1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/btf.h> 10 #include <linux/capability.h> 11 #include <linux/mm.h> 12 #include <linux/file.h> 13 #include <linux/slab.h> 14 #include <linux/fs.h> 15 #include <linux/kexec.h> 16 #include <linux/mutex.h> 17 #include <linux/list.h> 18 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 21 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 26 #include <linux/numa.h> 27 #include <linux/suspend.h> 28 #include <linux/device.h> 29 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> 42 #include <linux/kmsg_dump.h> 43 #include <linux/dma-map-ops.h> 44 45 #include <asm/page.h> 46 #include <asm/sections.h> 47 48 #include <crypto/hash.h> 49 #include "kexec_internal.h" 50 51 atomic_t __kexec_lock = ATOMIC_INIT(0); 52 53 /* Flag to indicate we are going to kexec a new kernel */ 54 bool kexec_in_progress = false; 55 56 bool kexec_file_dbg_print; 57 58 /* 59 * When kexec transitions to the new kernel there is a one-to-one 60 * mapping between physical and virtual addresses. On processors 61 * where you can disable the MMU this is trivial, and easy. For 62 * others it is still a simple predictable page table to setup. 63 * 64 * In that environment kexec copies the new kernel to its final 65 * resting place. This means I can only support memory whose 66 * physical address can fit in an unsigned long. In particular 67 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 68 * If the assembly stub has more restrictive requirements 69 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 70 * defined more restrictively in <asm/kexec.h>. 71 * 72 * The code for the transition from the current kernel to the 73 * new kernel is placed in the control_code_buffer, whose size 74 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 75 * page of memory is necessary, but some architectures require more. 76 * Because this memory must be identity mapped in the transition from 77 * virtual to physical addresses it must live in the range 78 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 79 * modifiable. 80 * 81 * The assembly stub in the control code buffer is passed a linked list 82 * of descriptor pages detailing the source pages of the new kernel, 83 * and the destination addresses of those source pages. As this data 84 * structure is not used in the context of the current OS, it must 85 * be self-contained. 86 * 87 * The code has been made to work with highmem pages and will use a 88 * destination page in its final resting place (if it happens 89 * to allocate it). The end product of this is that most of the 90 * physical address space, and most of RAM can be used. 91 * 92 * Future directions include: 93 * - allocating a page table with the control code buffer identity 94 * mapped, to simplify machine_kexec and make kexec_on_panic more 95 * reliable. 96 */ 97 98 /* 99 * KIMAGE_NO_DEST is an impossible destination address..., for 100 * allocating pages whose destination address we do not care about. 101 */ 102 #define KIMAGE_NO_DEST (-1UL) 103 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 104 105 static struct page *kimage_alloc_page(struct kimage *image, 106 gfp_t gfp_mask, 107 unsigned long dest); 108 109 int sanity_check_segment_list(struct kimage *image) 110 { 111 int i; 112 unsigned long nr_segments = image->nr_segments; 113 unsigned long total_pages = 0; 114 unsigned long nr_pages = totalram_pages(); 115 116 /* 117 * Verify we have good destination addresses. The caller is 118 * responsible for making certain we don't attempt to load 119 * the new image into invalid or reserved areas of RAM. This 120 * just verifies it is an address we can use. 121 * 122 * Since the kernel does everything in page size chunks ensure 123 * the destination addresses are page aligned. Too many 124 * special cases crop of when we don't do this. The most 125 * insidious is getting overlapping destination addresses 126 * simply because addresses are changed to page size 127 * granularity. 