1 /* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #include <linux/capability.h> 10 #include <linux/mm.h> 11 #include <linux/file.h> 12 #include <linux/slab.h> 13 #include <linux/fs.h> 14 #include <linux/kexec.h> 15 #include <linux/mutex.h> 16 #include <linux/list.h> 17 #include <linux/highmem.h> 18 #include <linux/syscalls.h> 19 #include <linux/reboot.h> 20 #include <linux/ioport.h> 21 #include <linux/hardirq.h> 22 #include <linux/elf.h> 23 #include <linux/elfcore.h> 24 #include <linux/utsname.h> 25 #include <linux/numa.h> 26 #include <linux/suspend.h> 27 #include <linux/device.h> 28 #include <linux/freezer.h> 29 #include <linux/pm.h> 30 #include <linux/cpu.h> 31 #include <linux/console.h> 32 #include <linux/vmalloc.h> 33 #include <linux/swap.h> 34 #include <linux/syscore_ops.h> 35 36 #include <asm/page.h> 37 #include <asm/uaccess.h> 38 #include <asm/io.h> 39 #include <asm/sections.h> 40 41 /* Per cpu memory for storing cpu states in case of system crash. */ 42 note_buf_t __percpu *crash_notes; 43 44 /* vmcoreinfo stuff */ 45 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 46 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 47 size_t vmcoreinfo_size; 48 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 49 50 /* Location of the reserved area for the crash kernel */ 51 struct resource crashk_res = { 52 .name = "Crash kernel", 53 .start = 0, 54 .end = 0, 55 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 56 }; 57 struct resource crashk_low_res = { 58 .name = "Crash kernel low", 59 .start = 0, 60 .end = 0, 61 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 62 }; 63 64 int kexec_should_crash(struct task_struct *p) 65 { 66 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 67 return 1; 68 return 0; 69 } 70 71 /* 72 * When kexec transitions to the new kernel there is a one-to-one 73 * mapping between physical and virtual addresses. On processors 74 * where you can disable the MMU this is trivial, and easy. For 75 * others it is still a simple predictable page table to setup. 76 * 77 * In that environment kexec copies the new kernel to its final 78 * resting place. This means I can only support memory whose 79 * physical address can fit in an unsigned long. In particular 80 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 81 * If the assembly stub has more restrictive requirements 82 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 83 * defined more restrictively in <asm/kexec.h>. 84 * 85 * The code for the transition from the current kernel to the 86 * the new kernel is placed in the control_code_buffer, whose size 87 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 88 * page of memory is necessary, but some architectures require more. 89 * Because this memory must be identity mapped in the transition from 90 * virtual to physical addresses it must live in the range 91 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 92 * modifiable. 93 * 94 * The assembly stub in the control code buffer is passed a linked list 95 * of descriptor pages detailing the source pages of the new kernel, 96 * and the destination addresses of those source pages. As this data 97 * structure is not used in the context of the current OS, it must 98 * be self-contained. 99 * 100 * The code has been made to work with highmem pages and will use a 101 * destination page in its final resting place (if it happens 102 * to allocate it). The end product of this is that most of the 103 * physical address space, and most of RAM can be used. 104 * 105 * Future directions include: 106 * - allocating a page table with the control code buffer identity 107 * mapped, to simplify machine_kexec and make kexec_on_panic more 108 * reliable. 109 */ 110 111 /* 112 * KIMAGE_NO_DEST is an impossible destination address..., for 113 * allocating pages whose destination address we do not care about. 