xref: /linux/kernel/kexec_core.c (revision 80bab43f6f235664fff2d3518b3901ba9c4ac5a3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec system call core code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/btf.h>
10 #include <linux/capability.h>
11 #include <linux/mm.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/liveupdate.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/panic_notifier.h>
32 #include <linux/pm.h>
33 #include <linux/cpu.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/console.h>
37 #include <linux/vmalloc.h>
38 #include <linux/swap.h>
39 #include <linux/syscore_ops.h>
40 #include <linux/compiler.h>
41 #include <linux/hugetlb.h>
42 #include <linux/objtool.h>
43 #include <linux/kmsg_dump.h>
44 #include <linux/dma-map-ops.h>
45 
46 #include <asm/page.h>
47 #include <asm/sections.h>
48 
49 #include <crypto/hash.h>
50 #include "kexec_internal.h"
51 
52 atomic_t __kexec_lock = ATOMIC_INIT(0);
53 
54 /* Flag to indicate we are going to kexec a new kernel */
55 bool kexec_in_progress = false;
56 
57 bool kexec_file_dbg_print;
58 
59 /*
60  * When kexec transitions to the new kernel there is a one-to-one
61  * mapping between physical and virtual addresses.  On processors
62  * where you can disable the MMU this is trivial, and easy.  For
63  * others it is still a simple predictable page table to setup.
64  *
65  * In that environment kexec copies the new kernel to its final
66  * resting place.  This means I can only support memory whose
67  * physical address can fit in an unsigned long.  In particular
68  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
69  * If the assembly stub has more restrictive requirements
70  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
71  * defined more restrictively in <asm/kexec.h>.
72  *
73  * The code for the transition from the current kernel to the
74  * new kernel is placed in the control_code_buffer, whose size
75  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
76  * page of memory is necessary, but some architectures require more.
77  * Because this memory must be identity mapped in the transition from
78  * virtual to physical addresses it must live in the range
79  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
80  * modifiable.
81  *
82  * The assembly stub in the control code buffer is passed a linked list
83  * of descriptor pages detailing the source pages of the new kernel,
84  * and the destination addresses of those source pages.  As this data
85  * structure is not used in the context of the current OS, it must
86  * be self-contained.
87  *
88  * The code has been made to work with highmem pages and will use a
89  * destination page in its final resting place (if it happens
90  * to allocate it).  The end product of this is that most of the
91  * physical address space, and most of RAM can be used.
92  *
93  * Future directions include:
94  *  - allocating a page table with the control code buffer identity
95  *    mapped, to simplify machine_kexec and make kexec_on_panic more
96  *    reliable.
97  */
98 
99 /*
100  * KIMAGE_NO_DEST is an impossible destination address..., for
101  * allocating pages whose destination address we do not care about.
102  */
103 #define KIMAGE_NO_DEST (-1UL)
104 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
105 
106 static struct page *kimage_alloc_page(struct kimage *image,
107 				       gfp_t gfp_mask,
108 				       unsigned long dest);
109 
110 int sanity_check_segment_list(struct kimage *image)
111 {
112 	int i;
113 	unsigned long nr_segments = image->nr_segments;
114 	unsigned long total_pages = 0;
115 	unsigned long nr_pages = totalram_pages();
116 
117 	/*
118 	 * Verify we have good destination addresses.  The caller is
119 	 * responsible for making certain we don't attempt to load
120 	 * the new image into invalid or reserved areas of RAM.  This
121 	 * just verifies it is an address we can use.
122 	 *
123 	 * Since the kernel does everything in page size chunks ensure
124 	 * the destination addresses are page aligned.  Too many
125 	 * special cases crop of when we don't do this.  The most
126 	 * insidious is getting overlapping destination addresses
127 	 * simply because addresses are changed to page size
128 	 * granularity.
129 	 */
130 	for (i = 0; i < nr_segments; i++) {
131 		unsigned long mstart, mend;
132 
133 		mstart = image->segment[i].mem;
134 		mend   = mstart + image->segment[i].memsz;
135 		if (mstart > mend)
136 			return -EADDRNOTAVAIL;
137 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
138 			return -EADDRNOTAVAIL;
139 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
140 			return -EADDRNOTAVAIL;
141 	}
142 
143 	/* Verify our destination addresses do not overlap.
144 	 * If we alloed overlapping destination addresses
145 	 * through very weird things can happen with no
146 	 * easy explanation as one segment stops on another.
147 	 */
148 	for (i = 0; i < nr_segments; i++) {
149 		unsigned long mstart, mend;
150 		unsigned long j;
151 
152 		mstart = image->segment[i].mem;
153 		mend   = mstart + image->segment[i].memsz;
154 		for (j = 0; j < i; j++) {
155 			unsigned long pstart, pend;
156 
157 			pstart = image->segment[j].mem;
158 			pend   = pstart + image->segment[j].memsz;
159 			/* Do the segments overlap ? */
160 			if ((mend > pstart) && (mstart < pend))
161 				return -EINVAL;
162 		}
163 	}
164 
165 	/* Ensure our buffer sizes are strictly less than
166 	 * our memory sizes.  This should always be the case,
167 	 * and it is easier to check up front than to be surprised
168 	 * later on.
