xref: /linux/kernel/kexec_core.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  * kexec.c - kexec system call core code.
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/frame.h>
42 
43 #include <asm/page.h>
44 #include <asm/sections.h>
45 
46 #include <crypto/hash.h>
47 #include <crypto/sha.h>
48 #include "kexec_internal.h"
49 
50 DEFINE_MUTEX(kexec_mutex);
51 
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t __percpu *crash_notes;
54 
55 /* Flag to indicate we are going to kexec a new kernel */
56 bool kexec_in_progress = false;
57 
58 
59 /* Location of the reserved area for the crash kernel */
60 struct resource crashk_res = {
61 	.name  = "Crash kernel",
62 	.start = 0,
63 	.end   = 0,
64 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
65 	.desc  = IORES_DESC_CRASH_KERNEL
66 };
67 struct resource crashk_low_res = {
68 	.name  = "Crash kernel",
69 	.start = 0,
70 	.end   = 0,
71 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
72 	.desc  = IORES_DESC_CRASH_KERNEL
73 };
74 
75 int kexec_should_crash(struct task_struct *p)
76 {
77 	/*
78 	 * If crash_kexec_post_notifiers is enabled, don't run
79 	 * crash_kexec() here yet, which must be run after panic
80 	 * notifiers in panic().
81 	 */
82 	if (crash_kexec_post_notifiers)
83 		return 0;
84 	/*
85 	 * There are 4 panic() calls in do_exit() path, each of which
86 	 * corresponds to each of these 4 conditions.
87 	 */
88 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
89 		return 1;
90 	return 0;
91 }
92 
93 int kexec_crash_loaded(void)
94 {
95 	return !!kexec_crash_image;
96 }
97 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
98 
99 /*
100  * When kexec transitions to the new kernel there is a one-to-one
101  * mapping between physical and virtual addresses.  On processors
102  * where you can disable the MMU this is trivial, and easy.  For
103  * others it is still a simple predictable page table to setup.
104  *
105  * In that environment kexec copies the new kernel to its final
106  * resting place.  This means I can only support memory whose
107  * physical address can fit in an unsigned long.  In particular
108  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
109  * If the assembly stub has more restrictive requirements
110  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
111  * defined more restrictively in <asm/kexec.h>.
112  *
113  * The code for the transition from the current kernel to the
114  * the new kernel is placed in the control_code_buffer, whose size
115  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
116  * page of memory is necessary, but some architectures require more.
117  * Because this memory must be identity mapped in the transition from
118  * virtual to physical addresses it must live in the range
119  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
120  * modifiable.
121  *
122  * The assembly stub in the control code buffer is passed a linked list
123  * of descriptor pages detailing the source pages of the new kernel,
124  * and the destination addresses of those source pages.  As this data
125  * structure is not used in the context of the current OS, it must
126  * be self-contained.
127  *
128  * The code has been made to work with highmem pages and will use a
129  * destination page in its final resting place (if it happens
130  * to allocate it).  The end product of this is that most of the
131  * physical address space, and most of RAM can be used.
132  *
133  * Future directions include:
134  *  - allocating a page table with the control code buffer identity
135  *    mapped, to simplify machine_kexec and make kexec_on_panic more
136  *    reliable.
137  */
138 
139 /*
140  * KIMAGE_NO_DEST is an impossible destination address..., for
141  * allocating pages whose destination address we do not care about.
142  */
143 #define KIMAGE_NO_DEST (-1UL)
144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
145 
146 static struct page *kimage_alloc_page(struct kimage *image,
147 				       gfp_t gfp_mask,
148 				       unsigned long dest);
149 
150 int sanity_check_segment_list(struct kimage *image)
151 {
152 	int i;
153 	unsigned long nr_segments = image->nr_segments;
154 	unsigned long total_pages = 0;
155 
156 	/*
157 	 * Verify we have good destination addresses.  The caller is
158 	 * responsible for making certain we don't attempt to load
159 	 * the new image into invalid or reserved areas of RAM.  This
160 	 * just verifies it is an address we can use.
161 	 *
162 	 * Since the kernel does everything in page size chunks ensure
163 	 * the destination addresses are page aligned.  Too many
164 	 * special cases crop of when we don't do this.  The most
165 	 * insidious is getting overlapping destination addresses
166 	 * simply because addresses are changed to page size
167 	 * granularity.
