xref: /linux/kernel/kexec_core.c (revision 8b8eed05a1c650c27e78bc47d07f7d6c9ba779e8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec system call core code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/btf.h>
10 #include <linux/capability.h>
11 #include <linux/mm.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/highmem.h>
19 #include <linux/syscalls.h>
20 #include <linux/reboot.h>
21 #include <linux/ioport.h>
22 #include <linux/hardirq.h>
23 #include <linux/elf.h>
24 #include <linux/elfcore.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/panic_notifier.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/objtool.h>
42 #include <linux/kmsg_dump.h>
43 
44 #include <asm/page.h>
45 #include <asm/sections.h>
46 
47 #include <crypto/hash.h>
48 #include "kexec_internal.h"
49 
50 atomic_t __kexec_lock = ATOMIC_INIT(0);
51 
52 /* Flag to indicate we are going to kexec a new kernel */
53 bool kexec_in_progress = false;
54 
55 int kexec_should_crash(struct task_struct *p)
56 {
57 	/*
58 	 * If crash_kexec_post_notifiers is enabled, don't run
59 	 * crash_kexec() here yet, which must be run after panic
60 	 * notifiers in panic().
61 	 */
62 	if (crash_kexec_post_notifiers)
63 		return 0;
64 	/*
65 	 * There are 4 panic() calls in make_task_dead() path, each of which
66 	 * corresponds to each of these 4 conditions.
67 	 */
68 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
69 		return 1;
70 	return 0;
71 }
72 
73 int kexec_crash_loaded(void)
74 {
75 	return !!kexec_crash_image;
76 }
77 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
78 
79 /*
80  * When kexec transitions to the new kernel there is a one-to-one
81  * mapping between physical and virtual addresses.  On processors
82  * where you can disable the MMU this is trivial, and easy.  For
83  * others it is still a simple predictable page table to setup.
84  *
85  * In that environment kexec copies the new kernel to its final
86  * resting place.  This means I can only support memory whose
87  * physical address can fit in an unsigned long.  In particular
88  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
89  * If the assembly stub has more restrictive requirements
90  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
91  * defined more restrictively in <asm/kexec.h>.
92  *
93  * The code for the transition from the current kernel to the
94  * new kernel is placed in the control_code_buffer, whose size
95  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
96  * page of memory is necessary, but some architectures require more.
97  * Because this memory must be identity mapped in the transition from
98  * virtual to physical addresses it must live in the range
99  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
100  * modifiable.
101  *
102  * The assembly stub in the control code buffer is passed a linked list
103  * of descriptor pages detailing the source pages of the new kernel,
104  * and the destination addresses of those source pages.  As this data
105  * structure is not used in the context of the current OS, it must
106  * be self-contained.
107  *
108  * The code has been made to work with highmem pages and will use a
109  * destination page in its final resting place (if it happens
110  * to allocate it).  The end product of this is that most of the
111  * physical address space, and most of RAM can be used.
112  *
113  * Future directions include:
114  *  - allocating a page table with the control code buffer identity
115  *    mapped, to simplify machine_kexec and make kexec_on_panic more
116  *    reliable.
117  */
118 
119 /*
120  * KIMAGE_NO_DEST is an impossible destination address..., for
121  * allocating pages whose destination address we do not care about.
122  */
123 #define KIMAGE_NO_DEST (-1UL)
124 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
125 
126 static struct page *kimage_alloc_page(struct kimage *image,
127 				       gfp_t gfp_mask,
128 				       unsigned long dest);
129 
130 int sanity_check_segment_list(struct kimage *image)
131 {
132 	int i;
133 	unsigned long nr_segments = image->nr_segments;
134 	unsigned long total_pages = 0;
135 	unsigned long nr_pages = totalram_pages();
136 
137 	/*
138 	 * Verify we have good destination addresses.  The caller is
139 	 * responsible for making certain we don't attempt to load
140 	 * the new image into invalid or reserved areas of RAM.  This
141 	 * just verifies it is an address we can use.
142 	 *
143 	 * Since the kernel does everything in page size chunks ensure
144 	 * the destination addresses are page aligned.  Too many
145 	 * special cases crop of when we don't do this.  The most
146 	 * insidious is getting overlapping destination addresses
147 	 * simply because addresses are changed to page size
148 	 * granularity.
149 	 */
150 	for (i = 0; i < nr_segments; i++) {
151 		unsigned long mstart, mend;
152 
153 		mstart = image->segment[i].mem;
154 		mend   = mstart + image->segment[i].memsz;
155 		if (mstart > mend)
156 			return -EADDRNOTAVAIL;
157 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
158 			return -EADDRNOTAVAIL;
159 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
160 			return -EADDRNOTAVAIL;
161 	}
162 
163 	/* Verify our destination addresses do not overlap.
164 	 * If we alloed overlapping destination addresses
165 	 * through very weird things can happen with no
166 	 * easy explanation as one segment stops on another.