169 	 */
170 	for (i = 0; i < nr_segments; i++) {
171 		if (image->segment[i].bufsz > image->segment[i].memsz)
172 			return -EINVAL;
173 	}
174 
175 	/*
176 	 * Verify that no more than half of memory will be consumed. If the
177 	 * request from userspace is too large, a large amount of time will be
178 	 * wasted allocating pages, which can cause a soft lockup.
179 	 */
180 	for (i = 0; i < nr_segments; i++) {
181 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
182 			return -EINVAL;
183 
184 		total_pages += PAGE_COUNT(image->segment[i].memsz);
185 	}
186 
187 	if (total_pages > nr_pages / 2)
188 		return -EINVAL;
189 
190 #ifdef CONFIG_CRASH_DUMP
191 	/*
192 	 * Verify we have good destination addresses.  Normally
193 	 * the caller is responsible for making certain we don't
194 	 * attempt to load the new image into invalid or reserved
195 	 * areas of RAM.  But crash kernels are preloaded into a
196 	 * reserved area of ram.  We must ensure the addresses
197 	 * are in the reserved area otherwise preloading the
198 	 * kernel could corrupt things.
199 	 */
200 
201 	if (image->type == KEXEC_TYPE_CRASH) {
202 		for (i = 0; i < nr_segments; i++) {
203 			unsigned long mstart, mend;
204 
205 			mstart = image->segment[i].mem;
206 			mend = mstart + image->segment[i].memsz - 1;
207 			/* Ensure we are within the crash kernel limits */
208 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
209 			    (mend > phys_to_boot_phys(crashk_res.end)))
210 				return -EADDRNOTAVAIL;
211 		}
212 	}
213 #endif
214 
215 	/*
216 	 * The destination addresses are searched from system RAM rather than
217 	 * being allocated from the buddy allocator, so they are not guaranteed
218 	 * to be accepted by the current kernel.  Accept the destination
219 	 * addresses before kexec swaps their content with the segments' source
220 	 * pages to avoid accessing memory before it is accepted.
221 	 */
222 	for (i = 0; i < nr_segments; i++)
223 		accept_memory(image->segment[i].mem, image->segment[i].memsz);
224 
225 	return 0;
226 }
227 
228 struct kimage *do_kimage_alloc_init(void)
229 {
230 	struct kimage *image;
231 
232 	/* Allocate a controlling structure */
233 	image = kzalloc(sizeof(*image), GFP_KERNEL);
234 	if (!image)
235 		return NULL;
236 
237 	image->entry = &image->head;
238 	image->last_entry = &image->head;
239 	image->control_page = ~0; /* By default this does not apply */
240 	image->type = KEXEC_TYPE_DEFAULT;
241 
242 	/* Initialize the list of control pages */
243 	INIT_LIST_HEAD(&image->control_pages);
244 
245 	/* Initialize the list of destination pages */
246 	INIT_LIST_HEAD(&image->dest_pages);
247 
248 	/* Initialize the list of unusable pages */
249 	INIT_LIST_HEAD(&image->unusable_pages);
250 
251 #ifdef CONFIG_CRASH_HOTPLUG
252 	image->hp_action = KEXEC_CRASH_HP_NONE;
253 	image->elfcorehdr_index = -1;
254 	image->elfcorehdr_updated = false;
255 #endif
256 
257 	return image;
258 }
259 
260 int kimage_is_destination_range(struct kimage *image,
261 					unsigned long start,
262 					unsigned long end)
263 {
264 	unsigned long i;
265 
266 	for (i = 0; i < image->nr_segments; i++) {
267 		unsigned long mstart, mend;
268 
269 		mstart = image->segment[i].mem;
270 		mend = mstart + image->segment[i].memsz - 1;
271 		if ((end >= mstart) && (start <= mend))
272 			return 1;
273 	}
274 
275 	return 0;
276 }
277 
278 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
279 {
280 	struct page *pages;
281 
282 	if (fatal_signal_pending(current))
283 		return NULL;
284 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
285 	if (pages) {
286 		unsigned int count, i;
287 
288 		pages->mapping = NULL;
289 		set_page_private(pages, order);
290 		count = 1 << order;
291 		for (i = 0; i < count; i++)
292 			SetPageReserved(pages + i);
293 
294 		arch_kexec_post_alloc_pages(page_address(pages), count,
295 					    gfp_mask);
296 
297 		if (gfp_mask & __GFP_ZERO)
298 			for (i = 0; i < count; i++)
299 				clear_highpage(pages + i);
300 	}
301 
302 	return pages;
303 }
304 
305 static void kimage_free_pages(struct page *page)
306 {
307 	unsigned int order, count, i;
308 
309 	order = page_private(page);
310 	count = 1 << order;
311 
312 	arch_kexec_pre_free_pages(page_address(page), count);
313 
314 	for (i = 0; i < count; i++)
315 		ClearPageReserved(page + i);
316 	__free_pages(page, order);
317 }
318 
319 void kimage_free_page_list(struct list_head *list)
320 {
321 	struct page *page, *next;
322 
323 	list_for_each_entry_safe(page, next, list, lru) {
324 		list_del(&page->lru);
325 		kimage_free_pages(page);
326 	}
327 }
328 
329 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
330 							unsigned int order)
331 {
332 	/* Control pages are special, they are the intermediaries
333 	 * that are needed while we copy the rest of the pages
334 	 * to their final resting place.  As such they must
335 	 * not conflict with either the destination addresses
336 	 * or memory the kernel is already using.
