1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kexec.c - kexec system call core code. 4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/btf.h> 10 #include <linux/capability.h> 11 #include <linux/mm.h> 12 #include <linux/file.h> 13 #include <linux/slab.h> 14 #include <linux/fs.h> 15 #include <linux/kexec.h> 16 #include <linux/mutex.h> 17 #include <linux/list.h> 18 #include <linux/highmem.h> 19 #include <linux/syscalls.h> 20 #include <linux/reboot.h> 21 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 23 #include <linux/elf.h> 24 #include <linux/elfcore.h> 25 #include <linux/utsname.h> 26 #include <linux/numa.h> 27 #include <linux/suspend.h> 28 #include <linux/device.h> 29 #include <linux/freezer.h> 30 #include <linux/panic_notifier.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/uaccess.h> 34 #include <linux/io.h> 35 #include <linux/console.h> 36 #include <linux/vmalloc.h> 37 #include <linux/swap.h> 38 #include <linux/syscore_ops.h> 39 #include <linux/compiler.h> 40 #include <linux/hugetlb.h> 41 #include <linux/objtool.h> 42 #include <linux/kmsg_dump.h> 43 44 #include <asm/page.h> 45 #include <asm/sections.h> 46 47 #include <crypto/hash.h> 48 #include "kexec_internal.h" 49 50 atomic_t __kexec_lock = ATOMIC_INIT(0); 51 52 /* Flag to indicate we are going to kexec a new kernel */ 53 bool kexec_in_progress = false; 54 55 bool kexec_file_dbg_print; 56 57 /* 58 * When kexec transitions to the new kernel there is a one-to-one 59 * mapping between physical and virtual addresses. On processors 60 * where you can disable the MMU this is trivial, and easy. For 61 * others it is still a simple predictable page table to setup. 62 * 63 * In that environment kexec copies the new kernel to its final 64 * resting place. This means I can only support memory whose 65 * physical address can fit in an unsigned long. In particular 66 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 67 * If the assembly stub has more restrictive requirements 68 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 69 * defined more restrictively in <asm/kexec.h>. 70 * 71 * The code for the transition from the current kernel to the 72 * new kernel is placed in the control_code_buffer, whose size 73 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 74 * page of memory is necessary, but some architectures require more. 75 * Because this memory must be identity mapped in the transition from 76 * virtual to physical addresses it must live in the range 77 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 78 * modifiable. 79 * 80 * The assembly stub in the control code buffer is passed a linked list 81 * of descriptor pages detailing the source pages of the new kernel, 82 * and the destination addresses of those source pages. As this data 83 * structure is not used in the context of the current OS, it must 84 * be self-contained. 85 * 86 * The code has been made to work with highmem pages and will use a 87 * destination page in its final resting place (if it happens 88 * to allocate it). The end product of this is that most of the 89 * physical address space, and most of RAM can be used. 90 * 91 * Future directions include: 92 * - allocating a page table with the control code buffer identity 93 * mapped, to simplify machine_kexec and make kexec_on_panic more 94 * reliable. 95 */ 96 97 /* 98 * KIMAGE_NO_DEST is an impossible destination address..., for 99 * allocating pages whose destination address we do not care about. 100 */ 101 #define KIMAGE_NO_DEST (-1UL) 102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT) 103 104 static struct page *kimage_alloc_page(struct kimage *image, 105 gfp_t gfp_mask, 106 unsigned long dest); 107 108 int sanity_check_segment_list(struct kimage *image) 109 { 110 int i; 111 unsigned long nr_segments = image->nr_segments; 112 unsigned long total_pages = 0; 113 unsigned long nr_pages = totalram_pages(); 114 115 /* 116 * Verify we have good destination addresses. The caller is 117 * responsible for making certain we don't attempt to load 118 * the new image into invalid or reserved areas of RAM. This 119 * just verifies it is an address we can use. 120 * 121 * Since the kernel does everything in page size chunks ensure 122 * the destination addresses are page aligned. Too many 123 * special cases crop of when we don't do this. The most 124 * insidious is getting overlapping destination addresses 125 * simply because addresses are changed to page size 126 * granularity. 