1 /* 2 * kexec.c - kexec system call core code. 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/capability.h> 12 #include <linux/mm.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/fs.h> 16 #include <linux/kexec.h> 17 #include <linux/mutex.h> 18 #include <linux/list.h> 19 #include <linux/highmem.h> 20 #include <linux/syscalls.h> 21 #include <linux/reboot.h> 22 #include <linux/ioport.h> 23 #include <linux/hardirq.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/utsname.h> 27 #include <linux/numa.h> 28 #include <linux/suspend.h> 29 #include <linux/device.h> 30 #include <linux/freezer.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 41 #include <linux/frame.h> 42 43 #include <asm/page.h> 44 #include <asm/sections.h> 45 46 #include <crypto/hash.h> 47 #include <crypto/sha.h> 48 #include "kexec_internal.h" 49 50 DEFINE_MUTEX(kexec_mutex); 51 52 /* Per cpu memory for storing cpu states in case of system crash. */ 53 note_buf_t __percpu *crash_notes; 54 55 /* Flag to indicate we are going to kexec a new kernel */ 56 bool kexec_in_progress = false; 57 58 59 /* Location of the reserved area for the crash kernel */ 60 struct resource crashk_res = { 61 .name = "Crash kernel", 62 .start = 0, 63 .end = 0, 64 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 65 .desc = IORES_DESC_CRASH_KERNEL 66 }; 67 struct resource crashk_low_res = { 68 .name = "Crash kernel", 69 .start = 0, 70 .end = 0, 71 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM, 72 .desc = IORES_DESC_CRASH_KERNEL 73 }; 74 75 int kexec_should_crash(struct task_struct *p) 76 { 77 /* 78 * If crash_kexec_post_notifiers is enabled, don't run 79 * crash_kexec() here yet, which must be run after panic 80 * notifiers in panic(). 81 */ 82 if (crash_kexec_post_notifiers) 83 return 0; 84 /* 85 * There are 4 panic() calls in do_exit() path, each of which 86 * corresponds to each of these 4 conditions. 87 */ 88 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 89 return 1; 90 return 0; 91 } 92 93 int kexec_crash_loaded(void) 94 { 95 return !!kexec_crash_image; 96 } 97 EXPORT_SYMBOL_GPL(kexec_crash_loaded); 98 99 /* 100 * When kexec transitions to the new kernel there is a one-to-one 101 * mapping between physical and virtual addresses. On processors 102 * where you can disable the MMU this is trivial, and easy. For 103 * others it is still a simple predictable page table to setup. 104 * 105 * In that environment kexec copies the new kernel to its final 106 * resting place. This means I can only support memory whose 107 * physical address can fit in an unsigned long. In particular 108 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 109 * If the assembly stub has more restrictive requirements 110 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 111 * defined more restrictively in <asm/kexec.h>. 112 * 113 * The code for the transition from the current kernel to the 114 * the new kernel is placed in the control_code_buffer, whose size 115 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 116 * page of memory is necessary, but some architectures require more. 117 * Because this memory must be identity mapped in the transition from 118 * virtual to physical addresses it must live in the range 119 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 120 * modifiable. 121 * 122 * The assembly stub in the control code buffer is passed a linked list 123 * of descriptor pages detailing the source pages of the new kernel, 124 * and the destination addresses of those source pages. As this data 125 * structure is not used in the context of the current OS, it must 126 * be self-contained. 127 * 128 * The code has been made to work with highmem pages and will use a 129 * destination page in its final resting place (if it happens 130 * to allocate it). The end product of this is that most of the 131 * physical address space, and most of RAM can be used. 132 * 133 * Future directions include: 134 * - allocating a page table with the control code buffer identity 135 * mapped, to simplify machine_kexec and make kexec_on_panic more 136 * reliable. 137 */ 138 139 /* 140 * KIMAGE_NO_DEST is an impossible destination address..., for 141 * allocating pages whose destination address we do not care about. 