1 /* 2 * kexec.c - kexec system call core code. 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/capability.h> 12 #include <linux/mm.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/fs.h> 16 #include <linux/kexec.h> 17 #include <linux/mutex.h> 18 #include <linux/list.h> 19 #include <linux/highmem.h> 20 #include <linux/syscalls.h> 21 #include <linux/reboot.h> 22 #include <linux/ioport.h> 23 #include <linux/hardirq.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/utsname.h> 27 #include <linux/numa.h> 28 #include <linux/suspend.h> 29 #include <linux/device.h> 30 #include <linux/freezer.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 41 #include <linux/frame.h> 42 43 #include <asm/page.h> 44 #include <asm/sections.h> 45 46 #include <crypto/hash.h> 47 #include <crypto/sha.h> 48 #include "kexec_internal.h" 49 50 DEFINE_MUTEX(kexec_mutex); 51 52 /* Per cpu memory for storing cpu states in case of system crash. */ 53 note_buf_t __percpu *crash_notes; 54 55 /* Flag to indicate we are going to kexec a new kernel */ 56 bool kexec_in_progress = false; 57 58 59 /* Location of the reserved area for the crash kernel */ 60 struct resource crashk_res = { 61 .name = "Crash kernel", 62 .start = 0, 63 .end = 0, 64 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 65 .desc = IORES_DESC_CRASH_KERNEL 66 }; 67 struct resource crashk_low_res = { 68 .name = "Crash kernel", 69 .start = 0, 70 .end = 0, 71 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 72 .desc = IORES_DESC_CRASH_KERNEL 73 }; 74 75 int kexec_should_crash(struct task_struct *p) 76 { 77 /* 78 * If crash_kexec_post_notifiers is enabled, don't run 79 * crash_kexec() here yet, which must be run after panic 80 * notifiers in panic(). 81 */ 82 if (crash_kexec_post_notifiers) 83 return 0; 84 /* 85 * There are 4 panic() calls in do_exit() path, each of which 86 * corresponds to each of these 4 conditions. 87 */ 88 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 89 return 1; 90 return 0; 91 } 92 93 int kexec_crash_loaded(void) 94 { 95 return !!kexec_crash_image; 96 } 97 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 98 99 /* 100 * When kexec transitions to the new kernel there is a one-to-one 101 * mapping between physical and virtual addresses. On processors 102 * where you can disable the MMU this is trivial, and easy. For 103 * others it is still a simple predictable page table to setup. 104 * 105 * In that environment kexec copies the new kernel to its final 106 * resting place. This means I can only support memory whose 107 * physical address can fit in an unsigned long. In particular 108 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 109 * If the assembly stub has more restrictive requirements 110 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 111 * defined more restrictively in <asm/kexec.h>. 112 * 113 * The code for the transition from the current kernel to the 114 * the new kernel is placed in the control_code_buffer, whose size 115 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 116 * page of memory is necessary, but some architectures require more. 117 * Because this memory must be identity mapped in the transition from 118 * virtual to physical addresses it must live in the range 119 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 120 * modifiable. 121 * 122 * The assembly stub in the control code buffer is passed a linked list 123 * of descriptor pages detailing the source pages of the new kernel, 124 * and the destination addresses of those source pages. As this data 125 * structure is not used in the context of the current OS, it must 126 * be self-contained. 127 * 128 * The code has been made to work with highmem pages and will use a 129 * destination page in its final resting place (if it happens 130 * to allocate it). The end product of this is that most of the 131 * physical address space, and most of RAM can be used. 132 * 133 * Future directions include: 134 * - allocating a page table with the control code buffer identity 135 * mapped, to simplify machine_kexec and make kexec_on_panic more 136 * reliable. 