114 */ 115 #define KIMAGE_NO_DEST (-1UL) 116 117 static int kimage_is_destination_range(struct kimage *image, 118 unsigned long start, unsigned long end); 119 static struct page *kimage_alloc_page(struct kimage *image, 120 gfp_t gfp_mask, 121 unsigned long dest); 122 123 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry, 124 unsigned long nr_segments, 125 struct kexec_segment __user *segments) 126 { 127 size_t segment_bytes; 128 struct kimage *image; 129 unsigned long i; 130 int result; 131 132 /* Allocate a controlling structure */ 133 result = -ENOMEM; 134 image = kzalloc(sizeof(*image), GFP_KERNEL); 135 if (!image) 136 goto out; 137 138 image->head = 0; 139 image->entry = &image->head; 140 image->last_entry = &image->head; 141 image->control_page = ~0; /* By default this does not apply */ 142 image->start = entry; 143 image->type = KEXEC_TYPE_DEFAULT; 144 145 /* Initialize the list of control pages */ 146 INIT_LIST_HEAD(&image->control_pages); 147 148 /* Initialize the list of destination pages */ 149 INIT_LIST_HEAD(&image->dest_pages); 150 151 /* Initialize the list of unusable pages */ 152 INIT_LIST_HEAD(&image->unuseable_pages); 153 154 /* Read in the segments */ 155 image->nr_segments = nr_segments; 156 segment_bytes = nr_segments * sizeof(*segments); 157 result = copy_from_user(image->segment, segments, segment_bytes); 158 if (result) { 159 result = -EFAULT; 160 goto out; 161 } 162 163 /* 164 * Verify we have good destination addresses. The caller is 165 * responsible for making certain we don't attempt to load 166 * the new image into invalid or reserved areas of RAM. This 167 * just verifies it is an address we can use. 168 * 169 * Since the kernel does everything in page size chunks ensure 170 * the destination addresses are page aligned. Too many 171 * special cases crop of when we don't do this. The most 172 * insidious is getting overlapping destination addresses 173 * simply because addresses are changed to page size 174 * granularity. 175 */ 176 result = -EADDRNOTAVAIL; 177 for (i = 0; i < nr_segments; i++) { 178 unsigned long mstart, mend; 179 180 mstart = image->segment[i].mem; 181 mend = mstart + image->segment[i].memsz; 182 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 183 goto out; 184 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 185 goto out; 186 } 187 188 /* Verify our destination addresses do not overlap. 189 * If we alloed overlapping destination addresses 190 * through very weird things can happen with no 191 * easy explanation as one segment stops on another. 192 */ 193 result = -EINVAL; 194 for (i = 0; i < nr_segments; i++) { 195 unsigned long mstart, mend; 196 unsigned long j; 197 198 mstart = image->segment[i].mem; 199 mend = mstart + image->segment[i].memsz; 200 for (j = 0; j < i; j++) { 201 unsigned long pstart, pend; 202 pstart = image->segment[j].mem; 203 pend = pstart + image->segment[j].memsz; 204 /* Do the segments overlap ? */ 205 if ((mend > pstart) && (mstart < pend)) 206 goto out; 207 } 208 } 209 210 /* Ensure our buffer sizes are strictly less than 211 * our memory sizes. This should always be the case, 212 * and it is easier to check up front than to be surprised 213 * later on. 214 */ 215 result = -EINVAL; 216 for (i = 0; i < nr_segments; i++) { 217 if (image->segment[i].bufsz > image->segment[i].memsz) 218 goto out; 219 } 220 221 result = 0; 222 out: 223 if (result == 0) 224 *rimage = image; 225 else 226 kfree(image); 227 228 return result; 229 230 } 231 232 static void kimage_free_page_list(struct list_head *list); 233 234 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry, 235 unsigned long nr_segments, 236 struct kexec_segment __user *segments) 237 { 238 int result; 239 struct kimage *image; 240 241 /* Allocate and initialize a controlling structure */ 242 image = NULL; 243 result = do_kimage_alloc(&image, entry, nr_segments, segments); 244 if (result) 245 goto out; 246 247 /* 248 * Find a location for the control code buffer, and add it 249 * the vector of segments so that it's pages will also be 250 * counted as destination pages. 251 */ 252 result = -ENOMEM; 253 image->control_code_page = kimage_alloc_control_pages(image, 254 get_order(KEXEC_CONTROL_PAGE_SIZE)); 255 if (!image->control_code_page) { 256 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 257 goto out_free; 258 } 259 260 image->swap_page = kimage_alloc_control_pages(image, 0); 261 if (!image->swap_page) { 262 printk(KERN_ERR "Could not allocate swap buffer\n"); 263 goto out_free; 264 } 265 266 *rimage = image; 267 return 0; 268 269 out_free: 270 kimage_free_page_list(&image->control_pages); 271 kfree(image); 272 out: 273 return result; 274 } 275 276 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry, 277 unsigned long nr_segments, 278 struct kexec_segment __user *segments) 279 { 280 int result; 281 struct kimage *image; 282 unsigned long i; 283 284 image = NULL; 285 /* Verify we have a valid entry point */ 286 if ((entry < crashk_res.start) || (entry > crashk_res.end)) { 287 result = -EADDRNOTAVAIL; 288 goto out; 289 } 290 291 /* Allocate and initialize a controlling structure */ 292 result = do_kimage_alloc(&image, entry, nr_segments, segments); 293 if (result) 294 goto out; 295 296 /* Enable the special crash kernel control page 297 * allocation policy. 