1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/btf.h> 10 #include <linux/capability.h> 11 #include <linux/mm.h> 12 #include <linux/file.h> 13 #include <linux/slab.h> 14 #include <linux/fs.h> 15 #include <linux/kexec.h> 16 #include <linux/mutex.h> 17 #include <linux/list.h> 18 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 21 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 26 #include <linux/numa.h> 27 #include <linux/suspend.h> 28 #include <linux/device.h> 29 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> 42 #include <linux/kmsg_dump.h> 43 44 #include <asm/page.h> 45 #include <asm/sections.h> 46 47 #include <crypto/hash.h> 48 #include "kexec_internal.h" 49 50 atomic_t __kexec_lock = ATOMIC_INIT(0); 51 52 /* Flag to indicate we are going to kexec a new kernel */ 53 bool kexec_in_progress = false; 54 55 bool kexec_file_dbg_print; 56 57 int kexec_should_crash(struct task_struct *p) 58 { 59 /* 60 * If crash_kexec_post_notifiers is enabled, don't run 61 * crash_kexec() here yet, which must be run after panic 62 * notifiers in panic(). 63 */ 64 if (crash_kexec_post_notifiers) 65 return 0; 66 /* 67 * There are 4 panic() calls in make_task_dead() path, each of which 68 * corresponds to each of these 4 conditions. 69 */ 70 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 71 return 1; 72 return 0; 73 } 74 75 int kexec_crash_loaded(void) 76 { 77 return !!kexec_crash_image; 78 } 79 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 80 81 /* 82 * When kexec transitions to the new kernel there is a one-to-one 83 * mapping between physical and virtual addresses. On processors 84 * where you can disable the MMU this is trivial, and easy. For 85 * others it is still a simple predictable page table to setup. 86 * 87 * In that environment kexec copies the new kernel to its final 88 * resting place. This means I can only support memory whose 89 * physical address can fit in an unsigned long. In particular 90 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 91 * If the assembly stub has more restrictive requirements 92 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 93 * defined more restrictively in <asm/kexec.h>. 94 * 95 * The code for the transition from the current kernel to the 96 * new kernel is placed in the control_code_buffer, whose size 97 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 98 * page of memory is necessary, but some architectures require more. 99 * Because this memory must be identity mapped in the transition from 100 * virtual to physical addresses it must live in the range 101 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 102 * modifiable. 103 * 104 * The assembly stub in the control code buffer is passed a linked list 105 * of descriptor pages detailing the source pages of the new kernel, 106 * and the destination addresses of those source pages. As this data 107 * structure is not used in the context of the current OS, it must 108 * be self-contained. 109 * 110 * The code has been made to work with highmem pages and will use a 111 * destination page in its final resting place (if it happens 112 * to allocate it). The end product of this is that most of the 113 * physical address space, and most of RAM can be used. 114 * 115 * Future directions include: 116 * - allocating a page table with the control code buffer identity 117 * mapped, to simplify machine_kexec and make kexec_on_panic more 118 * reliable. 119 */ 120 121 /* 122 * KIMAGE_NO_DEST is an impossible destination address..., for 123 * allocating pages whose destination address we do not care about. 124 */ 125 #define KIMAGE_NO_DEST (-1UL) 126 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 127 128 static struct page *kimage_alloc_page(struct kimage *image, 129 gfp_t gfp_mask, 130 unsigned long dest); 131 132 int sanity_check_segment_list(struct kimage *image) 133 { 134 int i; 135 unsigned long nr_segments = image->nr_segments; 136 unsigned long total_pages = 0; 137 unsigned long nr_pages = totalram_pages(); 138 139 /* 140 * Verify we have good destination addresses. The caller is 141 * responsible for making certain we don't attempt to load 142 * the new image into invalid or reserved areas of RAM. This 143 * just verifies it is an address we can use. 144 * 145 * Since the kernel does everything in page size chunks ensure 146 * the destination addresses are page aligned. Too many 147 * special cases crop of when we don't do this. The most 148 * insidious is getting overlapping destination addresses 149 * simply because addresses are changed to page size 150 * granularity. 