128 */ 129 for (i = 0; i < nr_segments; i++) { 130 unsigned long mstart, mend; 131 132 mstart = image->segment[i].mem; 133 mend = mstart + image->segment[i].memsz; 134 if (mstart > mend) 135 return -EADDRNOTAVAIL; 136 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 137 return -EADDRNOTAVAIL; 138 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 139 return -EADDRNOTAVAIL; 140 } 141 142 /* Verify our destination addresses do not overlap. 143 * If we alloed overlapping destination addresses 144 * through very weird things can happen with no 145 * easy explanation as one segment stops on another. 146 */ 147 for (i = 0; i < nr_segments; i++) { 148 unsigned long mstart, mend; 149 unsigned long j; 150 151 mstart = image->segment[i].mem; 152 mend = mstart + image->segment[i].memsz; 153 for (j = 0; j < i; j++) { 154 unsigned long pstart, pend; 155 156 pstart = image->segment[j].mem; 157 pend = pstart + image->segment[j].memsz; 158 /* Do the segments overlap ? */ 159 if ((mend > pstart) && (mstart < pend)) 160 return -EINVAL; 161 } 162 } 163 164 /* Ensure our buffer sizes are strictly less than 165 * our memory sizes. This should always be the case, 166 * and it is easier to check up front than to be surprised 167 * later on. 168 */ 169 for (i = 0; i < nr_segments; i++) { 170 if (image->segment[i].bufsz > image->segment[i].memsz) 171 return -EINVAL; 172 } 173 174 /* 175 * Verify that no more than half of memory will be consumed. If the 176 * request from userspace is too large, a large amount of time will be 177 * wasted allocating pages, which can cause a soft lockup. 178 */ 179 for (i = 0; i < nr_segments; i++) { 180 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 181 return -EINVAL; 182 183 total_pages += PAGE_COUNT(image->segment[i].memsz); 184 } 185 186 if (total_pages > nr_pages / 2) 187 return -EINVAL; 188 189 #ifdef CONFIG_CRASH_DUMP 190 /* 191 * Verify we have good destination addresses. Normally 192 * the caller is responsible for making certain we don't 193 * attempt to load the new image into invalid or reserved 194 * areas of RAM. But crash kernels are preloaded into a 195 * reserved area of ram. We must ensure the addresses 196 * are in the reserved area otherwise preloading the 197 * kernel could corrupt things. 198 */ 199 200 if (image->type == KEXEC_TYPE_CRASH) { 201 for (i = 0; i < nr_segments; i++) { 202 unsigned long mstart, mend; 203 204 mstart = image->segment[i].mem; 205 mend = mstart + image->segment[i].memsz - 1; 206 /* Ensure we are within the crash kernel limits */ 207 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 208 (mend > phys_to_boot_phys(crashk_res.end))) 209 return -EADDRNOTAVAIL; 210 } 211 } 212 #endif 213 214 /* 215 * The destination addresses are searched from system RAM rather than 216 * being allocated from the buddy allocator, so they are not guaranteed 217 * to be accepted by the current kernel. Accept the destination 218 * addresses before kexec swaps their content with the segments' source 219 * pages to avoid accessing memory before it is accepted. 220 */ 221 for (i = 0; i < nr_segments; i++) 222 accept_memory(image->segment[i].mem, image->segment[i].memsz); 223 224 return 0; 225 } 226 227 struct kimage *do_kimage_alloc_init(void) 228 { 229 struct kimage *image; 230 231 /* Allocate a controlling structure */ 232 image = kzalloc(sizeof(*image), GFP_KERNEL); 233 if (!image) 234 return NULL; 235 236 image->entry = &image->head; 237 image->last_entry = &image->head; 238 image->control_page = ~0; /* By default this does not apply */ 239 image->type = KEXEC_TYPE_DEFAULT; 240 241 /* Initialize the list of control pages */ 242 INIT_LIST_HEAD(&image->control_pages); 243 244 /* Initialize the list of destination pages */ 245 INIT_LIST_HEAD(&image->dest_pages); 246 247 /* Initialize the list of unusable pages */ 248 INIT_LIST_HEAD(&image->unusable_pages); 249 250 #ifdef CONFIG_CRASH_HOTPLUG 251 image->hp_action = KEXEC_CRASH_HP_NONE; 252 image->elfcorehdr_index = -1; 253 image->elfcorehdr_updated = false; 254 #endif 255 256 return image; 257 } 258 259 int kimage_is_destination_range(struct kimage *image, 260 unsigned long start, 261 unsigned long end) 262 { 263 unsigned long i; 264 265 for (i = 0; i < image->nr_segments; i++) { 266 unsigned long mstart, mend; 267 268 mstart = image->segment[i].mem; 269 mend = mstart + image->segment[i].memsz - 1; 270 if ((end >= mstart) && (start <= mend)) 