127 */ 128 for (i = 0; i < nr_segments; i++) { 129 unsigned long mstart, mend; 130 131 mstart = image->segment[i].mem; 132 mend = mstart + image->segment[i].memsz; 133 if (mstart > mend) 134 return -EADDRNOTAVAIL; 135 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 136 return -EADDRNOTAVAIL; 137 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 138 return -EADDRNOTAVAIL; 139 } 140 141 /* Verify our destination addresses do not overlap. 142 * If we alloed overlapping destination addresses 143 * through very weird things can happen with no 144 * easy explanation as one segment stops on another. 145 */ 146 for (i = 0; i < nr_segments; i++) { 147 unsigned long mstart, mend; 148 unsigned long j; 149 150 mstart = image->segment[i].mem; 151 mend = mstart + image->segment[i].memsz; 152 for (j = 0; j < i; j++) { 153 unsigned long pstart, pend; 154 155 pstart = image->segment[j].mem; 156 pend = pstart + image->segment[j].memsz; 157 /* Do the segments overlap ? */ 158 if ((mend > pstart) && (mstart < pend)) 159 return -EINVAL; 160 } 161 } 162 163 /* Ensure our buffer sizes are strictly less than 164 * our memory sizes. This should always be the case, 165 * and it is easier to check up front than to be surprised 166 * later on. 167 */ 168 for (i = 0; i < nr_segments; i++) { 169 if (image->segment[i].bufsz > image->segment[i].memsz) 170 return -EINVAL; 171 } 172 173 /* 174 * Verify that no more than half of memory will be consumed. If the 175 * request from userspace is too large, a large amount of time will be 176 * wasted allocating pages, which can cause a soft lockup. 177 */ 178 for (i = 0; i < nr_segments; i++) { 179 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2) 180 return -EINVAL; 181 182 total_pages += PAGE_COUNT(image->segment[i].memsz); 183 } 184 185 if (total_pages > nr_pages / 2) 186 return -EINVAL; 187 188 #ifdef CONFIG_CRASH_DUMP 189 /* 190 * Verify we have good destination addresses. Normally 191 * the caller is responsible for making certain we don't 192 * attempt to load the new image into invalid or reserved 193 * areas of RAM. But crash kernels are preloaded into a 194 * reserved area of ram. We must ensure the addresses 195 * are in the reserved area otherwise preloading the 196 * kernel could corrupt things. 197 */ 198 199 if (image->type == KEXEC_TYPE_CRASH) { 200 for (i = 0; i < nr_segments; i++) { 201 unsigned long mstart, mend; 202 203 mstart = image->segment[i].mem; 204 mend = mstart + image->segment[i].memsz - 1; 205 /* Ensure we are within the crash kernel limits */ 206 if ((mstart < phys_to_boot_phys(crashk_res.start)) || 207 (mend > phys_to_boot_phys(crashk_res.end))) 208 return -EADDRNOTAVAIL; 209 } 210 } 211 #endif 212 213 /* 214 * The destination addresses are searched from system RAM rather than 215 * being allocated from the buddy allocator, so they are not guaranteed 216 * to be accepted by the current kernel. Accept the destination 217 * addresses before kexec swaps their content with the segments' source 218 * pages to avoid accessing memory before it is accepted. 