337 	 *
338 	 * The only case where we really need more than one of
339 	 * these are for architectures where we cannot disable
340 	 * the MMU and must instead generate an identity mapped
341 	 * page table for all of the memory.
342 	 *
343 	 * At worst this runs in O(N) of the image size.
344 	 */
345 	struct list_head extra_pages;
346 	struct page *pages;
347 	unsigned int count;
348 
349 	count = 1 << order;
350 	INIT_LIST_HEAD(&extra_pages);
351 
352 	/* Loop while I can allocate a page and the page allocated
353 	 * is a destination page.
354 	 */
355 	do {
356 		unsigned long pfn, epfn, addr, eaddr;
357 
358 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
359 		if (!pages)
360 			break;
361 		pfn   = page_to_boot_pfn(pages);
362 		epfn  = pfn + count;
363 		addr  = pfn << PAGE_SHIFT;
364 		eaddr = (epfn << PAGE_SHIFT) - 1;
365 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
366 			      kimage_is_destination_range(image, addr, eaddr)) {
367 			list_add(&pages->lru, &extra_pages);
368 			pages = NULL;
369 		}
370 	} while (!pages);
371 
372 	if (pages) {
373 		/* Remember the allocated page... */
374 		list_add(&pages->lru, &image->control_pages);
375 
376 		/* Because the page is already in it's destination
377 		 * location we will never allocate another page at
378 		 * that address.  Therefore kimage_alloc_pages
379 		 * will not return it (again) and we don't need
380 		 * to give it an entry in image->segment[].
381 		 */
382 	}
383 	/* Deal with the destination pages I have inadvertently allocated.
384 	 *
385 	 * Ideally I would convert multi-page allocations into single
386 	 * page allocations, and add everything to image->dest_pages.
387 	 *
388 	 * For now it is simpler to just free the pages.
389 	 */
390 	kimage_free_page_list(&extra_pages);
391 
392 	return pages;
393 }
394 
395 #ifdef CONFIG_CRASH_DUMP
396 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
397 						      unsigned int order)
398 {
399 	/* Control pages are special, they are the intermediaries
400 	 * that are needed while we copy the rest of the pages
401 	 * to their final resting place.  As such they must
402 	 * not conflict with either the destination addresses
403 	 * or memory the kernel is already using.
404 	 *
405 	 * Control pages are also the only pags we must allocate
406 	 * when loading a crash kernel.  All of the other pages
407 	 * are specified by the segments and we just memcpy
408 	 * into them directly.
409 	 *
410 	 * The only case where we really need more than one of
411 	 * these are for architectures where we cannot disable
412 	 * the MMU and must instead generate an identity mapped
413 	 * page table for all of the memory.
414 	 *
415 	 * Given the low demand this implements a very simple
416 	 * allocator that finds the first hole of the appropriate
417 	 * size in the reserved memory region, and allocates all
418 	 * of the memory up to and including the hole.
