1 /* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mm.h> 11 #include <linux/file.h> 12 #include <linux/slab.h> 13 #include <linux/fs.h> 14 #include <linux/kexec.h> 15 #include <linux/spinlock.h> 16 #include <linux/list.h> 17 #include <linux/highmem.h> 18 #include <linux/syscalls.h> 19 #include <linux/reboot.h> 20 #include <linux/syscalls.h> 21 #include <linux/ioport.h> 22 #include <linux/hardirq.h> 23 24 #include <asm/page.h> 25 #include <asm/uaccess.h> 26 #include <asm/io.h> 27 #include <asm/system.h> 28 #include <asm/semaphore.h> 29 30 /* Per cpu memory for storing cpu states in case of system crash. */ 31 note_buf_t* crash_notes; 32 33 /* Location of the reserved area for the crash kernel */ 34 struct resource crashk_res = { 35 .name = "Crash kernel", 36 .start = 0, 37 .end = 0, 38 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 39 }; 40 41 int kexec_should_crash(struct task_struct *p) 42 { 43 if (in_interrupt() || !p->pid || p->pid == 1 || panic_on_oops) 44 return 1; 45 return 0; 46 } 47 48 /* 49 * When kexec transitions to the new kernel there is a one-to-one 50 * mapping between physical and virtual addresses. On processors 51 * where you can disable the MMU this is trivial, and easy. For 52 * others it is still a simple predictable page table to setup. 53 * 54 * In that environment kexec copies the new kernel to its final 55 * resting place. This means I can only support memory whose 56 * physical address can fit in an unsigned long. In particular 57 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 58 * If the assembly stub has more restrictive requirements 59 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 60 * defined more restrictively in <asm/kexec.h>. 61 * 62 * The code for the transition from the current kernel to the 63 * the new kernel is placed in the control_code_buffer, whose size 64 * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single 65 * page of memory is necessary, but some architectures require more. 66 * Because this memory must be identity mapped in the transition from 67 * virtual to physical addresses it must live in the range 68 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 69 * modifiable. 70 * 71 * The assembly stub in the control code buffer is passed a linked list 72 * of descriptor pages detailing the source pages of the new kernel, 73 * and the destination addresses of those source pages. As this data 74 * structure is not used in the context of the current OS, it must 75 * be self-contained. 76 * 77 * The code has been made to work with highmem pages and will use a 78 * destination page in its final resting place (if it happens 79 * to allocate it). The end product of this is that most of the 80 * physical address space, and most of RAM can be used. 81 * 82 * Future directions include: 83 * - allocating a page table with the control code buffer identity 84 * mapped, to simplify machine_kexec and make kexec_on_panic more 85 * reliable. 86 */ 87 88 /* 89 * KIMAGE_NO_DEST is an impossible destination address..., for 90 * allocating pages whose destination address we do not care about. 91 */ 92 #define KIMAGE_NO_DEST (-1UL) 93 94 static int kimage_is_destination_range(struct kimage *image, 95 unsigned long start, unsigned long end); 96 static struct page *kimage_alloc_page(struct kimage *image, 97 gfp_t gfp_mask, 98 unsigned long dest); 99 100 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, 101 unsigned long nr_segments, 102 struct kexec_segment __user *segments) 103 { 104 size_t segment_bytes; 105 struct kimage *image; 106 unsigned long i; 107 int result; 108 109 /* Allocate a controlling structure */ 110 result = -ENOMEM; 111 image = kmalloc(sizeof(*image), GFP_KERNEL); 112 if (!image) 113 goto out; 114 115 memset(image, 0, sizeof(*image)); 116 