151 */ 152 for (i = 0; i < nr_segments; i++) { 153 unsigned long mstart, mend; 154 155 mstart = image->segment[i].mem; 156 mend = mstart + image->segment[i].memsz; 157 if (mstart > mend) 158 return -EADDRNOTAVAIL; 159 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 160 return -EADDRNOTAVAIL; 161 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 162 return -EADDRNOTAVAIL; 163 } 164 165 /* Verify our destination addresses do not overlap. 166 * If we alloed overlapping destination addresses 167 * through very weird things can happen with no 168 * easy explanation as one segment stops on another. 169 */ 170 for (i = 0; i < nr_segments; i++) { 171 unsigned long mstart, mend; 172 unsigned long j; 173 174 mstart = image->segment[i].mem; 175 mend = mstart + image->segment[i].memsz; 176 for (j = 0; j < i; j++) { 177 unsigned long pstart, pend; 178 179 pstart = image->segment[j].mem; 180 pend = pstart + image->segment[j].memsz; 181 /* Do the segments overlap ? */ 182 if ((mend > pstart) && (mstart < pend)) 183 return -EINVAL; 184 } 185 } 186 187 /* Ensure our buffer sizes are strictly less than 188 * our memory sizes. This should always be the case, 189 * and it is easier to check up front than to be surprised 190 * later on. 191 */ 192 for (i = 0; i < nr_segments; i++) { 193 if (image->segment[i].bufsz > image->segment[i].memsz) 194 return -EINVAL; 195 } 196 197 /* 198 * Verify that no more than half of memory will be consumed. If the 199 * request from userspace is too large, a large amount of time will be 200 * wasted allocating pages, which can cause a soft lockup. 201 */ 202 for (i = 0; i < nr_segments; i++) { 203 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 204 return -EINVAL; 205 206 total_pages += PAGE_COUNT(image->segment[i].memsz); 207 } 208 209 if (total_pages > nr_pages / 2) 210 return -EINVAL; 211 212 /* 213 * Verify we have good destination addresses. Normally 214 * the caller is responsible for making certain we don't 215 * attempt to load the new image into invalid or reserved 216 * areas of RAM. But crash kernels are preloaded into a 217 * reserved area of ram. We must ensure the addresses 218 * are in the reserved area otherwise preloading the 219 * kernel could corrupt things. 220 */ 221 222 if (image->type == KEXEC_TYPE_CRASH) { 223 for (i = 0; i < nr_segments; i++) { 224 unsigned long mstart, mend; 225 226 mstart = image->segment[i].mem; 227 mend = mstart + image->segment[i].memsz - 1; 228 /* Ensure we are within the crash kernel limits */ 229 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 230 (mend > phys_to_boot_phys(crashk_res.end))) 231 return -EADDRNOTAVAIL; 232 } 233 } 234 235 return 0; 236 } 237 238 struct kimage *do_kimage_alloc_init(void) 239 { 240 struct kimage *image; 241 242 /* Allocate a controlling structure */ 243 image = kzalloc(sizeof(*image), GFP_KERNEL); 244 if (!image) 245 return NULL; 246 247 image->head = 0; 248 image->entry = &image->head; 249 image->last_entry = &image->head; 250 image->control_page = ~0; /* By default this does not apply */ 251 image->type = KEXEC_TYPE_DEFAULT; 252 253 /* Initialize the list of control pages */ 254 INIT_LIST_HEAD(&image->control_pages); 255 256 /* Initialize the list of destination pages */ 257 INIT_LIST_HEAD(&image->dest_pages); 258 259 /* Initialize the list of unusable pages */ 260 INIT_LIST_HEAD(&image->unusable_pages); 261 262 #ifdef CONFIG_CRASH_HOTPLUG 263 image->hp_action = KEXEC_CRASH_HP_NONE; 264 image->elfcorehdr_index = -1; 265 image->elfcorehdr_updated = false; 266 #endif 267 268 return image; 269 } 270 271 int kimage_is_destination_range(struct kimage *image, 272 unsigned long start, 273 unsigned long end) 274 { 275 unsigned long i; 276 277 for (i = 0; i < image->nr_segments; i++) { 278 unsigned long mstart, mend; 279 280 mstart = image->segment[i].mem; 281 mend = mstart + image->segment[i].memsz - 1; 282 if ((end >= mstart) && (start <= mend)) 283 return 1; 284 } 285 286 return 0; 287 } 288 289 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 290 { 291 struct page *pages; 292 293 if (fatal_signal_pending(current)) 294 return NULL; 295 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 296 if (pages) { 297 unsigned int count, i; 298 299 pages->mapping = NULL; 300 set_page_private(pages, order); 301 count = 1 << order; 302 for (i = 0; i < count; i++) 303 SetPageReserved(pages + i); 304 305 arch_kexec_post_alloc_pages(page_address(pages), count, 