142 */ 143 #define KIMAGE_NO_DEST (-1UL) 144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 145 146 static struct page *kimage_alloc_page(struct kimage *image, 147 gfp_t gfp_mask, 148 unsigned long dest); 149 150 int sanity_check_segment_list(struct kimage *image) 151 { 152 int i; 153 unsigned long nr_segments = image->nr_segments; 154 unsigned long total_pages = 0; 155 156 /* 157 * Verify we have good destination addresses. The caller is 158 * responsible for making certain we don't attempt to load 159 * the new image into invalid or reserved areas of RAM. This 160 * just verifies it is an address we can use. 161 * 162 * Since the kernel does everything in page size chunks ensure 163 * the destination addresses are page aligned. Too many 164 * special cases crop of when we don't do this. The most 165 * insidious is getting overlapping destination addresses 166 * simply because addresses are changed to page size 167 * granularity. 168 */ 169 for (i = 0; i < nr_segments; i++) { 170 unsigned long mstart, mend; 171 172 mstart = image->segment[i].mem; 173 mend = mstart + image->segment[i].memsz; 174 if (mstart > mend) 175 return -EADDRNOTAVAIL; 176 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 177 return -EADDRNOTAVAIL; 178 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 179 return -EADDRNOTAVAIL; 180 } 181 182 /* Verify our destination addresses do not overlap. 183 * If we alloed overlapping destination addresses 184 * through very weird things can happen with no 185 * easy explanation as one segment stops on another. 186 */ 187 for (i = 0; i < nr_segments; i++) { 188 unsigned long mstart, mend; 189 unsigned long j; 190 191 mstart = image->segment[i].mem; 192 mend = mstart + image->segment[i].memsz; 193 for (j = 0; j < i; j++) { 194 unsigned long pstart, pend; 195 196 pstart = image->segment[j].mem; 197 pend = pstart + image->segment[j].memsz; 198 /* Do the segments overlap ? */ 199 if ((mend > pstart) && (mstart < pend)) 200 return -EINVAL; 201 } 202 } 203 204 /* Ensure our buffer sizes are strictly less than 205 * our memory sizes. This should always be the case, 206 * and it is easier to check up front than to be surprised 207 * later on. 208 */ 209 for (i = 0; i < nr_segments; i++) { 210 if (image->segment[i].bufsz > image->segment[i].memsz) 211 return -EINVAL; 212 } 213 214 /* 215 * Verify that no more than half of memory will be consumed. If the 216 * request from userspace is too large, a large amount of time will be 217 * wasted allocating pages, which can cause a soft lockup. 218 */ 219 for (i = 0; i < nr_segments; i++) { 220 if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2) 221 return -EINVAL; 222 223 total_pages += PAGE_COUNT(image->segment[i].memsz); 224 } 225 226 if (total_pages > totalram_pages / 2) 227 return -EINVAL; 228 229 /* 230 * Verify we have good destination addresses. Normally 231 * the caller is responsible for making certain we don't 232 * attempt to load the new image into invalid or reserved 233 * areas of RAM. But crash kernels are preloaded into a 234 * reserved area of ram. We must ensure the addresses 235 * are in the reserved area otherwise preloading the 236 * kernel could corrupt things. 237 */ 238 239 if (image->type == KEXEC_TYPE_CRASH) { 240 for (i = 0; i < nr_segments; i++) { 241 unsigned long mstart, mend; 242 243 mstart = image->segment[i].mem; 244 mend = mstart + image->segment[i].memsz - 1; 245 /* Ensure we are within the crash kernel limits */ 246 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 247 (mend > phys_to_boot_phys(crashk_res.end))) 248 return -EADDRNOTAVAIL; 249 } 250 } 251 252 return 0; 253 } 254 255 struct kimage *do_kimage_alloc_init(void) 256 { 257 struct kimage *image; 258 259 /* Allocate a controlling structure */ 260 image = kzalloc(sizeof(*image), GFP_KERNEL); 261 if (!image) 262 return NULL; 263 264 image->head = 0; 265 image->entry = &image->head; 266 image->last_entry = &image->head; 267 image->control_page = ~0; /* By default this does not apply */ 268 image->type = KEXEC_TYPE_DEFAULT; 269 270 /* Initialize the list of control pages */ 271 INIT_LIST_HEAD(&image->control_pages); 272 273 /* Initialize the list