137 */ 138 139 /* 140 * KIMAGE_NO_DEST is an impossible destination address..., for 141 * allocating pages whose destination address we do not care about. 142 */ 143 #define KIMAGE_NO_DEST (-1UL) 144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 145 146 static struct page *kimage_alloc_page(struct kimage *image, 147 gfp_t gfp_mask, 148 unsigned long dest); 149 150 int sanity_check_segment_list(struct kimage *image) 151 { 152 int i; 153 unsigned long nr_segments = image->nr_segments; 154 unsigned long total_pages = 0; 155 156 /* 157 * Verify we have good destination addresses. The caller is 158 * responsible for making certain we don't attempt to load 159 * the new image into invalid or reserved areas of RAM. This 160 * just verifies it is an address we can use. 161 * 162 * Since the kernel does everything in page size chunks ensure 163 * the destination addresses are page aligned. Too many 164 * special cases crop of when we don't do this. The most 165 * insidious is getting overlapping destination addresses 166 * simply because addresses are changed to page size 167 * granularity. 168 */ 169 for (i = 0; i < nr_segments; i++) { 170 unsigned long mstart, mend; 171 172 mstart = image->segment[i].mem; 173 mend = mstart + image->segment[i].memsz; 174 if (mstart > mend) 175 return -EADDRNOTAVAIL; 176 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 177 return -EADDRNOTAVAIL; 178 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 179 return -EADDRNOTAVAIL; 180 } 181 182 /* Verify our destination addresses do not overlap. 183 * If we alloed overlapping destination addresses 184 * through very weird things can happen with no 185 * easy explanation as one segment stops on another. 186 */ 187 for (i = 0; i < nr_segments; i++) { 188 unsigned long mstart, mend; 189 unsigned long j; 190 191 mstart = image->segment[i].mem; 192 mend = mstart + image->segment[i].memsz; 193 for (j = 0; j < i; j++) { 194 unsigned long pstart, pend; 195 196 pstart = image->segment[j].mem; 197 pend = pstart + image->segment[j].memsz; 198 /* Do the segments overlap ? */ 199 if ((mend > pstart) && (mstart < pend)) 200 return -EINVAL; 201 } 202 } 203 204 /* Ensure our buffer sizes are strictly less than 205 * our memory sizes. This should always be the case, 206 * and it is easier to check up front than to be surprised 207 * later on. 208 */ 209 for (i = 0; i < nr_segments; i++) { 210 if (image->segment[i].bufsz > image->segment[i].memsz) 211 return -EINVAL; 212 } 213 214 /* 215 * Verify that no more than half of memory will be consumed. If the 216 * request from userspace is too large, a large amount of time will be 217 * wasted allocating pages, which can cause a soft lockup. 218 */ 219 for (i = 0; i < nr_segments; i++) { 220 if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2) 221 return -EINVAL; 222 223 total_pages += PAGE_COUNT(image->segment[i].memsz); 224 } 225 226 if (total_pages > totalram_pages / 2) 227 return -EINVAL; 228 229 /* 230 * Verify we have good destination addresses. Normally 231 * the caller is responsible for making certain we don't 232 * attempt to load the new image into invalid or reserved 233 * areas of RAM. But crash kernels are preloaded into a 234 * reserved area of ram. We must ensure the addresses 235 * are in the reserved area otherwise preloading the 236 * kernel could corrupt things. 237 */ 238 239 if (image->type == KEXEC_TYPE_CRASH) { 240 for (i = 0; i < nr_segments; i++) { 241 unsigned long mstart, mend; 242 243 mstart = image->segment[i].mem; 244 mend = mstart + image->segment[i].memsz - 1; 245 /* Ensure we are within the crash kernel limits */ 246 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 247 (mend > phys_to_boot_phys(crashk_res.end))) 248 return -EADDRNOTAVAIL; 249 } 250 } 251 252 return 0; 253 } 254 255 struct kimage *do_kimage_alloc_init(void) 256 { 257 struct kimage *image; 258 259 /* Allocate a controlling structure */ 260 image = kzalloc(sizeof(*image), GFP_KERNEL); 261 if (!image) 262 return NULL; 263 264 