306 gfp_mask); 307 308 if (gfp_mask & __GFP_ZERO) 309 for (i = 0; i < count; i++) 310 clear_highpage(pages + i); 311 } 312 313 return pages; 314 } 315 316 static void kimage_free_pages(struct page *page) 317 { 318 unsigned int order, count, i; 319 320 order = page_private(page); 321 count = 1 << order; 322 323 arch_kexec_pre_free_pages(page_address(page), count); 324 325 for (i = 0; i < count; i++) 326 ClearPageReserved(page + i); 327 __free_pages(page, order); 328 } 329 330 void kimage_free_page_list(struct list_head *list) 331 { 332 struct page *page, *next; 333 334 list_for_each_entry_safe(page, next, list, lru) { 335 list_del(&page->lru); 336 kimage_free_pages(page); 337 } 338 } 339 340 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 341 unsigned int order) 342 { 343 /* Control pages are special, they are the intermediaries 344 * that are needed while we copy the rest of the pages 345 * to their final resting place. As such they must 346 * not conflict with either the destination addresses 347 * or memory the kernel is already using. 348 * 349 * The only case where we really need more than one of 350 * these are for architectures where we cannot disable 351 * the MMU and must instead generate an identity mapped 352 * page table for all of the memory. 353 * 354 * At worst this runs in O(N) of the image size. 355 */ 356 struct list_head extra_pages; 357 struct page *pages; 358 unsigned int count; 359 360 count = 1 << order; 361 INIT_LIST_HEAD(&extra_pages); 362 363 /* Loop while I can allocate a page and the page allocated 364 * is a destination page. 365 */ 366 do { 367 unsigned long pfn, epfn, addr, eaddr; 368 369 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 370 if (!pages) 371 break; 372 pfn = page_to_boot_pfn(pages); 373 epfn = pfn + count; 374 addr = pfn << PAGE_SHIFT; 375 eaddr = (epfn << PAGE_SHIFT) - 1; 376 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 377 kimage_is_destination_range(image, addr, eaddr)) { 378 list_add(&pages->lru, &extra_pages); 379 pages = NULL; 380 } 381 } while (!pages); 382 383 if (pages) { 384 /* Remember the allocated page... */ 385 list_add(&pages->lru, &image->control_pages); 386 387 /* Because the page is already in it's destination 388 * location we will never allocate another page at 389 * that address. Therefore kimage_alloc_pages 390 * will not return it (again) and we don't need 391 * to give it an entry in image->segment[]. 392 */ 393 } 394 /* Deal with the destination pages I have inadvertently allocated. 395 * 396 * Ideally I would convert multi-page allocations into single 397 * page allocations, and add everything to image->dest_pages. 398 * 399 * For now it is simpler to just free the pages. 400 */ 401 kimage_free_page_list(&extra_pages); 402 403 return pages; 404 } 405 406 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 407 unsigned int order) 408 { 409 /* Control pages are special, they are the intermediaries 410 * that are needed while we copy the rest of the pages 411 * to their final resting place. As such they must 412 * not conflict with either the destination addresses 413 * or memory the kernel is already using. 414 * 415 * Control pages are also the only pags we must allocate 416 * when loading a crash kernel. All of the other pages 417 * are specified by the segments and we just memcpy 418 * into them directly. 419 * 420 * The only case where we really need more than one of 421 * these are for architectures where we cannot disable 422 * the MMU and must instead generate an identity mapped 423 * page table for all of the memory. 424 * 425 * Given the low demand this implements a very simple 426 * allocator that finds the first hole of the appropriate 427 * size in the reserved memory region, and allocates all 428 * of the memory up to and including the hole. 429 */ 430 unsigned long hole_start, hole_end, size; 431 struct page *pages; 432 433 pages = NULL; 434 size = (1 << order) << PAGE_SHIFT; 435 hole_start = ALIGN(image->control_page, size); 436 hole_end = hole_start + size - 1; 437 while (hole_end <= crashk_res.end) { 438 unsigned long i; 439 440 cond_resched(); 441 442 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 443 break; 444 /* See if I overlap any of the segments */ 445 for (i = 0; i < image->nr_segments; i++) { 446 unsigned long mstart, mend; 447 448 mstart = image->segment[i].mem; 449 mend = mstart + image->segment[i].memsz - 1; 450 if ((hole_end >= mstart) && (hole_start <= mend)) { 451 /* Advance