image->head = 0; 117 image->entry = &image->head; 118 image->last_entry = &image->head; 119 image->control_page = ~0; /* By default this does not apply */ 120 image->start = entry; 121 image->type = KEXEC_TYPE_DEFAULT; 122 123 /* Initialize the list of control pages */ 124 INIT_LIST_HEAD(&image->control_pages); 125 126 /* Initialize the list of destination pages */ 127 INIT_LIST_HEAD(&image->dest_pages); 128 129 /* Initialize the list of unuseable pages */ 130 INIT_LIST_HEAD(&image->unuseable_pages); 131 132 /* Read in the segments */ 133 image->nr_segments = nr_segments; 134 segment_bytes = nr_segments * sizeof(*segments); 135 result = copy_from_user(image->segment, segments, segment_bytes); 136 if (result) 137 goto out; 138 139 /* 140 * Verify we have good destination addresses. The caller is 141 * responsible for making certain we don't attempt to load 142 * the new image into invalid or reserved areas of RAM. This 143 * just verifies it is an address we can use. 144 * 145 * Since the kernel does everything in page size chunks ensure 146 * the destination addreses are page aligned. Too many 147 * special cases crop of when we don't do this. The most 148 * insidious is getting overlapping destination addresses 149 * simply because addresses are changed to page size 150 * granularity. 151 */ 152 result = -EADDRNOTAVAIL; 153 for (i = 0; i < nr_segments; i++) { 154 unsigned long mstart, mend; 155 156 mstart = image->segment[i].mem; 157 mend = mstart + image->segment[i].memsz; 158 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 159 goto out; 160 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 161 goto out; 162 } 163 164 /* Verify our destination addresses do not overlap. 165 * If we alloed overlapping destination addresses 166 * through very weird things can happen with no 167 * easy explanation as one segment stops on another. 168 */ 169 result = -EINVAL; 170 for (i = 0; i < nr_segments; i++) { 171 unsigned long mstart, mend; 172 unsigned long j; 173 174 mstart = image->segment[i].mem; 175 mend = mstart + image->segment[i].memsz; 176 for (j = 0; j < i; j++) { 177 unsigned long pstart, pend; 178 pstart = image->segment[j].mem; 179 pend = pstart + image->segment[j].memsz; 180 /* Do the segments overlap ? */ 181 if ((mend > pstart) && (mstart < pend)) 182 goto out; 183 } 184 } 185 186 /* Ensure our buffer sizes are strictly less than 187 * our memory sizes. This should always be the case, 188 * and it is easier to check up front than to be surprised 189 * later on. 190 */ 191 result = -EINVAL; 192 for (i = 0; i < nr_segments; i++) { 193 if (image->segment[i].bufsz > image->segment[i].memsz) 194 goto out; 195 } 196 197 result = 0; 198 out: 199 if (result == 0) 200 *rimage = image; 201 else 202 kfree(image); 203 204 return result; 205 206 } 207 208 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, 209 unsigned long nr_segments, 210 struct kexec_segment __user *segments) 211 { 212 int result; 213 struct kimage *image; 214 215 /* Allocate and initialize a controlling structure */ 216 image = NULL; 217 result = do_kimage_alloc(&image, entry, nr_segments, segments); 218 if (result) 219 goto out; 220 221 *rimage = image; 222 223 /* 224 * Find a location for the control code buffer, and add it 225 * the vector of segments so that it's pages will also be 226 * counted as destination pages. 