1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/btf.h> 10 #include <linux/capability.h> 11 #include <linux/mm.h> 12 #include <linux/file.h> 13 #include <linux/slab.h> 14 #include <linux/fs.h> 15 #include <linux/kexec.h> 16 #include <linux/mutex.h> 17 #include <linux/list.h> 18 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 21 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 26 #include <linux/numa.h> 27 #include <linux/suspend.h> 28 #include <linux/device.h> 29 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> 42 #include <linux/kmsg_dump.h> 43 44 #include <asm/page.h> 45 #include <asm/sections.h> 46 47 #include <crypto/hash.h> 48 #include "kexec_internal.h" 49 50 atomic_t __kexec_lock = ATOMIC_INIT(0); 51 52 /* Flag to indicate we are going to kexec a new kernel */ 53 bool kexec_in_progress = false; 54 55 int kexec_should_crash(struct task_struct *p) 56 { 57 /* 58 * If crash_kexec_post_notifiers is enabled, don't run 59 * crash_kexec() here yet, which must be run after panic 60 * notifiers in panic(). 61 */ 62 if (crash_kexec_post_notifiers) 63 return 0; 64 /* 65 * There are 4 panic() calls in make_task_dead() path, each of which 66 * corresponds to each of these 4 conditions. 67 */ 68 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 69 return 1; 70 return 0; 71 } 72 73 int kexec_crash_loaded(void) 74 { 75 return !!kexec_crash_image; 76 } 77 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 78 79 /* 80 * When kexec transitions to the new kernel there is a one-to-one 81 * mapping between physical and virtual addresses. On processors 82 * where you can disable the MMU this is trivial, and easy. For 83 * others it is still a simple predictable page table to setup. 84 * 85 * In that environment kexec copies the new kernel to its final 86 * resting place. This means I can only support memory whose 87 * physical address can fit in an unsigned long. In particular 88 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 89 * If the assembly stub has more restrictive requirements 90 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 91 * defined more restrictively in <asm/kexec.h>. 92 * 93 * The code for the transition from the current kernel to the 94 * new kernel is placed in the control_code_buffer, whose size 95 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 96 * page of memory is necessary, but some architectures require more. 97 * Because this memory must be identity mapped in the transition from 98 * virtual to physical addresses it must live in the range 99 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 100 * modifiable. 101 * 102 * The assembly stub in the control code buffer is passed a linked list 103 * of descriptor pages detailing the source pages of the new kernel, 104 * and the destination addresses of those source pages. As this data 105 * structure is not used in the context of the current OS, it must 106 * be self-contained. 107 * 108 * The code has been made to work with highmem pages and will use a 109 * destination page in its final resting place (if it happens 110 * to allocate it). The end product of this is that most of the 111 * physical address space, and most of RAM can be used. 112 * 113 * Future directions include: 114 * - allocating a page table with the control code buffer identity 115 * mapped, to simplify machine_kexec and make kexec_on_panic more 116 * reliable. 117 */ 118 119 /* 120 * KIMAGE_NO_DEST is an impossible destination address..., for 121 * allocating pages whose destination address we do not care about. 122 */ 123 #define KIMAGE_NO_DEST (-1UL) 124 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 125 126 static struct page *kimage_alloc_page(struct kimage *image, 127 gfp_t gfp_mask, 128 unsigned long dest); 129 130 int sanity_check_segment_list(struct kimage *image) 131 { 132 int i; 133 unsigned long nr_segments = image->nr_segments; 134 unsigned long total_pages = 0; 135 unsigned long nr_pages = totalram_pages(); 136 137 /* 138 * Verify we have good destination addresses. The caller is 139 * responsible for making certain we don't attempt to load 140 * the new image into invalid or reserved areas of RAM. This 141 * just verifies it is an address we can use. 142 * 143 * Since the kernel does everything in page size chunks ensure 144 * the destination addresses are page aligned. Too many 145 * special cases crop of when we don't do this. The most 146 * insidious is getting overlapping destination addresses 147 * simply because addresses are changed to page size 148 * granularity. 