the hole to the end of the segment */ 452 hole_start = ALIGN(mend, size); 453 hole_end = hole_start + size - 1; 454 break; 455 } 456 } 457 /* If I don't overlap any segments I have found my hole! */ 458 if (i == image->nr_segments) { 459 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 460 image->control_page = hole_end + 1; 461 break; 462 } 463 } 464 465 /* Ensure that these pages are decrypted if SME is enabled. */ 466 if (pages) 467 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 468 469 return pages; 470 } 471 472 473 struct page *kimage_alloc_control_pages(struct kimage *image, 474 unsigned int order) 475 { 476 struct page *pages = NULL; 477 478 switch (image->type) { 479 case KEXEC_TYPE_DEFAULT: 480 pages = kimage_alloc_normal_control_pages(image, order); 481 break; 482 case KEXEC_TYPE_CRASH: 483 pages = kimage_alloc_crash_control_pages(image, order); 484 break; 485 } 486 487 return pages; 488 } 489 490 int kimage_crash_copy_vmcoreinfo(struct kimage *image) 491 { 492 struct page *vmcoreinfo_page; 493 void *safecopy; 494 495 if (image->type != KEXEC_TYPE_CRASH) 496 return 0; 497 498 /* 499 * For kdump, allocate one vmcoreinfo safe copy from the 500 * crash memory. as we have arch_kexec_protect_crashkres() 501 * after kexec syscall, we naturally protect it from write 502 * (even read) access under kernel direct mapping. But on 503 * the other hand, we still need to operate it when crash 504 * happens to generate vmcoreinfo note, hereby we rely on 505 * vmap for this purpose. 506 */ 507 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); 508 if (!vmcoreinfo_page) { 509 pr_warn("Could not allocate vmcoreinfo buffer\n"); 510 return -ENOMEM; 511 } 512 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); 513 if (!safecopy) { 514 pr_warn("Could not vmap vmcoreinfo buffer\n"); 515 return -ENOMEM; 516 } 517 518 image->vmcoreinfo_data_copy = safecopy; 519 crash_update_vmcoreinfo_safecopy(safecopy); 520 521 return 0; 522 } 523 524 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 525 { 526 if (*image->entry != 0) 527 image->entry++; 528 529 if (image->entry == image->last_entry) { 530 kimage_entry_t *ind_page; 531 struct page *page; 532 533 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 534 if (!page) 535 return -ENOMEM; 536 537 ind_page = page_address(page); 538 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 539 image->entry = ind_page; 540 image->last_entry = ind_page + 541 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 542 } 543 *image->entry = entry; 544 image->entry++; 545 *image->entry = 0; 546 547 return 0; 548 } 549 550 static int kimage_set_destination(struct kimage *image, 551 unsigned long destination) 552 { 553 destination &= PAGE_MASK; 554 555 return kimage_add_entry(image, destination | IND_DESTINATION); 556 } 557 558 559 static int kimage_add_page(struct kimage *image, unsigned long page) 560 { 561 page &= PAGE_MASK; 562 563 return kimage_add_entry(image, page | IND_SOURCE); 564 } 565 566 567 static void kimage_free_extra_pages(struct kimage *image) 568 { 569 /* Walk through and free any extra destination pages I may have */ 570 kimage_free_page_list(&image->dest_pages); 571 572 /* Walk through and free any unusable pages I have cached */ 573 kimage_free_page_list(&image->unusable_pages); 574 575 } 576 577 void kimage_terminate(struct kimage *image) 578 { 579 if (*image->entry != 0) 580 image->entry++; 581 582 *image->entry = IND_DONE; 583 } 584 585 #define for_each_kimage_entry(image, ptr, entry) \ 586 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 587 ptr = (entry & IND_INDIRECTION) ? \ 588 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 589 590 static void kimage_free_entry(kimage_entry_t entry) 591 { 592 struct page *page; 593 594 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 595 kimage_free_pages(page); 596 } 597 598 void kimage_free(struct kimage *image) 599 { 600 kimage_entry_t *ptr, entry; 601 kimage_entry_t ind = 0; 602 603 if (!image) 604 return; 605 606 if (image->vmcoreinfo_data_copy) { 607 crash_update_vmcoreinfo_safecopy(NULL); 608 vunmap(image->vmcoreinfo_data_copy); 609 } 610 611 kimage_free_extra_pages(image); 612 for_each_kimage_entry(image, ptr, entry) { 613 if (entry & IND_INDIRECTION) { 614 /* Free the previous indirection page */ 615 if (ind & IND_INDIRECTION) 616 kimage_free_entry(ind); 617 /* Save this indirection page until we are 618 * done with it. 619 */ 620 ind = entry; 621 } else if (entry & IND_SOURCE) 622 kimage_free_entry(entry); 623 } 624 /* Free the final indirection page */ 625 if (ind & IND_INDIRECTION) 626 kimage_free_entry(ind); 627 628 /* Handle any machine specific cleanup */ 629 machine_kexec_cleanup(image); 630 631 /* Free the kexec control pages... */ 632 kimage_free_page_list(&image->control_pages); 633 634 /* 635 * Free up any temporary buffers allocated. This might hit if 636 * error occurred much later after buffer allocation. 