168 	 */
169 	for (i = 0; i < nr_segments; i++) {
170 		unsigned long mstart, mend;
171 
172 		mstart = image->segment[i].mem;
173 		mend   = mstart + image->segment[i].memsz;
174 		if (mstart > mend)
175 			return -EADDRNOTAVAIL;
176 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
177 			return -EADDRNOTAVAIL;
178 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
179 			return -EADDRNOTAVAIL;
180 	}
181 
182 	/* Verify our destination addresses do not overlap.
183 	 * If we alloed overlapping destination addresses
184 	 * through very weird things can happen with no
185 	 * easy explanation as one segment stops on another.
186 	 */
187 	for (i = 0; i < nr_segments; i++) {
188 		unsigned long mstart, mend;
189 		unsigned long j;
190 
191 		mstart = image->segment[i].mem;
192 		mend   = mstart + image->segment[i].memsz;
193 		for (j = 0; j < i; j++) {
194 			unsigned long pstart, pend;
195 
196 			pstart = image->segment[j].mem;
197 			pend   = pstart + image->segment[j].memsz;
198 			/* Do the segments overlap ? */
199 			if ((mend > pstart) && (mstart < pend))
200 				return -EINVAL;
201 		}
202 	}
203 
204 	/* Ensure our buffer sizes are strictly less than
205 	 * our memory sizes.  This should always be the case,
206 	 * and it is easier to check up front than to be surprised
207 	 * later on.
208 	 */
209 	for (i = 0; i < nr_segments; i++) {
210 		if (image->segment[i].bufsz > image->segment[i].memsz)
211 			return -EINVAL;
212 	}
213 
214 	/*
215 	 * Verify that no more than half of memory will be consumed. If the
216 	 * request from userspace is too large, a large amount of time will be
217 	 * wasted allocating pages, which can cause a soft lockup.
218 	 */
219 	for (i = 0; i < nr_segments; i++) {
220 		if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
221 			return -EINVAL;
222 
223 		total_pages += PAGE_COUNT(image->segment[i].memsz);
224 	}
225 
226 	if (total_pages > totalram_pages / 2)
227 		return -EINVAL;
228 
229 	/*
230 	 * Verify we have good destination addresses.  Normally
231 	 * the caller is responsible for making certain we don't
232 	 * attempt to load the new image into invalid or reserved
233 	 * areas of RAM.  But crash kernels are preloaded into a
234 	 * reserved area of ram.  We must ensure the addresses
235 	 * are in the reserved area otherwise preloading the
236 	 * kernel could corrupt things.
237 	 */
238 
239 	if (image->type == KEXEC_TYPE_CRASH) {
240 		for (i = 0; i < nr_segments; i++) {
241 			unsigned long mstart, mend;
242 
243 			mstart = image->segment[i].mem;
244 			mend = mstart + image->segment[i].memsz - 1;
245 			/* Ensure we are within the crash kernel limits */
246 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
247 			    (mend > phys_to_boot_phys(crashk_res.end)))
248 				return -EADDRNOTAVAIL;
249 		}
250 	}
251 
252 	return 0;
253 }
254 
255 struct kimage *do_kimage_alloc_init(void)
256 {
257 	struct kimage *image;
258 
259 	/* Allocate a controlling structure */
260 	image = kzalloc(sizeof(*image), GFP_KERNEL);
261 	if (!image)
262 		return NULL;
263 
264 	image->head = 0;
265 	image->entry = &image->head;
266 	image->last_entry = &image->head;
267 	image->control_page = ~0; /* By default this does not apply */
268 	image->type = KEXEC_TYPE_DEFAULT;
269 
270 	/* Initialize the list of control pages */
271 	INIT_LIST_HEAD(&image->control_pages);
272 
273 	/* Initialize the list of destination pages */
274 	INIT_LIST_HEAD(&image->dest_pages);
275 
276 	/* Initialize the list of unusable pages */
277 	INIT_LIST_HEAD(&image->unusable_pages);
278 
279 	return image;
280 }
281 
282 int kimage_is_destination_range(struct kimage *image,
283 					unsigned long start,
284 					unsigned long end)
285 {
286 	unsigned long i;
287 
288 	for (i = 0; i < image->nr_segments; i++) {
289 		unsigned long mstart, mend;
290 
291 		mstart = image->segment[i].mem;
292 		mend = mstart + image->segment[i].memsz;
293 		if ((end > mstart) && (start < mend))
294 			return 1;
295 	}
296 
297 	return 0;
298 }
299 
300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
301 {
302 	struct page *pages;
303 
304 	pages = alloc_pages(gfp_mask, order);
305 	if (pages) {
306 		unsigned int count, i;
307 
308 		pages->mapping = NULL;
309 		set_page_private(pages, order);
310 		count = 1 << order;
311 		for (i = 0; i < count; i++)
312 			SetPageReserved(pages + i);
313 	}
314 
315 	return pages;
316 }
317 
318 static void kimage_free_pages(struct page *page)
319 {
320 	unsigned int order, count, i;
321 
322 	order = page_private(page);
323 	count = 1 << order;
324 	for (i = 0; i < count; i++)
325 		ClearPageReserved(page + i);
326 	__free_pages(page, order);
327 }
328 
329 void kimage_free_page_list(struct list_head *list)
330 {
331 	struct page *page, *next;
332 
333 	list_for_each_entry_safe(page, next, list, lru) {
334 		list_del(&page->lru);
335 		kimage_free_pages(page);
336 	}
337 }
338 
339 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
340 							unsigned int order)
341 {
342 	/* Control pages are special, they are the intermediaries
343 	 * that are needed while we copy the rest of the pages
344 	 * to their final resting place.  As such they must
345 	 * not conflict with either the destination addresses
346 	 * or memory the kernel is already using.