167 	 */
168 	for (i = 0; i < nr_segments; i++) {
169 		unsigned long mstart, mend;
170 		unsigned long j;
171 
172 		mstart = image->segment[i].mem;
173 		mend   = mstart + image->segment[i].memsz;
174 		for (j = 0; j < i; j++) {
175 			unsigned long pstart, pend;
176 
177 			pstart = image->segment[j].mem;
178 			pend   = pstart + image->segment[j].memsz;
179 			/* Do the segments overlap ? */
180 			if ((mend > pstart) && (mstart < pend))
181 				return -EINVAL;
182 		}
183 	}
184 
185 	/* Ensure our buffer sizes are strictly less than
186 	 * our memory sizes.  This should always be the case,
187 	 * and it is easier to check up front than to be surprised
188 	 * later on.
189 	 */
190 	for (i = 0; i < nr_segments; i++) {
191 		if (image->segment[i].bufsz > image->segment[i].memsz)
192 			return -EINVAL;
193 	}
194 
195 	/*
196 	 * Verify that no more than half of memory will be consumed. If the
197 	 * request from userspace is too large, a large amount of time will be
198 	 * wasted allocating pages, which can cause a soft lockup.
199 	 */
200 	for (i = 0; i < nr_segments; i++) {
201 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
202 			return -EINVAL;
203 
204 		total_pages += PAGE_COUNT(image->segment[i].memsz);
205 	}
206 
207 	if (total_pages > nr_pages / 2)
208 		return -EINVAL;
209 
210 	/*
211 	 * Verify we have good destination addresses.  Normally
212 	 * the caller is responsible for making certain we don't
213 	 * attempt to load the new image into invalid or reserved
214 	 * areas of RAM.  But crash kernels are preloaded into a
215 	 * reserved area of ram.  We must ensure the addresses
216 	 * are in the reserved area otherwise preloading the
217 	 * kernel could corrupt things.
218 	 */
219 
220 	if (image->type == KEXEC_TYPE_CRASH) {
221 		for (i = 0; i < nr_segments; i++) {
222 			unsigned long mstart, mend;
223 
224 			mstart = image->segment[i].mem;
225 			mend = mstart + image->segment[i].memsz - 1;
226 			/* Ensure we are within the crash kernel limits */
227 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
228 			    (mend > phys_to_boot_phys(crashk_res.end)))
229 				return -EADDRNOTAVAIL;
230 		}
231 	}
232 
233 	return 0;
234 }
235 
236 struct kimage *do_kimage_alloc_init(void)
237 {
238 	struct kimage *image;
239 
240 	/* Allocate a controlling structure */
241 	image = kzalloc(sizeof(*image), GFP_KERNEL);
242 	if (!image)
243 		return NULL;
244 
245 	image->head = 0;
246 	image->entry = &image->head;
247 	image->last_entry = &image->head;
248 	image->control_page = ~0; /* By default this does not apply */
249 	image->type = KEXEC_TYPE_DEFAULT;
250 
251 	/* Initialize the list of control pages */
252 	INIT_LIST_HEAD(&image->control_pages);
253 
254 	/* Initialize the list of destination pages */
255 	INIT_LIST_HEAD(&image->dest_pages);
256 
257 	/* Initialize the list of unusable pages */
258 	INIT_LIST_HEAD(&image->unusable_pages);
259 
260 #ifdef CONFIG_CRASH_HOTPLUG
261 	image->hp_action = KEXEC_CRASH_HP_NONE;
262 	image->elfcorehdr_index = -1;
263 	image->elfcorehdr_updated = false;
264 #endif
265 
266 	return image;
267 }
268 
269 int kimage_is_destination_range(struct kimage *image,
270 					unsigned long start,
271 					unsigned long end)
272 {
273 	unsigned long i;
274 
275 	for (i = 0; i < image->nr_segments; i++) {
276 		unsigned long mstart, mend;
277 
278 		mstart = image->segment[i].mem;
279 		mend = mstart + image->segment[i].memsz;
280 		if ((end > mstart) && (start < mend))
281 			return 1;
282 	}
283 
284 	return 0;
285 }
286 
287 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
288 {
289 	struct page *pages;
290 
291 	if (fatal_signal_pending(current))
292 		return NULL;
293 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
294 	if (pages) {
295 		unsigned int count, i;
296 
297 		pages->mapping = NULL;
298 		set_page_private(pages, order);
299 		count = 1 << order;
300 		for (i = 0; i < count; i++)
301 			SetPageReserved(pages + i);
302 
303 		arch_kexec_post_alloc_pages(page_address(pages), count,
304 					    gfp_mask);
305 
306 		if (gfp_mask & __GFP_ZERO)
307 			for (i = 0; i < count; i++)
308 				clear_highpage(pages + i);
309 	}
310 
311 	return pages;
312 }
313 
314 static void kimage_free_pages(struct page *page)
315 {
316 	unsigned int order, count, i;
317 
318 	order = page_private(page);
319 	count = 1 << order;
320 
321 	arch_kexec_pre_free_pages(page_address(page), count);
322 
323 	for (i = 0; i < count; i++)
324 		ClearPageReserved(page + i);
325 	__free_pages(page, order);
326 }
327 
328 void kimage_free_page_list(struct list_head *list)
329 {
330 	struct page *page, *next;
331 
332 	list_for_each_entry_safe(page, next, list, lru) {
333 		list_del(&page->lru);
334 		kimage_free_pages(page);
335 	}
336 }
337 
338 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
339 							unsigned int order)
340 {
341 	/* Control pages are special, they are the intermediaries
342 	 * that are needed while we copy the rest of the pages
343 	 * to their final resting place.  As such they must
344 	 * not conflict with either the destination addresses
345 	 * or memory the kernel is already using.