149 */ 150 for (i = 0; i < nr_segments; i++) { 151 unsigned long mstart, mend; 152 153 mstart = image->segment[i].mem; 154 mend = mstart + image->segment[i].memsz; 155 if (mstart > mend) 156 return -EADDRNOTAVAIL; 157 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 158 return -EADDRNOTAVAIL; 159 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 160 return -EADDRNOTAVAIL; 161 } 162 163 /* Verify our destination addresses do not overlap. 164 * If we alloed overlapping destination addresses 165 * through very weird things can happen with no 166 * easy explanation as one segment stops on another. 167 */ 168 for (i = 0; i < nr_segments; i++) { 169 unsigned long mstart, mend; 170 unsigned long j; 171 172 mstart = image->segment[i].mem; 173 mend = mstart + image->segment[i].memsz; 174 for (j = 0; j < i; j++) { 175 unsigned long pstart, pend; 176 177 pstart = image->segment[j].mem; 178 pend = pstart + image->segment[j].memsz; 179 /* Do the segments overlap ? */ 180 if ((mend > pstart) && (mstart < pend)) 181 return -EINVAL; 182 } 183 } 184 185 /* Ensure our buffer sizes are strictly less than 186 * our memory sizes. This should always be the case, 187 * and it is easier to check up front than to be surprised 188 * later on. 189 */ 190 for (i = 0; i < nr_segments; i++) { 191 if (image->segment[i].bufsz > image->segment[i].memsz) 192 return -EINVAL; 193 } 194 195 /* 196 * Verify that no more than half of memory will be consumed. If the 197 * request from userspace is too large, a large amount of time will be 198 * wasted allocating pages, which can cause a soft lockup. 199 */ 200 for (i = 0; i < nr_segments; i++) { 201 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 202 return -EINVAL; 203 204 total_pages += PAGE_COUNT(image->segment[i].memsz); 205 } 206 207 if (total_pages > nr_pages / 2) 208 return -EINVAL; 209 210 /* 211 * Verify we have good destination addresses. Normally 212 * the caller is responsible for making certain we don't 213 * attempt to load the new image into invalid or reserved 214 * areas of RAM. But crash kernels are preloaded into a 215 * reserved area of ram. We must ensure the addresses 216 * are in the reserved area otherwise preloading the 217 * kernel could corrupt things. 218 */ 219 220 if (image->type == KEXEC_TYPE_CRASH) { 221 for (i = 0; i < nr_segments; i++) { 222 unsigned long mstart, mend; 223 224 mstart = image->segment[i].mem; 225 mend = mstart + image->segment[i].memsz - 1; 226 /* Ensure we are within the crash kernel limits */ 227 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 228 (mend > phys_to_boot_phys(crashk_res.end))) 229 return -EADDRNOTAVAIL; 230 } 231 } 232 233 return 0; 234 } 235 236 struct kimage *do_kimage_alloc_init(void) 237 { 238 struct kimage *image; 239 240 /* Allocate a controlling structure */ 241 image = kzalloc(sizeof(*image), GFP_KERNEL); 242 if (!image) 243 return NULL; 244 245 image->head = 0; 246 image->entry = &image->head; 247 image->last_entry = &image->head; 248 image->control_page = ~0; /* By default this does not apply */ 249 image->type = KEXEC_TYPE_DEFAULT; 250 251 /* Initialize the list of control pages */ 252 INIT_LIST_HEAD(&image->control_pages); 253 254 /* Initialize the list of destination pages */ 255 INIT_LIST_HEAD(&image->dest_pages); 256 257 /* Initialize the list of unusable pages */ 258 INIT_LIST_HEAD(&image->unusable_pages); 259 260 #ifdef CONFIG_CRASH_HOTPLUG 261 image->hp_action = KEXEC_CRASH_HP_NONE; 262 image->elfcorehdr_index = -1; 263 image->elfcorehdr_updated = false; 264 #endif 265 266 return image; 267 } 268 269 int kimage_is_destination_range(struct kimage *image, 270 unsigned long start, 271 unsigned long end) 272 { 273 unsigned long i; 274 275 for (i = 0; i < image->nr_segments; i++) { 276 unsigned long mstart, mend; 277 278 mstart = image->segment[i].mem; 279 mend = mstart + image->segment[i].memsz; 280 if ((end > mstart) && (start < mend)) 281 return 1; 282 } 283 284 return 0; 285 } 286 287 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 288 { 289 struct page *pages; 290 291 if (fatal_signal_pending(current)) 292 return NULL; 293 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 294 if (pages) { 295 unsigned int count, i; 296 297 pages->mapping = NULL; 298 set_page_private(pages, order); 299 count = 1 << order; 300 for (i = 0; i < count; i++) 301 SetPageReserved(pages + i); 302 303 arch_kexec_post_alloc_pages(page_address(pages), count, 304 