227 */ 228 result = -ENOMEM; 229 image->control_code_page = kimage_alloc_control_pages(image, 230 get_order(KEXEC_CONTROL_CODE_SIZE)); 231 if (!image->control_code_page) { 232 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 233 goto out; 234 } 235 236 result = 0; 237 out: 238 if (result == 0) 239 *rimage = image; 240 else 241 kfree(image); 242 243 return result; 244 } 245 246 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, 247 unsigned long nr_segments, 248 struct kexec_segment __user *segments) 249 { 250 int result; 251 struct kimage *image; 252 unsigned long i; 253 254 image = NULL; 255 /* Verify we have a valid entry point */ 256 if ((entry < crashk_res.start) || (entry > crashk_res.end)) { 257 result = -EADDRNOTAVAIL; 258 goto out; 259 } 260 261 /* Allocate and initialize a controlling structure */ 262 result = do_kimage_alloc(&image, entry, nr_segments, segments); 263 if (result) 264 goto out; 265 266 /* Enable the special crash kernel control page 267 * allocation policy. 268 */ 269 image->control_page = crashk_res.start; 270 image->type = KEXEC_TYPE_CRASH; 271 272 /* 273 * Verify we have good destination addresses. Normally 274 * the caller is responsible for making certain we don't 275 * attempt to load the new image into invalid or reserved 276 * areas of RAM. But crash kernels are preloaded into a 277 * reserved area of ram. We must ensure the addresses 278 * are in the reserved area otherwise preloading the 279 * kernel could corrupt things. 280 */ 281 result = -EADDRNOTAVAIL; 282 for (i = 0; i < nr_segments; i++) { 283 unsigned long mstart, mend; 284 285 mstart = image->segment[i].mem; 286 mend = mstart + image->segment[i].memsz - 1; 287 /* Ensure we are within the crash kernel limits */ 288 if ((mstart < crashk_res.start) || (mend > crashk_res.end)) 289 goto out; 290 } 291 292 /* 293 * Find a location for the control code buffer, and add 294 * the vector of segments so that it's pages will also be 295 * counted as destination pages. 296 */ 297 result = -ENOMEM; 298 image->control_code_page = kimage_alloc_control_pages(image, 299 get_order(KEXEC_CONTROL_CODE_SIZE)); 300 if (!image->control_code_page) { 301 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 302 goto out; 303 } 304 305 result = 0; 306 out: 307 if (result == 0) 308 *rimage = image; 309 else 310 kfree(image); 311 312 return result; 313 } 314 315 static int kimage_is_destination_range(struct kimage *image, 316 unsigned long start, 317 unsigned long end) 318 { 319 unsigned long i; 320 321 for (i = 0; i < image->nr_segments; i++) { 322 unsigned long mstart, mend; 323 324 mstart = image->segment[i].mem; 325 mend = mstart + image->segment[i].memsz; 326 if ((end > mstart) && (start < mend)) 327 return 1; 328 } 329 330 return 0; 331 } 332 333 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 334 { 335 struct page *pages; 336 337 pages = alloc_pages(gfp_mask, order); 338 if (pages) { 339 unsigned int count, i; 340 pages->mapping = NULL; 341 set_page_private(pages, order); 342 count = 1 << order; 343 for (i = 0; i < count; i++) 344 SetPageReserved(pages + i); 345 } 346 347 return pages; 348 } 349 350 static void kimage_free_pages(struct page *page) 351 { 352 unsigned int order, count, i; 353 354 order = page_private(page); 355 count = 1 << order; 356 for (i = 0; i < count; i++) 357 ClearPageReserved(page + i); 358 __free_pages(page, order); 359 } 360 361 static void kimage_free_page_list(struct list_head *list) 362 { 363 struct list_head *pos, *next; 364 365 list_for_each_safe(pos, next, list) { 366 struct page *page; 367 368 page = list_entry(pos, struct page, lru); 369 list_del(&page->lru); 370 kimage_free_pages(page); 371 } 372 } 373 374 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 375 unsigned int order) 376 { 377 /* Control pages are special, they are the intermediaries 378 * that are needed while we copy the rest of the pages 379 * to their final resting place. As such they must 380 * not conflict with either the destination addresses 381 * or memory the kernel is already using. 382 * 383 * The only case where we really need more than one of 384 * these are for architectures where we cannot disable 385 * the MMU and must instead generate an identity mapped 386 * page table for all of the memory. 