298 */ 299 image->control_page = crashk_res.start; 300 image->type = KEXEC_TYPE_CRASH; 301 302 /* 303 * Verify we have good destination addresses. Normally 304 * the caller is responsible for making certain we don't 305 * attempt to load the new image into invalid or reserved 306 * areas of RAM. But crash kernels are preloaded into a 307 * reserved area of ram. We must ensure the addresses 308 * are in the reserved area otherwise preloading the 309 * kernel could corrupt things. 310 */ 311 result = -EADDRNOTAVAIL; 312 for (i = 0; i < nr_segments; i++) { 313 unsigned long mstart, mend; 314 315 mstart = image->segment[i].mem; 316 mend = mstart + image->segment[i].memsz - 1; 317 /* Ensure we are within the crash kernel limits */ 318 if ((mstart < crashk_res.start) || (mend > crashk_res.end)) 319 goto out_free; 320 } 321 322 /* 323 * Find a location for the control code buffer, and add 324 * the vector of segments so that it's pages will also be 325 * counted as destination pages. 326 */ 327 result = -ENOMEM; 328 image->control_code_page = kimage_alloc_control_pages(image, 329 get_order(KEXEC_CONTROL_PAGE_SIZE)); 330 if (!image->control_code_page) { 331 printk(KERN_ERR "Could not allocate control_code_buffer\n"); 332 goto out_free; 333 } 334 335 *rimage = image; 336 return 0; 337 338 out_free: 339 kfree(image); 340 out: 341 return result; 342 } 343 344 static int kimage_is_destination_range(struct kimage *image, 345 unsigned long start, 346 unsigned long end) 347 { 348 unsigned long i; 349 350 for (i = 0; i < image->nr_segments; i++) { 351 unsigned long mstart, mend; 352 353 mstart = image->segment[i].mem; 354 mend = mstart + image->segment[i].memsz; 355 if ((end > mstart) && (start < mend)) 356 return 1; 357 } 358 359 return 0; 360 } 361 362 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 363 { 364 struct page *pages; 365 366 pages = alloc_pages(gfp_mask, order); 367 if (pages) { 368 unsigned int count, i; 369 pages->mapping = NULL; 370 set_page_private(pages, order); 371 count = 1 << order; 372 for (i = 0; i < count; i++) 373 SetPageReserved(pages + i); 374 } 375 376 return pages; 377 } 378 379 static void kimage_free_pages(struct page *page) 380 { 381 unsigned int order, count, i; 382 383 order = page_private(page); 384 count = 1 << order; 385 for (i = 0; i < count; i++) 386 ClearPageReserved(page + i); 387 __free_pages(page, order); 388 } 389 390 static void kimage_free_page_list(struct list_head *list) 391 { 392 struct list_head *pos, *next; 393 394 list_for_each_safe(pos, next, list) { 395 struct page *page; 396 397 page = list_entry(pos, struct page, lru); 398 list_del(&page->lru); 399 kimage_free_pages(page); 400 } 401 } 402 403 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 404 unsigned int order) 405 { 406 /* Control pages are special, they are the intermediaries 407 * that are needed while we copy the rest of the pages 408 * to their final resting place. As such they must 409 * not conflict with either the destination addresses 410 * or memory the kernel is already using. 411 * 412 * The only case where we really need more than one of 413 * these are for architectures where we cannot disable 414 * the MMU and must instead generate an identity mapped 415 * page table for all of the memory. 416 * 417 * At worst this runs in O(N) of the image size. 418 */ 419 struct list_head extra_pages; 420 struct page *pages; 421 unsigned int count; 422 423 count = 1 << order; 424 INIT_LIST_HEAD(&extra_pages); 425 426 /* Loop while I can allocate a page and the page allocated 427 * is a destination page. 428 */ 429 do { 430 unsigned long pfn, epfn, addr, eaddr; 431 432 pages = kimage_alloc_pages(GFP_KERNEL, order); 433 if (!pages) 434 break; 435 pfn = page_to_pfn(pages); 436 epfn = pfn + count; 437 addr = pfn << PAGE_SHIFT; 438 eaddr = epfn << PAGE_SHIFT; 439 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 440 kimage_is_destination_range(image, addr, eaddr)) { 441 list_add(&pages->lru, &extra_pages); 442 pages = NULL; 443 } 444 } while (!pages); 445 446 if (pages) { 447 /* Remember the allocated page... */ 448 list_add(&pages->lru, &image->control_pages); 449 450 /* Because the page is already in it's destination 451 * location we will never allocate another page at 452 * that address. Therefore kimage_alloc_pages 453 * will not return it (again) and we don't need 454 * to give it an entry in image->segment[]. 