gfp_mask); 305 306 if (gfp_mask & __GFP_ZERO) 307 for (i = 0; i < count; i++) 308 clear_highpage(pages + i); 309 } 310 311 return pages; 312 } 313 314 static void kimage_free_pages(struct page *page) 315 { 316 unsigned int order, count, i; 317 318 order = page_private(page); 319 count = 1 << order; 320 321 arch_kexec_pre_free_pages(page_address(page), count); 322 323 for (i = 0; i < count; i++) 324 ClearPageReserved(page + i); 325 __free_pages(page, order); 326 } 327 328 void kimage_free_page_list(struct list_head *list) 329 { 330 struct page *page, *next; 331 332 list_for_each_entry_safe(page, next, list, lru) { 333 list_del(&page->lru); 334 kimage_free_pages(page); 335 } 336 } 337 338 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 339 unsigned int order) 340 { 341 /* Control pages are special, they are the intermediaries 342 * that are needed while we copy the rest of the pages 343 * to their final resting place. As such they must 344 * not conflict with either the destination addresses 345 * or memory the kernel is already using. 346 * 347 * The only case where we really need more than one of 348 * these are for architectures where we cannot disable 349 * the MMU and must instead generate an identity mapped 350 * page table for all of the memory. 351 * 352 * At worst this runs in O(N) of the image size. 353 */ 354 struct list_head extra_pages; 355 struct page *pages; 356 unsigned int count; 357 358 count = 1 << order; 359 INIT_LIST_HEAD(&extra_pages); 360 361 /* Loop while I can allocate a page and the page allocated 362 * is a destination page. 363 */ 364 do { 365 unsigned long pfn, epfn, addr, eaddr; 366 367 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 368 if (!pages) 369 break; 370 pfn = page_to_boot_pfn(pages); 371 epfn = pfn + count; 372 addr = pfn << PAGE_SHIFT; 373 eaddr = epfn << PAGE_SHIFT; 374 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 375 kimage_is_destination_range(image, addr, eaddr)) { 376 list_add(&pages->lru, &extra_pages); 377 pages = NULL; 378 } 379 } while (!pages); 380 381 if (pages) { 382 /* Remember the allocated page... */ 383 list_add(&pages->lru, &image->control_pages); 384 385 /* Because the page is already in it's destination 386 * location we will never allocate another page at 387 * that address. Therefore kimage_alloc_pages 388 * will not return it (again) and we don't need 389 * to give it an entry in image->segment[]. 390 */ 391 } 392 /* Deal with the destination pages I have inadvertently allocated. 393 * 394 * Ideally I would convert multi-page allocations into single 395 * page allocations, and add everything to image->dest_pages. 396 * 397 * For now it is simpler to just free the pages. 398 */ 399 kimage_free_page_list(&extra_pages); 400 401 return pages; 402 } 403 404 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 405 unsigned int order) 406 { 407 /* Control pages are special, they are the intermediaries 408 * that are needed while we copy the rest of the pages 409 * to their final resting place. As such they must 410 * not conflict with either the destination addresses 411 * or memory the kernel is already using. 412 * 413 * Control pages are also the only pags we must allocate 414 * when loading a crash kernel. All of the other pages 415 * are specified by the segments and we just memcpy 416 * into them directly. 417 * 418 * The only case where we really need more than one of 419 * these are for architectures where we cannot disable 420 * the MMU and must instead generate an identity mapped 421 * page table for all of the memory. 422 * 423 * Given the low demand this implements a very simple 424 * allocator that finds the first hole of the appropriate 425 * size in the reserved memory region, and allocates all 426 * of the memory up to and including the hole. 427 */ 428 unsigned long hole_start, hole_end, size; 429 struct page *pages; 430 431 pages = NULL; 432 size = (1 << order) << PAGE_SHIFT; 433 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 434 hole_end = hole_start + size - 1; 435 while (hole_end <= crashk_res.end) { 436 unsigned long i; 437 438 cond_resched(); 439 440 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 441 break; 442 /* See if I overlap any of the segments */ 443 for (i = 0; i < image->nr_segments; i++) { 444 unsigned long mstart, mend; 445 446 mstart = image->segment[i].mem; 447 mend = mstart + image->segment[i].memsz - 1; 448 if ((hole_end >= mstart) && (hole_start <= mend)) { 449 /* Advance the hole to the