xref: /linux/kernel/kexec_core.c (revision 1727b7164705c09553f1213217501eaf8fbad9ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec.c - kexec system call core code.
4  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/btf.h>
10 #include <linux/capability.h>
11 #include <linux/mm.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/highmem.h>
19 #include <linux/syscalls.h>
20 #include <linux/reboot.h>
21 #include <linux/ioport.h>
22 #include <linux/hardirq.h>
23 #include <linux/elf.h>
24 #include <linux/elfcore.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/panic_notifier.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/objtool.h>
42 #include <linux/kmsg_dump.h>
43 
44 #include <asm/page.h>
45 #include <asm/sections.h>
46 
47 #include <crypto/hash.h>
48 #include "kexec_internal.h"
49 
50 atomic_t __kexec_lock = ATOMIC_INIT(0);
51 
52 /* Per cpu memory for storing cpu states in case of system crash. */
53 note_buf_t __percpu *crash_notes;
54 
55 /* Flag to indicate we are going to kexec a new kernel */
56 bool kexec_in_progress = false;
57 
58 
59 /* Location of the reserved area for the crash kernel */
60 struct resource crashk_res = {
61 	.name  = "Crash kernel",
62 	.start = 0,
63 	.end   = 0,
64 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
65 	.desc  = IORES_DESC_CRASH_KERNEL
66 };
67 struct resource crashk_low_res = {
68 	.name  = "Crash kernel",
69 	.start = 0,
70 	.end   = 0,
71 	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
72 	.desc  = IORES_DESC_CRASH_KERNEL
73 };
74 
75 int kexec_should_crash(struct task_struct *p)
76 {
77 	/*
78 	 * If crash_kexec_post_notifiers is enabled, don't run
79 	 * crash_kexec() here yet, which must be run after panic
80 	 * notifiers in panic().
81 	 */
82 	if (crash_kexec_post_notifiers)
83 		return 0;
84 	/*
85 	 * There are 4 panic() calls in make_task_dead() path, each of which
86 	 * corresponds to each of these 4 conditions.
87 	 */
88 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
89 		return 1;
90 	return 0;
91 }
92 
93 int kexec_crash_loaded(void)
94 {
95 	return !!kexec_crash_image;
96 }
97 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
98 
99 /*
100  * When kexec transitions to the new kernel there is a one-to-one
101  * mapping between physical and virtual addresses.  On processors
102  * where you can disable the MMU this is trivial, and easy.  For
103  * others it is still a simple predictable page table to setup.
104  *
105  * In that environment kexec copies the new kernel to its final
106  * resting place.  This means I can only support memory whose
107  * physical address can fit in an unsigned long.  In particular
108  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
109  * If the assembly stub has more restrictive requirements
110  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
111  * defined more restrictively in <asm/kexec.h>.
112  *
113  * The code for the transition from the current kernel to the
114  * new kernel is placed in the control_code_buffer, whose size
115  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
116  * page of memory is necessary, but some architectures require more.
117  * Because this memory must be identity mapped in the transition from
118  * virtual to physical addresses it must live in the range
119  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
120  * modifiable.
121  *
122  * The assembly stub in the control code buffer is passed a linked list
123  * of descriptor pages detailing the source pages of the new kernel,
124  * and the destination addresses of those source pages.  As this data
125  * structure is not used in the context of the current OS, it must
126  * be self-contained.
127  *
128  * The code has been made to work with highmem pages and will use a
129  * destination page in its final resting place (if it happens
130  * to allocate it).  The end product of this is that most of the
131  * physical address space, and most of RAM can be used.
132  *
133  * Future directions include:
134  *  - allocating a page table with the control code buffer identity
135  *    mapped, to simplify machine_kexec and make kexec_on_panic more
136  *    reliable.
137  */
138 
139 /*
140  * KIMAGE_NO_DEST is an impossible destination address..., for
141  * allocating pages whose destination address we do not care about.
142  */
143 #define KIMAGE_NO_DEST (-1UL)
144 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
145 
146 static struct page *kimage_alloc_page(struct kimage *image,
147 				       gfp_t gfp_mask,
148 				       unsigned long dest);
149 
150 int sanity_check_segment_list(struct kimage *image)
151 {
152 	int i;
153 	unsigned long nr_segments = image->nr_segments;
154 	unsigned long total_pages = 0;
155 	unsigned long nr_pages = totalram_pages();
156 
157 	/*
158 	 * Verify we have good destination addresses.  The caller is
159 	 * responsible for making certain we don't attempt to load
160 	 * the new image into invalid or reserved areas of RAM.  This
161 	 * just verifies it is an address we can use.
162 	 *
163 	 * Since the kernel does everything in page size chunks ensure
164 	 * the destination addresses are page aligned.  Too many
165 	 * special cases crop of when we don't do this.  The most
166 	 * insidious is getting overlapping destination addresses
167 	 * simply because addresses are changed to page size
168 	 * granularity.
169 	 */
170 	for (i = 0; i < nr_segments; i++) {
171 		unsigned long mstart, mend;
172 
173 		mstart = image->segment[i].mem;
174 		mend   = mstart + image->segment[i].memsz;
175 		if (mstart > mend)
176 			return -EADDRNOTAVAIL;
177 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
178 			return -EADDRNOTAVAIL;
179 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
180 			return -EADDRNOTAVAIL;
181 	}
182 
183 	/* Verify our destination addresses do not overlap.