271 return 1; 272 } 273 274 return 0; 275 } 276 277 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 278 { 279 struct page *pages; 280 281 if (fatal_signal_pending(current)) 282 return NULL; 283 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 284 if (pages) { 285 unsigned int count, i; 286 287 pages->mapping = NULL; 288 set_page_private(pages, order); 289 count = 1 << order; 290 for (i = 0; i < count; i++) 291 SetPageReserved(pages + i); 292 293 arch_kexec_post_alloc_pages(page_address(pages), count, 294 gfp_mask); 295 296 if (gfp_mask & __GFP_ZERO) 297 for (i = 0; i < count; i++) 298 clear_highpage(pages + i); 299 } 300 301 return pages; 302 } 303 304 static void kimage_free_pages(struct page *page) 305 { 306 unsigned int order, count, i; 307 308 order = page_private(page); 309 count = 1 << order; 310 311 arch_kexec_pre_free_pages(page_address(page), count); 312 313 for (i = 0; i < count; i++) 314 ClearPageReserved(page + i); 315 __free_pages(page, order); 316 } 317 318 void kimage_free_page_list(struct list_head *list) 319 { 320 struct page *page, *next; 321 322 list_for_each_entry_safe(page, next, list, lru) { 323 list_del(&page->lru); 324 kimage_free_pages(page); 325 } 326 } 327 328 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 329 unsigned int order) 330 { 331 /* Control pages are special, they are the intermediaries 332 * that are needed while we copy the rest of the pages 333 * to their final resting place. As such they must 334 * not conflict with either the destination addresses 335 * or memory the kernel is already using. 336 * 337 * The only case where we really need more than one of 338 * these are for architectures where we cannot disable 339 * the MMU and must instead generate an identity mapped 340 * page table for all of the memory. 341 * 342 * At worst this runs in O(N) of the image size. 343 */ 344 struct list_head extra_pages; 345 struct page *pages; 346 unsigned int count; 347 348 count = 1 << order; 349 INIT_LIST_HEAD(&extra_pages); 350 351 /* Loop while I can allocate a page and the page allocated 352 * is a destination page. 353 */ 354 do { 355 unsigned long pfn, epfn, addr, eaddr; 356 357 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 358 if (!pages) 359 break; 360 pfn = page_to_boot_pfn(pages); 361 epfn = pfn + count; 362 addr = pfn << PAGE_SHIFT; 363 eaddr = (epfn << PAGE_SHIFT) - 1; 364 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 365 kimage_is_destination_range(image, addr, eaddr)) { 366 list_add(&pages->lru, &extra_pages); 367 pages = NULL; 368 } 369 } while (!pages); 370 371 if (pages) { 372 /* Remember the allocated page... */ 373 list_add(&pages->lru, &image->control_pages); 374 375 /* Because the page is already in it's destination 376 * location we will never allocate another page at 377 * that address. Therefore kimage_alloc_pages 378 * will not return it (again) and we don't need 379 * to give it an entry in image->segment[]. 380 */ 381 } 382 /* Deal with the destination pages I have inadvertently allocated. 383 * 384 * Ideally I would convert multi-page allocations into single 385 * page allocations, and add everything to image->dest_pages. 386 * 387 * For now it is simpler to just free the pages. 388 */ 389 kimage_free_page_list(&extra_pages); 390 391 return pages; 392 } 393 394 #ifdef CONFIG_CRASH_DUMP 395 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 396 unsigned int order) 397 { 398 /* Control pages are special, they are the intermediaries 399 * that are needed while we copy the rest of the pages 400 * to their final resting place. As such they must 401 * not conflict with either the destination addresses 402 * or memory the kernel is already using. 403 * 404 * Control pages are also the only pags we must allocate 405 * when loading a crash kernel. All of the other pages 406 * are specified by the segments and we just memcpy 407 * into them directly. 408 * 409 * The only case where we really need more than one of 410 * these are for architectures where we cannot disable 411 * the MMU and must instead generate an identity mapped 412 * page table for all of the memory. 