219 */ 220 for (i = 0; i < nr_segments; i++) 221 accept_memory(image->segment[i].mem, image->segment[i].memsz); 222 223 return 0; 224 } 225 226 struct kimage *do_kimage_alloc_init(void) 227 { 228 struct kimage *image; 229 230 /* Allocate a controlling structure */ 231 image = kzalloc(sizeof(*image), GFP_KERNEL); 232 if (!image) 233 return NULL; 234 235 image->head = 0; 236 image->entry = &image->head; 237 image->last_entry = &image->head; 238 image->control_page = ~0; /* By default this does not apply */ 239 image->type = KEXEC_TYPE_DEFAULT; 240 241 /* Initialize the list of control pages */ 242 INIT_LIST_HEAD(&image->control_pages); 243 244 /* Initialize the list of destination pages */ 245 INIT_LIST_HEAD(&image->dest_pages); 246 247 /* Initialize the list of unusable pages */ 248 INIT_LIST_HEAD(&image->unusable_pages); 249 250 #ifdef CONFIG_CRASH_HOTPLUG 251 image->hp_action = KEXEC_CRASH_HP_NONE; 252 image->elfcorehdr_index = -1; 253 image->elfcorehdr_updated = false; 254 #endif 255 256 return image; 257 } 258 259 int kimage_is_destination_range(struct kimage *image, 260 unsigned long start, 261 unsigned long end) 262 { 263 unsigned long i; 264 265 for (i = 0; i < image->nr_segments; i++) { 266 unsigned long mstart, mend; 267 268 mstart = image->segment[i].mem; 269 mend = mstart + image->segment[i].memsz - 1; 270 if ((end >= mstart) && (start <= mend)) 271 return 1; 272 } 273 274 return 0; 275 } 276 277 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 278 { 279 struct page *pages; 280 281 if (fatal_signal_pending(current)) 282 return NULL; 283 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order); 284 if (pages) { 285 unsigned int count, i; 286 287 pages->mapping = NULL; 288 set_page_private(pages, order); 289 count = 1 << order; 290 for (i = 0; i < count; i++) 291 SetPageReserved(pages + i); 292 293 arch_kexec_post_alloc_pages(page_address(pages), count, 294 gfp_mask); 295 296 if (gfp_mask & __GFP_ZERO) 297 for (i = 0; i < count; i++) 298 clear_highpage(pages + i); 299 } 300 301 return pages; 302 } 303 304 static void kimage_free_pages(struct page *page) 305 { 306 unsigned int order, count, i; 307 308 order = page_private(page); 309 count = 1 << order; 310 311 arch_kexec_pre_free_pages(page_address(page), count); 312 313 for (i = 0; i < count; i++) 314 ClearPageReserved(page + i); 315 __free_pages(page, order); 316 } 317 318 void kimage_free_page_list(struct list_head *list) 319 { 320 struct page *page, *next; 321 322 list_for_each_entry_safe(page, next, list, lru) { 323 list_del(&page->lru); 324 kimage_free_pages(page); 325 } 326 } 327 328 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 329 unsigned int order) 330 { 331 /* Control pages are special, they are the intermediaries 332 * that are needed while we copy the rest of the pages 333 * to their final resting place. As such they must 334 * not conflict with either the destination addresses 335 * or memory the kernel is already using. 336 * 337 * The only case where we really need more than one of 338 * these are for architectures where we cannot disable 339 * the MMU and must instead generate an identity mapped 340 * page table for all of the memory. 341 * 342 * At worst this runs in O(N) of the image size. 343 */ 344 struct list_head extra_pages; 345 struct page *pages; 346 unsigned int count; 347 348 count = 1 << order; 349 INIT_LIST_HEAD(&extra_pages); 350 351 /* Loop while I can allocate a page and the page allocated 352 * is a destination page. 353 */ 354 do { 355 unsigned long pfn, epfn, addr, eaddr; 356 357 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 358 if (!pages) 359 break; 360 pfn = page_to_boot_pfn(pages); 361 epfn = pfn + count; 362 addr = pfn << PAGE_SHIFT; 363 eaddr = (epfn << PAGE_SHIFT) - 1; 364 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 365 kimage_is_destination_range(image, addr, eaddr)) { 366 list_add(&pages->lru, &extra_pages); 367 pages = NULL; 368 } 369 } while (!pages); 370 371 if (pages) { 372 /* Remember the allocated page... */ 373 list_add(&pages->lru, &image->control_pages); 374 375 /* Because the page is already in it's destination 376 * location we will never allocate another page at 377 * that address. Therefore kimage_alloc_pages 378 * will not return it (again) and we don't need 379 * to give it an entry in image->segment[]. 380 */ 381 } 382 /* Deal with the destination pages I have inadvertently allocated. 383 * 384 * Ideally I would convert multi-page allocations into single 385 * page allocations, and add everything to image->dest_pages. 