184 	 * If we alloed overlapping destination addresses
185 	 * through very weird things can happen with no
186 	 * easy explanation as one segment stops on another.
187 	 */
188 	for (i = 0; i < nr_segments; i++) {
189 		unsigned long mstart, mend;
190 		unsigned long j;
191 
192 		mstart = image->segment[i].mem;
193 		mend   = mstart + image->segment[i].memsz;
194 		for (j = 0; j < i; j++) {
195 			unsigned long pstart, pend;
196 
197 			pstart = image->segment[j].mem;
198 			pend   = pstart + image->segment[j].memsz;
199 			/* Do the segments overlap ? */
200 			if ((mend > pstart) && (mstart < pend))
201 				return -EINVAL;
202 		}
203 	}
204 
205 	/* Ensure our buffer sizes are strictly less than
206 	 * our memory sizes.  This should always be the case,
207 	 * and it is easier to check up front than to be surprised
208 	 * later on.
209 	 */
210 	for (i = 0; i < nr_segments; i++) {
211 		if (image->segment[i].bufsz > image->segment[i].memsz)
212 			return -EINVAL;
213 	}
214 
215 	/*
216 	 * Verify that no more than half of memory will be consumed. If the
217 	 * request from userspace is too large, a large amount of time will be
218 	 * wasted allocating pages, which can cause a soft lockup.
219 	 */
220 	for (i = 0; i < nr_segments; i++) {
221 		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
222 			return -EINVAL;
223 
224 		total_pages += PAGE_COUNT(image->segment[i].memsz);
225 	}
226 
227 	if (total_pages > nr_pages / 2)
228 		return -EINVAL;
229 
230 	/*
231 	 * Verify we have good destination addresses.  Normally
232 	 * the caller is responsible for making certain we don't
233 	 * attempt to load the new image into invalid or reserved
234 	 * areas of RAM.  But crash kernels are preloaded into a
235 	 * reserved area of ram.  We must ensure the addresses
236 	 * are in the reserved area otherwise preloading the
237 	 * kernel could corrupt things.
238 	 */
239 
240 	if (image->type == KEXEC_TYPE_CRASH) {
241 		for (i = 0; i < nr_segments; i++) {
242 			unsigned long mstart, mend;
243 
244 			mstart = image->segment[i].mem;
245 			mend = mstart + image->segment[i].memsz - 1;
246 			/* Ensure we are within the crash kernel limits */
247 			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
248 			    (mend > phys_to_boot_phys(crashk_res.end)))
249 				return -EADDRNOTAVAIL;
250 		}
251 	}
252 
253 	return 0;
254 }
255 
256 struct kimage *do_kimage_alloc_init(void)
257 {
258 	struct kimage *image;
259 
260 	/* Allocate a controlling structure */
261 	image = kzalloc(sizeof(*image), GFP_KERNEL);
262 	if (!image)
263 		return NULL;
264 
265 	image->head = 0;
266 	image->entry = &image->head;
267 	image->last_entry = &image->head;
268 	image->control_page = ~0; /* By default this does not apply */
269 	image->type = KEXEC_TYPE_DEFAULT;
270 
271 	/* Initialize the list of control pages */
272 	INIT_LIST_HEAD(&image->control_pages);
273 
274 	/* Initialize the list of destination pages */
275 	INIT_LIST_HEAD(&image->dest_pages);
276 
277 	/* Initialize the list of unusable pages */
278 	INIT_LIST_HEAD(&image->unusable_pages);
279 
280 	return image;
281 }
282 
283 int kimage_is_destination_range(struct kimage *image,
284 					unsigned long start,
285 					unsigned long end)
286 {
287 	unsigned long i;
288 
289 	for (i = 0; i < image->nr_segments; i++) {
290 		unsigned long mstart, mend;
291 
292 		mstart = image->segment[i].mem;
293 		mend = mstart + image->segment[i].memsz;
294 		if ((end > mstart) && (start < mend))
295 			return 1;
296 	}
297 
298 	return 0;
299 }
300 
301 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
302 {
303 	struct page *pages;
304 
305 	if (fatal_signal_pending(current))
306 		return NULL;
307 	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
308 	if (pages) {
309 		unsigned int count, i;
310 
311 		pages->mapping = NULL;
312 		set_page_private(pages, order);
313 		count = 1 << order;
314 		for (i = 0; i < count; i++)
315 			SetPageReserved(pages + i);
316 
317 		arch_kexec_post_alloc_pages(page_address(pages), count,
318 					    gfp_mask);
319 
320 		if (gfp_mask & __GFP_ZERO)
321 			for (i = 0; i < count; i++)
322 				clear_highpage(pages + i);
323 	}
324 
325 	return pages;
326 }
327 
328 static void kimage_free_pages(struct page *page)
329 {
330 	unsigned int order, count, i;
331 
332 	order = page_private(page);
333 	count = 1 << order;
334 
335 	arch_kexec_pre_free_pages(page_address(page), count);
336 
337 	for (i = 0; i < count; i++)
338 		ClearPageReserved(page + i);
339 	__free_pages(page, order);
340 }
341 
342 void kimage_free_page_list(struct list_head *list)
343 {
344 	struct page *page, *next;
345 
346 	list_for_each_entry_safe(page, next, list, lru) {
347 		list_del(&page->lru);
348 		kimage_free_pages(page);
349 	}
350 }
351 
352 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
353 							unsigned int order)
354 {
355 	/* Control pages are special, they are the intermediaries
356 	 * that are needed while we copy the rest of the pages
357 	 * to their final resting place.  As such they must
358 	 * not conflict with either the destination addresses
359 	 * or memory the kernel is already using.