image->head = 0; 265 image->entry = &image->head; 266 image->last_entry = &image->head; 267 image->control_page = ~0; /* By default this does not apply */ 268 image->type = KEXEC_TYPE_DEFAULT; 269 270 /* Initialize the list of control pages */ 271 INIT_LIST_HEAD(&image->control_pages); 272 273 /* Initialize the list of destination pages */ 274 INIT_LIST_HEAD(&image->dest_pages); 275 276 /* Initialize the list of unusable pages */ 277 INIT_LIST_HEAD(&image->unusable_pages); 278 279 return image; 280 } 281 282 int kimage_is_destination_range(struct kimage *image, 283 unsigned long start, 284 unsigned long end) 285 { 286 unsigned long i; 287 288 for (i = 0; i < image->nr_segments; i++) { 289 unsigned long mstart, mend; 290 291 mstart = image->segment[i].mem; 292 mend = mstart + image->segment[i].memsz; 293 if ((end > mstart) && (start < mend)) 294 return 1; 295 } 296 297 return 0; 298 } 299 300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 301 { 302 struct page *pages; 303 304 pages = alloc_pages(gfp_mask, order); 305 if (pages) { 306 unsigned int count, i; 307 308 pages->mapping = NULL; 309 set_page_private(pages, order); 310 count = 1 << order; 311 for (i = 0; i < count; i++) 312 SetPageReserved(pages + i); 313 } 314 315 return pages; 316 } 317 318 static void kimage_free_pages(struct page *page) 319 { 320 unsigned int order, count, i; 321 322 order = page_private(page); 323 count = 1 << order; 324 for (i = 0; i < count; i++) 325 ClearPageReserved(page + i); 326 __free_pages(page, order); 327 } 328 329 void kimage_free_page_list(struct list_head *list) 330 { 331 struct page *page, *next; 332 333 list_for_each_entry_safe(page, next, list, lru) { 334 list_del(&page->lru); 335 kimage_free_pages(page); 336 } 337 } 338 339 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 340 unsigned int order) 341 { 342 /* Control pages are special, they are the intermediaries 343 * that are needed while we copy the rest of the pages 344 * to their final resting place. As such they must 345 * not conflict with either the destination addresses 346 * or memory the kernel is already using. 347 * 348 * The only case where we really need more than one of 349 * these are for architectures where we cannot disable 350 * the MMU and must instead generate an identity mapped 351 * page table for all of the memory. 352 * 353 * At worst this runs in O(N) of the image size. 354 */ 355 struct list_head extra_pages; 356 struct page *pages; 357 unsigned int count; 358 359 count = 1 << order; 360 INIT_LIST_HEAD(&extra_pages); 361 362 /* Loop while I can allocate a page and the page allocated 363 * is a destination page. 364 */ 365 do { 366 unsigned long pfn, epfn, addr, eaddr; 367 368 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 369 if (!pages) 370 break; 371 pfn = page_to_boot_pfn(pages); 372 epfn = pfn + count; 373 addr = pfn << PAGE_SHIFT; 374 eaddr = epfn << PAGE_SHIFT; 375 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 376 kimage_is_destination_range(image, addr, eaddr)) { 377 list_add(&pages->lru, &extra_pages); 378 pages = NULL; 379 } 380 } while (!pages); 381 382 if (pages) { 383 /* Remember the allocated page... */ 384 list_add(&pages->lru, &image->control_pages); 385 386 /* Because the page is already in it's destination 387 * location we will never allocate another page at 388 * that address. Therefore kimage_alloc_pages 389 * will not return it (again) and we don't need 390 * to give it an entry in image->segment[]. 391 */ 392 } 393 /* Deal with the destination pages I have inadvertently allocated. 394 * 395 * Ideally I would convert multi-page allocations into single 396 * page allocations, and add everything to image->dest_pages. 397 * 398 * For now it is simpler to just free the pages. 399 */ 400 kimage_free_page_list(&extra_pages); 401 402 return pages; 403 } 404 405 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 406 unsigned int order) 407 { 408 /* Control pages are special, they are the intermediaries 409 * that are needed while we copy the rest of the pages 410 * to their final resting place. As such they must 411 * not conflict with either the destination addresses 412 * or memory the kernel is already using. 