637 */ 638 if (image->file_mode) 639 kimage_file_post_load_cleanup(image); 640 641 kfree(image); 642 } 643 644 static kimage_entry_t *kimage_dst_used(struct kimage *image, 645 unsigned long page) 646 { 647 kimage_entry_t *ptr, entry; 648 unsigned long destination = 0; 649 650 for_each_kimage_entry(image, ptr, entry) { 651 if (entry & IND_DESTINATION) 652 destination = entry & PAGE_MASK; 653 else if (entry & IND_SOURCE) { 654 if (page == destination) 655 return ptr; 656 destination += PAGE_SIZE; 657 } 658 } 659 660 return NULL; 661 } 662 663 static struct page *kimage_alloc_page(struct kimage *image, 664 gfp_t gfp_mask, 665 unsigned long destination) 666 { 667 /* 668 * Here we implement safeguards to ensure that a source page 669 * is not copied to its destination page before the data on 670 * the destination page is no longer useful. 671 * 672 * To do this we maintain the invariant that a source page is 673 * either its own destination page, or it is not a 674 * destination page at all. 675 * 676 * That is slightly stronger than required, but the proof 677 * that no problems will not occur is trivial, and the 678 * implementation is simply to verify. 679 * 680 * When allocating all pages normally this algorithm will run 681 * in O(N) time, but in the worst case it will run in O(N^2) 682 * time. If the runtime is a problem the data structures can 683 * be fixed. 684 */ 685 struct page *page; 686 unsigned long addr; 687 688 /* 689 * Walk through the list of destination pages, and see if I 690 * have a match. 691 */ 692 list_for_each_entry(page, &image->dest_pages, lru) { 693 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 694 if (addr == destination) { 695 list_del(&page->lru); 696 return page; 697 } 698 } 699 page = NULL; 700 while (1) { 701 kimage_entry_t *old; 702 703 /* Allocate a page, if we run out of memory give up */ 704 page = kimage_alloc_pages(gfp_mask, 0); 705 if (!page) 706 return NULL; 707 /* If the page cannot be used file it away */ 708 if (page_to_boot_pfn(page) > 709 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 710 list_add(&page->lru, &image->unusable_pages); 711 continue; 712 } 713 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 714 715 /* If it is the destination page we want use it */ 716 if (addr == destination) 717 break; 718 719 /* If the page is not a destination page use it */ 720 if (!kimage_is_destination_range(image, addr, 721 addr + PAGE_SIZE - 1)) 722 break; 723 724 /* 725 * I know that the page is someones destination page. 726 * See if there is already a source page for this 727 * destination page. And if so swap the source pages. 728 */ 729 old = kimage_dst_used(image, addr); 730 if (old) { 731 /* If so move it */ 732 unsigned long old_addr; 733 struct page *old_page; 734 735 old_addr = *old & PAGE_MASK; 736 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 737 copy_highpage(page, old_page); 738 *old = addr | (*old & ~PAGE_MASK); 739 740 /* The old page I have found cannot be a 741 * destination page, so return it if it's 742 * gfp_flags honor the ones passed in. 743 */ 744 if (!(gfp_mask & __GFP_HIGHMEM) && 745 PageHighMem(old_page)) { 746 kimage_free_pages(old_page); 747 continue; 748 } 749 page = old_page; 750 break; 751 } 752 /* Place the page on the destination list, to be used later */ 753 list_add(&page->lru, &image->dest_pages); 754 } 755 756 return page; 757 } 758 759 static int kimage_load_normal_segment(struct kimage *image, 760 struct kexec_segment *segment) 761 { 762 unsigned long maddr; 763 size_t ubytes, mbytes; 764 int result; 765 unsigned char __user *buf = NULL; 766 unsigned char *kbuf = NULL; 767 768 if (image->file_mode) 769 kbuf = segment->kbuf; 770 else 771 buf = segment->buf; 772 ubytes = segment->bufsz; 773 mbytes = segment->memsz; 774 maddr = segment->mem; 775 776 result = kimage_set_destination(image, maddr); 777 if (result < 0) 778 goto out; 779 780 while (mbytes) { 781 struct page *page; 782 char *ptr; 783 size_t uchunk, mchunk; 784 785 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 786 if (!page) { 787 