360 	 *
361 	 * The only case where we really need more than one of
362 	 * these are for architectures where we cannot disable
363 	 * the MMU and must instead generate an identity mapped
364 	 * page table for all of the memory.
365 	 *
366 	 * At worst this runs in O(N) of the image size.
367 	 */
368 	struct list_head extra_pages;
369 	struct page *pages;
370 	unsigned int count;
371 
372 	count = 1 << order;
373 	INIT_LIST_HEAD(&extra_pages);
374 
375 	/* Loop while I can allocate a page and the page allocated
376 	 * is a destination page.
377 	 */
378 	do {
379 		unsigned long pfn, epfn, addr, eaddr;
380 
381 		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
382 		if (!pages)
383 			break;
384 		pfn   = page_to_boot_pfn(pages);
385 		epfn  = pfn + count;
386 		addr  = pfn << PAGE_SHIFT;
387 		eaddr = epfn << PAGE_SHIFT;
388 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
389 			      kimage_is_destination_range(image, addr, eaddr)) {
390 			list_add(&pages->lru, &extra_pages);
391 			pages = NULL;
392 		}
393 	} while (!pages);
394 
395 	if (pages) {
396 		/* Remember the allocated page... */
397 		list_add(&pages->lru, &image->control_pages);
398 
399 		/* Because the page is already in it's destination
400 		 * location we will never allocate another page at
401 		 * that address.  Therefore kimage_alloc_pages
402 		 * will not return it (again) and we don't need
403 		 * to give it an entry in image->segment[].
404 		 */
405 	}
406 	/* Deal with the destination pages I have inadvertently allocated.
407 	 *
408 	 * Ideally I would convert multi-page allocations into single
409 	 * page allocations, and add everything to image->dest_pages.
410 	 *
411 	 * For now it is simpler to just free the pages.
412 	 */
413 	kimage_free_page_list(&extra_pages);
414 
415 	return pages;
416 }
417 
418 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
419 						      unsigned int order)
420 {
421 	/* Control pages are special, they are the intermediaries
422 	 * that are needed while we copy the rest of the pages
423 	 * to their final resting place.  As such they must
424 	 * not conflict with either the destination addresses
425 	 * or memory the kernel is already using.
426 	 *
427 	 * Control pages are also the only pags we must allocate
428 	 * when loading a crash kernel.  All of the other pages
429 	 * are specified by the segments and we just memcpy
430 	 * into them directly.
431 	 *
432 	 * The only case where we really need more than one of
433 	 * these are for architectures where we cannot disable
434 	 * the MMU and must instead generate an identity mapped
435 	 * page table for all of the memory.
436 	 *
437 	 * Given the low demand this implements a very simple
438 	 * allocator that finds the first hole of the appropriate
439 	 * size in the reserved memory region, and allocates all
440 	 * of the memory up to and including the hole.
441 	 */
442 	unsigned long hole_start, hole_end, size;
443 	struct page *pages;
444 
445 	pages = NULL;
446 	size = (1 << order) << PAGE_SHIFT;
447 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
448 	hole_end   = hole_start + size - 1;
449 	while (hole_end <= crashk_res.end) {
450 		unsigned long i;
451 
452 		cond_resched();
453 
454 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
455 			break;
456 		/* See if I overlap any of the segments */
457 		for (i = 0; i < image->nr_segments; i++) {
458 			unsigned long mstart, mend;
459 
460 			mstart = image->segment[i].mem;
461 			mend   = mstart + image->segment[i].memsz - 1;
462 			if ((hole_end >= mstart) && (hole_start <= mend)) {
463 				/* Advance the hole to the end of the segment */
464 				hole_start = (mend + (size - 1)) & ~(size - 1);
465 				hole_end   = hole_start + size - 1;
466 				break;
467 			}
468 		}
469 		/* If I don't overlap any segments I have found my hole! */
470 		if (i == image->nr_segments) {
471 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
472 			image->control_page = hole_end;
473 			break;
474 		}
475 	}
476 
477 	/* Ensure that these pages are decrypted if SME is enabled. */
478 	if (pages)
479 		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
480 
481 	return pages;
482 }
483 
484 
485 struct page *kimage_alloc_control_pages(struct kimage *image,
486 					 unsigned int order)
487 {
488 	struct page *pages = NULL;
489 
490 	switch (image->type) {
491 	case KEXEC_TYPE_DEFAULT:
492 		pages = kimage_alloc_normal_control_pages(image, order);
493 		break;
494 	case KEXEC_TYPE_CRASH:
495 		pages = kimage_alloc_crash_control_pages(image, order);
496 		break;
497 	}
498 
499 	return pages;
500 }
501 
502 int kimage_crash_copy_vmcoreinfo(struct kimage *image)
503 {
504 	struct page *vmcoreinfo_page;
505 	void *safecopy;
506 
507 	if (image->type != KEXEC_TYPE_CRASH)
508 		return 0;
509 
510 	/*
511 	 * For kdump, allocate one vmcoreinfo safe copy from the
512 	 * crash memory. as we have arch_kexec_protect_crashkres()
513 	 * after kexec syscall, we naturally protect it from write
514 	 * (even read) access under kernel direct mapping. But on
515 	 * the other hand, we still need to operate it when crash
516 	 * happens to generate vmcoreinfo note, hereby we rely on
517 	 * vmap for this purpose.