413 * 414 * Control pages are also the only pags we must allocate 415 * when loading a crash kernel. All of the other pages 416 * are specified by the segments and we just memcpy 417 * into them directly. 418 * 419 * The only case where we really need more than one of 420 * these are for architectures where we cannot disable 421 * the MMU and must instead generate an identity mapped 422 * page table for all of the memory. 423 * 424 * Given the low demand this implements a very simple 425 * allocator that finds the first hole of the appropriate 426 * size in the reserved memory region, and allocates all 427 * of the memory up to and including the hole. 428 */ 429 unsigned long hole_start, hole_end, size; 430 struct page *pages; 431 432 pages = NULL; 433 size = (1 << order) << PAGE_SHIFT; 434 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 435 hole_end = hole_start + size - 1; 436 while (hole_end <= crashk_res.end) { 437 unsigned long i; 438 439 cond_resched(); 440 441 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 442 break; 443 /* See if I overlap any of the segments */ 444 for (i = 0; i < image->nr_segments; i++) { 445 unsigned long mstart, mend; 446 447 mstart = image->segment[i].mem; 448 mend = mstart + image->segment[i].memsz - 1; 449 if ((hole_end >= mstart) && (hole_start <= mend)) { 450 /* Advance the hole to the end of the segment */ 451 hole_start = (mend + (size - 1)) & ~(size - 1); 452 hole_end = hole_start + size - 1; 453 break; 454 } 455 } 456 /* If I don't overlap any segments I have found my hole! */ 457 if (i == image->nr_segments) { 458 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 459 image->control_page = hole_end; 460 break; 461 } 462 } 463 464 return pages; 465 } 466 467 468 struct page *kimage_alloc_control_pages(struct kimage *image, 469 unsigned int order) 470 { 471 struct page *pages = NULL; 472 473 switch (image->type) { 474 case KEXEC_TYPE_DEFAULT: 475 pages = kimage_alloc_normal_control_pages(image, order); 476 break; 477 case KEXEC_TYPE_CRASH: 478 pages = kimage_alloc_crash_control_pages(image, order); 479 break; 480 } 481 482 return pages; 483 } 484 485 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 486 { 487 if (*image->entry != 0) 488 image->entry++; 489 490 if (image->entry == image->last_entry) { 491 kimage_entry_t *ind_page; 492 struct page *page; 493 494 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 495 if (!page) 496 return -ENOMEM; 497 498 ind_page = page_address(page); 499 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 500 image->entry = ind_page; 501 image->last_entry = ind_page + 502 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 503 } 504 *image->entry = entry; 505 image->entry++; 506 *image->entry = 0; 507 508 return 0; 509 } 510 511 static int kimage_set_destination(struct kimage *image, 512 unsigned long destination) 513 { 514 int result; 515 516 destination &= PAGE_MASK; 517 result = kimage_add_entry(image, destination | IND_DESTINATION); 518 519 return result; 520 } 521 522 523 static int kimage_add_page(struct kimage *image, unsigned long page) 524 { 525 int result; 526 527 page &= PAGE_MASK; 528 result = kimage_add_entry(image, page | IND_SOURCE); 529 530 return result; 531 } 532 533 534 static void kimage_free_extra_pages(struct kimage *image) 535 { 536 /* Walk through and free any extra destination pages I may have */ 537 kimage_free_page_list(&image->dest_pages); 538 539 /* Walk through and free any unusable pages I have cached */ 540 kimage_free_page_list(&image->unusable_pages); 541 542 } 543 void kimage_terminate(struct kimage *image) 544 { 545 if (*image->entry != 0) 546 image->entry++; 547 548 *image->entry = IND_DONE; 549 } 550 551 #define for_each_kimage_entry(image, ptr, entry) \ 552 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 553 ptr = (entry & IND_INDIRECTION) ? \ 554 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 555 556 static