347 	 *
348 	 * The only case where we really need more than one of
349 	 * these are for architectures where we cannot disable
350 	 * the MMU and must instead generate an identity mapped
351 	 * page table for all of the memory.
352 	 *
353 	 * At worst this runs in O(N) of the image size.
354 	 */
355 	struct list_head extra_pages;
356 	struct page *pages;
357 	unsigned int count;
358 
359 	count = 1 << order;
360 	INIT_LIST_HEAD(&extra_pages);
361 
362 	/* Loop while I can allocate a page and the page allocated
363 	 * is a destination page.
364 	 */
365 	do {
366 		unsigned long pfn, epfn, addr, eaddr;
367 
368 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
369 		if (!pages)
370 			break;
371 		pfn   = page_to_boot_pfn(pages);
372 		epfn  = pfn + count;
373 		addr  = pfn << PAGE_SHIFT;
374 		eaddr = epfn << PAGE_SHIFT;
375 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
376 			      kimage_is_destination_range(image, addr, eaddr)) {
377 			list_add(&pages->lru, &extra_pages);
378 			pages = NULL;
379 		}
380 	} while (!pages);
381 
382 	if (pages) {
383 		/* Remember the allocated page... */
384 		list_add(&pages->lru, &image->control_pages);
385 
386 		/* Because the page is already in it's destination
387 		 * location we will never allocate another page at
388 		 * that address.  Therefore kimage_alloc_pages
389 		 * will not return it (again) and we don't need
390 		 * to give it an entry in image->segment[].
391 		 */
392 	}
393 	/* Deal with the destination pages I have inadvertently allocated.
394 	 *
395 	 * Ideally I would convert multi-page allocations into single
396 	 * page allocations, and add everything to image->dest_pages.
397 	 *
398 	 * For now it is simpler to just free the pages.
399 	 */
400 	kimage_free_page_list(&extra_pages);
401 
402 	return pages;
403 }
404 
405 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
406 						      unsigned int order)
407 {
408 	/* Control pages are special, they are the intermediaries
409 	 * that are needed while we copy the rest of the pages
410 	 * to their final resting place.  As such they must
411 	 * not conflict with either the destination addresses
412 	 * or memory the kernel is already using.
413 	 *
414 	 * Control pages are also the only pags we must allocate
415 	 * when loading a crash kernel.  All of the other pages
416 	 * are specified by the segments and we just memcpy
417 	 * into them directly.
418 	 *
419 	 * The only case where we really need more than one of
420 	 * these are for architectures where we cannot disable
421 	 * the MMU and must instead generate an identity mapped
422 	 * page table for all of the memory.
423 	 *
424 	 * Given the low demand this implements a very simple
425 	 * allocator that finds the first hole of the appropriate
426 	 * size in the reserved memory region, and allocates all
427 	 * of the memory up to and including the hole.