518 	 */
519 	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
520 	if (!vmcoreinfo_page) {
521 		pr_warn("Could not allocate vmcoreinfo buffer\n");
522 		return -ENOMEM;
523 	}
524 	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
525 	if (!safecopy) {
526 		pr_warn("Could not vmap vmcoreinfo buffer\n");
527 		return -ENOMEM;
528 	}
529 
530 	image->vmcoreinfo_data_copy = safecopy;
531 	crash_update_vmcoreinfo_safecopy(safecopy);
532 
533 	return 0;
534 }
535 
536 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
537 {
538 	if (*image->entry != 0)
539 		image->entry++;
540 
541 	if (image->entry == image->last_entry) {
542 		kimage_entry_t *ind_page;
543 		struct page *page;
544 
545 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
546 		if (!page)
547 			return -ENOMEM;
548 
549 		ind_page = page_address(page);
550 		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
551 		image->entry = ind_page;
552 		image->last_entry = ind_page +
553 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
554 	}
555 	*image->entry = entry;
556 	image->entry++;
557 	*image->entry = 0;
558 
559 	return 0;
560 }
561 
562 static int kimage_set_destination(struct kimage *image,
563 				   unsigned long destination)
564 {
565 	destination &= PAGE_MASK;
566 
567 	return kimage_add_entry(image, destination | IND_DESTINATION);
568 }
569 
570 
571 static int kimage_add_page(struct kimage *image, unsigned long page)
572 {
573 	page &= PAGE_MASK;
574 
575 	return kimage_add_entry(image, page | IND_SOURCE);
576 }
577 
578 
579 static void kimage_free_extra_pages(struct kimage *image)
580 {
581 	/* Walk through and free any extra destination pages I may have */
582 	kimage_free_page_list(&image->dest_pages);
583 
584 	/* Walk through and free any unusable pages I have cached */
585 	kimage_free_page_list(&image->unusable_pages);
586 
587 }
588 
589 void kimage_terminate(struct kimage *image)
590 {
591 	if (*image->entry != 0)
592 		image->entry++;
593 
594 	*image->entry = IND_DONE;
595 }
596 
597 #define for_each_kimage_entry(image, ptr, entry) \
598 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
599 		ptr = (entry & IND_INDIRECTION) ? \
600 			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
601 
602 static void kimage_free_entry(kimage_entry_t entry)
603 {
604 	struct page *page;
605 
606 	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
607 	kimage_free_pages(page);
608 }
609 
610 void kimage_free(struct kimage *image)
611 {
612 	kimage_entry_t *ptr, entry;
613 	kimage_entry_t ind = 0;
614 
615 	if (!image)
616 		return;
617 
618 	if (image->vmcoreinfo_data_copy) {
619 		crash_update_vmcoreinfo_safecopy(NULL);
620 		vunmap(image->vmcoreinfo_data_copy);
621 	}
622 
623 	kimage_free_extra_pages(image);
624 	for_each_kimage_entry(image, ptr, entry) {
625 		if (entry & IND_INDIRECTION) {
626 			/* Free the previous indirection page */
627 			if (ind & IND_INDIRECTION)
628 				kimage_free_entry(ind);
629 			/* Save this indirection page until we are
630 			 * done with it.
631 			 */
632 			ind = entry;
633 		} else if (entry & IND_SOURCE)
634 			kimage_free_entry(entry);
635 	}
636 	/* Free the final indirection page */
637 	if (ind & IND_INDIRECTION)
638 		kimage_free_entry(ind);
639 
640 	/* Handle any machine specific cleanup */
641 	machine_kexec_cleanup(image);
642 
643 	/* Free the kexec control pages... */
644 	kimage_free_page_list(&image->control_pages);
645 
646 	/*
647 	 * Free up any temporary buffers allocated. This might hit if
648 	 * error occurred much later after buffer allocation.
649 	 */
650 	if (image->file_mode)
651 		kimage_file_post_load_cleanup(image);
652 
653 	kfree(image);
654 }
655 
656 static kimage_entry_t *kimage_dst_used(struct kimage *image,
657 					unsigned long page)
658 {
659 	kimage_entry_t *ptr, entry;
660 	unsigned long destination = 0;
661 
662 	for_each_kimage_entry(image, ptr, entry) {
663 		if (entry & IND_DESTINATION)
664 			destination = entry & PAGE_MASK;
665 		else if (entry & IND_SOURCE) {
666 			if (page == destination)
667 				return ptr;
668 			destination += PAGE_SIZE;
669 		}
670 	}
671 
672 	return NULL;
673 }
674 
675 static struct page *kimage_alloc_page(struct kimage *image,
676 					gfp_t gfp_mask,
677 					unsigned long destination)
678 {
679 	/*
680 	 * Here we implement safeguards to ensure that a source page
681 	 * is not copied to its destination page before the data on
682 	 * the destination page is no longer useful.