of destination pages */ 274 INIT_LIST_HEAD(&image->dest_pages); 275 276 /* Initialize the list of unusable pages */ 277 INIT_LIST_HEAD(&image->unusable_pages); 278 279 return image; 280 } 281 282 int kimage_is_destination_range(struct kimage *image, 283 unsigned long start, 284 unsigned long end) 285 { 286 unsigned long i; 287 288 for (i = 0; i < image->nr_segments; i++) { 289 unsigned long mstart, mend; 290 291 mstart = image->segment[i].mem; 292 mend = mstart + image->segment[i].memsz; 293 if ((end > mstart) && (start < mend)) 294 return 1; 295 } 296 297 return 0; 298 } 299 300 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 301 { 302 struct page *pages; 303 304 pages = alloc_pages(gfp_mask, order); 305 if (pages) { 306 unsigned int count, i; 307 308 pages->mapping = NULL; 309 set_page_private(pages, order); 310 count = 1 << order; 311 for (i = 0; i < count; i++) 312 SetPageReserved(pages + i); 313 } 314 315 return pages; 316 } 317 318 static void kimage_free_pages(struct page *page) 319 { 320 unsigned int order, count, i; 321 322 order = page_private(page); 323 count = 1 << order; 324 for (i = 0; i < count; i++) 325 ClearPageReserved(page + i); 326 __free_pages(page, order); 327 } 328 329 void kimage_free_page_list(struct list_head *list) 330 { 331 struct page *page, *next; 332 333 list_for_each_entry_safe(page, next, list, lru) { 334 list_del(&page->lru); 335 kimage_free_pages(page); 336 } 337 } 338 339 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 340 unsigned int order) 341 { 342 /* Control pages are special, they are the intermediaries 343 * that are needed while we copy the rest of the pages 344 * to their final resting place. As such they must 345 * not conflict with either the destination addresses 346 * or memory the kernel is already using. 347 * 348 * The only case where we really need more than one of 349 * these are for architectures where we cannot disable 350 * the MMU and must instead generate an identity mapped 351 * page table for all of the memory. 352 * 353 * At worst this runs in O(N) of the image size. 354 */ 355 struct list_head extra_pages; 356 struct page *pages; 357 unsigned int count; 358 359 count = 1 << order; 360 INIT_LIST_HEAD(&extra_pages); 361 362 /* Loop while I can allocate a page and the page allocated 363 * is a destination page. 364 */ 365 do { 366 unsigned long pfn, epfn, addr, eaddr; 367 368 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 369 if (!pages) 370 break; 371 pfn = page_to_boot_pfn(pages); 372 epfn = pfn + count; 373 addr = pfn << PAGE_SHIFT; 374 eaddr = epfn << PAGE_SHIFT; 375 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 376 kimage_is_destination_range(image, addr, eaddr)) { 377 list_add(&pages->lru, &extra_pages); 378 pages = NULL; 379 } 380 } while (!pages); 381 382 if (pages) { 383 /* Remember the allocated page... */ 384 list_add(&pages->lru, &image->control_pages); 385 386 /* Because the page is already in it's destination 387 * location we will never allocate another page at 388 * that address. Therefore kimage_alloc_pages 389 * will not return it (again) and we don't need 390 * to give it an entry in image->segment[]. 391 */ 392 } 393 /* Deal with the destination pages I have inadvertently allocated. 394 * 395 * Ideally I would convert multi-page allocations into single 396 * page allocations, and add everything to image->dest_pages. 397 * 398 * For now it is simpler to just free the pages. 399 */ 400 kimage_free_page_list(&extra_pages); 401 402 return pages; 403 } 404 405 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 406 unsigned int order) 407 { 408 /* Control pages are special, they are the intermediaries 409 * that are needed while we copy the rest of the pages 410 * to their final resting place. As such they must 411 * not conflict with either the destination addresses 412 * or memory the kernel is already using. 413 * 414 * Control pages are also the only pags we must allocate 415 * when loading a crash kernel. All of the other pages 416 * are specified by the segments and we just memcpy 417 * into them directly. 418 * 419 * The only case where we really need more than one of 420 * these are for architectures where we cannot disable 421 * the MMU and must instead generate an identity mapped 422 * page table for all of the memory. 