419 	 */
420 	unsigned long hole_start, hole_end, size;
421 	struct page *pages;
422 
423 	pages = NULL;
424 	size = (1 << order) << PAGE_SHIFT;
425 	hole_start = ALIGN(image->control_page, size);
426 	hole_end   = hole_start + size - 1;
427 	while (hole_end <= crashk_res.end) {
428 		unsigned long i;
429 
430 		cond_resched();
431 
432 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
433 			break;
434 		/* See if I overlap any of the segments */
435 		for (i = 0; i < image->nr_segments; i++) {
436 			unsigned long mstart, mend;
437 
438 			mstart = image->segment[i].mem;
439 			mend   = mstart + image->segment[i].memsz - 1;
440 			if ((hole_end >= mstart) && (hole_start <= mend)) {
441 				/* Advance the hole to the end of the segment */
442 				hole_start = ALIGN(mend, size);
443 				hole_end   = hole_start + size - 1;
444 				break;
445 			}
446 		}
447 		/* If I don't overlap any segments I have found my hole! */
448 		if (i == image->nr_segments) {
449 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
450 			image->control_page = hole_end + 1;
451 			break;
452 		}
453 	}
454 
455 	/* Ensure that these pages are decrypted if SME is enabled. */
456 	if (pages)
457 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
458 
459 	return pages;
460 }
461 #endif
462 
463 
464 struct page *kimage_alloc_control_pages(struct kimage *image,
465 					 unsigned int order)
466 {
467 	struct page *pages = NULL;
468 
469 	switch (image->type) {
470 	case KEXEC_TYPE_DEFAULT:
471 		pages = kimage_alloc_normal_control_pages(image, order);
472 		break;
473 #ifdef CONFIG_CRASH_DUMP
474 	case KEXEC_TYPE_CRASH:
475 		pages = kimage_alloc_crash_control_pages(image, order);
476 		break;
477 #endif
478 	}
479 
480 	return pages;
481 }
482 
483 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
484 {
485 	if (*image->entry != 0)
486 		image->entry++;
487 
488 	if (image->entry == image->last_entry) {
489 		kimage_entry_t *ind_page;
490 		struct page *page;
491 
492 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
493 		if (!page)
494 			return -ENOMEM;
495 
496 		ind_page = page_address(page);
497 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
498 		image->entry = ind_page;
499 		image->last_entry = ind_page +
500 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
501 	}
502 	*image->entry = entry;
503 	image->entry++;
504 	*image->entry = 0;
505 
506 	return 0;
507 }
508 
509 static int kimage_set_destination(struct kimage *image,
510 				   unsigned long destination)
511 {
512 	destination &= PAGE_MASK;
513 
514 	return kimage_add_entry(image, destination | IND_DESTINATION);
515 }
516 
517 
518 static int kimage_add_page(struct kimage *image, unsigned long page)
519 {
520 	page &= PAGE_MASK;
521 
522 	return kimage_add_entry(image, page | IND_SOURCE);
523 }
524 
525 
526 static void kimage_free_extra_pages(struct kimage *image)
527 {
528 	/* Walk through and free any extra destination pages I may have */
529 	kimage_free_page_list(&image->dest_pages);
530 
531 	/* Walk through and free any unusable pages I have cached */
532 	kimage_free_page_list(&image->unusable_pages);
533 
534 }
535 
536 void kimage_terminate(struct kimage *image)
537 {
538 	if (*image->entry != 0)
539 		image->entry++;
540 
541 	*image->entry = IND_DONE;
542 }
543 
544 #define for_each_kimage_entry(image, ptr, entry) \
545 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
546 		ptr = (entry & IND_INDIRECTION) ? \
547 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
548 
549 static void kimage_free_entry(kimage_entry_t entry)
550 {
551 	struct page *page;
552 
553 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
554 	kimage_free_pages(page);
555 }
556 
557 static void kimage_free_cma(struct kimage *image)
558 {
559 	unsigned long i;
560 
561 	for (i = 0; i < image->nr_segments; i++) {
562 		struct page *cma = image->segment_cma[i];
563 		u32 nr_pages = image->segment[i].memsz >> PAGE_SHIFT;
564 
565 		if (!cma)
566 			continue;
567 
568 		arch_kexec_pre_free_pages(page_address(cma), nr_pages);
569 		dma_release_from_contiguous(NULL, cma, nr_pages);
570 		image->segment_cma[i] = NULL;
571 	}
572 
573 }
574 
575 void kimage_free(struct kimage *image)
576 {
577 	kimage_entry_t *ptr, entry;
578 	kimage_entry_t ind = 0;
579 
580 	if (!image)
581 		return;
582 
583 #ifdef CONFIG_CRASH_DUMP
584 	if (image->vmcoreinfo_data_copy) {
585 		crash_update_vmcoreinfo_safecopy(NULL);
586 		vunmap(image->vmcoreinfo_data_copy);
587 	}
588 #endif
589 
590 	kimage_free_extra_pages(image);
591 	for_each_kimage_entry(image, ptr, entry) {
592 		if (entry & IND_INDIRECTION) {
593 			/* Free the previous indirection page */
594 			if (ind & IND_INDIRECTION)
595 				kimage_free_entry(ind);
596 			/* Save this indirection page until we are
597 			 * done with it.
598 			 */
599 			ind = entry;
600 		} else if (entry & IND_SOURCE)
601 			kimage_free_entry(entry);
602 	}
603 	/* Free the final indirection page */
604 	if (ind & IND_INDIRECTION)
605 		kimage_free_entry(ind);
606 
607 	/* Handle any machine specific cleanup */
608 	machine_kexec_cleanup(image);
609 
610 	/* Free the kexec control pages... */
611 	kimage_free_page_list(&image->control_pages);
612 
613 	/* Free CMA allocations */
614 	kimage_free_cma(image);
615 
616 	/*
617 	 * Free up any temporary buffers allocated. This might hit if
618 	 * error occurred much later after buffer allocation.