428 	 */
429 	unsigned long hole_start, hole_end, size;
430 	struct page *pages;
431 
432 	pages = NULL;
433 	size = (1 << order) << PAGE_SHIFT;
434 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
435 	hole_end   = hole_start + size - 1;
436 	while (hole_end <= crashk_res.end) {
437 		unsigned long i;
438 
439 		cond_resched();
440 
441 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
442 			break;
443 		/* See if I overlap any of the segments */
444 		for (i = 0; i < image->nr_segments; i++) {
445 			unsigned long mstart, mend;
446 
447 			mstart = image->segment[i].mem;
448 			mend   = mstart + image->segment[i].memsz - 1;
449 			if ((hole_end >= mstart) && (hole_start <= mend)) {
450 				/* Advance the hole to the end of the segment */
451 				hole_start = (mend + (size - 1)) & ~(size - 1);
452 				hole_end   = hole_start + size - 1;
453 				break;
454 			}
455 		}
456 		/* If I don't overlap any segments I have found my hole! */
457 		if (i == image->nr_segments) {
458 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
459 			image->control_page = hole_end;
460 			break;
461 		}
462 	}
463 
464 	return pages;
465 }
466 
467 
468 struct page *kimage_alloc_control_pages(struct kimage *image,
469 					 unsigned int order)
470 {
471 	struct page *pages = NULL;
472 
473 	switch (image->type) {
474 	case KEXEC_TYPE_DEFAULT:
475 		pages = kimage_alloc_normal_control_pages(image, order);
476 		break;
477 	case KEXEC_TYPE_CRASH:
478 		pages = kimage_alloc_crash_control_pages(image, order);
479 		break;
480 	}
481 
482 	return pages;
483 }
484 
485 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
486 {
487 	if (*image->entry != 0)
488 		image->entry++;
489 
490 	if (image->entry == image->last_entry) {
491 		kimage_entry_t *ind_page;
492 		struct page *page;
493 
494 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
495 		if (!page)
496 			return -ENOMEM;
497 
498 		ind_page = page_address(page);
499 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
500 		image->entry = ind_page;
501 		image->last_entry = ind_page +
502 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
503 	}
504 	*image->entry = entry;
505 	image->entry++;
506 	*image->entry = 0;
507 
508 	return 0;
509 }
510 
511 static int kimage_set_destination(struct kimage *image,
512 				   unsigned long destination)
513 {
514 	int result;
515 
516 	destination &= PAGE_MASK;
517 	result = kimage_add_entry(image, destination | IND_DESTINATION);
518 
519 	return result;
520 }
521 
522 
523 static int kimage_add_page(struct kimage *image, unsigned long page)
524 {
525 	int result;
526 
527 	page &= PAGE_MASK;
528 	result = kimage_add_entry(image, page | IND_SOURCE);
529 
530 	return result;
531 }
532 
533 
534 static void kimage_free_extra_pages(struct kimage *image)
535 {
536 	/* Walk through and free any extra destination pages I may have */
537 	kimage_free_page_list(&image->dest_pages);
538 
539 	/* Walk through and free any unusable pages I have cached */
540 	kimage_free_page_list(&image->unusable_pages);
541 
542 }
543 void kimage_terminate(struct kimage *image)
544 {
545 	if (*image->entry != 0)
546 		image->entry++;
547 
548 	*image->entry = IND_DONE;
549 }
550 
551 #define for_each_kimage_entry(image, ptr, entry) \
552 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
553 		ptr = (entry & IND_INDIRECTION) ? \
554 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
555 
556 static void kimage_free_entry(kimage_entry_t entry)
557 {
558 	struct page *page;
559 
560 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
561 	kimage_free_pages(page);
562 }
563 
564 void kimage_free(struct kimage *image)
565 {
566 	kimage_entry_t *ptr, entry;
567 	kimage_entry_t ind = 0;
568 
569 	if (!image)
570 		return;
571 
572 	kimage_free_extra_pages(image);
573 	for_each_kimage_entry(image, ptr, entry) {
574 		if (entry & IND_INDIRECTION) {
575 			/* Free the previous indirection page */
576 			if (ind & IND_INDIRECTION)
577 				kimage_free_entry(ind);
578 			/* Save this indirection page until we are
579 			 * done with it.
580 			 */
581 			ind = entry;
582 		} else if (entry & IND_SOURCE)
583 			kimage_free_entry(entry);
584 	}
585 	/* Free the final indirection page */
586 	if (ind & IND_INDIRECTION)
587 		kimage_free_entry(ind);
588 
589 	/* Handle any machine specific cleanup */
590 	machine_kexec_cleanup(image);
591 
592 	/* Free the kexec control pages... */
593 	kimage_free_page_list(&image->control_pages);
594 
595 	/*
596 	 * Free up any temporary buffers allocated. This might hit if
597 	 * error occurred much later after buffer allocation.