423 * 424 * Given the low demand this implements a very simple 425 * allocator that finds the first hole of the appropriate 426 * size in the reserved memory region, and allocates all 427 * of the memory up to and including the hole. 428 */ 429 unsigned long hole_start, hole_end, size; 430 struct page *pages; 431 432 pages = NULL; 433 size = (1 << order) << PAGE_SHIFT; 434 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 435 hole_end = hole_start + size - 1; 436 while (hole_end <= crashk_res.end) { 437 unsigned long i; 438 439 cond_resched(); 440 441 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 442 break; 443 /* See if I overlap any of the segments */ 444 for (i = 0; i < image->nr_segments; i++) { 445 unsigned long mstart, mend; 446 447 mstart = image->segment[i].mem; 448 mend = mstart + image->segment[i].memsz - 1; 449 if ((hole_end >= mstart) && (hole_start <= mend)) { 450 /* Advance the hole to the end of the segment */ 451 hole_start = (mend + (size - 1)) & ~(size - 1); 452 hole_end = hole_start + size - 1; 453 break; 454 } 455 } 456 /* If I don't overlap any segments I have found my hole! */ 457 if (i == image->nr_segments) { 458 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 459 image->control_page = hole_end; 460 break; 461 } 462 } 463 464 return pages; 465 } 466 467 468 struct page *kimage_alloc_control_pages(struct kimage *image, 469 unsigned int order) 470 { 471 struct page *pages = NULL; 472 473 switch (image->type) { 474 case KEXEC_TYPE_DEFAULT: 475 pages = kimage_alloc_normal_control_pages(image, order); 476 break; 477 case KEXEC_TYPE_CRASH: 478 pages = kimage_alloc_crash_control_pages(image, order); 479 break; 480 } 481 482 return pages; 483 } 484 485 int kimage_crash_copy_vmcoreinfo(struct kimage *image) 486 { 487 struct page *vmcoreinfo_page; 488 void *safecopy; 489 490 if (image->type != KEXEC_TYPE_CRASH) 491 return 0; 492 493 /* 494 * For kdump, allocate one vmcoreinfo safe copy from the 495 * crash memory. as we have arch_kexec_protect_crashkres() 496 * after kexec syscall, we naturally protect it from write 497 * (even read) access under kernel direct mapping. But on 498 * the other hand, we still need to operate it when crash 499 * happens to generate vmcoreinfo note, hereby we rely on 500 * vmap for this purpose. 501 */ 502 vmcoreinfo_page = kimage_alloc_control_pages(image, 0); 503 if (!vmcoreinfo_page) { 504 pr_warn("Could not allocate vmcoreinfo buffer\n"); 505 return -ENOMEM; 506 } 507 safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL); 508 if (!safecopy) { 509 pr_warn("Could not vmap vmcoreinfo buffer\n"); 510 return -ENOMEM; 511 } 512 513 image->vmcoreinfo_data_copy = safecopy; 514 crash_update_vmcoreinfo_safecopy(safecopy); 515 516 return 0; 517 } 518 519 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 520 { 521 if (*image->entry != 0) 522 image->entry++; 523 524 if (image->entry == image->last_entry) { 525 kimage_entry_t *ind_page; 526 struct page *page; 527 528 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 529 if (!page) 530 return -ENOMEM; 531 532 ind_page = page_address(page); 533 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 534 image->entry = ind_page; 535 image->last_entry = ind_page + 536 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 537 } 538 *image->entry = entry; 539 image->entry++; 540 *image->entry = 0; 541 542 return 0; 543 } 544 545 static int kimage_set_destination(struct kimage *image, 546 unsigned long destination) 547 { 548 int result; 549 550 destination &= PAGE_MASK; 551 result = kimage_add_entry(image, destination | IND_DESTINATION); 552 553 return result; 554 } 555 556 557 static int kimage_add_page(struct kimage *image, unsigned long page) 558 { 559 int result; 560 561 page &= PAGE_MASK; 562 result = kimage_add_entry(image, page | IND_SOURCE); 563 564 return result; 565 } 566 567 568 static void kimage_free_extra_pages(struct kimage *image) 569 { 570 /* Walk through and free any extra destination pages I may have */ 571 kimage_free_page_list(&image->dest_pages); 572 573 /* Walk through and free any unusable pages I have cached */ 574 kimage_free_page_list(&image->unusable_pages); 575 576 } 577 void kimage_terminate(struct kimage *image) 578 { 579 if (*image->entry != 0) 580 image->entry++; 581 582 *image->entry = IND_DONE; 583 } 584 585 #define for_each_kimage_entry(image, ptr, entry) \ 586 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 587 ptr = (entry & IND_INDIRECTION) ? \ 588 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 589 590 static void kimage_free_entry(kimage_entry_t entry) 591 { 592 struct page *page; 593 594 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 595 kimage_free_pages(page); 596 } 597 598 void kimage_free(struct kimage *image) 599 { 600 kimage_entry_t *ptr, entry; 601 kimage_entry_t ind = 0; 602 603 if (!image) 604 return; 605 606 if (image->vmcoreinfo_data_copy) { 607 crash_update_vmcoreinfo_safecopy(NULL); 608 vunmap(image->vmcoreinfo_data_copy); 609 } 610 611 kimage_free_extra_pages(image); 612 for_each_kimage_entry(image, ptr, entry) { 613 if (entry & IND_INDIRECTION) { 614 /* Free the previous indirection page */ 615 if (ind & IND_INDIRECTION) 616 kimage_free_entry(ind); 617 /* Save this indirection page until we are 618 * done with it. 619 */ 620 ind = entry; 621 } else if (entry & IND_SOURCE) 622 kimage_free_entry(entry); 623 } 624 /* Free the final indirection page */ 625 if (ind & IND_INDIRECTION) 626 kimage_free_entry(ind); 627 628 /* Handle any machine specific cleanup */ 629 machine_kexec_cleanup(image); 630 631 /* Free the kexec control pages... */ 632 kimage_free_page_list(&image->control_pages); 633 634 /* 635 * Free up any temporary buffers allocated. This might hit if 636 * error occurred much later after buffer allocation. 637 */ 638 if (image->file_mode) 639 kimage_file_post_load_cleanup(image); 640 641 kfree(image); 642 } 643 644 static kimage_entry_t *kimage_dst_used(struct kimage *image, 645 unsigned long page) 646 { 647 kimage_entry_t *ptr, entry; 648 unsigned long destination = 0; 649 650 for_each_kimage_entry(image, ptr, entry) { 651 if (entry & IND_DESTINATION) 652 destination = entry & PAGE_MASK; 653 else if (entry & IND_SOURCE) { 654 if (page == destination) 655 return ptr; 656 destination += PAGE_SIZE; 657 } 658 } 659 660 return NULL; 661 } 662 663 static struct page *kimage_alloc_page(struct kimage *image, 664 gfp_t gfp_mask, 665 unsigned long destination) 666 { 667 /* 668 * Here we implement safeguards to ensure that a source page 669 * is not copied to its destination page before the data on 670 * the destination page is no longer useful. 671 * 672 * To do this we maintain the invariant that a source page is 673 * either its own destination page, or it is not a 674 * destination page at all. 675 * 676 * That is slightly stronger than required, but the proof 677 * that no problems will not occur is trivial, and the 678 * implementation is simply to verify. 679 * 680 * When allocating all pages normally this algorithm will run 681 * in O(N) time, but in the worst case it will run in O(N^2) 682 * time. If the runtime is a problem the data structures can 683 * be fixed. 684 */ 685 struct page *page; 686 unsigned long addr; 687 688 /* 689 * Walk through the list of destination pages, and see if I 690 * have a match. 691 */ 692 list_for_each_entry(page, &image->dest_pages, lru) { 693 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 694 if (addr == destination) { 695 list_del(&page->lru); 696 return page; 697 } 698 } 699 page = NULL; 700 while (1) { 701 kimage_entry_t *old; 702 703 /* Allocate a page, if we run out of memory give up */ 704 page = kimage_alloc_pages(gfp_mask, 0); 705 if (!page) 706 return NULL; 707 /* If the page cannot be used file it away */ 708 if (page_to_boot_pfn(page) > 709 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 710 list_add(&page->lru, &image->unusable_pages); 711 continue; 712 } 713 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 714 715 /* If it is the destination page we want use it */ 716 if (addr == destination) 717 break; 718 719 /* If the page is not a destination page use it */ 720 if (!kimage_is_destination_range(image, addr, 721 addr + PAGE_SIZE)) 722 break; 723 724 /* 725 * I know that the page is someones destination page. 726 * See if there is already a source page for this 727 * destination page. And if so swap the source pages. 