619 	 */
620 	if (image->file_mode)
621 		kimage_file_post_load_cleanup(image);
622 
623 	kfree(image);
624 }
625 
626 static kimage_entry_t *kimage_dst_used(struct kimage *image,
627 					unsigned long page)
628 {
629 	kimage_entry_t *ptr, entry;
630 	unsigned long destination = 0;
631 
632 	for_each_kimage_entry(image, ptr, entry) {
633 		if (entry & IND_DESTINATION)
634 			destination = entry & PAGE_MASK;
635 		else if (entry & IND_SOURCE) {
636 			if (page == destination)
637 				return ptr;
638 			destination += PAGE_SIZE;
639 		}
640 	}
641 
642 	return NULL;
643 }
644 
645 static struct page *kimage_alloc_page(struct kimage *image,
646 					gfp_t gfp_mask,
647 					unsigned long destination)
648 {
649 	/*
650 	 * Here we implement safeguards to ensure that a source page
651 	 * is not copied to its destination page before the data on
652 	 * the destination page is no longer useful.
653 	 *
654 	 * To do this we maintain the invariant that a source page is
655 	 * either its own destination page, or it is not a
656 	 * destination page at all.
657 	 *
658 	 * That is slightly stronger than required, but the proof
659 	 * that no problems will not occur is trivial, and the
660 	 * implementation is simply to verify.
661 	 *
662 	 * When allocating all pages normally this algorithm will run
663 	 * in O(N) time, but in the worst case it will run in O(N^2)
664 	 * time.   If the runtime is a problem the data structures can
665 	 * be fixed.
666 	 */
667 	struct page *page;
668 	unsigned long addr;
669 
670 	/*
671 	 * Walk through the list of destination pages, and see if I
672 	 * have a match.
673 	 */
674 	list_for_each_entry(page, &image->dest_pages, lru) {
675 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
676 		if (addr == destination) {
677 			list_del(&page->lru);
678 			return page;
679 		}
680 	}
681 	page = NULL;
682 	while (1) {
683 		kimage_entry_t *old;
684 
685 		/* Allocate a page, if we run out of memory give up */
686 		page = kimage_alloc_pages(gfp_mask, 0);
687 		if (!page)
688 			return NULL;
689 		/* If the page cannot be used file it away */
690 		if (page_to_boot_pfn(page) >
691 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
692 			list_add(&page->lru, &image->unusable_pages);
693 			continue;
694 		}
695 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
696 
697 		/* If it is the destination page we want use it */
698 		if (addr == destination)
699 			break;
700 
701 		/* If the page is not a destination page use it */
702 		if (!kimage_is_destination_range(image, addr,
703 						  addr + PAGE_SIZE - 1))
704 			break;
705 
706 		/*
707 		 * I know that the page is someones destination page.
708 		 * See if there is already a source page for this
709 		 * destination page.  And if so swap the source pages.
710 		 */
711 		old = kimage_dst_used(image, addr);
712 		if (old) {
713 			/* If so move it */
714 			unsigned long old_addr;
715 			struct page *old_page;
716 
717 			old_addr = *old & PAGE_MASK;
718 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
719 			copy_highpage(page, old_page);
720 			*old = addr | (*old & ~PAGE_MASK);
721 
722 			/* The old page I have found cannot be a
723 			 * destination page, so return it if it's
724 			 * gfp_flags honor the ones passed in.
725 			 */
726 			if (!(gfp_mask & __GFP_HIGHMEM) &&
727 			    PageHighMem(old_page)) {
728 				kimage_free_pages(old_page);
729 				continue;
730 			}
731 			page = old_page;
732 			break;
733 		}
734 		/* Place the page on the destination list, to be used later */
735 		list_add(&page->lru, &image->dest_pages);
736 	}
737 
738 	return page;
739 }
740 
741 static int kimage_load_cma_segment(struct kimage *image, int idx)
742 {
743 	struct kexec_segment *segment = &image->segment[idx];
744 	struct page *cma = image->segment_cma[idx];
745 	char *ptr = page_address(cma);
746 	size_t ubytes, mbytes;
747 	int result = 0;
748 	unsigned char __user *buf = NULL;
749 	unsigned char *kbuf = NULL;
750 
751 	if (image->file_mode)
752 		kbuf = segment->kbuf;
753 	else
754 		buf = segment->buf;
755 	ubytes = segment->bufsz;
756 	mbytes = segment->memsz;
757 
758 	/* Then copy from source buffer to the CMA one */
759 	while (mbytes) {
760 		size_t uchunk, mchunk;
761 
762 		mchunk = min_t(size_t, mbytes, PAGE_SIZE);
763 		uchunk = min(ubytes, mchunk);
764 
765 		if (uchunk) {
766 			/* For file based kexec, source pages are in kernel memory */
767 			if (image->file_mode)
768 				memcpy(ptr, kbuf, uchunk);
769 			else
770 				result = copy_from_user(ptr, buf, uchunk);
771 			ubytes -= uchunk;
772 			if (image->file_mode)
773 				kbuf += uchunk;
774 			else
775 				buf += uchunk;
776 		}
777 