598 	 */
599 	if (image->file_mode)
600 		kimage_file_post_load_cleanup(image);
601 
602 	kfree(image);
603 }
604 
605 static kimage_entry_t *kimage_dst_used(struct kimage *image,
606 					unsigned long page)
607 {
608 	kimage_entry_t *ptr, entry;
609 	unsigned long destination = 0;
610 
611 	for_each_kimage_entry(image, ptr, entry) {
612 		if (entry & IND_DESTINATION)
613 			destination = entry & PAGE_MASK;
614 		else if (entry & IND_SOURCE) {
615 			if (page == destination)
616 				return ptr;
617 			destination += PAGE_SIZE;
618 		}
619 	}
620 
621 	return NULL;
622 }
623 
624 static struct page *kimage_alloc_page(struct kimage *image,
625 					gfp_t gfp_mask,
626 					unsigned long destination)
627 {
628 	/*
629 	 * Here we implement safeguards to ensure that a source page
630 	 * is not copied to its destination page before the data on
631 	 * the destination page is no longer useful.
632 	 *
633 	 * To do this we maintain the invariant that a source page is
634 	 * either its own destination page, or it is not a
635 	 * destination page at all.
636 	 *
637 	 * That is slightly stronger than required, but the proof
638 	 * that no problems will not occur is trivial, and the
639 	 * implementation is simply to verify.
640 	 *
641 	 * When allocating all pages normally this algorithm will run
642 	 * in O(N) time, but in the worst case it will run in O(N^2)
643 	 * time.   If the runtime is a problem the data structures can
644 	 * be fixed.
645 	 */
646 	struct page *page;
647 	unsigned long addr;
648 
649 	/*
650 	 * Walk through the list of destination pages, and see if I
651 	 * have a match.
652 	 */
653 	list_for_each_entry(page, &image->dest_pages, lru) {
654 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
655 		if (addr == destination) {
656 			list_del(&page->lru);
657 			return page;
658 		}
659 	}
660 	page = NULL;
661 	while (1) {
662 		kimage_entry_t *old;
663 
664 		/* Allocate a page, if we run out of memory give up */
665 		page = kimage_alloc_pages(gfp_mask, 0);
666 		if (!page)
667 			return NULL;
668 		/* If the page cannot be used file it away */
669 		if (page_to_boot_pfn(page) >
670 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
671 			list_add(&page->lru, &image->unusable_pages);
672 			continue;
673 		}
674 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
675 
676 		/* If it is the destination page we want use it */
677 		if (addr == destination)
678 			break;
679 
680 		/* If the page is not a destination page use it */
681 		if (!kimage_is_destination_range(image, addr,
682 						  addr + PAGE_SIZE))
683 			break;
684 
685 		/*
686 		 * I know that the page is someones destination page.
687 		 * See if there is already a source page for this
688 		 * destination page.  And if so swap the source pages.
689 		 */
690 		old = kimage_dst_used(image, addr);
691 		if (old) {
692 			/* If so move it */
693 			unsigned long old_addr;
694 			struct page *old_page;
695 
696 			old_addr = *old & PAGE_MASK;
697 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
698 			copy_highpage(page, old_page);
699 			*old = addr | (*old & ~PAGE_MASK);
700 
701 			/* The old page I have found cannot be a
702 			 * destination page, so return it if it's
703 			 * gfp_flags honor the ones passed in.