387 * 388 * At worst this runs in O(N) of the image size. 389 */ 390 struct list_head extra_pages; 391 struct page *pages; 392 unsigned int count; 393 394 count = 1 << order; 395 INIT_LIST_HEAD(&extra_pages); 396 397 /* Loop while I can allocate a page and the page allocated 398 * is a destination page. 399 */ 400 do { 401 unsigned long pfn, epfn, addr, eaddr; 402 403 pages = kimage_alloc_pages(GFP_KERNEL, order); 404 if (!pages) 405 break; 406 pfn = page_to_pfn(pages); 407 epfn = pfn + count; 408 addr = pfn << PAGE_SHIFT; 409 eaddr = epfn << PAGE_SHIFT; 410 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 411 kimage_is_destination_range(image, addr, eaddr)) { 412 list_add(&pages->lru, &extra_pages); 413 pages = NULL; 414 } 415 } while (!pages); 416 417 if (pages) { 418 /* Remember the allocated page... */ 419 list_add(&pages->lru, &image->control_pages); 420 421 /* Because the page is already in it's destination 422 * location we will never allocate another page at 423 * that address. Therefore kimage_alloc_pages 424 * will not return it (again) and we don't need 425 * to give it an entry in image->segment[]. 426 */ 427 } 428 /* Deal with the destination pages I have inadvertently allocated. 429 * 430 * Ideally I would convert multi-page allocations into single 431 * page allocations, and add everyting to image->dest_pages. 432 * 433 * For now it is simpler to just free the pages. 434 */ 435 kimage_free_page_list(&extra_pages); 436 437 return pages; 438 } 439 440 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 441 unsigned int order) 442 { 443 /* Control pages are special, they are the intermediaries 444 * that are needed while we copy the rest of the pages 445 * to their final resting place. As such they must 446 * not conflict with either the destination addresses 447 * or memory the kernel is already using. 448 * 449 * Control pages are also the only pags we must allocate 450 * when loading a crash kernel. All of the other pages 451 * are specified by the segments and we just memcpy 452 * into them directly. 453 * 454 * The only case where we really need more than one of 455 * these are for architectures where we cannot disable 456 * the MMU and must instead generate an identity mapped 457 * page table for all of the memory. 458 * 459 * Given the low demand this implements a very simple 460 * allocator that finds the first hole of the appropriate 461 * size in the reserved memory region, and allocates all 462 * of the memory up to and including the hole. 463 */ 464 unsigned long hole_start, hole_end, size; 465 struct page *pages; 466 467 pages = NULL; 468 size = (1 << order) << PAGE_SHIFT; 469 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 470 hole_end = hole_start + size - 1; 471 while (hole_end <= crashk_res.end) { 472 unsigned long i; 473 474 if (hole_end > KEXEC_CONTROL_MEMORY_LIMIT) 475 break; 476 if (hole_end > crashk_res.end) 477 break; 478 /* See if I overlap any of the segments */ 479 for (i = 0; i < image->nr_segments; i++) { 480 unsigned long mstart, mend; 481 482 mstart = image->segment[i].mem; 483 mend = mstart + image->segment[i].memsz - 1; 484 if ((hole_end >= mstart) && (hole_start <= mend)) { 485 /* Advance the hole to the end of the segment */ 486 hole_start = (mend + (size - 1)) & ~(size - 1); 487 hole_end = hole_start + size - 1; 488 break; 489 } 490 } 491 /* If I don't overlap any segments I have found my hole! */ 492 if (i == image->nr_segments) { 493 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 494 break; 495 } 496 } 497 if (pages) 498 image->control_page = hole_end; 499 500 return pages; 501 } 502 503 504 struct page *kimage_alloc_control_pages(struct kimage *image, 505 unsigned int order) 506 { 507 struct page *pages = NULL; 508 509 switch (image->type) { 510 case KEXEC_TYPE_DEFAULT: 511 pages = kimage_alloc_normal_control_pages(image, order); 512 break; 513 case KEXEC_TYPE_CRASH: 514 pages = kimage_alloc_crash_control_pages(image, order); 515 break; 516 } 517 518 return pages; 519 } 520 521 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 522 { 523 if (*image->entry != 0) 524 image->entry++; 525 526 if (image->entry == image->last_entry) { 527 kimage_entry_t *ind_page; 528 struct page *page; 529 530 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 531 if (!page) 532 return -ENOMEM; 533 534 ind_page = page_address(page); 535 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; 536 image->entry = ind_page; 537 image->last_entry = ind_page + 538 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 539 } 540 *image->entry = entry; 541 image->entry++; 542 *image->entry = 0; 543 544 return 0; 545 } 546 547 static int kimage_set_destination(struct kimage *image, 548 unsigned long destination) 549 { 550 int result; 551 552 destination &= PAGE_MASK; 553 result = kimage_add_entry(image, destination | IND_DESTINATION); 554 if (result == 0) 555 image->destination = destination; 556 557 return result; 558 } 559 560 561 static int kimage_add_page(struct kimage *image, unsigned long page) 562 { 563 int result; 564 565 page &= PAGE_MASK; 566 result = kimage_add_entry(image, page | IND_SOURCE); 567 if (result == 0) 568 image->destination += PAGE_SIZE; 569 570 return result; 571 } 572 573 574 static void kimage_free_extra_pages(struct kimage *image) 575 { 576 /* Walk through and free any extra destination pages I may have */ 577 kimage_free_page_list(&image->dest_pages); 578 579 /* Walk through and free any unuseable pages I have cached */ 580 kimage_free_page_list(&image->unuseable_pages); 581 582 } 583 static int kimage_terminate(struct kimage *image) 584 { 585 if (*image->entry != 0) 586 image->entry++; 587 588 *image->entry = IND_DONE; 589 590 return 0; 591 } 592 593 #define for_each_kimage_entry(image, ptr, entry) \ 594 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 595 ptr = (entry & IND_INDIRECTION)? \ 596 phys_to_virt((entry & PAGE_MASK)): ptr +1) 597 598 static void kimage_free_entry(kimage_entry_t entry) 599 { 600 struct page *page; 601 602 page = pfn_to_page(entry >> PAGE_SHIFT); 603 kimage_free_pages(page); 604 } 605 606 static void kimage_free(struct kimage *image) 607 { 608 kimage_entry_t *ptr, entry; 609 kimage_entry_t ind = 0; 610 611 if (!image) 612 return; 613 614 kimage_free_extra_pages(image); 615 for_each_kimage_entry(image, ptr, entry) { 616 if (entry & IND_INDIRECTION) { 617 /* Free the previous indirection page */ 618 if (ind & IND_INDIRECTION) 619 kimage_free_entry(ind); 620 /* Save this indirection page until we are 621 * done with it. 622 */ 623 ind = entry; 624 } 625 else if (entry & IND_SOURCE) 626 kimage_free_entry(entry); 627 } 628 /* Free the final indirection page */ 629 if (ind & IND_INDIRECTION) 630 kimage_free_entry(ind); 631 632 /* Handle any machine specific cleanup */ 633 machine_kexec_cleanup(image); 634 635 /* Free the kexec control pages... */ 636 kimage_free_page_list(&image->control_pages); 637 kfree(image); 638 } 639 640 static kimage_entry_t *kimage_dst_used(struct kimage *image, 641 unsigned long page) 642 { 643 kimage_entry_t *ptr, entry; 644 unsigned long destination = 0; 645 646 for_each_kimage_entry(image, ptr, entry) { 647 if (entry & IND_DESTINATION) 648 destination = entry & PAGE_MASK; 649 else if (entry & IND_SOURCE) { 650 if (page == destination) 651 return ptr; 652 destination += PAGE_SIZE; 653 } 654 } 655 656 return NULL; 657 } 658 659 static struct page *kimage_alloc_page(struct kimage *image, 660 gfp_t gfp_mask, 661 unsigned long destination) 662 { 663 /* 664 * Here we implement safeguards to ensure that a source page 665 * is not copied to its destination page before the data on 666 * the destination page is no longer useful. 