728 */ 729 old = kimage_dst_used(image, addr); 730 if (old) { 731 /* If so move it */ 732 unsigned long old_addr; 733 struct page *old_page; 734 735 old_addr = *old & PAGE_MASK; 736 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 737 copy_highpage(page, old_page); 738 *old = addr | (*old & ~PAGE_MASK); 739 740 /* The old page I have found cannot be a 741 * destination page, so return it if it's 742 * gfp_flags honor the ones passed in. 743 */ 744 if (!(gfp_mask & __GFP_HIGHMEM) && 745 PageHighMem(old_page)) { 746 kimage_free_pages(old_page); 747 continue; 748 } 749 addr = old_addr; 750 page = old_page; 751 break; 752 } 753 /* Place the page on the destination list, to be used later */ 754 list_add(&page->lru, &image->dest_pages); 755 } 756 757 return page; 758 } 759 760 static int kimage_load_normal_segment(struct kimage *image, 761 struct kexec_segment *segment) 762 { 763 unsigned long maddr; 764 size_t ubytes, mbytes; 765 int result; 766 unsigned char __user *buf = NULL; 767 unsigned char *kbuf = NULL; 768 769 result = 0; 770 if (image->file_mode) 771 kbuf = segment->kbuf; 772 else 773 buf = segment->buf; 774 ubytes = segment->bufsz; 775 mbytes = segment->memsz; 776 maddr = segment->mem; 777 778 result = kimage_set_destination(image, maddr); 779 if (result < 0) 780 goto out; 781 782 while (mbytes) { 783 struct page *page; 784 char *ptr; 785 size_t uchunk, mchunk; 786 787 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 788 if (!page) { 789 result = -ENOMEM; 790 goto out; 791 } 792 result = kimage_add_page(image, page_to_boot_pfn(page) 793 << PAGE_SHIFT); 794 if (result < 0) 795 goto out; 796 797 ptr = kmap(page); 798 /* Start with a clear page */ 799 clear_page(ptr); 800 ptr += maddr & ~PAGE_MASK; 801 mchunk = min_t(size_t, mbytes, 802 PAGE_SIZE - (maddr & ~PAGE_MASK)); 803 uchunk = min(ubytes, mchunk); 804 805 /* For file based kexec, source pages are in kernel memory */ 806 if (image->file_mode) 807 memcpy(ptr, kbuf, uchunk); 808 else 809 result = copy_from_user(ptr, buf, uchunk); 810 kunmap(page); 811 if (result) { 812 result = -EFAULT; 813 goto out; 814 } 815 ubytes -= uchunk; 816 maddr += mchunk; 817 if (image->file_mode) 818 kbuf += mchunk; 819 else 820 buf += mchunk; 821 mbytes -= mchunk; 822 } 823 out: 824 return result; 825 } 826 827 static int kimage_load_crash_segment(struct kimage *image, 828 struct kexec_segment *segment) 829 { 830 /* For crash dumps kernels we simply copy the data from 831 * user space to it's destination. 832 * We do things a page at a time for the sake of kmap. 833 */ 834 unsigned long maddr; 835 size_t ubytes, mbytes; 836 int result; 837 unsigned char __user *buf = NULL; 838 unsigned char *kbuf = NULL; 839 840 result = 0; 841 if (image->file_mode) 842 kbuf = segment->kbuf; 843 else 844 buf = segment->buf; 845 ubytes = segment->bufsz; 846 mbytes = segment->memsz; 847 maddr = segment->mem; 848 while (mbytes) { 849 struct page *page; 850 char *ptr; 851 size_t uchunk, mchunk; 852 853 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 854 if (!page) { 855 result = -ENOMEM; 856 goto out; 857 } 858 ptr = kmap(page); 859 ptr += maddr & ~PAGE_MASK; 860 mchunk = min_t(size_t, mbytes, 861 PAGE_SIZE - (maddr & ~PAGE_MASK)); 862 uchunk = min(ubytes, mchunk); 863 if (mchunk > uchunk) { 864 /* Zero the trailing part of the page */ 865 memset(ptr + uchunk, 0, mchunk - uchunk); 866 } 867 868 /* For file based kexec, source pages are in kernel memory */ 869 if (image->file_mode) 870 memcpy(ptr, kbuf, uchunk); 871 else 872 result = copy_from_user(ptr, buf, uchunk); 873 kexec_flush_icache_page(page); 874 kunmap(page); 875 if (result) { 876 result = -EFAULT; 877 goto out; 878 } 879 ubytes -= uchunk; 880 maddr += mchunk; 881 if (image->file_mode) 882 kbuf += mchunk; 883 else 884 buf += mchunk; 885 mbytes -= mchunk; 886 } 887 out: 888 return result; 889 } 890 891 int kimage_load_segment(struct kimage *image, 892 struct kexec_segment *segment) 893 { 894 int result = -ENOMEM; 895 896 switch (image->type) { 897 case KEXEC_TYPE_DEFAULT: 898 result = kimage_load_normal_segment(image, segment); 899 break; 900 case KEXEC_TYPE_CRASH: 901 result = kimage_load_crash_segment(image, segment); 902 break; 903 } 904 905 return result; 906 } 907 908 struct kimage *kexec_image; 909 struct kimage *kexec_crash_image; 910 int kexec_load_disabled; 911 912 /* 913 * No panic_cpu check version of crash_kexec(). This function is called 914 * only when panic_cpu holds the current CPU number; this is the only CPU 915 * which processes crash_kexec routines. 