end of the segment */ 450 hole_start = (mend + (size - 1)) & ~(size - 1); 451 hole_end = hole_start + size - 1; 452 break; 453 } 454 } 455 /* If I don't overlap any segments I have found my hole! */ 456 if (i == image->nr_segments) { 457 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 458 image->control_page = hole_end; 459 break; 460 } 461 } 462 463 /* Ensure that these pages are decrypted if SME is enabled. */ 464 if (pages) 465 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 466 467 return pages; 468 } 469 470 471 struct page *kimage_alloc_control_pages(struct kimage *image, 472 unsigned int order) 473 { 474 struct page *pages = NULL; 475 476 switch (image->type) { 477 case KEXEC_TYPE_DEFAULT: 478 pages = kimage_alloc_normal_control_pages(image, order); 479 break; 480 case KEXEC_TYPE_CRASH: 481 pages = kimage_alloc_crash_control_pages(image, order); 482 break; 483 } 484 485 return pages; 486 } 487 488 int kimage_crash_copy_vmcoreinfo(struct kimage *image) 489 { 490 struct page *vmcoreinfo_page; 491 void *safecopy; 492 493 if (image->type != KEXEC_TYPE_CRASH) 494 return 0; 495 496 /* 497 * For kdump, allocate one vmcoreinfo safe copy from the 498 * crash memory. as we have arch_kexec_protect_crashkres() 499 * after kexec syscall, we naturally protect it from write 500 * (even read) access under kernel direct mapping. But on 501 * the other hand, we still need to operate it when crash 502 * happens to generate vmcoreinfo note, hereby we rely on 503 * vmap for this purpose. 504 */ 505 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); 506 if (!vmcoreinfo_page) { 507 pr_warn("Could not allocate vmcoreinfo buffer\n"); 508 return -ENOMEM; 509 } 510 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); 511 if (!safecopy) { 512 pr_warn("Could not vmap vmcoreinfo buffer\n"); 513 return -ENOMEM; 514 } 515 516 image->vmcoreinfo_data_copy = safecopy; 517 crash_update_vmcoreinfo_safecopy(safecopy); 518 519 return 0; 520 } 521 522 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 523 { 524 if (*image->entry != 0) 525 image->entry++; 526 527 if (image->entry == image->last_entry) { 528 kimage_entry_t *ind_page; 529 struct page *page; 530 531 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 532 if (!page) 533 return -ENOMEM; 534 535 ind_page = page_address(page); 536 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 537 image->entry = ind_page; 538 image->last_entry = ind_page + 539 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 540 } 541 *image->entry = entry; 542 image->entry++; 543 *image->entry = 0; 544 545 return 0; 546 } 547 548 static int kimage_set_destination(struct kimage *image, 549 unsigned long destination) 550 { 551 destination &= PAGE_MASK; 552 553 return kimage_add_entry(image, destination | IND_DESTINATION); 554 } 555 556 557 static int kimage_add_page(struct kimage *image, unsigned long page) 558 { 559 page &= PAGE_MASK; 560 561 return kimage_add_entry(image, page | IND_SOURCE); 562 } 563 564 565 static void kimage_free_extra_pages(struct kimage *image) 566 { 567 /* Walk through and free any extra destination pages I may have */ 568 kimage_free_page_list(&image->dest_pages); 569 570 /* Walk through and free any unusable pages I have cached */ 571 kimage_free_page_list(&image->unusable_pages); 572 573 } 574 575 void kimage_terminate(struct kimage *image) 576 { 577 if (*image->entry != 0) 578 image->entry++; 579 580 *image->entry = IND_DONE; 581 } 582 583 #define for_each_kimage_entry(image, ptr, entry) \ 584 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 585 ptr = (entry & IND_INDIRECTION) ? \ 586 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 587 588 static void kimage_free_entry(kimage_entry_t entry) 589 { 590 struct page *page; 591 592 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 593 kimage_free_pages(page); 594 } 595 596 void kimage_free(struct kimage *image) 597 { 598 kimage_entry_t *ptr, entry; 599 kimage_entry_t ind = 0; 600 601 if (!image) 602 return; 603 604 if (image->vmcoreinfo_data_copy) { 605 crash_update_vmcoreinfo_safecopy(NULL); 606 vunmap(image->vmcoreinfo_data_copy); 607 } 608 609 kimage_free_extra_pages(image); 610 for_each_kimage_entry(image, ptr, entry) { 611 if (entry & IND_INDIRECTION) { 612 /* Free the previous indirection page */ 613 if (ind & IND_INDIRECTION) 614 kimage_free_entry(ind); 615 /* Save this indirection page until we are 616 * done with it. 617 */ 618 ind = entry; 619 } else if (entry & IND_SOURCE) 620 kimage_free_entry(entry); 621 } 622 /* Free the final indirection page */ 623 if (ind & IND_INDIRECTION) 624 kimage_free_entry(ind); 625 626 /* Handle any machine specific cleanup */ 627 machine_kexec_cleanup(image); 628 629 /* Free the kexec control pages... */ 630 kimage_free_page_list(&image->control_pages); 631 632 /* 633 * Free up any temporary buffers allocated. This might hit if 634 * error occurred much later after buffer allocation. 