667 * 668 * To do this we maintain the invariant that a source page is 669 * either its own destination page, or it is not a 670 * destination page at all. 671 * 672 * That is slightly stronger than required, but the proof 673 * that no problems will not occur is trivial, and the 674 * implementation is simply to verify. 675 * 676 * When allocating all pages normally this algorithm will run 677 * in O(N) time, but in the worst case it will run in O(N^2) 678 * time. If the runtime is a problem the data structures can 679 * be fixed. 680 */ 681 struct page *page; 682 unsigned long addr; 683 684 /* 685 * Walk through the list of destination pages, and see if I 686 * have a match. 687 */ 688 list_for_each_entry(page, &image->dest_pages, lru) { 689 addr = page_to_pfn(page) << PAGE_SHIFT; 690 if (addr == destination) { 691 list_del(&page->lru); 692 return page; 693 } 694 } 695 page = NULL; 696 while (1) { 697 kimage_entry_t *old; 698 699 /* Allocate a page, if we run out of memory give up */ 700 page = kimage_alloc_pages(gfp_mask, 0); 701 if (!page) 702 return NULL; 703 /* If the page cannot be used file it away */ 704 if (page_to_pfn(page) > 705 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 706 list_add(&page->lru, &image->unuseable_pages); 707 continue; 708 } 709 addr = page_to_pfn(page) << PAGE_SHIFT; 710 711 /* If it is the destination page we want use it */ 712 if (addr == destination) 713 break; 714 715 /* If the page is not a destination page use it */ 716 if (!kimage_is_destination_range(image, addr, 717 addr + PAGE_SIZE)) 718 break; 719 720 /* 721 * I know that the page is someones destination page. 722 * See if there is already a source page for this 723 * destination page. And if so swap the source pages. 724 */ 725 old = kimage_dst_used(image, addr); 726 if (old) { 727 /* If so move it */ 728 unsigned long old_addr; 729 struct page *old_page; 730 731 old_addr = *old & PAGE_MASK; 732 old_page = pfn_to_page(old_addr >> PAGE_SHIFT); 733 copy_highpage(page, old_page); 734 *old = addr | (*old & ~PAGE_MASK); 735 736 /* The old page I have found cannot be a 737 * destination page, so return it. 738 */ 739 addr = old_addr; 740 page = old_page; 741 break; 742 } 743 else { 744 /* Place the page on the destination list I 745 * will use it later. 746 */ 747 list_add(&page->lru, &image->dest_pages); 748 } 749 } 750 751 return page; 752 } 753 754 static int kimage_load_normal_segment(struct kimage *image, 755 struct kexec_segment *segment) 756 { 757 unsigned long maddr; 758 unsigned long ubytes, mbytes; 759 int result; 760 unsigned char __user *buf; 761 762 result = 0; 763 buf = segment->buf; 764 ubytes = segment->bufsz; 765 mbytes = segment->memsz; 766 maddr = segment->mem; 767 768 result = kimage_set_destination(image, maddr); 769 if (result < 0) 770 goto out; 771 772 while (mbytes) { 773 struct page *page; 774 char *ptr; 775 size_t uchunk, mchunk; 776 777 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 778 if (page == 0) { 779 result = -ENOMEM; 780 goto out; 781 } 782 result = kimage_add_page(image, page_to_pfn(page) 783 << PAGE_SHIFT); 784 if (result < 0) 785 goto out; 786 787 ptr = kmap(page); 788 /* Start with a clear page */ 789 memset(ptr, 0, PAGE_SIZE); 790 ptr += maddr & ~PAGE_MASK; 791 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); 792 if (mchunk > mbytes) 793 mchunk = mbytes; 794 795 uchunk = mchunk; 796 if (uchunk > ubytes) 797 uchunk = ubytes; 798 799 result = copy_from_user(ptr, buf, uchunk); 800 kunmap(page); 801 if (result) { 802 result = (result < 0) ? result : -EIO; 803 goto out; 804 } 805 ubytes -= uchunk; 806 maddr += mchunk; 807 buf += mchunk; 808 mbytes -= mchunk; 809 } 810 out: 811 return result; 812 } 813 814 static int kimage_load_crash_segment(struct kimage *image, 815 struct kexec_segment *segment) 816 { 817 /* For crash dumps kernels we simply copy the data from 818 * user space to it's destination. 