413 * 414 * Given the low demand this implements a very simple 415 * allocator that finds the first hole of the appropriate 416 * size in the reserved memory region, and allocates all 417 * of the memory up to and including the hole. 418 */ 419 unsigned long hole_start, hole_end, size; 420 struct page *pages; 421 422 pages = NULL; 423 size = (1 << order) << PAGE_SHIFT; 424 hole_start = ALIGN(image->control_page, size); 425 hole_end = hole_start + size - 1; 426 while (hole_end <= crashk_res.end) { 427 unsigned long i; 428 429 cond_resched(); 430 431 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 432 break; 433 /* See if I overlap any of the segments */ 434 for (i = 0; i < image->nr_segments; i++) { 435 unsigned long mstart, mend; 436 437 mstart = image->segment[i].mem; 438 mend = mstart + image->segment[i].memsz - 1; 439 if ((hole_end >= mstart) && (hole_start <= mend)) { 440 /* Advance the hole to the end of the segment */ 441 hole_start = ALIGN(mend, size); 442 hole_end = hole_start + size - 1; 443 break; 444 } 445 } 446 /* If I don't overlap any segments I have found my hole! */ 447 if (i == image->nr_segments) { 448 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 449 image->control_page = hole_end + 1; 450 break; 451 } 452 } 453 454 /* Ensure that these pages are decrypted if SME is enabled. */ 455 if (pages) 456 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 457 458 return pages; 459 } 460 #endif 461 462 463 struct page *kimage_alloc_control_pages(struct kimage *image, 464 unsigned int order) 465 { 466 struct page *pages = NULL; 467 468 switch (image->type) { 469 case KEXEC_TYPE_DEFAULT: 470 pages = kimage_alloc_normal_control_pages(image, order); 471 break; 472 #ifdef CONFIG_CRASH_DUMP 473 case KEXEC_TYPE_CRASH: 474 pages = kimage_alloc_crash_control_pages(image, order); 475 break; 476 #endif 477 } 478 479 return pages; 480 } 481 482 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 483 { 484 if (*image->entry != 0) 485 image->entry++; 486 487 if (image->entry == image->last_entry) { 488 kimage_entry_t *ind_page; 489 struct page *page; 490 491 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 492 if (!page) 493 return -ENOMEM; 494 495 ind_page = page_address(page); 496 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 497 image->entry = ind_page; 498 image->last_entry = ind_page + 499 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 500 } 501 *image->entry = entry; 502 image->entry++; 503 *image->entry = 0; 504 505 return 0; 506 } 507 508 static int kimage_set_destination(struct kimage *image, 509 unsigned long destination) 510 { 511 destination &= PAGE_MASK; 512 513 return kimage_add_entry(image, destination | IND_DESTINATION); 514 } 515 516 517 static int kimage_add_page(struct kimage *image, unsigned long page) 518 { 519 page &= PAGE_MASK; 520 521 return kimage_add_entry(image, page | IND_SOURCE); 522 } 523 524 525 static void kimage_free_extra_pages(struct kimage *image) 526 { 527 /* Walk through and free any extra destination pages I may have */ 528 kimage_free_page_list(&image->dest_pages); 529 530 /* Walk through and free any unusable pages I have cached */ 531 kimage_free_page_list(&image->unusable_pages); 532 533 } 534 535 void kimage_terminate(struct kimage *image) 536 { 537 if (*image->entry != 0) 538 image->entry++; 539 540 *image->entry = IND_DONE; 541 } 542 543 #define for_each_kimage_entry(image, ptr, entry) \ 544 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 545 ptr = (entry & IND_INDIRECTION) ? \ 546 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 547 548 static void kimage_free_entry(kimage_entry_t entry) 549 { 550 struct page *page; 551 552 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 553 kimage_free_pages(page); 554 } 555 556 static void kimage_free_cma(struct kimage *image) 557 { 558 unsigned long i; 559 560 for (i = 0; i < image->nr_segments; i++) { 561 struct page *cma = image->segment_cma[i]; 562 u32 nr_pages = image->segment[i].memsz >> PAGE_SHIFT; 563 564 if (!cma) 565 continue; 566 567 arch_kexec_pre_free_pages(page_address(cma), nr_pages); 568 dma_release_from_contiguous(NULL, cma, nr_pages); 569 image->segment_cma[i] = NULL; 570 } 571 572 } 573 574 void kimage_free(struct kimage *image) 575 { 576 kimage_entry_t *ptr, entry; 577 kimage_entry_t ind = 0; 578 579 if (!image) 580 return; 581 582 #ifdef CONFIG_CRASH_DUMP 583 if (image->vmcoreinfo_data_copy) { 584 crash_update_vmcoreinfo_safecopy(NULL); 585 vunmap(image->vmcoreinfo_data_copy); 586 } 587 #endif 588 589 kimage_free_extra_pages(image); 590 for_each_kimage_entry(image, ptr, entry) { 591 if (entry & IND_INDIRECTION) { 592 /* Free the previous indirection page */ 593 if (ind & IND_INDIRECTION) 594 kimage_free_entry(ind); 595 /* Save this indirection page until we are 596 * done with it. 597 */ 598 ind = entry; 599 } else if (entry & IND_SOURCE) 600 kimage_free_entry(entry); 601 } 602 /* Free the final indirection page */ 603 if (ind & IND_INDIRECTION) 604 kimage_free_entry(ind); 605 606 /* Handle any machine specific cleanup */ 607 machine_kexec_cleanup(image); 608 609 /* Free the kexec control pages... */ 610 kimage_free_page_list(&image->control_pages); 611 612 /* Free CMA allocations */ 613 kimage_free_cma(image); 614 615 /* 616 * Free up any temporary buffers allocated. This might hit if 617 * error occurred much later after buffer allocation. 618 */ 619 if (image->file_mode) 620 kimage_file_post_load_cleanup(image); 621 622 kfree(image); 623 } 624 625 static kimage_entry_t *kimage_dst_used(struct kimage *image, 626 unsigned long page) 627 { 628 kimage_entry_t *ptr, entry; 629 unsigned long destination = 0; 630 631 for_each_kimage_entry(image, ptr, entry) { 632 if (entry & IND_DESTINATION) 633 destination = entry & PAGE_MASK; 634 else if (entry & IND_SOURCE) { 635 if (page == destination) 636 return ptr; 637 destination += PAGE_SIZE; 638 } 639 } 640 641 return NULL; 642 } 643 644 static struct page *kimage_alloc_page(struct kimage *image, 645 gfp_t gfp_mask, 646 unsigned long destination) 647 { 648 /* 649 * Here we implement safeguards to ensure that a source page 650 * is not copied to its destination page before the data on 651 * the destination page is no longer useful. 652 * 653 * To do this we maintain the invariant that a source page is 654 * either its own destination page, or it is not a 655 * destination page at all. 656 * 657 * That is slightly stronger than required, but the proof 658 * that no problems will not occur is trivial, and the 659 * implementation is simply to verify. 660 * 661 * When allocating all pages normally this algorithm will run 662 * in O(N) time, but in the worst case it will run in O(N^2) 663 * time. If the runtime is a problem the data structures can 664 * be fixed. 665 */ 666 struct page *page; 667 unsigned long addr; 668 669 /* 670 * Walk through the list of destination pages, and see if I 671 * have a match. 672 */ 673 list_for_each_entry(page, &image->dest_pages, lru) { 674 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 675 if (addr == destination) { 676 list_del(&page->lru); 677 return page; 678 } 679 } 680 page = NULL; 681 while (1) { 682 kimage_entry_t *old; 683 684 /* Allocate a page, if we run out of memory give up */ 685 page = kimage_alloc_pages(gfp_mask, 0); 686 if (!page) 687 return NULL; 688 /* If the page cannot be used file it away */ 689 if (page_to_boot_pfn(page) > 690 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 691 list_add(&page->lru, &image->unusable_pages); 692 continue; 693 } 694 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 695 696 /* If it is the destination page we want use it */ 697 if (addr == destination) 698 break; 699 700 /* If the page is not a destination page use it */ 701 if (!kimage_is_destination_range(image, addr, 702 addr + PAGE_SIZE - 1)) 703 break; 704 705 /* 706 * I know that the page is someones destination page. 707 * See if there is already a source page for this 708 * destination page. And if so swap the source pages. 709 */ 710 old = kimage_dst_used(image, addr); 711 if (old) { 712 /* If so move it */ 713 unsigned long old_addr; 714 struct page *old_page; 715 716 old_addr = *old & PAGE_MASK; 717 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 718 copy_highpage(page, old_page); 719 *old = addr | (*old & ~PAGE_MASK); 720 721 /* The old page I have found cannot be a 722 * destination page, so return it if it's 723 * gfp_flags honor the ones passed in. 724 */ 725 if (!