635 */ 636 if (image->file_mode) 637 kimage_file_post_load_cleanup(image); 638 639 kfree(image); 640 } 641 642 static kimage_entry_t *kimage_dst_used(struct kimage *image, 643 unsigned long page) 644 { 645 kimage_entry_t *ptr, entry; 646 unsigned long destination = 0; 647 648 for_each_kimage_entry(image, ptr, entry) { 649 if (entry & IND_DESTINATION) 650 destination = entry & PAGE_MASK; 651 else if (entry & IND_SOURCE) { 652 if (page == destination) 653 return ptr; 654 destination += PAGE_SIZE; 655 } 656 } 657 658 return NULL; 659 } 660 661 static struct page *kimage_alloc_page(struct kimage *image, 662 gfp_t gfp_mask, 663 unsigned long destination) 664 { 665 /* 666 * Here we implement safeguards to ensure that a source page 667 * is not copied to its destination page before the data on 668 * the destination page is no longer useful. 669 * 670 * To do this we maintain the invariant that a source page is 671 * either its own destination page, or it is not a 672 * destination page at all. 673 * 674 * That is slightly stronger than required, but the proof 675 * that no problems will not occur is trivial, and the 676 * implementation is simply to verify. 677 * 678 * When allocating all pages normally this algorithm will run 679 * in O(N) time, but in the worst case it will run in O(N^2) 680 * time. If the runtime is a problem the data structures can 681 * be fixed. 682 */ 683 struct page *page; 684 unsigned long addr; 685 686 /* 687 * Walk through the list of destination pages, and see if I 688 * have a match. 689 */ 690 list_for_each_entry(page, &image->dest_pages, lru) { 691 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 692 if (addr == destination) { 693 list_del(&page->lru); 694 return page; 695 } 696 } 697 page = NULL; 698 while (1) { 699 kimage_entry_t *old; 700 701 /* Allocate a page, if we run out of memory give up */ 702 page = kimage_alloc_pages(gfp_mask, 0); 703 if (!page) 704 return NULL; 705 /* If the page cannot be used file it away */ 706 if (page_to_boot_pfn(page) > 707 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 708 list_add(&page->lru, &image->unusable_pages); 709 continue; 710 } 711 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 712 713 /* If it is the destination page we want use it */ 714 if (addr == destination) 715 break; 716 717 /* If the page is not a destination page use it */ 718 if (!kimage_is_destination_range(image, addr, 719 addr + PAGE_SIZE)) 720 break; 721 722 /* 723 * I know that the page is someones destination page. 724 * See if there is already a source page for this 725 * destination page. And if so swap the source pages. 726 */ 727 old = kimage_dst_used(image, addr); 728 if (old) { 729 /* If so move it */ 730 unsigned long old_addr; 731 struct page *old_page; 732 733 old_addr = *old & PAGE_MASK; 734 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 735 copy_highpage(page, old_page); 736 *old = addr | (*old & ~PAGE_MASK); 737 738 /* The old page I have found cannot be a 739 * destination page, so return it if it's 740 * gfp_flags honor the ones passed in. 741 */ 742 if (!(gfp_mask & __GFP_HIGHMEM) && 743 PageHighMem(old_page)) { 744 kimage_free_pages(old_page); 745 continue; 746 } 747 page = old_page; 748 break; 749 } 750 /* Place the page on the destination list, to be used later */ 751 list_add(&page->lru, &image->dest_pages); 752 } 753 754 return page; 755 } 756 757 static int kimage_load_normal_segment(struct kimage *image, 758 struct kexec_segment *segment) 759 { 760 unsigned long maddr; 761 size_t ubytes, mbytes; 762 int result; 763 unsigned char __user *buf = NULL; 764 unsigned char *kbuf = NULL; 765 766 if (image->file_mode) 767 kbuf = segment->kbuf; 768 else 769 buf = segment->buf; 770 ubytes = segment->bufsz; 771 mbytes = segment->memsz; 772 maddr = segment->mem; 773 774 result = kimage_set_destination(image, maddr); 775 if (result < 0) 776 goto out; 777 778 while (mbytes) { 779 struct page *page; 780 char *ptr; 781 size_t uchunk, mchunk; 782 783 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 784 if (!page) { 