result = -ENOMEM; 788 goto out; 789 } 790 result = kimage_add_page(image, page_to_boot_pfn(page) 791 << PAGE_SHIFT); 792 if (result < 0) 793 goto out; 794 795 ptr = kmap_local_page(page); 796 /* Start with a clear page */ 797 clear_page(ptr); 798 ptr += maddr & ~PAGE_MASK; 799 mchunk = min_t(size_t, mbytes, 800 PAGE_SIZE - (maddr & ~PAGE_MASK)); 801 uchunk = min(ubytes, mchunk); 802 803 /* For file based kexec, source pages are in kernel memory */ 804 if (image->file_mode) 805 memcpy(ptr, kbuf, uchunk); 806 else 807 result = copy_from_user(ptr, buf, uchunk); 808 kunmap_local(ptr); 809 if (result) { 810 result = -EFAULT; 811 goto out; 812 } 813 ubytes -= uchunk; 814 maddr += mchunk; 815 if (image->file_mode) 816 kbuf += mchunk; 817 else 818 buf += mchunk; 819 mbytes -= mchunk; 820 821 cond_resched(); 822 } 823 out: 824 return result; 825 } 826 827 static int kimage_load_crash_segment(struct kimage *image, 828 struct kexec_segment *segment) 829 { 830 /* For crash dumps kernels we simply copy the data from 831 * user space to it's destination. 832 * We do things a page at a time for the sake of kmap. 833 */ 834 unsigned long maddr; 835 size_t ubytes, mbytes; 836 int result; 837 unsigned char __user *buf = NULL; 838 unsigned char *kbuf = NULL; 839 840 result = 0; 841 if (image->file_mode) 842 kbuf = segment->kbuf; 843 else 844 buf = segment->buf; 845 ubytes = segment->bufsz; 846 mbytes = segment->memsz; 847 maddr = segment->mem; 848 while (mbytes) { 849 struct page *page; 850 char *ptr; 851 size_t uchunk, mchunk; 852 853 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 854 if (!page) { 855 result = -ENOMEM; 856 goto out; 857 } 858 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 859 ptr = kmap_local_page(page); 860 ptr += maddr & ~PAGE_MASK; 861 mchunk = min_t(size_t, mbytes, 862 PAGE_SIZE - (maddr & ~PAGE_MASK)); 863 uchunk = min(ubytes, mchunk); 864 if (mchunk > uchunk) { 865 /* Zero the trailing part of the page */ 866 memset(ptr + uchunk, 0, mchunk - uchunk); 867 } 868 869 /* For file based kexec, source pages are in kernel memory */ 870 if (image->file_mode) 871 memcpy(ptr, kbuf, uchunk); 872 else 873 result = copy_from_user(ptr, buf, uchunk); 874 kexec_flush_icache_page(page); 875 kunmap_local(ptr); 876 arch_kexec_pre_free_pages(page_address(page), 1); 877 if (result) { 878 result = -EFAULT; 879 goto out; 880 } 881 ubytes -= uchunk; 882 maddr += mchunk; 883 if (image->file_mode) 884 kbuf += mchunk; 885 else 886 buf += mchunk; 887 mbytes -= mchunk; 888 889 cond_resched(); 890 } 891 out: 892 return result; 893 } 894 895 int kimage_load_segment(struct kimage *image, 896 struct kexec_segment *segment) 897 { 898 int result = -ENOMEM; 899 900 switch (image->type) { 901 case KEXEC_TYPE_DEFAULT: 902 result = kimage_load_normal_segment(image, segment); 903 break; 904 case KEXEC_TYPE_CRASH: 905 result = kimage_load_crash_segment(image, segment); 906 break; 907 } 908 909 return result; 910 } 911 912 struct kexec_load_limit { 913 /* Mutex protects the limit count. */ 914 struct mutex mutex; 915 int limit; 916 }; 917 918 static struct kexec_load_limit load_limit_reboot = { 919 .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex), 920 .limit = -1, 921 }; 922 923 static struct kexec_load_limit load_limit_panic = { 924 .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex), 925 .limit = -1, 926 }; 927 928 struct kimage *kexec_image; 929 struct kimage *kexec_crash_image; 930 static int kexec_load_disabled; 931 932 #ifdef CONFIG_SYSCTL 933 static int kexec_limit_handler(struct ctl_table *table, int write, 934 void *buffer, size_t *lenp, loff_t *ppos) 935 { 936 struct kexec_load_limit *limit = table->data; 937 int val; 938 struct ctl_table tmp = { 939 .data = &val, 940 .maxlen = sizeof(val), 941 .mode = table->mode, 942 }; 943 int ret; 944 945 if (write) { 946 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); 947 if (ret) 948 return ret; 949 950 if (val < 0) 951 return -EINVAL; 952 953 mutex_lock(&limit->mutex); 954 if (limit->limit != -1 && val >= limit->limit) 955 ret = -EINVAL; 956 else 957 limit->limit = val; 958 mutex_unlock(&limit->mutex); 959 960 return ret; 961 } 962 963 mutex_lock(&limit->mutex); 964 val = limit->limit; 965 mutex_unlock(&limit->mutex); 966 967 return proc_dointvec(&tmp, write, buffer, lenp, ppos); 968 } 969 970 static struct ctl_table kexec_core_sysctls[] = { 971 { 972 .procname = "kexec_load_disabled", 973 .data = &kexec_load_disabled, 974 .maxlen = sizeof(int), 975 .mode = 0644, 976 /* only handle a transition from default "0" to "1" */ 977 .proc_handler = proc_dointvec_minmax, 978 .extra1 = SYSCTL_ONE, 979 .extra2 = SYSCTL_ONE, 980 }, 981 { 982 .procname = "kexec_load_limit_panic", 983 .data = &load_limit_panic, 984 .mode = 0644, 985 .proc_handler = kexec_limit_handler, 986 }, 987 { 988 .procname = "kexec_load_limit_reboot", 989 .data = &load_limit_reboot, 990 .mode = 0644, 991 .proc_handler = kexec_limit_handler, 992 }, 993 { } 994 }; 995 996 static int __init kexec_core_sysctl_init(void) 997 { 998 register_sysctl_init("kernel", kexec_core_sysctls); 999 return 0; 1000 } 1001 late_initcall(kexec_core_sysctl_init); 1002 #endif 1003 1004 bool kexec_load_permitted(int kexec_image_type) 1005 { 1006 struct kexec_load_limit *limit; 1007 1008 /* 1009 * Only the superuser can use the kexec syscall and if it has not 1010 * been disabled. 1011 */ 1012 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1013 return false; 1014 1015 /* Check limit counter and decrease it.*/ 1016 limit = (kexec_image_type == KEXEC_TYPE_CRASH) ? 1017 &load_limit_panic : &load_limit_reboot; 1018 mutex_lock(&limit->mutex); 1019 if (!limit->limit) { 1020 mutex_unlock(&limit->mutex); 1021 return false; 1022 } 1023 if (limit->limit != -1) 1024 limit->limit--; 1025 mutex_unlock(&limit->mutex); 1026 1027 return true; 1028 } 1029 1030 /* 1031 * No panic_cpu check version of crash_kexec(). This function is called 1032 * only when panic_cpu holds the current CPU number; this is the only CPU 1033 * which processes crash_kexec routines. 1034 */ 1035 void __noclone __crash_kexec(struct pt_regs *regs) 1036 { 1037 /* Take the kexec_lock here to prevent sys_kexec_load 1038 * running on one cpu from replacing the crash kernel 1039 * we are using after a panic on a different cpu. 1040 * 1041 * If the crash kernel was not located in a fixed area 1042 * of memory the xchg(&kexec_crash_image) would be 1043 * sufficient. But since I reuse the memory... 1044 */ 1045 if (kexec_trylock()) { 1046 if (kexec_crash_image) { 1047 struct pt_regs fixed_regs; 1048 1049 crash_setup_regs(&fixed_regs, regs); 1050 crash_save_vmcoreinfo(); 1051 machine_crash_shutdown(&fixed_regs); 1052 machine_kexec(kexec_crash_image); 1053 } 1054 kexec_unlock(); 1055 } 1056 } 1057 STACK_FRAME_NON_STANDARD(__crash_kexec); 1058 1059 __bpf_kfunc void crash_kexec(struct pt_regs *regs) 1060 { 1061 int old_cpu, this_cpu; 1062 1063 /* 1064 * Only one CPU is allowed to execute the crash_kexec() code as with 1065 * panic(). Otherwise parallel calls of panic() and crash_kexec() 1066 * may stop each other. To exclude them, we use panic_cpu here too. 1067 */ 1068 old_cpu = PANIC_CPU_INVALID; 1069 this_cpu = raw_smp_processor_id(); 1070 1071 if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) { 1072 /* This is the 1st CPU which comes here, so go ahead. */ 1073 __crash_kexec(regs); 1074 1075 /* 1076 * Reset panic_cpu to allow another panic()/crash_kexec() 1077 * call. 1078 */ 1079 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 1080 } 1081 } 1082 1083 static inline resource_size_t crash_resource_size(const struct resource *res) 1084 { 1085 return !res->end ? 0 : resource_size(res); 1086 } 1087 1088 ssize_t crash_get_memory_size(void) 1089 { 1090 ssize_t size = 0; 1091 1092 if (!kexec_trylock()) 1093 return -EBUSY; 1094 1095 size += crash_resource_size(&crashk_res); 1096 size += crash_resource_size(&crashk_low_res); 1097 1098 kexec_unlock(); 1099 return size; 1100 } 1101 1102 static int __crash_shrink_memory(struct resource *old_res, 1103 unsigned long new_size) 1104 { 1105 struct resource *ram_res; 1106 1107 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1108 if (!ram_res) 1109 return -ENOMEM; 1110 1111 ram_res->start = old_res->start + new_size; 1112 ram_res->end = old_res->end; 1113 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 1114 ram_res->name = "System RAM"; 1115 1116 if (!new_size) { 1117 release_resource(old_res); 1118 old_res->start = 0; 1119 old_res->end = 0; 1120 } else { 1121 crashk_res.end = ram_res->start - 1; 1122 } 1123 1124 crash_free_reserved_phys_range(ram_res->start, ram_res->end); 1125 insert_resource(&iomem_resource, ram_res); 1126 1127 return 0; 1128 } 1129 1130 int crash_shrink_memory(unsigned long new_size) 1131 { 1132 int ret = 0; 1133 unsigned long old_size, low_size; 1134 1135 if (!kexec_trylock()) 1136 return -EBUSY; 1137 1138 if (kexec_crash_image) { 1139 ret = -ENOENT; 1140 goto unlock; 1141 } 1142 1143 low_size = crash_resource_size(&crashk_low_res); 1144 old_size = crash_resource_size(&crashk_res) + low_size; 1145 new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN); 1146 if (new_size >= old_size) { 1147 ret = (new_size == old_size) ? 