778 		if (result) {
779 			result = -EFAULT;
780 			goto out;
781 		}
782 
783 		ptr    += mchunk;
784 		mbytes -= mchunk;
785 
786 		cond_resched();
787 	}
788 
789 	/* Clear any remainder */
790 	memset(ptr, 0, mbytes);
791 
792 out:
793 	return result;
794 }
795 
796 static int kimage_load_normal_segment(struct kimage *image, int idx)
797 {
798 	struct kexec_segment *segment = &image->segment[idx];
799 	unsigned long maddr;
800 	size_t ubytes, mbytes;
801 	int result;
802 	unsigned char __user *buf = NULL;
803 	unsigned char *kbuf = NULL;
804 
805 	if (image->file_mode)
806 		kbuf = segment->kbuf;
807 	else
808 		buf = segment->buf;
809 	ubytes = segment->bufsz;
810 	mbytes = segment->memsz;
811 	maddr = segment->mem;
812 
813 	if (image->segment_cma[idx])
814 		return kimage_load_cma_segment(image, idx);
815 
816 	result = kimage_set_destination(image, maddr);
817 	if (result < 0)
818 		goto out;
819 
820 	while (mbytes) {
821 		struct page *page;
822 		char *ptr;
823 		size_t uchunk, mchunk;
824 
825 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
826 		if (!page) {
827 			result  = -ENOMEM;
828 			goto out;
829 		}
830 		result = kimage_add_page(image, page_to_boot_pfn(page)
831 								<< PAGE_SHIFT);
832 		if (result < 0)
833 			goto out;
834 
835 		ptr = kmap_local_page(page);
836 		/* Start with a clear page */
837 		clear_page(ptr);
838 		mchunk = min_t(size_t, mbytes, PAGE_SIZE);
839 		uchunk = min(ubytes, mchunk);
840 
841 		if (uchunk) {
842 			/* For file based kexec, source pages are in kernel memory */
843 			if (image->file_mode)
844 				memcpy(ptr, kbuf, uchunk);
845 			else
846 				result = copy_from_user(ptr, buf, uchunk);
847 			ubytes -= uchunk;
848 			if (image->file_mode)
849 				kbuf += uchunk;
850 			else
851 				buf += uchunk;
852 		}
853 		kunmap_local(ptr);
854 		if (result) {
855 			result = -EFAULT;
856 			goto out;
857 		}
858 		maddr  += mchunk;
859 		mbytes -= mchunk;
860 
861 		cond_resched();
862 	}
863 out:
864 	return result;
865 }
866 
867 #ifdef CONFIG_CRASH_DUMP
868 static int kimage_load_crash_segment(struct kimage *image, int idx)
869 {
870 	/* For crash dumps kernels we simply copy the data from
871 	 * user space to it's destination.
872 	 * We do things a page at a time for the sake of kmap.
873 	 */
874 	struct kexec_segment *segment = &image->segment[idx];
875 	unsigned long maddr;
876 	size_t ubytes, mbytes;
877 	int result;
878 	unsigned char __user *buf = NULL;
879 	unsigned char *kbuf = NULL;
880 
881 	result = 0;
882 	if (image->file_mode)
883 		kbuf = segment->kbuf;
884 	else
885 		buf = segment->buf;
886 	ubytes = segment->bufsz;
887 	mbytes = segment->memsz;
888 	maddr = segment->mem;
889 	while (mbytes) {
890 		struct page *page;
891 		char *ptr;
892 		size_t uchunk, mchunk;
893 
894 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
895 		if (!page) {
896 			result  = -ENOMEM;
897 			goto out;
898 		}
899 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
900 		ptr = kmap_local_page(page);
901 		mchunk = min_t(size_t, mbytes, PAGE_SIZE);
902 		uchunk = min(ubytes, mchunk);
903 		if (mchunk > uchunk) {
904 			/* Zero the trailing part of the page */
905 			memset(ptr + uchunk, 0, mchunk - uchunk);
906 		}
907 
908 		if (uchunk) {
909 			/* For file based kexec, source pages are in kernel memory */
910 			if (image->file_mode)
911 				memcpy(ptr, kbuf, uchunk);
912 			else
913 				result = copy_from_user(ptr, buf, uchunk);
914 			ubytes -= uchunk;
915 			if (image->file_mode)
916 				kbuf += uchunk;
917 			else
918 				buf += uchunk;
919 		}
920 		kexec_flush_icache_page(page);
921 		kunmap_local(ptr);
922 		arch_kexec_pre_free_pages(page_address(page), 1);
923 		if (result) {
924 			result = -EFAULT;
925 			goto out;
926 		}
927 		maddr  += mchunk;
928 		mbytes -= mchunk;
929 
930 		cond_resched();
931 	}
932 out:
933 	return result;
934 }
935 #endif
936 
937 int kimage_load_segment(struct kimage *image, int idx)
938 {
939 	int result = -ENOMEM;
940 
941 	switch (image->type) {
942 	case KEXEC_TYPE_DEFAULT:
943 		result = kimage_load_normal_segment(image, idx);
944 		break;
945 #ifdef CONFIG_CRASH_DUMP
946 	case KEXEC_TYPE_CRASH:
947 		result = kimage_load_crash_segment(image, idx);
948 		break;
949 #endif
950 	}
951 
952 	return result;
953 }
954 
955 void *kimage_map_segment(struct kimage *image,
956 			 unsigned long addr, unsigned long size)
957 {
958 	unsigned long src_page_addr, dest_page_addr = 0;
959 	unsigned long eaddr = addr + size;
960 	kimage_entry_t *ptr, entry;
961 	struct page **src_pages;
962 	unsigned int npages;
963 	void *vaddr = NULL;
964 	int i;
965 
966 	/*
967 	 * Collect the source pages and map them in a contiguous VA range.