386 * 387 * For now it is simpler to just free the pages. 388 */ 389 kimage_free_page_list(&extra_pages); 390 391 return pages; 392 } 393 394 #ifdef CONFIG_CRASH_DUMP 395 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 396 unsigned int order) 397 { 398 /* Control pages are special, they are the intermediaries 399 * that are needed while we copy the rest of the pages 400 * to their final resting place. As such they must 401 * not conflict with either the destination addresses 402 * or memory the kernel is already using. 403 * 404 * Control pages are also the only pags we must allocate 405 * when loading a crash kernel. All of the other pages 406 * are specified by the segments and we just memcpy 407 * into them directly. 408 * 409 * The only case where we really need more than one of 410 * these are for architectures where we cannot disable 411 * the MMU and must instead generate an identity mapped 412 * page table for all of the memory. 413 * 414 * Given the low demand this implements a very simple 415 * allocator that finds the first hole of the appropriate 416 * size in the reserved memory region, and allocates all 417 * of the memory up to and including the hole. 418 */ 419 unsigned long hole_start, hole_end, size; 420 struct page *pages; 421 422 pages = NULL; 423 size = (1 << order) << PAGE_SHIFT; 424 hole_start = ALIGN(image->control_page, size); 425 hole_end = hole_start + size - 1; 426 while (hole_end <= crashk_res.end) { 427 unsigned long i; 428 429 cond_resched(); 430 431 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 432 break; 433 /* See if I overlap any of the segments */ 434 for (i = 0; i < image->nr_segments; i++) { 435 unsigned long mstart, mend; 436 437 mstart = image->segment[i].mem; 438 mend = mstart + image->segment[i].memsz - 1; 439 if ((hole_end >= mstart) && (hole_start <= mend)) { 440 /* Advance the hole to the end of the segment */ 441 hole_start = ALIGN(mend, size); 442 hole_end = hole_start + size - 1; 443 break; 444 } 445 } 446 /* If I don't overlap any segments I have found my hole! */ 447 if (i == image->nr_segments) { 448 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 449 image->control_page = hole_end + 1; 450 break; 451 } 452 } 453 454 /* Ensure that these pages are decrypted if SME is enabled. */ 455 if (pages) 456 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0); 457 458 return pages; 459 } 460 #endif 461 462 463 struct page *kimage_alloc_control_pages(struct kimage *image, 464 unsigned int order) 465 { 466 struct page *pages = NULL; 467 468 switch (image->type) { 469 case KEXEC_TYPE_DEFAULT: 470 pages = kimage_alloc_normal_control_pages(image, order); 471 break; 472 #ifdef CONFIG_CRASH_DUMP 473 case KEXEC_TYPE_CRASH: 474 pages = kimage_alloc_crash_control_pages(image, order); 475 break; 476 #endif 477 } 478 479 return pages; 480 } 481 482 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 483 { 484 if (*image->entry != 0) 485 image->entry++; 486 487 if (image->entry == image->last_entry) { 488 kimage_entry_t *ind_page; 489 struct page *page; 490 491 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 492 if (!page) 493 return -ENOMEM; 494 495 ind_page = page_address(page); 496 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION; 497 image->entry = ind_page; 498 image->last_entry = ind_page + 499 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 500 } 501 *image->entry = entry; 502 image->entry++; 503 *image->entry = 0; 504 505 return 0; 506 } 507 508 static int kimage_set_destination(struct kimage *image, 509 unsigned long destination) 510 { 511 destination &= PAGE_MASK; 512 513 return kimage_add_entry(image, destination | IND_DESTINATION); 514 } 515 516 517 static int kimage_add_page(struct kimage *image, unsigned long page) 518 { 519 page &= PAGE_MASK; 520 521 return kimage_add_entry(image, page | IND_SOURCE); 522 } 523 524 525 static void kimage_free_extra_pages(struct kimage *image) 526 { 