void kimage_free_entry(kimage_entry_t entry) 557 { 558 struct page *page; 559 560 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 561 kimage_free_pages(page); 562 } 563 564 void kimage_free(struct kimage *image) 565 { 566 kimage_entry_t *ptr, entry; 567 kimage_entry_t ind = 0; 568 569 if (!image) 570 return; 571 572 kimage_free_extra_pages(image); 573 for_each_kimage_entry(image, ptr, entry) { 574 if (entry & IND_INDIRECTION) { 575 /* Free the previous indirection page */ 576 if (ind & IND_INDIRECTION) 577 kimage_free_entry(ind); 578 /* Save this indirection page until we are 579 * done with it. 580 */ 581 ind = entry; 582 } else if (entry & IND_SOURCE) 583 kimage_free_entry(entry); 584 } 585 /* Free the final indirection page */ 586 if (ind & IND_INDIRECTION) 587 kimage_free_entry(ind); 588 589 /* Handle any machine specific cleanup */ 590 machine_kexec_cleanup(image); 591 592 /* Free the kexec control pages... */ 593 kimage_free_page_list(&image->control_pages); 594 595 /* 596 * Free up any temporary buffers allocated. This might hit if 597 * error occurred much later after buffer allocation. 598 */ 599 if (image->file_mode) 600 kimage_file_post_load_cleanup(image); 601 602 kfree(image); 603 } 604 605 static kimage_entry_t *kimage_dst_used(struct kimage *image, 606 unsigned long page) 607 { 608 kimage_entry_t *ptr, entry; 609 unsigned long destination = 0; 610 611 for_each_kimage_entry(image, ptr, entry) { 612 if (entry & IND_DESTINATION) 613 destination = entry & PAGE_MASK; 614 else if (entry & IND_SOURCE) { 615 if (page == destination) 616 return ptr; 617 destination += PAGE_SIZE; 618 } 619 } 620 621 return NULL; 622 } 623 624 static struct page *kimage_alloc_page(struct kimage *image, 625 gfp_t gfp_mask, 626 unsigned long destination) 627 { 628 /* 629 * Here we implement safeguards to ensure that a source page 630 * is not copied to its destination page before the data on 631 * the destination page is no longer useful. 632 * 633 * To do this we maintain the invariant that a source page is 634 * either its own destination page, or it is not a 635 * destination page at all. 636 * 637 * That is slightly stronger than required, but the proof 638 * that no problems will not occur is trivial, and the 639 * implementation is simply to verify. 640 * 641 * When allocating all pages normally this algorithm will run 642 * in O(N) time, but in the worst case it will run in O(N^2) 643 * time. If the runtime is a problem the data structures can 644 * be fixed. 645 */ 646 struct page *page; 647 unsigned long addr; 648 649 /* 650 * Walk through the list of destination pages, and see if I 651 * have a match. 652 */ 653 list_for_each_entry(page, &image->dest_pages, lru) { 654 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 655 if (addr == destination) { 656 list_del(&page->lru); 657 return page; 658 } 659 } 660 page = NULL; 661 while (1) { 662 kimage_entry_t *old; 663 664 /* Allocate a page, if we run out of memory give up */ 665 page = kimage_alloc_pages(gfp_mask, 0); 666 if (!page) 667 return NULL; 668 /* If the page cannot be used file it away */ 669 if (page_to_boot_pfn(page) > 670 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 671 list_add(&page->lru, &image->unusable_pages); 672 continue; 673 } 674 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 675 676 /* If it is the destination page we want use it */ 677 if (addr == destination) 678 break; 679 680 /* If the page is not a destination page use it */ 681 if (!kimage_is_destination_range(image, addr, 682 addr + PAGE_SIZE)) 683 break; 684 685 /* 686 * I know that the page is someones destination page. 687 * See if there is already a source page for this 688 * destination page. And if so swap the source pages. 689 */ 690 old = kimage_dst_used(image, addr); 691 if (old) { 692 /* If so move it */ 693 unsigned long old_addr; 694 struct page *old_page; 695 696 old_addr = *old & PAGE_MASK; 697 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 698 copy_highpage(page, old_page); 699 *old = addr | (*old & ~PAGE_MASK); 700 701 /* The old page I have found cannot be a 702 * destination page, so return it if it's 703 * gfp_flags honor the ones passed in. 704 */ 705 if (!