916 */ 917 void __noclone __crash_kexec(struct pt_regs *regs) 918 { 919 /* Take the kexec_mutex here to prevent sys_kexec_load 920 * running on one cpu from replacing the crash kernel 921 * we are using after a panic on a different cpu. 922 * 923 * If the crash kernel was not located in a fixed area 924 * of memory the xchg(&kexec_crash_image) would be 925 * sufficient. But since I reuse the memory... 926 */ 927 if (mutex_trylock(&kexec_mutex)) { 928 if (kexec_crash_image) { 929 struct pt_regs fixed_regs; 930 931 crash_setup_regs(&fixed_regs, regs); 932 crash_save_vmcoreinfo(); 933 machine_crash_shutdown(&fixed_regs); 934 machine_kexec(kexec_crash_image); 935 } 936 mutex_unlock(&kexec_mutex); 937 } 938 } 939 STACK_FRAME_NON_STANDARD(__crash_kexec); 940 941 void crash_kexec(struct pt_regs *regs) 942 { 943 int old_cpu, this_cpu; 944 945 /* 946 * Only one CPU is allowed to execute the crash_kexec() code as with 947 * panic(). Otherwise parallel calls of panic() and crash_kexec() 948 * may stop each other. To exclude them, we use panic_cpu here too. 949 */ 950 this_cpu = raw_smp_processor_id(); 951 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 952 if (old_cpu == PANIC_CPU_INVALID) { 953 /* This is the 1st CPU which comes here, so go ahead. */ 954 printk_safe_flush_on_panic(); 955 __crash_kexec(regs); 956 957 /* 958 * Reset panic_cpu to allow another panic()/crash_kexec() 959 * call. 960 */ 961 atomic_set(&panic_cpu, PANIC_CPU_INVALID); 962 } 963 } 964 965 size_t crash_get_memory_size(void) 966 { 967 size_t size = 0; 968 969 mutex_lock(&kexec_mutex); 970 if (crashk_res.end != crashk_res.start) 971 size = resource_size(&crashk_res); 972 mutex_unlock(&kexec_mutex); 973 return size; 974 } 975 976 void __weak crash_free_reserved_phys_range(unsigned long begin, 977 unsigned long end) 978 { 979 unsigned long addr; 980 981 for (addr = begin; addr < end; addr += PAGE_SIZE) 982 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT)); 983 } 984 985 int crash_shrink_memory(unsigned long new_size) 986 { 987 int ret = 0; 988 unsigned long start, end; 989 unsigned long old_size; 990 struct resource *ram_res; 991 992 mutex_lock(&kexec_mutex); 993 994 if (kexec_crash_image) { 995 ret = -ENOENT; 996 goto unlock; 997 } 998 start = crashk_res.start; 999 end = crashk_res.end; 1000 old_size = (end == 0) ? 0 : end - start + 1; 1001 if (new_size >= old_size) { 1002 ret = (new_size == old_size) ? 0 : -EINVAL; 1003 goto unlock; 1004 } 1005 1006 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1007 if (!ram_res) { 1008 ret = -ENOMEM; 1009 goto unlock; 1010 } 1011 1012 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1013 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1014 1015 crash_free_reserved_phys_range(end, crashk_res.end); 1016 1017 if ((start == end) && (crashk_res.parent != NULL)) 1018 release_resource(&crashk_res); 1019 1020 ram_res->start = end; 1021 ram_res->end = crashk_res.end; 1022 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM; 1023 ram_res->name = "System RAM"; 1024 1025 crashk_res.end = end - 1; 1026 1027 insert_resource(&iomem_resource, ram_res); 1028 1029 unlock: 1030 mutex_unlock(&kexec_mutex); 1031 return ret; 1032 } 1033 1034 void crash_save_cpu(struct pt_regs *regs, int cpu) 1035 { 1036 struct elf_prstatus prstatus; 1037 u32 *buf; 1038 1039 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1040 return; 1041 1042 /* Using ELF notes here is opportunistic. 