527 /* Walk through and free any extra destination pages I may have */ 528 kimage_free_page_list(&image->dest_pages); 529 530 /* Walk through and free any unusable pages I have cached */ 531 kimage_free_page_list(&image->unusable_pages); 532 533 } 534 535 void kimage_terminate(struct kimage *image) 536 { 537 if (*image->entry != 0) 538 image->entry++; 539 540 *image->entry = IND_DONE; 541 } 542 543 #define for_each_kimage_entry(image, ptr, entry) \ 544 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 545 ptr = (entry & IND_INDIRECTION) ? \ 546 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 547 548 static void kimage_free_entry(kimage_entry_t entry) 549 { 550 struct page *page; 551 552 page = boot_pfn_to_page(entry >> PAGE_SHIFT); 553 kimage_free_pages(page); 554 } 555 556 void kimage_free(struct kimage *image) 557 { 558 kimage_entry_t *ptr, entry; 559 kimage_entry_t ind = 0; 560 561 if (!image) 562 return; 563 564 #ifdef CONFIG_CRASH_DUMP 565 if (image->vmcoreinfo_data_copy) { 566 crash_update_vmcoreinfo_safecopy(NULL); 567 vunmap(image->vmcoreinfo_data_copy); 568 } 569 #endif 570 571 kimage_free_extra_pages(image); 572 for_each_kimage_entry(image, ptr, entry) { 573 if (entry & IND_INDIRECTION) { 574 /* Free the previous indirection page */ 575 if (ind & IND_INDIRECTION) 576 kimage_free_entry(ind); 577 /* Save this indirection page until we are 578 * done with it. 579 */ 580 ind = entry; 581 } else if (entry & IND_SOURCE) 582 kimage_free_entry(entry); 583 } 584 /* Free the final indirection page */ 585 if (ind & IND_INDIRECTION) 586 kimage_free_entry(ind); 587 588 /* Handle any machine specific cleanup */ 589 machine_kexec_cleanup(image); 590 591 /* Free the kexec control pages... */ 592 kimage_free_page_list(&image->control_pages); 593 594 /* 595 * Free up any temporary buffers allocated. This might hit if 596 * error occurred much later after buffer allocation. 597 */ 598 if (image->file_mode) 599 kimage_file_post_load_cleanup(image); 600 601 kfree(image); 602 } 603 604 static kimage_entry_t *kimage_dst_used(struct kimage *image, 605 unsigned long page) 606 { 607 kimage_entry_t *ptr, entry; 608 unsigned long destination = 0; 609 610 for_each_kimage_entry(image, ptr, entry) { 611 if (entry & IND_DESTINATION) 612 destination = entry & PAGE_MASK; 613 else if (entry & IND_SOURCE) { 614 if (page == destination) 615 return ptr; 616 destination += PAGE_SIZE; 617 } 618 } 619 620 return NULL; 621 } 622 623 static struct page *kimage_alloc_page(struct kimage *image, 624 gfp_t gfp_mask, 625 unsigned long destination) 626 { 627 /* 628 * Here we implement safeguards to ensure that a source page 629 * is not copied to its destination page before the data on 630 * the destination page is no longer useful. 631 * 632 * To do this we maintain the invariant that a source page is 633 * either its own destination page, or it is not a 634 * destination page at all. 635 * 636 * That is slightly stronger than required, but the proof 637 * that no problems will not occur is trivial, and the 638 * implementation is simply to verify. 639 * 640 * When allocating all pages normally this algorithm will run 641 * in O(N) time, but in the worst case it will run in O(N^2) 642 * time. If the runtime is a problem the data structures can 643 * be fixed. 644 */ 645 struct page *page; 646 unsigned long addr; 647 648 /* 649 * Walk through the list of destination pages, and see if I 650 * have a match. 651 */ 652 list_for_each_entry(page, &image->dest_pages, lru) { 653 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 654 if (addr == destination) { 655 list_del(&page->lru); 656 return page; 657 } 658 } 659 page = NULL; 660 while (1) { 661 kimage_entry_t *old; 662 663 /* Allocate a page, if we run out of memory give up */ 664 page = kimage_alloc_pages(gfp_mask, 0); 665 if (!page) 666 return NULL; 667 /* If the page cannot be used file it away */ 668 if (page_to_boot_pfn(page) > 669 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 670 list_add(&page->lru, &image->unusable_pages); 671 continue; 672 } 673 addr = page_to_boot_pfn(page) << PAGE_SHIFT; 674 675 /* If it is the destination page we want use it */ 676 if (addr == destination) 677 break; 678 679 /* If the page is not a destination page use it */ 680 if (!kimage_is_destination_range(image, addr, 681 addr + PAGE_SIZE - 1)) 682 break; 683 684 /* 685 * I know that the page is someones destination page. 686 * See if there is already a source page for this 687 * destination page. And if so swap the source pages. 