346 	 *
347 	 * The only case where we really need more than one of
348 	 * these are for architectures where we cannot disable
349 	 * the MMU and must instead generate an identity mapped
350 	 * page table for all of the memory.
351 	 *
352 	 * At worst this runs in O(N) of the image size.
353 	 */
354 	struct list_head extra_pages;
355 	struct page *pages;
356 	unsigned int count;
357 
358 	count = 1 << order;
359 	INIT_LIST_HEAD(&extra_pages);
360 
361 	/* Loop while I can allocate a page and the page allocated
362 	 * is a destination page.
363 	 */
364 	do {
365 		unsigned long pfn, epfn, addr, eaddr;
366 
367 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
368 		if (!pages)
369 			break;
370 		pfn   = page_to_boot_pfn(pages);
371 		epfn  = pfn + count;
372 		addr  = pfn << PAGE_SHIFT;
373 		eaddr = epfn << PAGE_SHIFT;
374 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
375 			      kimage_is_destination_range(image, addr, eaddr)) {
376 			list_add(&pages->lru, &extra_pages);
377 			pages = NULL;
378 		}
379 	} while (!pages);
380 
381 	if (pages) {
382 		/* Remember the allocated page... */
383 		list_add(&pages->lru, &image->control_pages);
384 
385 		/* Because the page is already in it's destination
386 		 * location we will never allocate another page at
387 		 * that address.  Therefore kimage_alloc_pages
388 		 * will not return it (again) and we don't need
389 		 * to give it an entry in image->segment[].
390 		 */
391 	}
392 	/* Deal with the destination pages I have inadvertently allocated.
393 	 *
394 	 * Ideally I would convert multi-page allocations into single
395 	 * page allocations, and add everything to image->dest_pages.
396 	 *
397 	 * For now it is simpler to just free the pages.
398 	 */
399 	kimage_free_page_list(&extra_pages);
400 
401 	return pages;
402 }
403 
404 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
405 						      unsigned int order)
406 {
407 	/* Control pages are special, they are the intermediaries
408 	 * that are needed while we copy the rest of the pages
409 	 * to their final resting place.  As such they must
410 	 * not conflict with either the destination addresses
411 	 * or memory the kernel is already using.
412 	 *
413 	 * Control pages are also the only pags we must allocate
414 	 * when loading a crash kernel.  All of the other pages
415 	 * are specified by the segments and we just memcpy
416 	 * into them directly.
417 	 *
418 	 * The only case where we really need more than one of
419 	 * these are for architectures where we cannot disable
420 	 * the MMU and must instead generate an identity mapped
421 	 * page table for all of the memory.
422 	 *
423 	 * Given the low demand this implements a very simple
424 	 * allocator that finds the first hole of the appropriate
425 	 * size in the reserved memory region, and allocates all
426 	 * of the memory up to and including the hole.
427 	 */
428 	unsigned long hole_start, hole_end, size;
429 	struct page *pages;
430 
431 	pages = NULL;
432 	size = (1 << order) << PAGE_SHIFT;
433 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
434 	hole_end   = hole_start + size - 1;
435 	while (hole_end <= crashk_res.end) {
436 		unsigned long i;
437 
438 		cond_resched();
439 
440 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
441 			break;
442 		/* See if I overlap any of the segments */
443 		for (i = 0; i < image->nr_segments; i++) {
444 			unsigned long mstart, mend;
445 
446 			mstart = image->segment[i].mem;
447 			mend   = mstart + image->segment[i].memsz - 1;
448 			if ((hole_end >= mstart) && (hole_start <= mend)) {
449 				/* Advance the hole to the end of the segment */
450 				hole_start = (mend + (size - 1)) & ~(size - 1);
451 				hole_end   = hole_start + size - 1;
452 				break;
453 			}
454 		}
455 		/* If I don't overlap any segments I have found my hole! */
456 		if (i == image->nr_segments) {
457 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
458 			image->control_page = hole_end;
459 			break;
460 		}
461 	}
462 
463 	/* Ensure that these pages are decrypted if SME is enabled. */
464 	if (pages)
465 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
466 
467 	return pages;
468 }
469 
470 
471 struct page *kimage_alloc_control_pages(struct kimage *image,
472 					 unsigned int order)
473 {
474 	struct page *pages = NULL;
475 
476 	switch (image->type) {
477 	case KEXEC_TYPE_DEFAULT:
478 		pages = kimage_alloc_normal_control_pages(image, order);
479 		break;
480 	case KEXEC_TYPE_CRASH:
481 		pages = kimage_alloc_crash_control_pages(image, order);
482 		break;
483 	}
484 
485 	return pages;
486 }
487 
488 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
489 {
490 	struct page *vmcoreinfo_page;
491 	void *safecopy;
492 
493 	if (image->type != KEXEC_TYPE_CRASH)
494 		return 0;
495 
496 	/*
497 	 * For kdump, allocate one vmcoreinfo safe copy from the
498 	 * crash memory. as we have arch_kexec_protect_crashkres()
499 	 * after kexec syscall, we naturally protect it from write
500 	 * (even read) access under kernel direct mapping. But on
501 	 * the other hand, we still need to operate it when crash
502 	 * happens to generate vmcoreinfo note, hereby we rely on
503 	 * vmap for this purpose.