704 			 */
705 			if (!(gfp_mask & __GFP_HIGHMEM) &&
706 			    PageHighMem(old_page)) {
707 				kimage_free_pages(old_page);
708 				continue;
709 			}
710 			addr = old_addr;
711 			page = old_page;
712 			break;
713 		}
714 		/* Place the page on the destination list, to be used later */
715 		list_add(&page->lru, &image->dest_pages);
716 	}
717 
718 	return page;
719 }
720 
721 static int kimage_load_normal_segment(struct kimage *image,
722 					 struct kexec_segment *segment)
723 {
724 	unsigned long maddr;
725 	size_t ubytes, mbytes;
726 	int result;
727 	unsigned char __user *buf = NULL;
728 	unsigned char *kbuf = NULL;
729 
730 	result = 0;
731 	if (image->file_mode)
732 		kbuf = segment->kbuf;
733 	else
734 		buf = segment->buf;
735 	ubytes = segment->bufsz;
736 	mbytes = segment->memsz;
737 	maddr = segment->mem;
738 
739 	result = kimage_set_destination(image, maddr);
740 	if (result < 0)
741 		goto out;
742 
743 	while (mbytes) {
744 		struct page *page;
745 		char *ptr;
746 		size_t uchunk, mchunk;
747 
748 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
749 		if (!page) {
750 			result  = -ENOMEM;
751 			goto out;
752 		}
753 		result = kimage_add_page(image, page_to_boot_pfn(page)
754 								<< PAGE_SHIFT);
755 		if (result < 0)
756 			goto out;
757 
758 		ptr = kmap(page);
759 		/* Start with a clear page */
760 		clear_page(ptr);
761 		ptr += maddr & ~PAGE_MASK;
762 		mchunk = min_t(size_t, mbytes,
763 				PAGE_SIZE - (maddr & ~PAGE_MASK));
764 		uchunk = min(ubytes, mchunk);
765 
766 		/* For file based kexec, source pages are in kernel memory */
767 		if (image->file_mode)
768 			memcpy(ptr, kbuf, uchunk);
769 		else
770 			result = copy_from_user(ptr, buf, uchunk);
771 		kunmap(page);
772 		if (result) {
773 			result = -EFAULT;
774 			goto out;
775 		}
776 		ubytes -= uchunk;
777 		maddr  += mchunk;
778 		if (image->file_mode)
779 			kbuf += mchunk;
780 		else
781 			buf += mchunk;
782 		mbytes -= mchunk;
783 	}
784 out:
785 	return result;
786 }
787 
788 static int kimage_load_crash_segment(struct kimage *image,
789 					struct kexec_segment *segment)
790 {
791 	/* For crash dumps kernels we simply copy the data from
792 	 * user space to it's destination.
793 	 * We do things a page at a time for the sake of kmap.
794 	 */
795 	unsigned long maddr;
796 	size_t ubytes, mbytes;
797 	int result;
798 	unsigned char __user *buf = NULL;
799 	unsigned char *kbuf = NULL;
800 
801 	result = 0;
802 	if (image->file_mode)
803 		kbuf = segment->kbuf;
804 	else
805 		buf = segment->buf;
806 	ubytes = segment->bufsz;
807 	mbytes = segment->memsz;
808 	maddr = segment->mem;
809 	while (mbytes) {
810 		struct page *page;
811 		char *ptr;
812 		size_t uchunk, mchunk;
813 
814 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
815 		if (!page) {
816 			result  = -ENOMEM;
817 			goto out;
818 		}
819 		ptr = kmap(page);
820 		ptr += maddr & ~PAGE_MASK;
821 		mchunk = min_t(size_t, mbytes,
822 				PAGE_SIZE - (maddr & ~PAGE_MASK));
823 		uchunk = min(ubytes, mchunk);
824 		if (mchunk > uchunk) {
825 			/* Zero the trailing part of the page */
826 			memset(ptr + uchunk, 0, mchunk - uchunk);
827 		}
828 
829 		/* For file based kexec, source pages are in kernel memory */
830 		if (image->file_mode)
831 			memcpy(ptr, kbuf, uchunk);
832 		else
833 			result = copy_from_user(ptr, buf, uchunk);
834 		kexec_flush_icache_page(page);
835 		kunmap(page);
836 		if (result) {
837 			result = -EFAULT;
838 			goto out;
839 		}
840 		ubytes -= uchunk;
841 		maddr  += mchunk;
842 		if (image->file_mode)
843 			kbuf += mchunk;
844 		else
845 			buf += mchunk;
846 		mbytes -= mchunk;
847 	}
848 out:
849 	return result;
850 }
851 
852 int kimage_load_segment(struct kimage *image,
853 				struct kexec_segment *segment)
854 {
855 	int result = -ENOMEM;
856 
857 	switch (image->type) {
858 	case KEXEC_TYPE_DEFAULT:
859 		result = kimage_load_normal_segment(image, segment);
860 		break;
861 	case KEXEC_TYPE_CRASH:
862 		result = kimage_load_crash_segment(image, segment);
863 		break;
864 	}
865 
866 	return result;
867 }
868 
869 struct kimage *kexec_image;
870 struct kimage *kexec_crash_image;
871 int kexec_load_disabled;
872 
873 /*
874  * No panic_cpu check version of crash_kexec().  This function is called
875  * only when panic_cpu holds the current CPU number; this is the only CPU
876  * which processes crash_kexec routines.
877  */
878 void __noclone __crash_kexec(struct pt_regs *regs)
879 {
880 	/* Take the kexec_mutex here to prevent sys_kexec_load
881 	 * running on one cpu from replacing the crash kernel
882 	 * we are using after a panic on a different cpu.