683 	 *
684 	 * To do this we maintain the invariant that a source page is
685 	 * either its own destination page, or it is not a
686 	 * destination page at all.
687 	 *
688 	 * That is slightly stronger than required, but the proof
689 	 * that no problems will not occur is trivial, and the
690 	 * implementation is simply to verify.
691 	 *
692 	 * When allocating all pages normally this algorithm will run
693 	 * in O(N) time, but in the worst case it will run in O(N^2)
694 	 * time.   If the runtime is a problem the data structures can
695 	 * be fixed.
696 	 */
697 	struct page *page;
698 	unsigned long addr;
699 
700 	/*
701 	 * Walk through the list of destination pages, and see if I
702 	 * have a match.
703 	 */
704 	list_for_each_entry(page, &image->dest_pages, lru) {
705 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
706 		if (addr == destination) {
707 			list_del(&page->lru);
708 			return page;
709 		}
710 	}
711 	page = NULL;
712 	while (1) {
713 		kimage_entry_t *old;
714 
715 		/* Allocate a page, if we run out of memory give up */
716 		page = kimage_alloc_pages(gfp_mask, 0);
717 		if (!page)
718 			return NULL;
719 		/* If the page cannot be used file it away */
720 		if (page_to_boot_pfn(page) >
721 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
722 			list_add(&page->lru, &image->unusable_pages);
723 			continue;
724 		}
725 		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
726 
727 		/* If it is the destination page we want use it */
728 		if (addr == destination)
729 			break;
730 
731 		/* If the page is not a destination page use it */
732 		if (!kimage_is_destination_range(image, addr,
733 						  addr + PAGE_SIZE))
734 			break;
735 
736 		/*
737 		 * I know that the page is someones destination page.
738 		 * See if there is already a source page for this
739 		 * destination page.  And if so swap the source pages.
740 		 */
741 		old = kimage_dst_used(image, addr);
742 		if (old) {
743 			/* If so move it */
744 			unsigned long old_addr;
745 			struct page *old_page;
746 
747 			old_addr = *old & PAGE_MASK;
748 			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
749 			copy_highpage(page, old_page);
750 			*old = addr | (*old & ~PAGE_MASK);
751 
752 			/* The old page I have found cannot be a
753 			 * destination page, so return it if it's
754 			 * gfp_flags honor the ones passed in.
755 			 */
756 			if (!(gfp_mask & __GFP_HIGHMEM) &&
757 			    PageHighMem(old_page)) {
758 				kimage_free_pages(old_page);
759 				continue;
760 			}
761 			page = old_page;
762 			break;
763 		}
764 		/* Place the page on the destination list, to be used later */
765 		list_add(&page->lru, &image->dest_pages);
766 	}
767 
768 	return page;
769 }
770 
771 static int kimage_load_normal_segment(struct kimage *image,
772 					 struct kexec_segment *segment)
773 {
774 	unsigned long maddr;
775 	size_t ubytes, mbytes;
776 	int result;
777 	unsigned char __user *buf = NULL;
778 	unsigned char *kbuf = NULL;
779 
780 	if (image->file_mode)
781 		kbuf = segment->kbuf;
782 	else
783 		buf = segment->buf;
784 	ubytes = segment->bufsz;
785 	mbytes = segment->memsz;
786 	maddr = segment->mem;
787 
788 	result = kimage_set_destination(image, maddr);
789 	if (result < 0)
790 		goto out;
791 
792 	while (mbytes) {
793 		struct page *page;
794 		char *ptr;
795 		size_t uchunk, mchunk;
796 
797 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
798 		if (!page) {
799 			result  = -ENOMEM;
800 			goto out;
801 		}
802 		result = kimage_add_page(image, page_to_boot_pfn(page)
803 								<< PAGE_SHIFT);
804 		if (result < 0)
805 			goto out;
806 
807 		ptr = kmap_local_page(page);
808 		/* Start with a clear page */
809 		clear_page(ptr);
810 		ptr += maddr & ~PAGE_MASK;
811 		mchunk = min_t(size_t, mbytes,
812 				PAGE_SIZE - (maddr & ~PAGE_MASK));
813 		uchunk = min(ubytes, mchunk);
814 
815 		/* For file based kexec, source pages are in kernel memory */
816 		if (image->file_mode)
817 			memcpy(ptr, kbuf, uchunk);
818 		else
819 			result = copy_from_user(ptr, buf, uchunk);
820 		kunmap_local(ptr);
821 		if (result) {
822 			result = -EFAULT;
823 			goto out;
824 		}
825 		ubytes -= uchunk;
826 		maddr  += mchunk;
827 		if (image->file_mode)
828 			kbuf += mchunk;
829 		else
830 			buf += mchunk;
831 		mbytes -= mchunk;
832 
833 		cond_resched();
834 	}
835 out:
836 	return result;
837 }
838 
839 static int kimage_load_crash_segment(struct kimage *image,
840 					struct kexec_segment *segment)
841 {
842 	/* For crash dumps kernels we simply copy the data from
843 	 * user space to it's destination.