968 	 */
969 	npages = PFN_UP(eaddr) - PFN_DOWN(addr);
970 	src_pages = kmalloc_array(npages, sizeof(*src_pages), GFP_KERNEL);
971 	if (!src_pages) {
972 		pr_err("Could not allocate ima pages array.\n");
973 		return NULL;
974 	}
975 
976 	i = 0;
977 	for_each_kimage_entry(image, ptr, entry) {
978 		if (entry & IND_DESTINATION) {
979 			dest_page_addr = entry & PAGE_MASK;
980 		} else if (entry & IND_SOURCE) {
981 			if (dest_page_addr >= addr && dest_page_addr < eaddr) {
982 				src_page_addr = entry & PAGE_MASK;
983 				src_pages[i++] =
984 					virt_to_page(__va(src_page_addr));
985 				if (i == npages)
986 					break;
987 				dest_page_addr += PAGE_SIZE;
988 			}
989 		}
990 	}
991 
992 	/* Sanity check. */
993 	WARN_ON(i < npages);
994 
995 	vaddr = vmap(src_pages, npages, VM_MAP, PAGE_KERNEL);
996 	kfree(src_pages);
997 
998 	if (!vaddr)
999 		pr_err("Could not map ima buffer.\n");
1000 
1001 	return vaddr;
1002 }
1003 
1004 void kimage_unmap_segment(void *segment_buffer)
1005 {
1006 	vunmap(segment_buffer);
1007 }
1008 
1009 struct kexec_load_limit {
1010 	/* Mutex protects the limit count. */
1011 	struct mutex mutex;
1012 	int limit;
1013 };
1014 
1015 static struct kexec_load_limit load_limit_reboot = {
1016 	.mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
1017 	.limit = -1,
1018 };
1019 
1020 static struct kexec_load_limit load_limit_panic = {
1021 	.mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
1022 	.limit = -1,
1023 };
1024 
1025 struct kimage *kexec_image;
1026 struct kimage *kexec_crash_image;
1027 static int kexec_load_disabled;
1028 
1029 #ifdef CONFIG_SYSCTL
1030 static int kexec_limit_handler(const struct ctl_table *table, int write,
1031 			       void *buffer, size_t *lenp, loff_t *ppos)
1032 {
1033 	struct kexec_load_limit *limit = table->data;
1034 	int val;
1035 	struct ctl_table tmp = {
1036 		.data = &val,
1037 		.maxlen = sizeof(val),
1038 		.mode = table->mode,
1039 	};
1040 	int ret;
1041 
1042 	if (write) {
1043 		ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
1044 		if (ret)
1045 			return ret;
1046 
1047 		if (val < 0)
1048 			return -EINVAL;
1049 
1050 		mutex_lock(&limit->mutex);
1051 		if (limit->limit != -1 && val >= limit->limit)
1052 			ret = -EINVAL;
1053 		else
1054 			limit->limit = val;
1055 		mutex_unlock(&limit->mutex);
1056 
1057 		return ret;
1058 	}
1059 
1060 	mutex_lock(&limit->mutex);
1061 	val = limit->limit;
1062 	mutex_unlock(&limit->mutex);
1063 
1064 	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
1065 }
1066 
1067 static const struct ctl_table kexec_core_sysctls[] = {
1068 	{
1069 		.procname	= "kexec_load_disabled",
1070 		.data		= &kexec_load_disabled,
1071 		.maxlen		= sizeof(int),
1072 		.mode		= 0644,
1073 		/* only handle a transition from default "0" to "1" */
1074 		.proc_handler	= proc_dointvec_minmax,
1075 		.extra1		= SYSCTL_ONE,
1076 		.extra2		= SYSCTL_ONE,
1077 	},
1078 	{
1079 		.procname	= "kexec_load_limit_panic",
1080 		.data		= &load_limit_panic,
1081 		.mode		= 0644,
1082 		.proc_handler	= kexec_limit_handler,
1083 	},
1084 	{
1085 		.procname	= "kexec_load_limit_reboot",
1086 		.data		= &load_limit_reboot,
1087 		.mode		= 0644,
1088 		.proc_handler	= kexec_limit_handler,
1089 	},
1090 };
1091 
1092 static int __init kexec_core_sysctl_init(void)
1093 {
1094 	register_sysctl_init("kernel", kexec_core_sysctls);
1095 	return 0;
1096 }
1097 late_initcall(kexec_core_sysctl_init);
1098 #endif
1099 
1100 bool kexec_load_permitted(int kexec_image_type)
1101 {
1102 	struct kexec_load_limit *limit;
1103 
1104 	/*
1105 	 * Only the superuser can use the kexec syscall and if it has not
1106 	 * been disabled.