504 	 */
505 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
506 	if (!vmcoreinfo_page) {
507 		pr_warn("Could not allocate vmcoreinfo buffer\n");
508 		return -ENOMEM;
509 	}
510 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
511 	if (!safecopy) {
512 		pr_warn("Could not vmap vmcoreinfo buffer\n");
513 		return -ENOMEM;
514 	}
515 
516 	image->vmcoreinfo_data_copy = safecopy;
517 	crash_update_vmcoreinfo_safecopy(safecopy);
518 
519 	return 0;
520 }
521 
522 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
523 {
524 	if (*image->entry != 0)
525 		image->entry++;
526 
527 	if (image->entry == image->last_entry) {
528 		kimage_entry_t *ind_page;
529 		struct page *page;
530 
531 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
532 		if (!page)
533 			return -ENOMEM;
534 
535 		ind_page = page_address(page);
536 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
537 		image->entry = ind_page;
538 		image->last_entry = ind_page +
539 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
540 	}
541 	*image->entry = entry;
542 	image->entry++;
543 	*image->entry = 0;
544 
545 	return 0;
546 }
547 
548 static int kimage_set_destination(struct kimage *image,
549 				   unsigned long destination)
550 {
551 	destination &= PAGE_MASK;
552 
553 	return kimage_add_entry(image, destination | IND_DESTINATION);
554 }
555 
556 
557 static int kimage_add_page(struct kimage *image, unsigned long page)
558 {
559 	page &= PAGE_MASK;
560 
561 	return kimage_add_entry(image, page | IND_SOURCE);
562 }
563 
564 
565 static void kimage_free_extra_pages(struct kimage *image)
566 {
567 	/* Walk through and free any extra destination pages I may have */
568 	kimage_free_page_list(&image->dest_pages);
569 
570 	/* Walk through and free any unusable pages I have cached */
571 	kimage_free_page_list(&image->unusable_pages);
572 
573 }
574 
575 void kimage_terminate(struct kimage *image)
576 {
577 	if (*image->entry != 0)
578 		image->entry++;
579 
580 	*image->entry = IND_DONE;
581 }
582 
583 #define for_each_kimage_entry(image, ptr, entry) \
584 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
585 		ptr = (entry & IND_INDIRECTION) ? \
586 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
587 
588 static void kimage_free_entry(kimage_entry_t entry)
589 {
590 	struct page *page;
591 
592 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
593 	kimage_free_pages(page);
594 }
595 
596 void kimage_free(struct kimage *image)
597 {
598 	kimage_entry_t *ptr, entry;
599 	kimage_entry_t ind = 0;
600 
601 	if (!image)
602 		return;
603 
604 	if (image->vmcoreinfo_data_copy) {
605 		crash_update_vmcoreinfo_safecopy(NULL);
606 		vunmap(image->vmcoreinfo_data_copy);
607 	}
608 
609 	kimage_free_extra_pages(image);
610 	for_each_kimage_entry(image, ptr, entry) {
611 		if (entry & IND_INDIRECTION) {
612 			/* Free the previous indirection page */
613 			if (ind & IND_INDIRECTION)
614 				kimage_free_entry(ind);
615 			/* Save this indirection page until we are
616 			 * done with it.
617 			 */
618 			ind = entry;
619 		} else if (entry & IND_SOURCE)
620 			kimage_free_entry(entry);
621 	}
622 	/* Free the final indirection page */
623 	if (ind & IND_INDIRECTION)
624 		kimage_free_entry(ind);
625 
626 	/* Handle any machine specific cleanup */
627 	machine_kexec_cleanup(image);
628 
629 	/* Free the kexec control pages... */
630 	kimage_free_page_list(&image->control_pages);
631 
632 	/*
633 	 * Free up any temporary buffers allocated. This might hit if
634 	 * error occurred much later after buffer allocation.
635 	 */
636 	if (image->file_mode)
637 		kimage_file_post_load_cleanup(image);
638 
639 	kfree(image);
640 }
641 
642 static kimage_entry_t *kimage_dst_used(struct kimage *image,
643 					unsigned long page)
644 {
645 	kimage_entry_t *ptr, entry;
646 	unsigned long destination = 0;
647 
648 	for_each_kimage_entry(image, ptr, entry) {
649 		if (entry & IND_DESTINATION)
650 			destination = entry & PAGE_MASK;
651 		else if (entry & IND_SOURCE) {
652 			if (page == destination)
653 				return ptr;
654 			destination += PAGE_SIZE;
655 		}
656 	}
657 
658 	return NULL;
659 }
660 
661 static struct page *kimage_alloc_page(struct kimage *image,
662 					gfp_t gfp_mask,
663 					unsigned long destination)
664 {
665 	/*
666 	 * Here we implement safeguards to ensure that a source page
667 	 * is not copied to its destination page before the data on
668 	 * the destination page is no longer useful.