688 */ 689 old = kimage_dst_used(image, addr); 690 if (old) { 691 /* If so move it */ 692 unsigned long old_addr; 693 struct page *old_page; 694 695 old_addr = *old & PAGE_MASK; 696 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT); 697 copy_highpage(page, old_page); 698 *old = addr | (*old & ~PAGE_MASK); 699 700 /* The old page I have found cannot be a 701 * destination page, so return it if it's 702 * gfp_flags honor the ones passed in. 703 */ 704 if (!(gfp_mask & __GFP_HIGHMEM) && 705 PageHighMem(old_page)) { 706 kimage_free_pages(old_page); 707 continue; 708 } 709 page = old_page; 710 break; 711 } 712 /* Place the page on the destination list, to be used later */ 713 list_add(&page->lru, &image->dest_pages); 714 } 715 716 return page; 717 } 718 719 static int kimage_load_normal_segment(struct kimage *image, 720 struct kexec_segment *segment) 721 { 722 unsigned long maddr; 723 size_t ubytes, mbytes; 724 int result; 725 unsigned char __user *buf = NULL; 726 unsigned char *kbuf = NULL; 727 728 if (image->file_mode) 729 kbuf = segment->kbuf; 730 else 731 buf = segment->buf; 732 ubytes = segment->bufsz; 733 mbytes = segment->memsz; 734 maddr = segment->mem; 735 736 result = kimage_set_destination(image, maddr); 737 if (result < 0) 738 goto out; 739 740 while (mbytes) { 741 struct page *page; 742 char *ptr; 743 size_t uchunk, mchunk; 744 745 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 746 if (!page) { 747 result = -ENOMEM; 748 goto out; 749 } 750 result = kimage_add_page(image, page_to_boot_pfn(page) 751 << PAGE_SHIFT); 752 if (result < 0) 753 goto out; 754 755 ptr = kmap_local_page(page); 756 /* Start with a clear page */ 757 clear_page(ptr); 758 ptr += maddr & ~PAGE_MASK; 759 mchunk = min_t(size_t, mbytes, 760 PAGE_SIZE - (maddr & ~PAGE_MASK)); 761 uchunk = min(ubytes, mchunk); 762 763 if (uchunk) { 764 /* For file based kexec, source pages are in kernel memory */ 765 if (image->file_mode) 766 memcpy(ptr, kbuf, uchunk); 767 else 768 result = copy_from_user(ptr, buf, uchunk); 769 ubytes -= uchunk; 770 if (image->file_mode) 771 kbuf += uchunk; 772 else 773 buf += uchunk; 774 } 775 kunmap_local(ptr); 776 if (result) { 777 result = -EFAULT; 778 goto out; 779 } 780 maddr += mchunk; 781 mbytes -= mchunk; 782 783 cond_resched(); 784 } 785 out: 786 return result; 787 } 788 789 #ifdef CONFIG_CRASH_DUMP 790 static int kimage_load_crash_segment(struct kimage *image, 791 struct kexec_segment *segment) 792 { 793 /* For crash dumps kernels we simply copy the data from 794 * user space to it's destination. 795 * We do things a page at a time for the sake of kmap. 796 */ 797 unsigned long maddr; 798 size_t ubytes, mbytes; 799 int result; 800 unsigned char __user *buf = NULL; 801 unsigned char *kbuf = NULL; 802 803 result = 0; 804 if (image->file_mode) 805 kbuf = segment->kbuf; 806 else 807 buf = segment->buf; 808 ubytes = segment->bufsz; 809 mbytes = segment->memsz; 810 maddr = segment->mem; 811 while (mbytes) { 812 struct page *page; 813 char *ptr; 814 size_t uchunk, mchunk; 815 816 page = boot_pfn_to_page(maddr >> PAGE_SHIFT); 817 if (!page) { 818 result = -ENOMEM; 819 goto out; 820 } 821 arch_kexec_post_alloc_pages(page_address(page), 1, 0); 822 ptr = kmap_local_page(page); 823 ptr += maddr & ~PAGE_MASK; 824 mchunk = min_t(size_t, mbytes, 825 PAGE_SIZE - (maddr & ~PAGE_MASK)); 826 uchunk = min(ubytes, mchunk); 827 if (mchunk > uchunk) { 828 /* Zero the trailing part of the page */ 829 memset(ptr + uchunk, 0, mchunk - uchunk); 830 } 831 832 if (uchunk) { 833 /* For file based kexec, source pages are in kernel memory */ 834 if (image->file_mode) 835 memcpy(ptr, kbuf, uchunk); 836 else 837 result = copy_from_user(ptr, buf, uchunk); 838 ubytes -= uchunk; 839 if (image->file_mode) 840 kbuf += uchunk; 841 else 842 buf += uchunk; 843 } 844 kexec_flush_icache_page(page); 845 kunmap_local(ptr); 846 arch_kexec_pre_free_pages(page_address(page), 1); 847 if (result) { 848 result = -EFAULT; 849 goto out; 850 } 851 maddr += mchunk; 852 mbytes -= mchunk; 853 854 cond_resched(); 855 } 856 out: 857 return result; 858 } 859 #endif 860 861 int kimage_load_segment(struct kimage *image, 862 struct kexec_segment *segment) 863 { 864 int result = -ENOMEM; 865 866 switch (image->type) { 867 case KEXEC_TYPE_DEFAULT: 868 result = kimage_load_normal_segment(image, segment); 869 break; 870 #ifdef CONFIG_CRASH_DUMP 871 case KEXEC_TYPE_CRASH: 872 result = kimage_load_crash_segment(image, segment); 873 break; 874 #endif 875 } 876 877 return result; 878 } 879 880 void *kimage_map_segment(struct kimage *image, 881 unsigned long addr, unsigned long size) 882 { 883 unsigned long src_page_addr, dest_page_addr = 0; 884 unsigned long eaddr = addr + size; 885 kimage_entry_t *ptr, entry; 886 struct page **src_pages; 887 unsigned int npages; 888 void *vaddr = NULL; 889 int i; 890 891 /* 892 * Collect the source pages and map them in a contiguous VA range. 893 */ 894 npages = PFN_UP(eaddr) - PFN_DOWN(addr); 895 src_pages = kmalloc_array(npages, sizeof(*src_pages), GFP_KERNEL); 896 if (!src_pages) { 897 pr_err("Could not allocate ima pages array.\n"); 898 return NULL; 899 } 900 901 i = 0; 902 for_each_kimage_entry(image, ptr, entry) { 903 if (entry & IND_DESTINATION) { 904 dest_page_addr = entry & PAGE_MASK; 905 } else if (entry & IND_SOURCE) { 906 if (dest_page_addr >= addr && dest_page_addr < eaddr) { 907 src_page_addr = entry & PAGE_MASK; 908 src_pages[i++] = 909 virt_to_page(__va(src_page_addr)); 910 if (i == npages) 911 break; 912 dest_page_addr += PAGE_SIZE; 913 } 914 } 915 } 916 917 /* Sanity check. */ 918 WARN_ON(i < npages); 919 920 vaddr = vmap(src_pages, npages, VM_MAP, PAGE_KERNEL); 921 kfree(src_pages); 922 923 if (!vaddr) 924 pr_err("Could not map ima buffer.\n"); 925 926 return vaddr; 927 } 928 929 void kimage_unmap_segment(void *segment_buffer) 930 { 931 vunmap(segment_buffer); 932 } 933 934 struct kexec_load_limit { 935 /* Mutex protects the limit count. */ 936 struct mutex mutex; 937 int limit; 938 }; 939 940 static struct kexec_load_limit load_limit_reboot = { 941 .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex), 942 .limit = -1, 943 }; 944 945 static struct kexec_load_limit load_limit_panic = { 946 .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex), 947 .limit = -1, 948 }; 949 950 struct kimage *kexec_image; 951 struct kimage *kexec_crash_image; 952 static int kexec_load_disabled; 953 954 #ifdef CONFIG_SYSCTL 955 static int kexec_limit_handler(const struct ctl_table *table, int write, 956 void *buffer, size_t *lenp, loff_t *ppos) 957 { 958 struct kexec_load_limit *limit = table->data; 959 int val; 960 struct ctl_table tmp = { 961 .data = &val, 962 .maxlen = sizeof(val), 963 .mode = table->mode, 964 }; 965 int ret; 966 967 if (write) { 968 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos); 969 if (ret) 970 return ret; 971 972 if (val < 0) 973 return -EINVAL; 974 975 mutex_lock(&limit->mutex); 976 if (limit->limit != -1 && val >= limit->limit) 977 ret = -EINVAL; 978 else 979 limit->limit = val; 980 mutex_unlock(&limit->mutex); 981 982 return ret; 983 } 984 985 mutex_lock(&limit->mutex); 986 val = limit->limit; 987 mutex_unlock(&limit->mutex); 988 989 return proc_dointvec(&tmp, write, buffer, lenp, ppos); 990 } 991 992 static const struct ctl_table kexec_core_sysctls[] = { 993 { 994 .procname = "kexec_load_disabled", 995 .data = &kexec_load_disabled, 996 .maxlen = sizeof(int), 997 .mode = 0644, 998 /* only handle a transition from default "0" to "1" */ 