819 * We do things a page at a time for the sake of kmap. 820 */ 821 unsigned long maddr; 822 unsigned long ubytes, mbytes; 823 int result; 824 unsigned char __user *buf; 825 826 result = 0; 827 buf = segment->buf; 828 ubytes = segment->bufsz; 829 mbytes = segment->memsz; 830 maddr = segment->mem; 831 while (mbytes) { 832 struct page *page; 833 char *ptr; 834 size_t uchunk, mchunk; 835 836 page = pfn_to_page(maddr >> PAGE_SHIFT); 837 if (page == 0) { 838 result = -ENOMEM; 839 goto out; 840 } 841 ptr = kmap(page); 842 ptr += maddr & ~PAGE_MASK; 843 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); 844 if (mchunk > mbytes) 845 mchunk = mbytes; 846 847 uchunk = mchunk; 848 if (uchunk > ubytes) { 849 uchunk = ubytes; 850 /* Zero the trailing part of the page */ 851 memset(ptr + uchunk, 0, mchunk - uchunk); 852 } 853 result = copy_from_user(ptr, buf, uchunk); 854 kunmap(page); 855 if (result) { 856 result = (result < 0) ? result : -EIO; 857 goto out; 858 } 859 ubytes -= uchunk; 860 maddr += mchunk; 861 buf += mchunk; 862 mbytes -= mchunk; 863 } 864 out: 865 return result; 866 } 867 868 static int kimage_load_segment(struct kimage *image, 869 struct kexec_segment *segment) 870 { 871 int result = -ENOMEM; 872 873 switch (image->type) { 874 case KEXEC_TYPE_DEFAULT: 875 result = kimage_load_normal_segment(image, segment); 876 break; 877 case KEXEC_TYPE_CRASH: 878 result = kimage_load_crash_segment(image, segment); 879 break; 880 } 881 882 return result; 883 } 884 885 /* 886 * Exec Kernel system call: for obvious reasons only root may call it. 887 * 888 * This call breaks up into three pieces. 889 * - A generic part which loads the new kernel from the current 890 * address space, and very carefully places the data in the 891 * allocated pages. 892 * 893 * - A generic part that interacts with the kernel and tells all of 894 * the devices to shut down. Preventing on-going dmas, and placing 895 * the devices in a consistent state so a later kernel can 896 * reinitialize them. 897 * 898 * - A machine specific part that includes the syscall number 899 * and the copies the image to it's final destination. And 900 * jumps into the image at entry. 901 * 902 * kexec does not sync, or unmount filesystems so if you need 903 * that to happen you need to do that yourself. 904 */ 905 struct kimage *kexec_image = NULL; 906 static struct kimage *kexec_crash_image = NULL; 907 /* 908 * A home grown binary mutex. 909 * Nothing can wait so this mutex is safe to use 910 * in interrupt context :) 911 */ 912 static int kexec_lock = 0; 913 914 asmlinkage long sys_kexec_load(unsigned long entry, unsigned long nr_segments, 915 struct kexec_segment __user *segments, 916 unsigned long flags) 917 { 918 struct kimage **dest_image, *image; 919 int locked; 920 int result; 921 922 /* We only trust the superuser with rebooting the system. */ 923 if (!capable(CAP_SYS_BOOT)) 924 return -EPERM; 925 926 /* 927 * Verify we have a legal set of flags 928 * This leaves us room for future extensions. 929 */ 930 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 931 return -EINVAL; 932 933 /* Verify we are on the appropriate architecture */ 934 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 935 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 936 return -EINVAL; 937 938 /* Put an artificial cap on the number 939 * of segments passed to kexec_load. 940 */ 941 if (nr_segments > KEXEC_SEGMENT_MAX) 942 return -EINVAL; 943 944 image = NULL; 945 result = 0; 946 947 /* Because we write directly to the reserved memory 948 * region when loading crash kernels we need a mutex here to 949 * prevent multiple crash kernels from attempting to load 950 * simultaneously, and to prevent a crash kernel from loading 951 * over the top of a in use crash kernel. 