669 	 *
670 	 * To do this we maintain the invariant that a source page is
671 	 * either its own destination page, or it is not a
672 	 * destination page at all.
673 	 *
674 	 * That is slightly stronger than required, but the proof
675 	 * that no problems will not occur is trivial, and the
676 	 * implementation is simply to verify.
677 	 *
678 	 * When allocating all pages normally this algorithm will run
679 	 * in O(N) time, but in the worst case it will run in O(N^2)
680 	 * time.   If the runtime is a problem the data structures can
681 	 * be fixed.
682 	 */
683 	struct page *page;
684 	unsigned long addr;
685 
686 	/*
687 	 * Walk through the list of destination pages, and see if I
688 	 * have a match.
689 	 */
690 	list_for_each_entry(page, &image->dest_pages, lru) {
691 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
692 		if (addr == destination) {
693 			list_del(&page->lru);
694 			return page;
695 		}
696 	}
697 	page = NULL;
698 	while (1) {
699 		kimage_entry_t *old;
700 
701 		/* Allocate a page, if we run out of memory give up */
702 		page = kimage_alloc_pages(gfp_mask, 0);
703 		if (!page)
704 			return NULL;
705 		/* If the page cannot be used file it away */
706 		if (page_to_boot_pfn(page) >
707 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
708 			list_add(&page->lru, &image->unusable_pages);
709 			continue;
710 		}
711 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
712 
713 		/* If it is the destination page we want use it */
714 		if (addr == destination)
715 			break;
716 
717 		/* If the page is not a destination page use it */
718 		if (!kimage_is_destination_range(image, addr,
719 						  addr + PAGE_SIZE))
720 			break;
721 
722 		/*
723 		 * I know that the page is someones destination page.
724 		 * See if there is already a source page for this
725 		 * destination page.  And if so swap the source pages.
726 		 */
727 		old = kimage_dst_used(image, addr);
728 		if (old) {
729 			/* If so move it */
730 			unsigned long old_addr;
731 			struct page *old_page;
732 
733 			old_addr = *old & PAGE_MASK;
734 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
735 			copy_highpage(page, old_page);
736 			*old = addr | (*old & ~PAGE_MASK);
737 
738 			/* The old page I have found cannot be a
739 			 * destination page, so return it if it's
740 			 * gfp_flags honor the ones passed in.
741 			 */
742 			if (!(gfp_mask & __GFP_HIGHMEM) &&
743 			    PageHighMem(old_page)) {
744 				kimage_free_pages(old_page);
745 				continue;
746 			}
747 			page = old_page;
748 			break;
749 		}
750 		/* Place the page on the destination list, to be used later */
751 		list_add(&page->lru, &image->dest_pages);
752 	}
753 
754 	return page;
755 }
756 
757 static int kimage_load_normal_segment(struct kimage *image,
758 					 struct kexec_segment *segment)
759 {
760 	unsigned long maddr;
761 	size_t ubytes, mbytes;
762 	int result;
763 	unsigned char __user *buf = NULL;
764 	unsigned char *kbuf = NULL;
765 
766 	if (image->file_mode)
767 		kbuf = segment->kbuf;
768 	else
769 		buf = segment->buf;
770 	ubytes = segment->bufsz;
771 	mbytes = segment->memsz;
772 	maddr = segment->mem;
773 
774 	result = kimage_set_destination(image, maddr);
775 	if (result < 0)
776 		goto out;
777 
778 	while (mbytes) {
779 		struct page *page;
780 		char *ptr;
781 		size_t uchunk, mchunk;
782 
783 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
784 		if (!page) {
785 			result  = -ENOMEM;
786 			goto out;
787 		}
788 		result = kimage_add_page(image, page_to_boot_pfn(page)
789 								<< PAGE_SHIFT);
790 		if (result < 0)
791 			goto out;
792 
793 		ptr = kmap_local_page(page);
794 		/* Start with a clear page */
795 		clear_page(ptr);
796 		ptr += maddr & ~PAGE_MASK;
797 		mchunk = min_t(size_t, mbytes,
798 				PAGE_SIZE - (maddr & ~PAGE_MASK));
799 		uchunk = min(ubytes, mchunk);
800 
801 		/* For file based kexec, source pages are in kernel memory */
802 		if (image->file_mode)
803 			memcpy(ptr, kbuf, uchunk);
804 		else
805 			result = copy_from_user(ptr, buf, uchunk);
806 		kunmap_local(ptr);
807 		if (result) {
808 			result = -EFAULT;
809 			goto out;
810 		}
811 		ubytes -= uchunk;
812 		maddr  += mchunk;
813 		if (image->file_mode)
814 			kbuf += mchunk;
815 		else
816 			buf += mchunk;
817 		mbytes -= mchunk;
818 
819 		cond_resched();
820 	}
821 out:
822 	return result;
823 }
824 
825 static int kimage_load_crash_segment(struct kimage *image,
826 					struct kexec_segment *segment)
827 {
828 	/* For crash dumps kernels we simply copy the data from
829 	 * user space to it's destination.
830 	 * We do things a page at a time for the sake of kmap.
