hardware at resume time, and evil weirdness ensues.
1149 		 */
1150 		error = dpm_suspend_end(PMSG_FREEZE);
1151 		if (error)
1152 			goto Resume_devices;
1153 		error = disable_nonboot_cpus();
1154 		if (error)
1155 			goto Enable_cpus;
1156 		local_irq_disable();
1157 		error = syscore_suspend();
1158 		if (error)
1159 			goto Enable_irqs;
1160 	} else
1161 #endif
1162 	{
1163 		kexec_in_progress = true;
1164 		kernel_restart_prepare(NULL);
1165 		migrate_to_reboot_cpu();
1166 
1167 		/*
1168 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1169 		 * no further code needs to use CPU hotplug (which is true in
1170 		 * the reboot case). However, the kexec path depends on using
1171 		 * CPU hotplug again; so re-enable it here.
1172 		 */
1173 		cpu_hotplug_enable();
1174 		pr_emerg("Starting new kernel\n");
1175 		machine_shutdown();
1176 	}
1177 
1178 	machine_kexec(kexec_image);
1179 
1180 #ifdef CONFIG_KEXEC_JUMP
1181 	if (kexec_image->preserve_context) {
1182 		syscore_resume();
1183  Enable_irqs:
1184 		local_irq_enable();
1185  Enable_cpus:
1186 		enable_nonboot_cpus();
1187 		dpm_resume_start(PMSG_RESTORE);
1188  Resume_devices:
1189 		dpm_resume_end(PMSG_RESTORE);
1190  Resume_console:
1191 		resume_console();
1192 		thaw_processes();
1193  Restore_console:
1194 		pm_restore_console();
1195 		unlock_system_sleep();
1196 	}
1197 #endif
1198 
1199  Unlock:
1200 	mutex_unlock(&kexec_mutex);
1201 	return error;
1202 }
1203 
1204 /*
1205  * Protection mechanism for crashkernel reserved memory after
1206  * the kdump kernel is loaded.
1207  *
1208  * Provide an empty default implementation here -- architecture
1209  * code may override this
1210  */
1211 void __weak arch_kexec_protect_crashkres(void)
1212 {}
1213 
1214 void __weak arch_kexec_unprotect_crashkres(void)
1215 {}
1216