883 	 *
884 	 * If the crash kernel was not located in a fixed area
885 	 * of memory the xchg(&kexec_crash_image) would be
886 	 * sufficient.  But since I reuse the memory...
887 	 */
888 	if (mutex_trylock(&kexec_mutex)) {
889 		if (kexec_crash_image) {
890 			struct pt_regs fixed_regs;
891 
892 			crash_setup_regs(&fixed_regs, regs);
893 			crash_save_vmcoreinfo();
894 			machine_crash_shutdown(&fixed_regs);
895 			machine_kexec(kexec_crash_image);
896 		}
897 		mutex_unlock(&kexec_mutex);
898 	}
899 }
900 STACK_FRAME_NON_STANDARD(__crash_kexec);
901 
902 void crash_kexec(struct pt_regs *regs)
903 {
904 	int old_cpu, this_cpu;
905 
906 	/*
907 	 * Only one CPU is allowed to execute the crash_kexec() code as with
908 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
909 	 * may stop each other.  To exclude them, we use panic_cpu here too.
910 	 */
911 	this_cpu = raw_smp_processor_id();
912 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
913 	if (old_cpu == PANIC_CPU_INVALID) {
914 		/* This is the 1st CPU which comes here, so go ahead. */
915 		printk_safe_flush_on_panic();
916 		__crash_kexec(regs);
917 
918 		/*
919 		 * Reset panic_cpu to allow another panic()/crash_kexec()
920 		 * call.
921 		 */
922 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
923 	}
924 }
925 
926 size_t crash_get_memory_size(void)
927 {
928 	size_t size = 0;
929 
930 	mutex_lock(&kexec_mutex);
931 	if (crashk_res.end != crashk_res.start)
932 		size = resource_size(&crashk_res);
933 	mutex_unlock(&kexec_mutex);
934 	return size;
935 }
936 
937 void __weak crash_free_reserved_phys_range(unsigned long begin,
938 					   unsigned long end)
939 {
940 	unsigned long addr;
941 
942 	for (addr = begin; addr < end; addr += PAGE_SIZE)
943 		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
944 }
945 
946 int crash_shrink_memory(unsigned long new_size)
947 {
948 	int ret = 0;
949 	unsigned long start, end;
950 	unsigned long old_size;
951 	struct resource *ram_res;
952 
953 	mutex_lock(&kexec_mutex);
954 
955 	if (kexec_crash_image) {
956 		ret = -ENOENT;
957 		goto unlock;
958 	}
959 	start = crashk_res.start;
960 	end = crashk_res.end;
961 	old_size = (end == 0) ? 0 : end - start + 1;
962 	if (new_size >= old_size) {
963 		ret = (new_size == old_size) ? 0 : -EINVAL;
964 		goto unlock;
965 	}
966 
967 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
968 	if (!ram_res) {
969 		ret = -ENOMEM;
970 		goto unlock;
971 	}
972 
973 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
974 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
975 
976 	crash_free_reserved_phys_range(end, crashk_res.end);
977 
978 	if ((start == end) && (crashk_res.parent != NULL))
979 		release_resource(&crashk_res);
980 
981 	ram_res->start = end;
982 	ram_res->end = crashk_res.end;
983 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
984 	ram_res->name = "System RAM";
985 
986 	crashk_res.end = end - 1;
987 
988 	insert_resource(&iomem_resource, ram_res);
989 
990 unlock:
991 	mutex_unlock(&kexec_mutex);
992 	return ret;
993 }
994 
995 void crash_save_cpu(struct pt_regs *regs, int cpu)
996 {
997 	struct elf_prstatus prstatus;
998 	u32 *buf;
999 
1000 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1001 		return;
1002 
1003 	/* Using ELF notes here is opportunistic.
1004 	 * I need a well defined structure format
1005 	 * for the data I pass, and I need tags
1006 	 * on the data to indicate what information I have
1007 	 * squirrelled away.  ELF notes happen to provide
1008 	 * all of that, so there is no need to invent something new.
1009 	 */
1010 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1011 	if (!buf)
1012 		return;
1013 	memset(&prstatus, 0, sizeof(prstatus));
1014 	prstatus.pr_pid = current->pid;
1015 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1016 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1017 			      &prstatus, sizeof(prstatus));
1018 	final_note(buf);
1019 }
1020 
1021 static int __init crash_notes_memory_init(void)
1022 {
1023 	/* Allocate memory for saving cpu registers. */
1024 	size_t size, align;
1025 
1026 	/*
1027 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1028 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1029 	 * pages are also on 2 continuous physical pages. In this case the
1030 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1031 	 * starting address and size of crash_notes are exported through sysfs.