831 	 */
832 	unsigned long maddr;
833 	size_t ubytes, mbytes;
834 	int result;
835 	unsigned char __user *buf = NULL;
836 	unsigned char *kbuf = NULL;
837 
838 	result = 0;
839 	if (image->file_mode)
840 		kbuf = segment->kbuf;
841 	else
842 		buf = segment->buf;
843 	ubytes = segment->bufsz;
844 	mbytes = segment->memsz;
845 	maddr = segment->mem;
846 	while (mbytes) {
847 		struct page *page;
848 		char *ptr;
849 		size_t uchunk, mchunk;
850 
851 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
852 		if (!page) {
853 			result  = -ENOMEM;
854 			goto out;
855 		}
856 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
857 		ptr = kmap_local_page(page);
858 		ptr += maddr & ~PAGE_MASK;
859 		mchunk = min_t(size_t, mbytes,
860 				PAGE_SIZE - (maddr & ~PAGE_MASK));
861 		uchunk = min(ubytes, mchunk);
862 		if (mchunk > uchunk) {
863 			/* Zero the trailing part of the page */
864 			memset(ptr + uchunk, 0, mchunk - uchunk);
865 		}
866 
867 		/* For file based kexec, source pages are in kernel memory */
868 		if (image->file_mode)
869 			memcpy(ptr, kbuf, uchunk);
870 		else
871 			result = copy_from_user(ptr, buf, uchunk);
872 		kexec_flush_icache_page(page);
873 		kunmap_local(ptr);
874 		arch_kexec_pre_free_pages(page_address(page), 1);
875 		if (result) {
876 			result = -EFAULT;
877 			goto out;
878 		}
879 		ubytes -= uchunk;
880 		maddr  += mchunk;
881 		if (image->file_mode)
882 			kbuf += mchunk;
883 		else
884 			buf += mchunk;
885 		mbytes -= mchunk;
886 
887 		cond_resched();
888 	}
889 out:
890 	return result;
891 }
892 
893 int kimage_load_segment(struct kimage *image,
894 				struct kexec_segment *segment)
895 {
896 	int result = -ENOMEM;
897 
898 	switch (image->type) {
899 	case KEXEC_TYPE_DEFAULT:
900 		result = kimage_load_normal_segment(image, segment);
901 		break;
902 	case KEXEC_TYPE_CRASH:
903 		result = kimage_load_crash_segment(image, segment);
904 		break;
905 	}
906 
907 	return result;
908 }
909 
910 struct kexec_load_limit {
911 	/* Mutex protects the limit count. */
912 	struct mutex mutex;
913 	int limit;
914 };
915 
916 static struct kexec_load_limit load_limit_reboot = {
917 	.mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
918 	.limit = -1,
919 };
920 
921 static struct kexec_load_limit load_limit_panic = {
922 	.mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
923 	.limit = -1,
924 };
925 
926 struct kimage *kexec_image;
927 struct kimage *kexec_crash_image;
928 static int kexec_load_disabled;
929 
930 #ifdef CONFIG_SYSCTL
931 static int kexec_limit_handler(struct ctl_table *table, int write,
932 			       void *buffer, size_t *lenp, loff_t *ppos)
933 {
934 	struct kexec_load_limit *limit = table->data;
935 	int val;
936 	struct ctl_table tmp = {
937 		.data = &val,
938 		.maxlen = sizeof(val),
939 		.mode = table->mode,
940 	};
941 	int ret;
942 
943 	if (write) {
944 		ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
945 		if (ret)
946 			return ret;
947 
948 		if (val < 0)
949 			return -EINVAL;
950 
951 		mutex_lock(&limit->mutex);
952 		if (limit->limit != -1 && val >= limit->limit)
953 			ret = -EINVAL;
954 		else
955 			limit->limit = val;
956 		mutex_unlock(&limit->mutex);
957 
958 		return ret;
959 	}
960 
961 	mutex_lock(&limit->mutex);
962 	val = limit->limit;
963 	mutex_unlock(&limit->mutex);
964 
965 	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
966 }
967 
968 static struct ctl_table kexec_core_sysctls[] = {
969 	{
970 		.procname	= "kexec_load_disabled",
971 		.data		= &kexec_load_disabled,
972 		.maxlen		= sizeof(int),
973 		.mode		= 0644,
974 		/* only handle a transition from default "0" to "1" */
975 		.proc_handler	= proc_dointvec_minmax,
976 		.extra1		= SYSCTL_ONE,
977 		.extra2		= SYSCTL_ONE,
978 	},
979 	{
980 		.procname	= "kexec_load_limit_panic",
981 		.data		= &load_limit_panic,
982 		.mode		= 0644,
983 		.proc_handler	= kexec_limit_handler,
984 	},
985 	{
986 		.procname	= "kexec_load_limit_reboot",
987 		.data		= &load_limit_reboot,
988 		.mode		= 0644,
989 		.proc_handler	= kexec_limit_handler,
990 	},
991 	{ }
992 };
993 
994 static int __init kexec_core_sysctl_init(void)
995 {
996 	register_sysctl_init("kernel", kexec_core_sysctls);
997 	return 0;
998 }
999 late_initcall(kexec_core_sysctl_init);
1000 #endif
1001 
1002 bool kexec_load_permitted(int kexec_image_type)
1003 {
1004 	struct kexec_load_limit *limit;
1005 
1006 	/*
1007 	 * Only the superuser can use the kexec syscall and if it has not
1008 	 * been disabled.