785 result = -ENOMEM; 786 goto out; 787 } 788 result = kimage_add_page(image, page_to_boot_pfn(page) 789 << PAGE_SHIFT); 790 if (result < 0) 791 goto out; 792 793 ptr = kmap_local_page(page); 794 /* Start with a clear page */ 795 clear_page(ptr); 796 ptr += maddr & ~PAGE_MASK; 797 mchunk = min_t(size_t, mbytes, 798 PAGE_SIZE - (maddr & ~PAGE_MASK)); 799 uchunk = min(ubytes, mchunk); 800 801 /* For file based kexec, source pages are in kernel memory */ 802 if (image->file_mode) 803 memcpy(ptr, kbuf, uchunk); 804 else 805 result = copy_from_user(ptr, buf, uchunk); 806 kunmap_local(ptr); 807 if (result) { 808 result = -EFAULT; 809 goto out; 810 } 811 ubytes -= uchunk; 812 maddr += mchunk; 813 if (image->file_mode) 814 kbuf += mchunk; 815 else 816 buf += mchunk; 817 mbytes -= mchunk; 818 819 cond_resched(); 820 } 821 out: 822 return result; 823 } 824 825 static int kimage_load_crash_segment(struct kimage *image, 826 struct kexec_segment *segment) 827 { 828 /* For crash dumps kernels we simply copy the data from 829 * user space to it's destination. 830 * We do things a page at a time for the sake of kmap. 831 */ 832 unsigned long maddr; 833 size_t ubytes, mbytes; 834 int result; 835 unsigned char __user *buf = NULL; 836 unsigned char *kbuf = NULL; 837 838 result = 0; 839 if (image->file_mode) 840 kbuf = segment->kbuf; 841 else 842 buf = segment->buf; 843 ubytes = segment->bufsz; 844 mbytes = segment->memsz; 845 maddr = segment->mem; 846 while (mbytes) { 847 struct page *page; 848 char *ptr; 849 size_t uchunk, mchunk; 850 851 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 852 if (!page) { 853 result = -ENOMEM; 854 goto out; 855 } 856 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 857 ptr = kmap_local_page(page); 858 ptr += maddr & ~PAGE_MASK; 859 mchunk = min_t(size_t, mbytes, 860 PAGE_SIZE - (maddr & ~PAGE_MASK)); 861 uchunk = min(ubytes, mchunk); 862 if (mchunk > uchunk) { 863 /* Zero the trailing part of the page */ 864 memset(ptr + uchunk, 0, mchunk - uchunk); 865 } 866 867 /* For file based kexec, source pages are in kernel memory */ 868 if (image->file_mode) 869 memcpy(ptr, kbuf, uchunk); 870 else 871 result = copy_from_user(ptr, buf, uchunk); 872 kexec_flush_icache_page(page); 873 kunmap_local(ptr); 874 arch_kexec_pre_free_pages(page_address(page), 1); 875 if (result) { 876 result = -EFAULT; 877 goto out; 878 } 879 ubytes -= uchunk; 880 maddr += mchunk; 881 if (image->file_mode) 882 kbuf += mchunk; 883 else 884 buf += mchunk; 885 mbytes -= mchunk; 886 887 cond_resched(); 888 } 889 out: 890 return result; 891 } 892 893 int kimage_load_segment(struct kimage *image, 894 struct kexec_segment *segment) 895 { 896 int result = -ENOMEM; 897 898 switch (image->type) { 899 case KEXEC_TYPE_DEFAULT: 900 result = kimage_load_normal_segment(image, segment); 901 break; 902 case KEXEC_TYPE_CRASH: 903 result = kimage_load_crash_segment(image, segment); 904 break; 905 } 906 907 return result; 908 } 909 910 struct kexec_load_limit { 911 /* Mutex protects the limit count. */ 912 struct mutex mutex; 913 int limit; 914 }; 915 916 static struct kexec_load_limit load_limit_reboot = { 917 .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex), 918 .limit = -1, 919 }; 920 921 static struct kexec_load_limit load_limit_panic = { 922 .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex), 923 .limit = -1, 924 }; 925 926 struct kimage *kexec_image; 927 struct kimage *kexec_crash_image; 928 static int kexec_load_disabled; 929 930 #ifdef CONFIG_SYSCTL 931 static int kexec_limit_handler(struct ctl_table *table, int write, 932 void *buffer, size_t *lenp, loff_t *ppos) 933 { 934 struct kexec_load_limit *limit = table->data; 935 int val; 936 struct ctl_table tmp = { 937 .data = &val, 938 .maxlen = sizeof(val), 939 .mode = table->mode, 940 }; 941 int ret; 942 943 if (write) { 944 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); 945 if (ret) 946 return ret; 947 948 if (val < 0) 949 return -EINVAL; 950 951 mutex_lock(&limit->mutex); 952 if (limit->limit != -1 && val >= limit->limit) 953 ret = -EINVAL; 954 else 955 limit->limit = val; 956 mutex_unlock(&limit->mutex); 957 958 return ret; 959 } 960 961 mutex_lock(&limit->mutex); 962 val = limit->limit; 963 mutex_unlock(&limit->mutex); 964 965 return proc_dointvec(&tmp, write, buffer, lenp, ppos); 966 } 967 968 static struct ctl_table kexec_core_sysctls[] = { 969 { 970 .procname = "kexec_load_disabled", 971 .data = &kexec_load_disabled, 972 .maxlen = sizeof(int), 973 .mode = 0644, 974 /* only handle a transition from default "0" to "1" */ 975 .proc_handler = proc_dointvec_minmax, 976 .extra1 = SYSCTL_ONE, 977 .extra2 = SYSCTL_ONE, 978 }, 979 { 980 .procname = "kexec_load_limit_panic", 981 .data = &load_limit_panic, 982 .mode = 0644, 983 .proc_handler = kexec_limit_handler, 984 }, 985 { 986 .procname = "kexec_load_limit_reboot", 987 .data = &load_limit_reboot, 988 .mode = 0644, 989 .proc_handler = kexec_limit_handler, 990 }, 991 { } 992 }; 993 994 static int __init kexec_core_sysctl_init(void) 995 { 996 register_sysctl_init("kernel", kexec_core_sysctls); 997 return 0; 998 } 999 late_initcall(kexec_core_sysctl_init); 1000 #endif 1001 1002 bool kexec_load_permitted(int kexec_image_type) 1003 { 1004 struct kexec_load_limit *limit; 1005 1006 /* 1007 * Only the superuser can use the kexec syscall and if it has not 1008 * been disabled. 1009 */ 1010 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1011 return false; 1012 1013 /* Check limit counter and decrease it.*/ 1014 limit = (kexec_image_type == KEXEC_TYPE_CRASH) ? 1015 &load_limit_panic : &load_limit_reboot; 1016 mutex_lock(&limit->mutex); 1017 if (!limit->limit) { 1018 mutex_unlock(&limit->mutex); 1019 return false; 1020 } 1021 if (limit->limit != -1) 1022 limit->limit--; 1023 mutex_unlock(&limit->mutex); 1024 1025 return true; 1026 } 1027 1028 /* 1029 * No panic_cpu check version of crash_kexec(). This function is called 1030 * only when panic_cpu holds the current CPU number; this is the only CPU 1031 * which processes crash_kexec routines. 1032 */ 1033 void __noclone __crash_kexec(struct pt_regs *regs) 1034 { 1035 /* Take the kexec_lock here to prevent sys_kexec_load 1036 * running on one cpu from replacing the crash kernel 1037 * we are using after a panic on a different cpu. 1038 * 1039 * If the crash kernel was not located in a fixed area 1040 * of memory the xchg(&kexec_crash_image) would be 1041 * sufficient. But since I reuse the memory... 1042 */ 1043 if (kexec_trylock()) { 1044 if (kexec_crash_image) { 1045 struct pt_regs fixed_regs; 1046 1047 crash_setup_regs(&fixed_regs, regs); 1048 crash_save_vmcoreinfo(); 1049 machine_crash_shutdown(&fixed_regs); 1050 machine_kexec(kexec_crash_image); 1051 } 1052 kexec_unlock(); 1053 } 1054 } 1055 STACK_FRAME_NON_STANDARD(__crash_kexec); 1056 1057 __bpf_kfunc void crash_kexec(struct pt_regs *regs) 1058 { 1059 int old_cpu, this_cpu; 1060 1061 /* 1062 * Only one CPU is allowed to execute the crash_kexec() code as with 1063 * panic(). Otherwise parallel calls of panic() and crash_kexec() 1064 * may stop each other. To exclude them, we use panic_cpu here too. 1065 */ 1066 this_cpu = raw_smp_processor_id(); 1067 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 1068 if (old_cpu == PANIC_CPU_INVALID) { 1069 /* This is the 1st CPU which comes here, so go ahead. */ 1070 __crash_kexec(regs); 1071 1072 /* 1073 * Reset panic_cpu to allow another panic()/crash_kexec() 1074 * call. 1075 */ 1076 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 1077 } 1078 } 1079 1080 static inline resource_size_t crash_resource_size(const struct resource *res) 1081 { 1082 return !res->end ? 0 : resource_size(res); 1083 } 1084 1085 ssize_t crash_get_memory_size(void) 1086 { 1087 ssize_t size = 0; 1088 1089 if (!kexec_trylock()) 1090 return -EBUSY; 1091 1092 size += crash_resource_size(&crashk_res); 1093 size += crash_resource_size(&crashk_low_res); 1094 1095 kexec_unlock(); 1096 return size; 1097 } 1098 1099 static int __crash_shrink_memory(struct resource *old_res, 1100 unsigned long new_size) 1101 { 1102 struct resource *ram_res; 1103 1104 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1105 if (!ram_res) 1106 return -ENOMEM; 1107 1108 ram_res->start = old_res->start + new_size; 1109 ram_res->end = old_res->end; 1110 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 1111 ram_res->name = "System RAM"; 1112 1113 if (!new_size) { 1114 release_resource(old_res); 1115 old_res->start = 0; 1116 old_res->end = 0; 1117 } else { 1118 crashk_res.end = ram_res->start - 1; 1119 } 1120 1121 crash_free_reserved_phys_range(ram_res->start, ram_res->end); 1122 insert_resource(&iomem_resource, ram_res); 1123 1124 return 0; 1125 } 1126 1127 int crash_shrink_memory(unsigned long new_size) 1128 { 1129 int ret = 0; 1130 unsigned long old_size, low_size; 1131 1132 if (!kexec_trylock()) 1133 return -EBUSY; 1134 1135 if (kexec_crash_image) { 1136 ret = -ENOENT; 1137 goto unlock; 1138 } 1139 1140 low_size = crash_resource_size(&crashk_low_res); 1141 old_size = crash_resource_size(&crashk_res) + low_size; 1142 new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN); 1143 if (new_size >= old_size) { 1144 ret = (new_size == old_size) ? 