844 	 * We do things a page at a time for the sake of kmap.
845 	 */
846 	unsigned long maddr;
847 	size_t ubytes, mbytes;
848 	int result;
849 	unsigned char __user *buf = NULL;
850 	unsigned char *kbuf = NULL;
851 
852 	result = 0;
853 	if (image->file_mode)
854 		kbuf = segment->kbuf;
855 	else
856 		buf = segment->buf;
857 	ubytes = segment->bufsz;
858 	mbytes = segment->memsz;
859 	maddr = segment->mem;
860 	while (mbytes) {
861 		struct page *page;
862 		char *ptr;
863 		size_t uchunk, mchunk;
864 
865 		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
866 		if (!page) {
867 			result  = -ENOMEM;
868 			goto out;
869 		}
870 		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
871 		ptr = kmap_local_page(page);
872 		ptr += maddr & ~PAGE_MASK;
873 		mchunk = min_t(size_t, mbytes,
874 				PAGE_SIZE - (maddr & ~PAGE_MASK));
875 		uchunk = min(ubytes, mchunk);
876 		if (mchunk > uchunk) {
877 			/* Zero the trailing part of the page */
878 			memset(ptr + uchunk, 0, mchunk - uchunk);
879 		}
880 
881 		/* For file based kexec, source pages are in kernel memory */
882 		if (image->file_mode)
883 			memcpy(ptr, kbuf, uchunk);
884 		else
885 			result = copy_from_user(ptr, buf, uchunk);
886 		kexec_flush_icache_page(page);
887 		kunmap_local(ptr);
888 		arch_kexec_pre_free_pages(page_address(page), 1);
889 		if (result) {
890 			result = -EFAULT;
891 			goto out;
892 		}
893 		ubytes -= uchunk;
894 		maddr  += mchunk;
895 		if (image->file_mode)
896 			kbuf += mchunk;
897 		else
898 			buf += mchunk;
899 		mbytes -= mchunk;
900 
901 		cond_resched();
902 	}
903 out:
904 	return result;
905 }
906 
907 int kimage_load_segment(struct kimage *image,
908 				struct kexec_segment *segment)
909 {
910 	int result = -ENOMEM;
911 
912 	switch (image->type) {
913 	case KEXEC_TYPE_DEFAULT:
914 		result = kimage_load_normal_segment(image, segment);
915 		break;
916 	case KEXEC_TYPE_CRASH:
917 		result = kimage_load_crash_segment(image, segment);
918 		break;
919 	}
920 
921 	return result;
922 }
923 
924 struct kexec_load_limit {
925 	/* Mutex protects the limit count. */
926 	struct mutex mutex;
927 	int limit;
928 };
929 
930 static struct kexec_load_limit load_limit_reboot = {
931 	.mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
932 	.limit = -1,
933 };
934 
935 static struct kexec_load_limit load_limit_panic = {
936 	.mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
937 	.limit = -1,
938 };
939 
940 struct kimage *kexec_image;
941 struct kimage *kexec_crash_image;
942 static int kexec_load_disabled;
943 
944 #ifdef CONFIG_SYSCTL
945 static int kexec_limit_handler(struct ctl_table *table, int write,
946 			       void *buffer, size_t *lenp, loff_t *ppos)
947 {
948 	struct kexec_load_limit *limit = table->data;
949 	int val;
950 	struct ctl_table tmp = {
951 		.data = &val,
952 		.maxlen = sizeof(val),
953 		.mode = table->mode,
954 	};
955 	int ret;
956 
957 	if (write) {
958 		ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
959 		if (ret)
960 			return ret;
961 
962 		if (val < 0)
963 			return -EINVAL;
964 
965 		mutex_lock(&limit->mutex);
966 		if (limit->limit != -1 && val >= limit->limit)
967 			ret = -EINVAL;
968 		else
969 			limit->limit = val;
970 		mutex_unlock(&limit->mutex);
971 
972 		return ret;
973 	}
974 
975 	mutex_lock(&limit->mutex);
976 	val = limit->limit;
977 	mutex_unlock(&limit->mutex);
978 
979 	return proc_dointvec(&tmp, write, buffer, lenp, ppos);
980 }
981 
982 static struct ctl_table kexec_core_sysctls[] = {
983 	{
984 		.procname	= "kexec_load_disabled",
985 		.data		= &kexec_load_disabled,
986 		.maxlen		= sizeof(int),
987 		.mode		= 0644,
988 		/* only handle a transition from default "0" to "1" */
989 		.proc_handler	= proc_dointvec_minmax,
990 		.extra1		= SYSCTL_ONE,
991 		.extra2		= SYSCTL_ONE,
992 	},
993 	{
994 		.procname	= "kexec_load_limit_panic",
995 		.data		= &load_limit_panic,
996 		.mode		= 0644,
997 		.proc_handler	= kexec_limit_handler,
998 	},
999 	{
1000 		.procname	= "kexec_load_limit_reboot",
1001 		.data		= &load_limit_reboot,
1002 		.mode		= 0644,
1003 		.proc_handler	= kexec_limit_handler,
1004 	},
1005 	{ }
1006 };
1007 
1008 static int __init kexec_core_sysctl_init(void)
1009 {
1010 	register_sysctl_init("kernel", kexec_core_sysctls);
1011 	return 0;
1012 }
1013 late_initcall(kexec_core_sysctl_init);
1014 #endif
1015 
1016 bool kexec_load_permitted(int kexec_image_type)
1017 {
1018 	struct kexec_load_limit *limit;
1019 
1020 	/*
1021 	 * Only the superuser can use the kexec syscall and if it has not
1022 	 * been disabled.