1032 	 * Here round up the size of crash_notes to the nearest power of two
1033 	 * and pass it to __alloc_percpu as align value. This can make sure
1034 	 * crash_notes is allocated inside one physical page.
1035 	 */
1036 	size = sizeof(note_buf_t);
1037 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1038 
1039 	/*
1040 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1041 	 * definitely will be in 2 pages with that.
1042 	 */
1043 	BUILD_BUG_ON(size > PAGE_SIZE);
1044 
1045 	crash_notes = __alloc_percpu(size, align);
1046 	if (!crash_notes) {
1047 		pr_warn("Memory allocation for saving cpu register states failed\n");
1048 		return -ENOMEM;
1049 	}
1050 	return 0;
1051 }
1052 subsys_initcall(crash_notes_memory_init);
1053 
1054 
1055 /*
1056  * Move into place and start executing a preloaded standalone
1057  * executable.  If nothing was preloaded return an error.
1058  */
1059 int kernel_kexec(void)
1060 {
1061 	int error = 0;
1062 
1063 	if (!mutex_trylock(&kexec_mutex))
1064 		return -EBUSY;
1065 	if (!kexec_image) {
1066 		error = -EINVAL;
1067 		goto Unlock;
1068 	}
1069 
1070 #ifdef CONFIG_KEXEC_JUMP
1071 	if (kexec_image->preserve_context) {
1072 		lock_system_sleep();
1073 		pm_prepare_console();
1074 		error = freeze_processes();
1075 		if (error) {
1076 			error = -EBUSY;
1077 			goto Restore_console;
1078 		}
1079 		suspend_console();
1080 		error = dpm_suspend_start(PMSG_FREEZE);
1081 		if (error)
1082 			goto Resume_console;
1083 		/* At this point, dpm_suspend_start() has been called,
1084 		 * but *not* dpm_suspend_end(). We *must* call
1085 		 * dpm_suspend_end() now.  Otherwise, drivers for
1086 		 * some devices (e.g. interrupt controllers) become
1087 		 * desynchronized with the actual state of the
1088 		 * hardware at resume time, and evil weirdness ensues.
1089 		 */
1090 		error = dpm_suspend_end(PMSG_FREEZE);
1091 		if (error)
1092 			goto Resume_devices;
1093 		error = disable_nonboot_cpus();
1094 		if (error)
1095 			goto Enable_cpus;
1096 		local_irq_disable();
1097 		error = syscore_suspend();
1098 		if (error)
1099 			goto Enable_irqs;
1100 	} else
1101 #endif
1102 	{
1103 		kexec_in_progress = true;
1104 		kernel_restart_prepare(NULL);
1105 		migrate_to_reboot_cpu();
1106 
1107 		/*
1108 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1109 		 * no further code needs to use CPU hotplug (which is true in
1110 		 * the reboot case). However, the kexec path depends on using
1111 		 * CPU hotplug again; so re-enable it here.
1112 		 */
1113 		cpu_hotplug_enable();
1114 		pr_emerg("Starting new kernel\n");
1115 		machine_shutdown();
1116 	}
1117 
1118 	machine_kexec(kexec_image);
1119 
1120 #ifdef CONFIG_KEXEC_JUMP
1121 	if (kexec_image->preserve_context) {
1122 		syscore_resume();
1123  Enable_irqs:
1124 		local_irq_enable();
1125  Enable_cpus:
1126 		enable_nonboot_cpus();
1127 		dpm_resume_start(PMSG_RESTORE);
1128  Resume_devices:
1129 		dpm_resume_end(PMSG_RESTORE);
1130  Resume_console:
1131 		resume_console();
1132 		thaw_processes();
1133  Restore_console:
1134 		pm_restore_console();
1135 		unlock_system_sleep();
1136 	}
1137 #endif
1138 
1139  Unlock:
1140 	mutex_unlock(&kexec_mutex);
1141 	return error;
1142 }
1143 
1144 /*
1145  * Protection mechanism for crashkernel reserved memory after
1146  * the kdump kernel is loaded.
1147  *
1148  * Provide an empty default implementation here -- architecture
1149  * code may override this
1150  */
1151 void __weak arch_kexec_protect_crashkres(void)
1152 {}
1153 
1154 void __weak arch_kexec_unprotect_crashkres(void)
1155 {}
1156