952 * 953 * KISS: always take the mutex. 954 */ 955 locked = xchg(&kexec_lock, 1); 956 if (locked) 957 return -EBUSY; 958 959 dest_image = &kexec_image; 960 if (flags & KEXEC_ON_CRASH) 961 dest_image = &kexec_crash_image; 962 if (nr_segments > 0) { 963 unsigned long i; 964 965 /* Loading another kernel to reboot into */ 966 if ((flags & KEXEC_ON_CRASH) == 0) 967 result = kimage_normal_alloc(&image, entry, 968 nr_segments, segments); 969 /* Loading another kernel to switch to if this one crashes */ 970 else if (flags & KEXEC_ON_CRASH) { 971 /* Free any current crash dump kernel before 972 * we corrupt it. 973 */ 974 kimage_free(xchg(&kexec_crash_image, NULL)); 975 result = kimage_crash_alloc(&image, entry, 976 nr_segments, segments); 977 } 978 if (result) 979 goto out; 980 981 result = machine_kexec_prepare(image); 982 if (result) 983 goto out; 984 985 for (i = 0; i < nr_segments; i++) { 986 result = kimage_load_segment(image, &image->segment[i]); 987 if (result) 988 goto out; 989 } 990 result = kimage_terminate(image); 991 if (result) 992 goto out; 993 } 994 /* Install the new kernel, and Uninstall the old */ 995 image = xchg(dest_image, image); 996 997 out: 998 xchg(&kexec_lock, 0); /* Release the mutex */ 999 kimage_free(image); 1000 1001 return result; 1002 } 1003 1004 #ifdef CONFIG_COMPAT 1005 asmlinkage long compat_sys_kexec_load(unsigned long entry, 1006 unsigned long nr_segments, 1007 struct compat_kexec_segment __user *segments, 1008 unsigned long flags) 1009 { 1010 struct compat_kexec_segment in; 1011 struct kexec_segment out, __user *ksegments; 1012 unsigned long i, result; 1013 1014 /* Don't allow clients that don't understand the native 1015 * architecture to do anything. 1016 */ 1017 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 1018 return -EINVAL; 1019 1020 if (nr_segments > KEXEC_SEGMENT_MAX) 1021 return -EINVAL; 1022 1023 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 1024 for (i=0; i < nr_segments; i++) { 1025 result = copy_from_user(&in, &segments[i], sizeof(in)); 1026 if (result) 1027 return -EFAULT; 1028 1029 out.buf = compat_ptr(in.buf); 1030 out.bufsz = in.bufsz; 1031 out.mem = in.mem; 1032 out.memsz = in.memsz; 1033 1034 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 1035 if (result) 1036 return -EFAULT; 1037 } 1038 1039 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1040 } 1041 #endif 1042 1043 void crash_kexec(struct pt_regs *regs) 1044 { 1045 struct kimage *image; 1046 int locked; 1047 1048 1049 /* Take the kexec_lock here to prevent sys_kexec_load 1050 * running on one cpu from replacing the crash kernel 1051 * we are using after a panic on a different cpu. 1052 * 1053 * If the crash kernel was not located in a fixed area 1054 * of memory the xchg(&kexec_crash_image) would be 1055 * sufficient. But since I reuse the memory... 1056 */ 1057 locked = xchg(&kexec_lock, 1); 1058 if (!locked) { 1059 image = xchg(&kexec_crash_image, NULL); 1060 if (image) { 1061 struct pt_regs fixed_regs; 1062 crash_setup_regs(&fixed_regs, regs); 1063 machine_crash_shutdown(&fixed_regs); 1064 machine_kexec(image); 1065 } 1066 xchg(&kexec_lock, 0); 1067 } 1068 } 1069 1070 static int __init crash_notes_memory_init(void) 1071 { 1072 /* Allocate memory for saving cpu registers. */ 1073 crash_notes = alloc_percpu(note_buf_t); 1074 if (!crash_notes) { 1075 printk("Kexec: Memory allocation for saving cpu register" 1076 " states failed\n"); 1077 return -ENOMEM; 1078 } 1079 return 0; 1080 } 1081 module_init(crash_notes_memory_init) 1082