999 .proc_handler = proc_dointvec_minmax, 1000 .extra1 = SYSCTL_ONE, 1001 .extra2 = SYSCTL_ONE, 1002 }, 1003 { 1004 .procname = "kexec_load_limit_panic", 1005 .data = &load_limit_panic, 1006 .mode = 0644, 1007 .proc_handler = kexec_limit_handler, 1008 }, 1009 { 1010 .procname = "kexec_load_limit_reboot", 1011 .data = &load_limit_reboot, 1012 .mode = 0644, 1013 .proc_handler = kexec_limit_handler, 1014 }, 1015 }; 1016 1017 static int __init kexec_core_sysctl_init(void) 1018 { 1019 register_sysctl_init("kernel", kexec_core_sysctls); 1020 return 0; 1021 } 1022 late_initcall(kexec_core_sysctl_init); 1023 #endif 1024 1025 bool kexec_load_permitted(int kexec_image_type) 1026 { 1027 struct kexec_load_limit *limit; 1028 1029 /* 1030 * Only the superuser can use the kexec syscall and if it has not 1031 * been disabled. 1032 */ 1033 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1034 return false; 1035 1036 /* Check limit counter and decrease it.*/ 1037 limit = (kexec_image_type == KEXEC_TYPE_CRASH) ? 1038 &load_limit_panic : &load_limit_reboot; 1039 mutex_lock(&limit->mutex); 1040 if (!limit->limit) { 1041 mutex_unlock(&limit->mutex); 1042 return false; 1043 } 1044 if (limit->limit != -1) 1045 limit->limit--; 1046 mutex_unlock(&limit->mutex); 1047 1048 return true; 1049 } 1050 1051 /* 1052 * Move into place and start executing a preloaded standalone 1053 * executable. If nothing was preloaded return an error. 1054 */ 1055 int kernel_kexec(void) 1056 { 1057 int error = 0; 1058 1059 if (!kexec_trylock()) 1060 return -EBUSY; 1061 if (!kexec_image) { 1062 error = -EINVAL; 1063 goto Unlock; 1064 } 1065 1066 #ifdef CONFIG_KEXEC_JUMP 1067 if (kexec_image->preserve_context) { 1068 /* 1069 * This flow is analogous to hibernation flows that occur 1070 * before creating an image and before jumping from the 1071 * restore kernel to the image one, so it uses the same 1072 * device callbacks as those two flows. 1073 */ 1074 pm_prepare_console(); 1075 error = freeze_processes(); 1076 if (error) { 1077 error = -EBUSY; 1078 goto Restore_console; 1079 } 1080 console_suspend_all(); 1081 error = dpm_suspend_start(PMSG_FREEZE); 1082 if (error) 1083 goto Resume_devices; 1084 /* 1085 * dpm_suspend_end() must be called after dpm_suspend_start() 1086 * to complete the transition, like in the hibernation flows 1087 * mentioned above. 1088 */ 1089 error = dpm_suspend_end(PMSG_FREEZE); 1090 if (error) 1091 goto Resume_devices; 1092 error = suspend_disable_secondary_cpus(); 1093 if (error) 1094 goto Enable_cpus; 1095 local_irq_disable(); 1096 error = syscore_suspend(); 1097 if (error) 1098 goto Enable_irqs; 1099 } else 1100 #endif 1101 { 1102 kexec_in_progress = true; 1103 kernel_restart_prepare("kexec reboot"); 1104 migrate_to_reboot_cpu(); 1105 syscore_shutdown(); 1106 1107 /* 1108 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 1109 * no further code needs to use CPU hotplug (which is true in 1110 * the reboot case). However, the kexec path depends on using 1111 * CPU hotplug again; so re-enable it here. 1112 */ 1113 cpu_hotplug_enable(); 1114 pr_notice("Starting new kernel\n"); 1115 machine_shutdown(); 1116 } 1117 1118 kmsg_dump(KMSG_DUMP_SHUTDOWN); 1119 machine_kexec(kexec_image); 1120 1121 #ifdef CONFIG_KEXEC_JUMP 1122 if (kexec_image->preserve_context) { 1123 /* 1124 * This flow is analogous to hibernation flows that occur after 1125 * creating an image and after the image kernel has got control 1126 * back, and in case the devices have been reset or otherwise 1127 * manipulated in the meantime, it uses the device callbacks 1128 * used by the latter. 1129 */ 1130 syscore_resume(); 1131 Enable_irqs: 1132 local_irq_enable(); 1133 Enable_cpus: 1134 suspend_enable_secondary_cpus(); 1135 dpm_resume_start(PMSG_RESTORE); 1136 Resume_devices: 1137 dpm_resume_end(PMSG_RESTORE); 1138 console_resume_all(); 1139 thaw_processes(); 1140 Restore_console: 1141 pm_restore_console(); 1142 } 1143 #endif 1144 1145 Unlock: 1146 kexec_unlock(); 1147 return error; 1148 } 1149