0 : -EINVAL; 1145 goto unlock; 1146 } 1147 1148 /* 1149 * (low_size > new_size) implies that low_size is greater than zero. 1150 * This also means that if low_size is zero, the else branch is taken. 1151 * 1152 * If low_size is greater than 0, (low_size > new_size) indicates that 1153 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res 1154 * needs to be shrunken. 1155 */ 1156 if (low_size > new_size) { 1157 ret = __crash_shrink_memory(&crashk_res, 0); 1158 if (ret) 1159 goto unlock; 1160 1161 ret = __crash_shrink_memory(&crashk_low_res, new_size); 1162 } else { 1163 ret = __crash_shrink_memory(&crashk_res, new_size - low_size); 1164 } 1165 1166 /* Swap crashk_res and crashk_low_res if needed */ 1167 if (!crashk_res.end && crashk_low_res.end) { 1168 crashk_res.start = crashk_low_res.start; 1169 crashk_res.end = crashk_low_res.end; 1170 release_resource(&crashk_low_res); 1171 crashk_low_res.start = 0; 1172 crashk_low_res.end = 0; 1173 insert_resource(&iomem_resource, &crashk_res); 1174 } 1175 1176 unlock: 1177 kexec_unlock(); 1178 return ret; 1179 } 1180 1181 void crash_save_cpu(struct pt_regs *regs, int cpu) 1182 { 1183 struct elf_prstatus prstatus; 1184 u32 *buf; 1185 1186 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1187 return; 1188 1189 /* Using ELF notes here is opportunistic. 1190 * I need a well defined structure format 1191 * for the data I pass, and I need tags 1192 * on the data to indicate what information I have 1193 * squirrelled away. ELF notes happen to provide 1194 * all of that, so there is no need to invent something new. 1195 */ 1196 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1197 if (!buf) 1198 return; 1199 memset(&prstatus, 0, sizeof(prstatus)); 1200 prstatus.common.pr_pid = current->pid; 1201 elf_core_copy_regs(&prstatus.pr_reg, regs); 1202 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1203 &prstatus, sizeof(prstatus)); 1204 final_note(buf); 1205 } 1206 1207 /* 1208 * Move into place and start executing a preloaded standalone 1209 * executable. If nothing was preloaded return an error. 1210 */ 1211 int kernel_kexec(void) 1212 { 1213 int error = 0; 1214 1215 if (!kexec_trylock()) 1216 return -EBUSY; 1217 if (!kexec_image) { 1218 error = -EINVAL; 1219 goto Unlock; 1220 } 1221 1222 #ifdef CONFIG_KEXEC_JUMP 1223 if (kexec_image->preserve_context) { 1224 pm_prepare_console(); 1225 error = freeze_processes(); 1226 if (error) { 1227 error = -EBUSY; 1228 goto Restore_console; 1229 } 1230 suspend_console(); 1231 error = dpm_suspend_start(PMSG_FREEZE); 1232 if (error) 1233 goto Resume_console; 1234 /* At this point, dpm_suspend_start() has been called, 1235 * but *not* dpm_suspend_end(). We *must* call 1236 * dpm_suspend_end() now. Otherwise, drivers for 1237 * some devices (e.g. interrupt controllers) become 1238 * desynchronized with the actual state of the 1239 * hardware at resume time, and evil weirdness ensues. 1240 */ 1241 error = dpm_suspend_end(PMSG_FREEZE); 1242 if (error) 1243 goto Resume_devices; 1244 error = suspend_disable_secondary_cpus(); 1245 if (error) 1246 goto Enable_cpus; 1247 local_irq_disable(); 1248 error = syscore_suspend(); 1249 if (error) 1250 goto Enable_irqs; 1251 } else 1252 #endif 1253 { 1254 kexec_in_progress = true; 1255 kernel_restart_prepare("kexec reboot"); 1256 migrate_to_reboot_cpu(); 1257 1258 /* 1259 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1260 * no further code needs to use CPU hotplug (which is true in 1261 * the reboot case). However, the kexec path depends on using 1262 * CPU hotplug again; so re-enable it here. 1263 */ 1264 cpu_hotplug_enable(); 1265 pr_notice("Starting new kernel\n"); 1266 machine_shutdown(); 1267 } 1268 1269 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1270 machine_kexec(kexec_image); 1271 1272 #ifdef CONFIG_KEXEC_JUMP 1273 if (kexec_image->preserve_context) { 1274 syscore_resume(); 1275 Enable_irqs: 1276 local_irq_enable(); 1277 Enable_cpus: 1278 suspend_enable_secondary_cpus(); 1279 dpm_resume_start(PMSG_RESTORE); 1280 Resume_devices: 1281 dpm_resume_end(PMSG_RESTORE); 1282 Resume_console: 1283 resume_console(); 1284 thaw_processes(); 1285 Restore_console: 1286 pm_restore_console(); 1287 } 1288 #endif 1289 1290 Unlock: 1291 kexec_unlock(); 1292 return error; 1293 } 1294