1043 * I need a well defined structure format 1044 * for the data I pass, and I need tags 1045 * on the data to indicate what information I have 1046 * squirrelled away. ELF notes happen to provide 1047 * all of that, so there is no need to invent something new. 1048 */ 1049 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1050 if (!buf) 1051 return; 1052 memset(&prstatus, 0, sizeof(prstatus)); 1053 prstatus.pr_pid = current->pid; 1054 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1055 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1056 &prstatus, sizeof(prstatus)); 1057 final_note(buf); 1058 } 1059 1060 static int __init crash_notes_memory_init(void) 1061 { 1062 /* Allocate memory for saving cpu registers. */ 1063 size_t size, align; 1064 1065 /* 1066 * crash_notes could be allocated across 2 vmalloc pages when percpu 1067 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc 1068 * pages are also on 2 continuous physical pages. In this case the 1069 * 2nd part of crash_notes in 2nd page could be lost since only the 1070 * starting address and size of crash_notes are exported through sysfs. 1071 * Here round up the size of crash_notes to the nearest power of two 1072 * and pass it to __alloc_percpu as align value. This can make sure 1073 * crash_notes is allocated inside one physical page. 1074 */ 1075 size = sizeof(note_buf_t); 1076 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE); 1077 1078 /* 1079 * Break compile if size is bigger than PAGE_SIZE since crash_notes 1080 * definitely will be in 2 pages with that. 1081 */ 1082 BUILD_BUG_ON(size > PAGE_SIZE); 1083 1084 crash_notes = __alloc_percpu(size, align); 1085 if (!crash_notes) { 1086 pr_warn("Memory allocation for saving cpu register states failed\n"); 1087 return -ENOMEM; 1088 } 1089 return 0; 1090 } 1091 subsys_initcall(crash_notes_memory_init); 1092 1093 1094 /* 1095 * Move into place and start executing a preloaded standalone 1096 * executable. If nothing was preloaded return an error. 1097 */ 1098 int kernel_kexec(void) 1099 { 1100 int error = 0; 1101 1102 if (!mutex_trylock(&kexec_mutex)) 1103 return -EBUSY; 1104 if (!kexec_image) { 1105 error = -EINVAL; 1106 goto Unlock; 1107 } 1108 1109 #ifdef CONFIG_KEXEC_JUMP 1110 if (kexec_image->preserve_context) { 1111 lock_system_sleep(); 1112 pm_prepare_console(); 1113 error = freeze_processes(); 1114 if (error) { 1115 error = -EBUSY; 1116 goto Restore_console; 1117 } 1118 suspend_console(); 1119 error = dpm_suspend_start(PMSG_FREEZE); 1120 if (error) 1121 goto Resume_console; 1122 /* At this point, dpm_suspend_start() has been called, 1123 * but *not* dpm_suspend_end(). We *must* call 1124 * dpm_suspend_end() now. Otherwise, drivers for 1125 * some devices (e.g. interrupt controllers) become 1126 * desynchronized with the actual state of the 1127 * hardware at resume time, and evil weirdness ensues. 1128 */ 1129 error = dpm_suspend_end(PMSG_FREEZE); 1130 if (error) 1131 goto Resume_devices; 1132 error = disable_nonboot_cpus(); 1133 if (error) 1134 goto Enable_cpus; 1135 local_irq_disable(); 1136 error = syscore_suspend(); 1137 if (error) 1138 goto Enable_irqs; 1139 } else 1140 #endif 1141 { 1142 kexec_in_progress = true; 1143 kernel_restart_prepare(NULL); 1144 migrate_to_reboot_cpu(); 1145 1146 /* 1147 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1148 * no further code needs to use CPU hotplug (which is true in 1149 * the reboot case). However, the kexec path depends on using 1150 * CPU hotplug again; so re-enable it here. 1151 */ 1152 cpu_hotplug_enable(); 1153 pr_emerg("Starting new kernel\n"); 1154 machine_shutdown(); 1155 } 1156 1157 machine_kexec(kexec_image); 1158 1159 #ifdef CONFIG_KEXEC_JUMP 1160 if (kexec_image->preserve_context) { 1161 syscore_resume(); 1162 Enable_irqs: 1163 local_irq_enable(); 1164 Enable_cpus: 1165 enable_nonboot_cpus(); 1166 dpm_resume_start(PMSG_RESTORE); 1167 Resume_devices: 1168 dpm_resume_end(PMSG_RESTORE); 1169 Resume_console: 1170 resume_console(); 1171 thaw_processes(); 1172 Restore_console: 1173 pm_restore_console(); 1174 unlock_system_sleep(); 1175 } 1176 #endif 1177 1178 Unlock: 1179 mutex_unlock(&kexec_mutex); 1180 return error; 1181 } 1182 1183 /* 1184 * Protection mechanism for crashkernel reserved memory after 1185 * the kdump kernel is loaded. 1186 * 1187 * Provide an empty default implementation here -- architecture 1188 * code may override this 1189 */ 1190 void __weak arch_kexec_protect_crashkres(void) 1191 {} 1192 1193 void __weak arch_kexec_unprotect_crashkres(void) 1194 {} 1195