(gfp_mask & __GFP_HIGHMEM) && 706 PageHighMem(old_page)) { 707 kimage_free_pages(old_page); 708 continue; 709 } 710 addr = old_addr; 711 page = old_page; 712 break; 713 } 714 /* Place the page on the destination list, to be used later */ 715 list_add(&page->lru, &image->dest_pages); 716 } 717 718 return page; 719 } 720 721 static int kimage_load_normal_segment(struct kimage *image, 722 struct kexec_segment *segment) 723 { 724 unsigned long maddr; 725 size_t ubytes, mbytes; 726 int result; 727 unsigned char __user *buf = NULL; 728 unsigned char *kbuf = NULL; 729 730 result = 0; 731 if (image->file_mode) 732 kbuf = segment->kbuf; 733 else 734 buf = segment->buf; 735 ubytes = segment->bufsz; 736 mbytes = segment->memsz; 737 maddr = segment->mem; 738 739 result = kimage_set_destination(image, maddr); 740 if (result < 0) 741 goto out; 742 743 while (mbytes) { 744 struct page *page; 745 char *ptr; 746 size_t uchunk, mchunk; 747 748 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 749 if (!page) { 750 result = -ENOMEM; 751 goto out; 752 } 753 result = kimage_add_page(image, page_to_boot_pfn(page) 754 << PAGE_SHIFT); 755 if (result < 0) 756 goto out; 757 758 ptr = kmap(page); 759 /* Start with a clear page */ 760 clear_page(ptr); 761 ptr += maddr & ~PAGE_MASK; 762 mchunk = min_t(size_t, mbytes, 763 PAGE_SIZE - (maddr & ~PAGE_MASK)); 764 uchunk = min(ubytes, mchunk); 765 766 /* For file based kexec, source pages are in kernel memory */ 767 if (image->file_mode) 768 memcpy(ptr, kbuf, uchunk); 769 else 770 result = copy_from_user(ptr, buf, uchunk); 771 kunmap(page); 772 if (result) { 773 result = -EFAULT; 774 goto out; 775 } 776 ubytes -= uchunk; 777 maddr += mchunk; 778 if (image->file_mode) 779 kbuf += mchunk; 780 else 781 buf += mchunk; 782 mbytes -= mchunk; 783 } 784 out: 785 return result; 786 } 787 788 static int kimage_load_crash_segment(struct kimage *image, 789 struct kexec_segment *segment) 790 { 791 /* For crash dumps kernels we simply copy the data from 792 * user space to it's destination. 793 * We do things a page at a time for the sake of kmap. 794 */ 795 unsigned long maddr; 796 size_t ubytes, mbytes; 797 int result; 798 unsigned char __user *buf = NULL; 799 unsigned char *kbuf = NULL; 800 801 result = 0; 802 if (image->file_mode) 803 kbuf = segment->kbuf; 804 else 805 buf = segment->buf; 806 ubytes = segment->bufsz; 807 mbytes = segment->memsz; 808 maddr = segment->mem; 809 while (mbytes) { 810 struct page *page; 811 char *ptr; 812 size_t uchunk, mchunk; 813 814 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 815 if (!page) { 816 result = -ENOMEM; 817 goto out; 818 } 819 ptr = kmap(page); 820 ptr += maddr & ~PAGE_MASK; 821 mchunk = min_t(size_t, mbytes, 822 PAGE_SIZE - (maddr & ~PAGE_MASK)); 823 uchunk = min(ubytes, mchunk); 824 if (mchunk > uchunk) { 825 /* Zero the trailing part of the page */ 826 memset(ptr + uchunk, 0, mchunk - uchunk); 827 } 828 829 /* For file based kexec, source pages are in kernel memory */ 830 if (image->file_mode) 831 memcpy(ptr, kbuf, uchunk); 832 else 833 result = copy_from_user(ptr, buf, uchunk); 834 kexec_flush_icache_page(page); 835 kunmap(page); 836 if (result) { 837 result = -EFAULT; 838 goto out; 839 } 840 ubytes -= uchunk; 841 maddr += mchunk; 842 if (image->file_mode) 843 kbuf += mchunk; 844 else 845 buf += mchunk; 846 mbytes -= mchunk; 847 } 848 out: 849 return result; 850 } 851 852 int kimage_load_segment(struct kimage *image, 853 struct kexec_segment *segment) 854 { 855 int result = -ENOMEM; 856 857 switch (image->type) { 858 case KEXEC_TYPE_DEFAULT: 859 result = kimage_load_normal_segment(image, segment); 860 break; 861 case KEXEC_TYPE_CRASH: 862 result = kimage_load_crash_segment(image, segment); 863 break; 864 } 865 866 return result; 867 } 868 869 struct kimage *kexec_image; 870 struct kimage *kexec_crash_image; 871 int kexec_load_disabled; 872 873 /* 874 * No panic_cpu check version of crash_kexec(). This function is called 875 * only when panic_cpu holds the current CPU number; this is the only CPU 876 * which processes crash_kexec routines. 