1023 	 */
1024 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
1025 		return false;
1026 
1027 	/* Check limit counter and decrease it.*/
1028 	limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
1029 		&load_limit_panic : &load_limit_reboot;
1030 	mutex_lock(&limit->mutex);
1031 	if (!limit->limit) {
1032 		mutex_unlock(&limit->mutex);
1033 		return false;
1034 	}
1035 	if (limit->limit != -1)
1036 		limit->limit--;
1037 	mutex_unlock(&limit->mutex);
1038 
1039 	return true;
1040 }
1041 
1042 /*
1043  * No panic_cpu check version of crash_kexec().  This function is called
1044  * only when panic_cpu holds the current CPU number; this is the only CPU
1045  * which processes crash_kexec routines.
1046  */
1047 void __noclone __crash_kexec(struct pt_regs *regs)
1048 {
1049 	/* Take the kexec_lock here to prevent sys_kexec_load
1050 	 * running on one cpu from replacing the crash kernel
1051 	 * we are using after a panic on a different cpu.
1052 	 *
1053 	 * If the crash kernel was not located in a fixed area
1054 	 * of memory the xchg(&kexec_crash_image) would be
1055 	 * sufficient.  But since I reuse the memory...
1056 	 */
1057 	if (kexec_trylock()) {
1058 		if (kexec_crash_image) {
1059 			struct pt_regs fixed_regs;
1060 
1061 			crash_setup_regs(&fixed_regs, regs);
1062 			crash_save_vmcoreinfo();
1063 			machine_crash_shutdown(&fixed_regs);
1064 			machine_kexec(kexec_crash_image);
1065 		}
1066 		kexec_unlock();
1067 	}
1068 }
1069 STACK_FRAME_NON_STANDARD(__crash_kexec);
1070 
1071 __bpf_kfunc void crash_kexec(struct pt_regs *regs)
1072 {
1073 	int old_cpu, this_cpu;
1074 
1075 	/*
1076 	 * Only one CPU is allowed to execute the crash_kexec() code as with
1077 	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
1078 	 * may stop each other.  To exclude them, we use panic_cpu here too.
1079 	 */
1080 	this_cpu = raw_smp_processor_id();
1081 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
1082 	if (old_cpu == PANIC_CPU_INVALID) {
1083 		/* This is the 1st CPU which comes here, so go ahead. */
1084 		__crash_kexec(regs);
1085 
1086 		/*
1087 		 * Reset panic_cpu to allow another panic()/crash_kexec()
1088 		 * call.
1089 		 */
1090 		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
1091 	}
1092 }
1093 
1094 ssize_t crash_get_memory_size(void)
1095 {
1096 	ssize_t size = 0;
1097 
1098 	if (!kexec_trylock())
1099 		return -EBUSY;
1100 
1101 	if (crashk_res.end != crashk_res.start)
1102 		size = resource_size(&crashk_res);
1103 
1104 	kexec_unlock();
1105 	return size;
1106 }
1107 
1108 int crash_shrink_memory(unsigned long new_size)
1109 {
1110 	int ret = 0;
1111 	unsigned long start, end;
1112 	unsigned long old_size;
1113 	struct resource *ram_res;
1114 
1115 	if (!kexec_trylock())
1116 		return -EBUSY;
1117 
1118 	if (kexec_crash_image) {
1119 		ret = -ENOENT;
1120 		goto unlock;
1121 	}
1122 	start = crashk_res.start;
1123 	end = crashk_res.end;
1124 	old_size = (end == 0) ? 0 : end - start + 1;
1125 	if (new_size >= old_size) {
1126 		ret = (new_size == old_size) ? 0 : -EINVAL;
1127 		goto unlock;
1128 	}
1129 
1130 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1131 	if (!ram_res) {
1132 		ret = -ENOMEM;
1133 		goto unlock;
1134 	}
1135 
1136 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1137 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1138 
1139 	crash_free_reserved_phys_range(end, crashk_res.end);
1140 
1141 	if ((start == end) && (crashk_res.parent != NULL))
1142 		release_resource(&crashk_res);
1143 
1144 	ram_res->start = end;
1145 	ram_res->end = crashk_res.end;
1146 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1147 	ram_res->name = "System RAM";
1148 
1149 	crashk_res.end = end - 1;
1150 
1151 	insert_resource(&iomem_resource, ram_res);
1152 
1153 unlock:
1154 	kexec_unlock();
1155 	return ret;
1156 }
1157 
1158 void crash_save_cpu(struct pt_regs *regs, int cpu)
1159 {
1160 	struct elf_prstatus prstatus;
1161 	u32 *buf;
1162 
1163 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1164 		return;
1165 
1166 	/* Using ELF notes here is opportunistic.