(gfp_mask & __GFP_HIGHMEM) && 726 PageHighMem(old_page)) { 727 kimage_free_pages(old_page); 728 continue; 729 } 730 page = old_page; 731 break; 732 } 733 /* Place the page on the destination list, to be used later */ 734 list_add(&page->lru, &image->dest_pages); 735 } 736 737 return page; 738 } 739 740 static int kimage_load_cma_segment(struct kimage *image, int idx) 741 { 742 struct kexec_segment *segment = &image->segment[idx]; 743 struct page *cma = image->segment_cma[idx]; 744 char *ptr = page_address(cma); 745 unsigned long maddr; 746 size_t ubytes, mbytes; 747 int result = 0; 748 unsigned char __user *buf = NULL; 749 unsigned char *kbuf = NULL; 750 751 if (image->file_mode) 752 kbuf = segment->kbuf; 753 else 754 buf = segment->buf; 755 ubytes = segment->bufsz; 756 mbytes = segment->memsz; 757 maddr = segment->mem; 758 759 /* Then copy from source buffer to the CMA one */ 760 while (mbytes) { 761 size_t uchunk, mchunk; 762 763 ptr += maddr & ~PAGE_MASK; 764 mchunk = min_t(size_t, mbytes, 765 PAGE_SIZE - (maddr & ~PAGE_MASK)); 766 uchunk = min(ubytes, mchunk); 767 768 if (uchunk) { 769 /* For file based kexec, source pages are in kernel memory */ 770 if (image->file_mode) 771 memcpy(ptr, kbuf, uchunk); 772 else 773 result = copy_from_user(ptr, buf, uchunk); 774 ubytes -= uchunk; 775 if (image->file_mode) 776 kbuf += uchunk; 777 else 778 buf += uchunk; 779 } 780 781 if (result) { 782 result = -EFAULT; 783 goto out; 784 } 785 786 ptr += mchunk; 787 maddr += mchunk; 788 mbytes -= mchunk; 789 790 cond_resched(); 791 } 792 793 /* Clear any remainder */ 794 memset(ptr, 0, mbytes); 795 796 out: 797 return result; 798 } 799 800 static int kimage_load_normal_segment(struct kimage *image, int idx) 801 { 802 struct kexec_segment *segment = &image->segment[idx]; 803 unsigned long maddr; 804 size_t ubytes, mbytes; 805 int result; 806 unsigned char __user *buf = NULL; 807 unsigned char *kbuf = NULL; 808 809 if (image->file_mode) 810 kbuf = segment->kbuf; 811 else 812 buf = segment->buf; 813 ubytes = segment->bufsz; 814 mbytes = segment->memsz; 815 maddr = segment->mem; 816 817 if (image->segment_cma[idx]) 818 return kimage_load_cma_segment(image, idx); 819 820 result = kimage_set_destination(image, maddr); 821 if (result < 0) 822 goto out; 823 824 while (mbytes) { 825 struct page *page; 826 char *ptr; 827 size_t uchunk, mchunk; 828 829 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 830 if (!page) { 831 result = -ENOMEM; 832 goto out; 833 } 834 result = kimage_add_page(image, page_to_boot_pfn(page) 835 << PAGE_SHIFT); 836 if (result < 0) 837 goto out; 838 839 ptr = kmap_local_page(page); 840 /* Start with a clear page */ 841 clear_page(ptr); 842 ptr += maddr & ~PAGE_MASK; 843 mchunk = min_t(size_t, mbytes, 844 PAGE_SIZE - (maddr & ~PAGE_MASK)); 845 uchunk = min(ubytes, mchunk); 846 847 if (uchunk) { 848 /* For file based kexec, source pages are in kernel memory */ 849 if (image->file_mode) 850 memcpy(ptr, kbuf, uchunk); 851 else 852 result = copy_from_user(ptr, buf, uchunk); 853 ubytes -= uchunk; 854 if (image->file_mode) 855 kbuf += uchunk; 856 else 857 buf += uchunk; 858 } 859 kunmap_local(ptr); 860 if (result) { 861 result = -EFAULT; 862 goto out; 863 } 864 maddr += mchunk; 865 mbytes -= mchunk; 866 867 cond_resched(); 868 } 869 out: 870 return result; 871 } 872 873 #ifdef CONFIG_CRASH_DUMP 874 static int kimage_load_crash_segment(struct kimage *image, int idx) 875 { 876 /* For crash dumps kernels we simply copy the data from 877 * user space to it's destination. 878 * We do things a page at a time for the sake of kmap. 879 */ 880 struct kexec_segment *segment = &image->segment[idx]; 881 unsigned long maddr; 882 size_t ubytes, mbytes; 883 int result; 884 unsigned char __user *buf = NULL; 885 unsigned char *kbuf = NULL; 886 887 result = 0; 888 if (image->file_mode) 889 kbuf = segment->kbuf; 890 else 891 buf = segment->buf; 892 ubytes = segment->bufsz; 893 mbytes = segment->memsz; 894 maddr = segment->mem; 895 while (mbytes) { 896 struct page *page; 897 char *ptr; 898 size_t uchunk, mchunk; 899 900 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 901 if (!page) { 902 result = -ENOMEM; 903 goto out; 904 } 905 