877 */ 878 void __noclone __crash_kexec(struct pt_regs *regs) 879 { 880 /* Take the kexec_mutex here to prevent sys_kexec_load 881 * running on one cpu from replacing the crash kernel 882 * we are using after a panic on a different cpu. 883 * 884 * If the crash kernel was not located in a fixed area 885 * of memory the xchg(&kexec_crash_image) would be 886 * sufficient. But since I reuse the memory... 887 */ 888 if (mutex_trylock(&kexec_mutex)) { 889 if (kexec_crash_image) { 890 struct pt_regs fixed_regs; 891 892 crash_setup_regs(&fixed_regs, regs); 893 crash_save_vmcoreinfo(); 894 machine_crash_shutdown(&fixed_regs); 895 machine_kexec(kexec_crash_image); 896 } 897 mutex_unlock(&kexec_mutex); 898 } 899 } 900 STACK_FRAME_NON_STANDARD(__crash_kexec); 901 902 void crash_kexec(struct pt_regs *regs) 903 { 904 int old_cpu, this_cpu; 905 906 /* 907 * Only one CPU is allowed to execute the crash_kexec() code as with 908 * panic(). Otherwise parallel calls of panic() and crash_kexec() 909 * may stop each other. To exclude them, we use panic_cpu here too. 910 */ 911 this_cpu = raw_smp_processor_id(); 912 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 913 if (old_cpu == PANIC_CPU_INVALID) { 914 /* This is the 1st CPU which comes here, so go ahead. */ 915 printk_safe_flush_on_panic(); 916 __crash_kexec(regs); 917 918 /* 919 * Reset panic_cpu to allow another panic()/crash_kexec() 920 * call. 921 */ 922 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 923 } 924 } 925 926 size_t crash_get_memory_size(void) 927 { 928 size_t size = 0; 929 930 mutex_lock(&kexec_mutex); 931 if (crashk_res.end != crashk_res.start) 932 size = resource_size(&crashk_res); 933 mutex_unlock(&kexec_mutex); 934 return size; 935 } 936 937 void __weak crash_free_reserved_phys_range(unsigned long begin, 938 unsigned long end) 939 { 940 unsigned long addr; 941 942 for (addr = begin; addr < end; addr += PAGE_SIZE) 943 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); 944 } 945 946 int crash_shrink_memory(unsigned long new_size) 947 { 948 int ret = 0; 949 unsigned long start, end; 950 unsigned long old_size; 951 struct resource *ram_res; 952 953 mutex_lock(&kexec_mutex); 954 955 if (kexec_crash_image) { 956 ret = -ENOENT; 957 goto unlock; 958 } 959 start = crashk_res.start; 960 end = crashk_res.end; 961 old_size = (end == 0) ? 0 : end - start + 1; 962 if (new_size >= old_size) { 963 ret = (new_size == old_size) ? 0 : -EINVAL; 964 goto unlock; 965 } 966 967 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 968 if (!ram_res) { 969 ret = -ENOMEM; 970 goto unlock; 971 } 972 973 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 974 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 975 976 crash_free_reserved_phys_range(end, crashk_res.end); 977 978 if ((start == end) && (crashk_res.parent != NULL)) 979 release_resource(&crashk_res); 980 981 ram_res->start = end; 982 ram_res->end = crashk_res.end; 983 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 984 ram_res->name = "System RAM"; 985 986 crashk_res.end = end - 1; 987 988 insert_resource(&iomem_resource, ram_res); 989 990 unlock: 991 mutex_unlock(&kexec_mutex); 992 return ret; 993 } 994 995 void crash_save_cpu(struct pt_regs *regs, int cpu) 996 { 997 struct elf_prstatus prstatus; 998 u32 *buf; 999 1000 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1001 return; 1002 1003 /* Using ELF notes here is opportunistic. 