1009 	 */
1010 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1011 		return false;
1012 
1013 	/* Check limit counter and decrease it.*/
1014 	limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
1015 		&load_limit_panic : &load_limit_reboot;
1016 	mutex_lock(&limit->mutex);
1017 	if (!limit->limit) {
1018 		mutex_unlock(&limit->mutex);
1019 		return false;
1020 	}
1021 	if (limit->limit != -1)
1022 		limit->limit--;
1023 	mutex_unlock(&limit->mutex);
1024 
1025 	return true;
1026 }
1027 
1028 /*
1029  * No panic_cpu check version of crash_kexec().  This function is called
1030  * only when panic_cpu holds the current CPU number; this is the only CPU
1031  * which processes crash_kexec routines.
1032  */
1033 void __noclone __crash_kexec(struct pt_regs *regs)
1034 {
1035 	/* Take the kexec_lock here to prevent sys_kexec_load
1036 	 * running on one cpu from replacing the crash kernel
1037 	 * we are using after a panic on a different cpu.
1038 	 *
1039 	 * If the crash kernel was not located in a fixed area
1040 	 * of memory the xchg(&kexec_crash_image) would be
1041 	 * sufficient.  But since I reuse the memory...
1042 	 */
1043 	if (kexec_trylock()) {
1044 		if (kexec_crash_image) {
1045 			struct pt_regs fixed_regs;
1046 
1047 			crash_setup_regs(&fixed_regs, regs);
1048 			crash_save_vmcoreinfo();
1049 			machine_crash_shutdown(&fixed_regs);
1050 			machine_kexec(kexec_crash_image);
1051 		}
1052 		kexec_unlock();
1053 	}
1054 }
1055 STACK_FRAME_NON_STANDARD(__crash_kexec);
1056 
1057 __bpf_kfunc void crash_kexec(struct pt_regs *regs)
1058 {
1059 	int old_cpu, this_cpu;
1060 
1061 	/*
1062 	 * Only one CPU is allowed to execute the crash_kexec() code as with
1063 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
1064 	 * may stop each other.  To exclude them, we use panic_cpu here too.
1065 	 */
1066 	this_cpu = raw_smp_processor_id();
1067 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
1068 	if (old_cpu == PANIC_CPU_INVALID) {
1069 		/* This is the 1st CPU which comes here, so go ahead. */
1070 		__crash_kexec(regs);
1071 
1072 		/*
1073 		 * Reset panic_cpu to allow another panic()/crash_kexec()
1074 		 * call.
1075 		 */
1076 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
1077 	}
1078 }
1079 
1080 static inline resource_size_t crash_resource_size(const struct resource *res)
1081 {
1082 	return !res->end ? 0 : resource_size(res);
1083 }
1084 
1085 ssize_t crash_get_memory_size(void)
1086 {
1087 	ssize_t size = 0;
1088 
1089 	if (!kexec_trylock())
1090 		return -EBUSY;
1091 
1092 	size += crash_resource_size(&crashk_res);
1093 	size += crash_resource_size(&crashk_low_res);
1094 
1095 	kexec_unlock();
1096 	return size;
1097 }
1098 
1099 static int __crash_shrink_memory(struct resource *old_res,
1100 				 unsigned long new_size)
1101 {
1102 	struct resource *ram_res;
1103 
1104 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1105 	if (!ram_res)
1106 		return -ENOMEM;
1107 
1108 	ram_res->start = old_res->start + new_size;
1109 	ram_res->end   = old_res->end;
1110 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1111 	ram_res->name  = "System RAM";
1112 
1113 	if (!new_size) {
1114 		release_resource(old_res);
1115 		old_res->start = 0;
1116 		old_res->end   = 0;
1117 	} else {
1118 		crashk_res.end = ram_res->start - 1;
1119 	}
1120 
1121 	crash_free_reserved_phys_range(ram_res->start, ram_res->end);
1122 	insert_resource(&iomem_resource, ram_res);
1123 
1124 	return 0;
1125 }
1126 
1127 int crash_shrink_memory(unsigned long new_size)
1128 {
1129 	int ret = 0;
1130 	unsigned long old_size, low_size;
1131 
1132 	if (!kexec_trylock())
1133 		return -EBUSY;
1134 
1135 	if (kexec_crash_image) {
1136 		ret = -ENOENT;
1137 		goto unlock;
1138 	}
1139 
1140 	low_size = crash_resource_size(&crashk_low_res);
1141 	old_size = crash_resource_size(&crashk_res) + low_size;
1142 	new_size = roundup(new_size, KEXEC_CRASH_MEM_ALIGN);
1143 	if (new_size >= old_size) {
1144 		ret = (new_size == old_size) ? 0 : -EINVAL;
1145 		goto unlock;
1146 	}
1147 
1148 	/*
1149 	 * (low_size > new_size) implies that low_size is greater than zero.