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 906 ptr = kmap_local_page(page); 907 ptr += maddr & ~PAGE_MASK; 908 mchunk = min_t(size_t, mbytes, 909 PAGE_SIZE - (maddr & ~PAGE_MASK)); 910 uchunk = min(ubytes, mchunk); 911 if (mchunk > uchunk) { 912 /* Zero the trailing part of the page */ 913 memset(ptr + uchunk, 0, mchunk - uchunk); 914 } 915 916 if (uchunk) { 917 /* For file based kexec, source pages are in kernel memory */ 918 if (image->file_mode) 919 memcpy(ptr, kbuf, uchunk); 920 else 921 result = copy_from_user(ptr, buf, uchunk); 922 ubytes -= uchunk; 923 if (image->file_mode) 924 kbuf += uchunk; 925 else 926 buf += uchunk; 927 } 928 kexec_flush_icache_page(page); 929 kunmap_local(ptr); 930 arch_kexec_pre_free_pages(page_address(page), 1); 931 if (result) { 932 result = -EFAULT; 933 goto out; 934 } 935 maddr += mchunk; 936 mbytes -= mchunk; 937 938 cond_resched(); 939 } 940 out: 941 return result; 942 } 943 #endif 944 945 int kimage_load_segment(struct kimage *image, int idx) 946 { 947 int result = -ENOMEM; 948 949 switch (image->type) { 950 case KEXEC_TYPE_DEFAULT: 951 result = kimage_load_normal_segment(image, idx); 952 break; 953 #ifdef CONFIG_CRASH_DUMP 954 case KEXEC_TYPE_CRASH: 955 result = kimage_load_crash_segment(image, idx); 956 break; 957 #endif 958 } 959 960 return result; 961 } 962 963 void *kimage_map_segment(struct kimage *image, 964 unsigned long addr, unsigned long size) 965 { 966 unsigned long src_page_addr, dest_page_addr = 0; 967 unsigned long eaddr = addr + size; 968 kimage_entry_t *ptr, entry; 969 struct page **src_pages; 970 unsigned int npages; 971 void *vaddr = NULL; 972 int i; 973 974 /* 975 * Collect the source pages and map them in a contiguous VA range. 976 */ 977 npages = PFN_UP(eaddr) - PFN_DOWN(addr); 978 src_pages = kmalloc_array(npages, sizeof(*src_pages), GFP_KERNEL); 979 if (!src_pages) { 980 pr_err("Could not allocate ima pages array.\n"); 981 return NULL; 982 } 983 984 i = 0; 985 for_each_kimage_entry(image, ptr, entry) { 986 if (entry & IND_DESTINATION) { 987 dest_page_addr = entry & PAGE_MASK; 988 } else if (entry & IND_SOURCE) { 989 if (dest_page_addr >= addr && dest_page_addr < eaddr) { 990 src_page_addr = entry & PAGE_MASK; 991 src_pages[i++] = 992 virt_to_page(__va(src_page_addr)); 993 if (i == npages) 994 break; 995 dest_page_addr += PAGE_SIZE; 996 } 997 } 998 } 999 1000 /* Sanity check. */ 1001 WARN_ON(i < npages); 1002 1003 vaddr = vmap(src_pages, npages, VM_MAP, PAGE_KERNEL); 1004 kfree(src_pages); 1005 1006 if (!vaddr) 1007 pr_err("Could not map ima buffer.\n"); 1008 1009 return vaddr; 1010 } 1011 1012 void kimage_unmap_segment(void *segment_buffer) 1013 { 1014 vunmap(segment_buffer); 1015 } 1016 1017 struct kexec_load_limit { 1018 /* Mutex protects the limit count. */ 1019 struct mutex mutex; 1020 int limit; 1021 }; 1022 1023 static struct kexec_load_limit load_limit_reboot = { 1024 .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex), 1025 .limit = -1, 1026 }; 1027 1028 static struct kexec_load_limit load_limit_panic = { 1029 .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex), 1030 .limit = -1, 1031 }; 1032 1033 struct kimage *kexec_image; 1034 struct kimage *kexec_crash_image; 1035 static int kexec_load_disabled; 1036 1037 #ifdef CONFIG_SYSCTL 1038 static int kexec_limit_handler(const struct ctl_table *table, int write, 1039 void *buffer, size_t *lenp, loff_t *ppos) 1040 { 1041 struct kexec_load_limit *limit = table->data; 1042 int val; 1043 struct ctl_table tmp = { 1044 .data = &val, 1045 .maxlen = sizeof(val), 1046 .mode = table->mode, 1047 }; 1048 int ret; 1049 1050 if (write) { 1051 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); 1052 if (ret) 1053 return ret; 1054 1055 if (val < 0) 1056 return -EINVAL; 1057 1058 mutex_lock(&limit->mutex); 1059 if (limit->limit != -1 && val >= limit->limit) 1060 ret = -EINVAL; 1061 else 1062 limit->limit = val; 1063 mutex_unlock(&limit->mutex); 1064 1065 return ret; 1066 } 1067 1068 mutex_lock(&limit->mutex); 1069 val = limit->limit; 1070 mutex_unlock(&limit->mutex); 1071 1072 return proc_dointvec(&tmp, write, buffer, lenp, ppos); 1073 } 1074 1075 static const struct ctl_table kexec_core_sysctls[] = { 1076 { 1077 .procname = "kexec_load_disabled", 1078 .data = &kexec_load_disabled, 1079 .maxlen = sizeof(int), 1080 .mode = 0644, 1081 /* only handle a transition from default "0" to "1" */ 1082 .proc_handler = proc_dointvec_minmax, 1083 .extra1 = SYSCTL_ONE, 1084 .extra2 = SYSCTL_ONE, 1085 }, 1086 { 1087 .procname = "kexec_load_limit_panic", 1088 .data = &load_limit_panic, 1089 .mode = 0644, 1090 .proc_handler = kexec_limit_handler, 1091 }, 1092 { 1093 .procname = "kexec_load_limit_reboot", 1094 .data = &load_limit_reboot, 1095 .mode = 0644, 1096 .proc_handler = kexec_limit_handler, 1097 }, 1098 }; 1099 1100 static int __init kexec_core_sysctl_init(void) 1101 { 1102 register_sysctl_init("kernel", kexec_core_sysctls); 1103 return 0; 1104 } 1105 late_initcall(kexec_core_sysctl_init); 1106 #endif 1107 1108 bool kexec_load_permitted(int kexec_image_type) 1109 { 1110 struct kexec_load_limit *limit; 1111 1112 /* 1113 * Only the superuser can use the kexec syscall and if it has not 1114 * been disabled. 1115 */ 1116 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1117 return false; 1118 1119 /* Check limit counter and decrease it.*/ 1120 limit = (kexec_image_type == KEXEC_TYPE_CRASH) ? 1121 &load_limit_panic : &load_limit_reboot; 1122 mutex_lock(&limit->mutex); 1123 if (!limit->limit) { 1124 mutex_unlock(&limit->mutex); 1125 return false; 1126 } 1127 if (limit->limit != -1) 1128 limit->limit--; 1129 mutex_unlock(&limit->mutex); 1130 1131 return true; 1132 } 1133 1134 /* 1135 * Move into place and start executing a preloaded standalone 1136 * executable. If nothing was preloaded return an error. 1137 */ 1138 int kernel_kexec(void) 1139 { 1140 int error = 0; 1141 1142 if (!kexec_trylock()) 1143 return -EBUSY; 1144 if (!kexec_image) { 1145 error = -EINVAL; 1146 goto Unlock; 1147 } 1148 1149 #ifdef CONFIG_KEXEC_JUMP 1150 if (kexec_image->preserve_context) { 1151 /* 1152 * This flow is analogous to hibernation flows that occur 1153 * before creating an image and before jumping from the 1154 * restore kernel to the image one, so it uses the same 1155 * device callbacks as those two flows. 1156 */ 1157 pm_prepare_console(); 1158 error = freeze_processes(); 1159 if (error) { 1160 error = -EBUSY; 1161 goto Restore_console; 1162 } 1163 console_suspend_all(); 1164 error = dpm_suspend_start(PMSG_FREEZE); 1165 if (error) 1166 goto Resume_devices; 1167 /* 1168 * dpm_suspend_end() must be called after dpm_suspend_start() 1169 * to complete the transition, like in the hibernation flows 1170 * mentioned above. 1171 */ 1172 error = dpm_suspend_end(PMSG_FREEZE); 1173 if (error) 1174 goto Resume_devices; 1175 error = suspend_disable_secondary_cpus(); 1176 if (error) 1177 goto Enable_cpus; 1178 local_irq_disable(); 1179 error = syscore_suspend(); 1180 if (error) 1181 goto Enable_irqs; 1182 } else 1183 #endif 1184 { 1185 kexec_in_progress = true; 1186 kernel_restart_prepare("kexec reboot"); 1187 migrate_to_reboot_cpu(); 1188 syscore_shutdown(); 1189 1190 /* 1191 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1192 * no further code needs to use CPU hotplug (which is true in 1193 * the reboot case). However, the kexec path depends on using 1194 * CPU hotplug again; so re-enable it here. 1195 */ 1196 cpu_hotplug_enable(); 1197 pr_notice("Starting new kernel\n"); 1198 machine_shutdown(); 1199 } 1200 1201 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1202 machine_kexec(kexec_image); 1203 1204 #ifdef CONFIG_KEXEC_JUMP 1205 if (kexec_image->preserve_context) { 1206 /* 1207 * This flow is analogous to hibernation flows that occur after 1208 * creating an image and after the image kernel has got control 1209 * back, and in case the devices have been reset or otherwise 1210 * manipulated in the meantime, it uses the device callbacks 1211 * used by the latter. 1212 */ 1213 syscore_resume(); 1214 Enable_irqs: 1215 local_irq_enable(); 1216 Enable_cpus: 1217 suspend_enable_secondary_cpus(); 1218 dpm_resume_start(PMSG_RESTORE); 1219 Resume_devices: 1220 dpm_resume_end(PMSG_RESTORE); 1221 console_resume_all(); 1222 thaw_processes(); 1223 Restore_console: 1224 pm_restore_console(); 1225 } 1226 #endif 1227 1228 Unlock: 1229 kexec_unlock(); 1230 return error; 1231 } 1232