1004 * I need a well defined structure format 1005 * for the data I pass, and I need tags 1006 * on the data to indicate what information I have 1007 * squirrelled away. ELF notes happen to provide 1008 * all of that, so there is no need to invent something new. 1009 */ 1010 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1011 if (!buf) 1012 return; 1013 memset(&prstatus, 0, sizeof(prstatus)); 1014 prstatus.pr_pid = current->pid; 1015 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1016 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1017 &prstatus, sizeof(prstatus)); 1018 final_note(buf); 1019 } 1020 1021 static int __init crash_notes_memory_init(void) 1022 { 1023 /* Allocate memory for saving cpu registers. */ 1024 size_t size, align; 1025 1026 /* 1027 * crash_notes could be allocated across 2 vmalloc pages when percpu 1028 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc 1029 * pages are also on 2 continuous physical pages. In this case the 1030 * 2nd part of crash_notes in 2nd page could be lost since only the 1031 * starting address and size of crash_notes are exported through sysfs. 1032 * Here round up the size of crash_notes to the nearest power of two 1033 * and pass it to __alloc_percpu as align value. This can make sure 1034 * crash_notes is allocated inside one physical page. 1035 */ 1036 size = sizeof(note_buf_t); 1037 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); 1038 1039 /* 1040 * Break compile if size is bigger than PAGE_SIZE since crash_notes 1041 * definitely will be in 2 pages with that. 1042 */ 1043 BUILD_BUG_ON(size > PAGE_SIZE); 1044 1045 crash_notes = __alloc_percpu(size, align); 1046 if (!crash_notes) { 1047 pr_warn("Memory allocation for saving cpu register states failed\n"); 1048 return -ENOMEM; 1049 } 1050 return 0; 1051 } 1052 subsys_initcall(crash_notes_memory_init); 1053 1054 1055 /* 1056 * Move into place and start executing a preloaded standalone 1057 * executable. If nothing was preloaded return an error. 1058 */ 1059 int kernel_kexec(void) 1060 { 1061 int error = 0; 1062 1063 if (!mutex_trylock(&kexec_mutex)) 1064 return -EBUSY; 1065 if (!kexec_image) { 1066 error = -EINVAL; 1067 goto Unlock; 1068 } 1069 1070 #ifdef CONFIG_KEXEC_JUMP 1071 if (kexec_image->preserve_context) { 1072 lock_system_sleep(); 1073 pm_prepare_console(); 1074 error = freeze_processes(); 1075 if (error) { 1076 error = -EBUSY; 1077 goto Restore_console; 1078 } 1079 suspend_console(); 1080 error = dpm_suspend_start(PMSG_FREEZE); 1081 if (error) 1082 goto Resume_console; 1083 /* At this point, dpm_suspend_start() has been called, 1084 * but *not* dpm_suspend_end(). We *must* call 1085 * dpm_suspend_end() now. Otherwise, drivers for 1086 * some devices (e.g. interrupt controllers) become 1087 * desynchronized with the actual state of the 1088 * hardware at resume time, and evil weirdness ensues. 1089 */ 1090 error = dpm_suspend_end(PMSG_FREEZE); 1091 if (error) 1092 goto Resume_devices; 1093 error = disable_nonboot_cpus(); 1094 if (error) 1095 goto Enable_cpus; 1096 local_irq_disable(); 1097 error = syscore_suspend(); 1098 if (error) 1099 goto Enable_irqs; 1100 } else 1101 #endif 1102 { 1103 kexec_in_progress = true; 1104 kernel_restart_prepare(NULL); 1105 migrate_to_reboot_cpu(); 1106 1107 /* 1108 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1109 * no further code needs to use CPU hotplug (which is true in 1110 * the reboot case). However, the kexec path depends on using 1111 * CPU hotplug again; so re-enable it here. 1112 */ 1113 cpu_hotplug_enable(); 1114 pr_emerg("Starting new kernel\n"); 1115 machine_shutdown(); 1116 } 1117 1118 machine_kexec(kexec_image); 1119 1120 #ifdef CONFIG_KEXEC_JUMP 1121 if (kexec_image->preserve_context) { 1122 syscore_resume(); 1123 Enable_irqs: 1124 local_irq_enable(); 1125 Enable_cpus: 1126 enable_nonboot_cpus(); 1127 dpm_resume_start(PMSG_RESTORE); 1128 Resume_devices: 1129 dpm_resume_end(PMSG_RESTORE); 1130 Resume_console: 1131 resume_console(); 1132 thaw_processes(); 1133 Restore_console: 1134 pm_restore_console(); 1135 unlock_system_sleep(); 1136 } 1137 #endif 1138 1139 Unlock: 1140 mutex_unlock(&kexec_mutex); 1141 return error; 1142 } 1143 1144 /* 1145 * Protection mechanism for crashkernel reserved memory after 1146 * the kdump kernel is loaded. 1147 * 1148 * Provide an empty default implementation here -- architecture 1149 * code may override this 1150 */ 1151 void __weak arch_kexec_protect_crashkres(void) 1152 {} 1153 1154 void __weak arch_kexec_unprotect_crashkres(void) 1155 {} 1156