1107 	 */
1108 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1109 		return false;
1110 
1111 	/* Check limit counter and decrease it.*/
1112 	limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
1113 		&load_limit_panic : &load_limit_reboot;
1114 	mutex_lock(&limit->mutex);
1115 	if (!limit->limit) {
1116 		mutex_unlock(&limit->mutex);
1117 		return false;
1118 	}
1119 	if (limit->limit != -1)
1120 		limit->limit--;
1121 	mutex_unlock(&limit->mutex);
1122 
1123 	return true;
1124 }
1125 
1126 /*
1127  * Move into place and start executing a preloaded standalone
1128  * executable.  If nothing was preloaded return an error.
1129  */
1130 int kernel_kexec(void)
1131 {
1132 	int error = 0;
1133 
1134 	if (!kexec_trylock())
1135 		return -EBUSY;
1136 	if (!kexec_image) {
1137 		error = -EINVAL;
1138 		goto Unlock;
1139 	}
1140 
1141 	error = liveupdate_reboot();
1142 	if (error)
1143 		goto Unlock;
1144 
1145 #ifdef CONFIG_KEXEC_JUMP
1146 	if (kexec_image->preserve_context) {
1147 		/*
1148 		 * This flow is analogous to hibernation flows that occur
1149 		 * before creating an image and before jumping from the
1150 		 * restore kernel to the image one, so it uses the same
1151 		 * device callbacks as those two flows.
1152 		 */
1153 		pm_prepare_console();
1154 		error = freeze_processes();
1155 		if (error) {
1156 			error = -EBUSY;
1157 			goto Restore_console;
1158 		}
1159 		console_suspend_all();
1160 		error = dpm_suspend_start(PMSG_FREEZE);
1161 		if (error)
1162 			goto Resume_devices;
1163 		/*
1164 		 * dpm_suspend_end() must be called after dpm_suspend_start()
1165 		 * to complete the transition, like in the hibernation flows
1166 		 * mentioned above.
1167 		 */
1168 		error = dpm_suspend_end(PMSG_FREEZE);
1169 		if (error)
1170 			goto Resume_devices;
1171 		error = suspend_disable_secondary_cpus();
1172 		if (error)
1173 			goto Enable_cpus;
1174 		local_irq_disable();
1175 		error = syscore_suspend();
1176 		if (error)
1177 			goto Enable_irqs;
1178 	} else
1179 #endif
1180 	{
1181 		kexec_in_progress = true;
1182 		kernel_restart_prepare("kexec reboot");
1183 		migrate_to_reboot_cpu();
1184 		syscore_shutdown();
1185 
1186 		/*
1187 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1188 		 * no further code needs to use CPU hotplug (which is true in
1189 		 * the reboot case). However, the kexec path depends on using
1190 		 * CPU hotplug again; so re-enable it here.
1191 		 */
1192 		cpu_hotplug_enable();
1193 		pr_notice("Starting new kernel\n");
1194 		machine_shutdown();
1195 	}
1196 
1197 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1198 	machine_kexec(kexec_image);
1199 
1200 #ifdef CONFIG_KEXEC_JUMP
1201 	if (kexec_image->preserve_context) {
1202 		/*
1203 		 * This flow is analogous to hibernation flows that occur after
1204 		 * creating an image and after the image kernel has got control
1205 		 * back, and in case the devices have been reset or otherwise
1206 		 * manipulated in the meantime, it uses the device callbacks
1207 		 * used by the latter.
1208 		 */
1209 		syscore_resume();
1210  Enable_irqs:
1211 		local_irq_enable();
1212  Enable_cpus:
1213 		suspend_enable_secondary_cpus();
1214 		dpm_resume_start(PMSG_RESTORE);
1215  Resume_devices:
1216 		dpm_resume_end(PMSG_RESTORE);
1217 		console_resume_all();
1218 		thaw_processes();
1219  Restore_console:
1220 		pm_restore_console();
1221 	}
1222 #endif
1223 
1224  Unlock:
1225 	kexec_unlock();
1226 	return error;
1227 }
1228