1167 	 * I need a well defined structure format
1168 	 * for the data I pass, and I need tags
1169 	 * on the data to indicate what information I have
1170 	 * squirrelled away.  ELF notes happen to provide
1171 	 * all of that, so there is no need to invent something new.
1172 	 */
1173 	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1174 	if (!buf)
1175 		return;
1176 	memset(&prstatus, 0, sizeof(prstatus));
1177 	prstatus.common.pr_pid = current->pid;
1178 	elf_core_copy_regs(&prstatus.pr_reg, regs);
1179 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1180 			      &prstatus, sizeof(prstatus));
1181 	final_note(buf);
1182 }
1183 
1184 static int __init crash_notes_memory_init(void)
1185 {
1186 	/* Allocate memory for saving cpu registers. */
1187 	size_t size, align;
1188 
1189 	/*
1190 	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1191 	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1192 	 * pages are also on 2 continuous physical pages. In this case the
1193 	 * 2nd part of crash_notes in 2nd page could be lost since only the
1194 	 * starting address and size of crash_notes are exported through sysfs.
1195 	 * Here round up the size of crash_notes to the nearest power of two
1196 	 * and pass it to __alloc_percpu as align value. This can make sure
1197 	 * crash_notes is allocated inside one physical page.
1198 	 */
1199 	size = sizeof(note_buf_t);
1200 	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1201 
1202 	/*
1203 	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1204 	 * definitely will be in 2 pages with that.
1205 	 */
1206 	BUILD_BUG_ON(size > PAGE_SIZE);
1207 
1208 	crash_notes = __alloc_percpu(size, align);
1209 	if (!crash_notes) {
1210 		pr_warn("Memory allocation for saving cpu register states failed\n");
1211 		return -ENOMEM;
1212 	}
1213 	return 0;
1214 }
1215 subsys_initcall(crash_notes_memory_init);
1216 
1217 
1218 /*
1219  * Move into place and start executing a preloaded standalone
1220  * executable.  If nothing was preloaded return an error.
1221  */
1222 int kernel_kexec(void)
1223 {
1224 	int error = 0;
1225 
1226 	if (!kexec_trylock())
1227 		return -EBUSY;
1228 	if (!kexec_image) {
1229 		error = -EINVAL;
1230 		goto Unlock;
1231 	}
1232 
1233 #ifdef CONFIG_KEXEC_JUMP
1234 	if (kexec_image->preserve_context) {
1235 		pm_prepare_console();
1236 		error = freeze_processes();
1237 		if (error) {
1238 			error = -EBUSY;
1239 			goto Restore_console;
1240 		}
1241 		suspend_console();
1242 		error = dpm_suspend_start(PMSG_FREEZE);
1243 		if (error)
1244 			goto Resume_console;
1245 		/* At this point, dpm_suspend_start() has been called,
1246 		 * but *not* dpm_suspend_end(). We *must* call
1247 		 * dpm_suspend_end() now.  Otherwise, drivers for
1248 		 * some devices (e.g. interrupt controllers) become
1249 		 * desynchronized with the actual state of the
1250 		 * hardware at resume time, and evil weirdness ensues.
1251 		 */
1252 		error = dpm_suspend_end(PMSG_FREEZE);
1253 		if (error)
1254 			goto Resume_devices;
1255 		error = suspend_disable_secondary_cpus();
1256 		if (error)
1257 			goto Enable_cpus;
1258 		local_irq_disable();
1259 		error = syscore_suspend();
1260 		if (error)
1261 			goto Enable_irqs;
1262 	} else
1263 #endif
1264 	{
1265 		kexec_in_progress = true;
1266 		kernel_restart_prepare("kexec reboot");
1267 		migrate_to_reboot_cpu();
1268 
1269 		/*
1270 		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1271 		 * no further code needs to use CPU hotplug (which is true in
1272 		 * the reboot case). However, the kexec path depends on using
1273 		 * CPU hotplug again; so re-enable it here.
1274 		 */
1275 		cpu_hotplug_enable();
1276 		pr_notice("Starting new kernel\n");
1277 		machine_shutdown();
1278 	}
1279 
1280 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1281 	machine_kexec(kexec_image);
1282 
1283 #ifdef CONFIG_KEXEC_JUMP
1284 	if (kexec_image->preserve_context) {
1285 		syscore_resume();
1286  Enable_irqs:
1287 		local_irq_enable();
1288  Enable_cpus:
1289 		suspend_enable_secondary_cpus();
1290 		dpm_resume_start(PMSG_RESTORE);
1291  Resume_devices:
1292 		dpm_resume_end(PMSG_RESTORE);
1293  Resume_console:
1294 		resume_console();
1295 		thaw_processes();
1296  Restore_console:
1297 		pm_restore_console();
1298 	}
1299 #endif
1300 
1301  Unlock:
1302 	kexec_unlock();
1303 	return error;
1304 }
1305