1150 	 * This also means that if low_size is zero, the else branch is taken.
1151 	 *
1152 	 * If low_size is greater than 0, (low_size > new_size) indicates that
1153 	 * crashk_low_res also needs to be shrunken. Otherwise, only crashk_res
1154 	 * needs to be shrunken.
1155 	 */
1156 	if (low_size > new_size) {
1157 		ret = __crash_shrink_memory(&crashk_res, 0);
1158 		if (ret)
1159 			goto unlock;
1160 
1161 		ret = __crash_shrink_memory(&crashk_low_res, new_size);
1162 	} else {
1163 		ret = __crash_shrink_memory(&crashk_res, new_size - low_size);
1164 	}
1165 
1166 	/* Swap crashk_res and crashk_low_res if needed */
1167 	if (!crashk_res.end && crashk_low_res.end) {
1168 		crashk_res.start = crashk_low_res.start;
1169 		crashk_res.end   = crashk_low_res.end;
1170 		release_resource(&crashk_low_res);
1171 		crashk_low_res.start = 0;
1172 		crashk_low_res.end   = 0;
1173 		insert_resource(&iomem_resource, &crashk_res);
1174 	}
1175 
1176 unlock:
1177 	kexec_unlock();
1178 	return ret;
1179 }
1180 
1181 void crash_save_cpu(struct pt_regs *regs, int cpu)
1182 {
1183 	struct elf_prstatus prstatus;
1184 	u32 *buf;
1185 
1186 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1187 		return;
1188 
1189 	/* Using ELF notes here is opportunistic.
1190 	 * I need a well defined structure format
1191 	 * for the data I pass, and I need tags
1192 	 * on the data to indicate what information I have
1193 	 * squirrelled away.  ELF notes happen to provide
1194 	 * all of that, so there is no need to invent something new.
1195 	 */
1196 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1197 	if (!buf)
1198 		return;
1199 	memset(&prstatus, 0, sizeof(prstatus));
1200 	prstatus.common.pr_pid = current->pid;
1201 	elf_core_copy_regs(&prstatus.pr_reg, regs);
1202 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1203 			      &prstatus, sizeof(prstatus));
1204 	final_note(buf);
1205 }
1206 
1207 /*
1208  * Move into place and start executing a preloaded standalone
1209  * executable.  If nothing was preloaded return an error.
1210  */
1211 int kernel_kexec(void)
1212 {
1213 	int error = 0;
1214 
1215 	if (!kexec_trylock())
1216 		return -EBUSY;
1217 	if (!kexec_image) {
1218 		error = -EINVAL;
1219 		goto Unlock;
1220 	}
1221 
1222 #ifdef CONFIG_KEXEC_JUMP
1223 	if (kexec_image->preserve_context) {
1224 		pm_prepare_console();
1225 		error = freeze_processes();
1226 		if (error) {
1227 			error = -EBUSY;
1228 			goto Restore_console;
1229 		}
1230 		suspend_console();
1231 		error = dpm_suspend_start(PMSG_FREEZE);
1232 		if (error)
1233 			goto Resume_console;
1234 		/* At this point, dpm_suspend_start() has been called,
1235 		 * but *not* dpm_suspend_end(). We *must* call
1236 		 * dpm_suspend_end() now.  Otherwise, drivers for
1237 		 * some devices (e.g. interrupt controllers) become
1238 		 * desynchronized with the actual state of the
1239 		 * hardware at resume time, and evil weirdness ensues.
1240 		 */
1241 		error = dpm_suspend_end(PMSG_FREEZE);
1242 		if (error)
1243 			goto Resume_devices;
1244 		error = suspend_disable_secondary_cpus();
1245 		if (error)
1246 			goto Enable_cpus;
1247 		local_irq_disable();
1248 		error = syscore_suspend();
1249 		if (error)
1250 			goto Enable_irqs;
1251 	} else
1252 #endif
1253 	{
1254 		kexec_in_progress = true;
1255 		kernel_restart_prepare("kexec reboot");
1256 		migrate_to_reboot_cpu();
1257 
1258 		/*
1259 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1260 		 * no further code needs to use CPU hotplug (which is true in
1261 		 * the reboot case). However, the kexec path depends on using
1262 		 * CPU hotplug again; so re-enable it here.
1263 		 */
1264 		cpu_hotplug_enable();
1265 		pr_notice("Starting new kernel\n");
1266 		machine_shutdown();
1267 	}
1268 
1269 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1270 	machine_kexec(kexec_image);
1271 
1272 #ifdef CONFIG_KEXEC_JUMP
1273 	if (kexec_image->preserve_context) {
1274 		syscore_resume();
1275  Enable_irqs:
1276 		local_irq_enable();
1277  Enable_cpus:
1278 		suspend_enable_secondary_cpus();
1279 		dpm_resume_start(PMSG_RESTORE);
1280  Resume_devices:
1281 		dpm_resume_end(PMSG_RESTORE);
1282  Resume_console:
1283 		resume_console();
1284 		thaw_processes();
1285  Restore_console:
1286 		pm_restore_console();
1287 	}
1288 #endif
1289 
1290  Unlock:
1291 	kexec_unlock();
1292 	return error;
1293 }
1294