0 : -EINVAL; 1148 goto unlock; 1149 } 1150 1151 /* 1152 * (low_size > new_size) implies that low_size is greater than zero. 1153 * This also means that if low_size is zero, the else branch is taken. 1154 * 1155 * If low_size is greater than 0, (low_size > new_size) indicates that 1156 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res 1157 * needs to be shrunken. 1158 */ 1159 if (low_size > new_size) { 1160 ret = __crash_shrink_memory(&crashk_res, 0); 1161 if (ret) 1162 goto unlock; 1163 1164 ret = __crash_shrink_memory(&crashk_low_res, new_size); 1165 } else { 1166 ret = __crash_shrink_memory(&crashk_res, new_size - low_size); 1167 } 1168 1169 /* Swap crashk_res and crashk_low_res if needed */ 1170 if (!crashk_res.end && crashk_low_res.end) { 1171 crashk_res.start = crashk_low_res.start; 1172 crashk_res.end = crashk_low_res.end; 1173 release_resource(&crashk_low_res); 1174 crashk_low_res.start = 0; 1175 crashk_low_res.end = 0; 1176 insert_resource(&iomem_resource, &crashk_res); 1177 } 1178 1179 unlock: 1180 kexec_unlock(); 1181 return ret; 1182 } 1183 1184 void crash_save_cpu(struct pt_regs *regs, int cpu) 1185 { 1186 struct elf_prstatus prstatus; 1187 u32 *buf; 1188 1189 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1190 return; 1191 1192 /* Using ELF notes here is opportunistic. 1193 * I need a well defined structure format 1194 * for the data I pass, and I need tags 1195 * on the data to indicate what information I have 1196 * squirrelled away. ELF notes happen to provide 1197 * all of that, so there is no need to invent something new. 1198 */ 1199 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1200 if (!buf) 1201 return; 1202 memset(&prstatus, 0, sizeof(prstatus)); 1203 prstatus.common.pr_pid = current->pid; 1204 elf_core_copy_regs(&prstatus.pr_reg, regs); 1205 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1206 &prstatus, sizeof(prstatus)); 1207 final_note(buf); 1208 } 1209 1210 /* 1211 * Move into place and start executing a preloaded standalone 1212 * executable. If nothing was preloaded return an error. 1213 */ 1214 int kernel_kexec(void) 1215 { 1216 int error = 0; 1217 1218 if (!kexec_trylock()) 1219 return -EBUSY; 1220 if (!kexec_image) { 1221 error = -EINVAL; 1222 goto Unlock; 1223 } 1224 1225 #ifdef CONFIG_KEXEC_JUMP 1226 if (kexec_image->preserve_context) { 1227 pm_prepare_console(); 1228 error = freeze_processes(); 1229 if (error) { 1230 error = -EBUSY; 1231 goto Restore_console; 1232 } 1233 suspend_console(); 1234 error = dpm_suspend_start(PMSG_FREEZE); 1235 if (error) 1236 goto Resume_console; 1237 /* At this point, dpm_suspend_start() has been called, 1238 * but *not* dpm_suspend_end(). We *must* call 1239 * dpm_suspend_end() now. Otherwise, drivers for 1240 * some devices (e.g. interrupt controllers) become 1241 * desynchronized with the actual state of the 1242 * hardware at resume time, and evil weirdness ensues. 1243 */ 1244 error = dpm_suspend_end(PMSG_FREEZE); 1245 if (error) 1246 goto Resume_devices; 1247 error = suspend_disable_secondary_cpus(); 1248 if (error) 1249 goto Enable_cpus; 1250 local_irq_disable(); 1251 error = syscore_suspend(); 1252 if (error) 1253 goto Enable_irqs; 1254 } else 1255 #endif 1256 { 1257 kexec_in_progress = true; 1258 kernel_restart_prepare("kexec reboot"); 1259 migrate_to_reboot_cpu(); 1260 syscore_shutdown(); 1261 1262 /* 1263 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1264 * no further code needs to use CPU hotplug (which is true in 1265 * the reboot case). However, the kexec path depends on using 1266 * CPU hotplug again; so re-enable it here. 1267 */ 1268 cpu_hotplug_enable(); 1269 pr_notice("Starting new kernel\n"); 1270 machine_shutdown(); 1271 } 1272 1273 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1274 machine_kexec(kexec_image); 1275 1276 #ifdef CONFIG_KEXEC_JUMP 1277 if (kexec_image->preserve_context) { 1278 syscore_resume(); 1279 Enable_irqs: 1280 local_irq_enable(); 1281 Enable_cpus: 1282 suspend_enable_secondary_cpus(); 1283 dpm_resume_start(PMSG_RESTORE); 1284 Resume_devices: 1285 dpm_resume_end(PMSG_RESTORE); 1286 Resume_console: 1287 resume_console(); 1288 thaw_processes(); 1289 Restore_console: 1290 pm_restore_console(); 1291 } 1292 #endif 1293 1294 Unlock: 1295 kexec_unlock(); 1296 return error; 1297 } 1298