455 */ 456 } 457 /* Deal with the destination pages I have inadvertently allocated. 458 * 459 * Ideally I would convert multi-page allocations into single 460 * page allocations, and add everything to image->dest_pages. 461 * 462 * For now it is simpler to just free the pages. 463 */ 464 kimage_free_page_list(&extra_pages); 465 466 return pages; 467 } 468 469 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 470 unsigned int order) 471 { 472 /* Control pages are special, they are the intermediaries 473 * that are needed while we copy the rest of the pages 474 * to their final resting place. As such they must 475 * not conflict with either the destination addresses 476 * or memory the kernel is already using. 477 * 478 * Control pages are also the only pags we must allocate 479 * when loading a crash kernel. All of the other pages 480 * are specified by the segments and we just memcpy 481 * into them directly. 482 * 483 * The only case where we really need more than one of 484 * these are for architectures where we cannot disable 485 * the MMU and must instead generate an identity mapped 486 * page table for all of the memory. 487 * 488 * Given the low demand this implements a very simple 489 * allocator that finds the first hole of the appropriate 490 * size in the reserved memory region, and allocates all 491 * of the memory up to and including the hole. 492 */ 493 unsigned long hole_start, hole_end, size; 494 struct page *pages; 495 496 pages = NULL; 497 size = (1 << order) << PAGE_SHIFT; 498 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 499 hole_end = hole_start + size - 1; 500 while (hole_end <= crashk_res.end) { 501 unsigned long i; 502 503 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 504 break; 505 /* See if I overlap any of the segments */ 506 for (i = 0; i < image->nr_segments; i++) { 507 unsigned long mstart, mend; 508 509 mstart = image->segment[i].mem; 510 mend = mstart + image->segment[i].memsz - 1; 511 if ((hole_end >= mstart) && (hole_start <= mend)) { 512 /* Advance the hole to the end of the segment */ 513 hole_start = (mend + (size - 1)) & ~(size - 1); 514 hole_end = hole_start + size - 1; 515 break; 516 } 517 } 518 /* If I don't overlap any segments I have found my hole! */ 519 if (i == image->nr_segments) { 520 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 521 break; 522 } 523 } 524 if (pages) 525 image->control_page = hole_end; 526 527 return pages; 528 } 529 530 531 struct page *kimage_alloc_control_pages(struct kimage *image, 532 unsigned int order) 533 { 534 struct page *pages = NULL; 535 536 switch (image->type) { 537 case KEXEC_TYPE_DEFAULT: 538 pages = kimage_alloc_normal_control_pages(image, order); 539 break; 540 case KEXEC_TYPE_CRASH: 541 pages = kimage_alloc_crash_control_pages(image, order); 542 break; 543 } 544 545 return pages; 546 } 547 548 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 549 { 550 if (*image->entry != 0) 551 image->entry++; 552 553 if (image->entry == image->last_entry) { 554 kimage_entry_t *ind_page; 555 struct page *page; 556 557 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 558 if (!page) 559 return -ENOMEM; 560 561 ind_page = page_address(page); 562 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; 563 image->entry = ind_page; 564 image->last_entry = ind_page + 565 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 566 } 567 *image->entry = entry; 568 image->entry++; 569 *image->entry = 0; 570 571 return 0; 572 } 573 574 static int kimage_set_destination(struct kimage *image, 575 unsigned long destination) 576 { 577 int result; 578 579 destination &= PAGE_MASK; 580 result = kimage_add_entry(image, destination | IND_DESTINATION); 581 if (result == 0) 582 image->destination = destination; 583 584 return result; 585 } 586 587 588 static int kimage_add_page(struct kimage *image, unsigned long page) 589 { 590 int result; 591 592 page &= PAGE_MASK; 593 result = kimage_add_entry(image, page | IND_SOURCE); 594 if (result == 0) 595 image->destination += PAGE_SIZE; 596 597 return result; 598 } 599 600 601 static void kimage_free_extra_pages(struct kimage *image) 602 { 603 /* Walk through and free any extra destination pages I may have */ 604 kimage_free_page_list(&image->dest_pages); 605 606 /* Walk through and free any unusable pages I have cached */ 607 kimage_free_page_list(&image->unuseable_pages); 608 609 } 610 static void kimage_terminate(struct kimage *image) 611 { 612 if (*image->entry != 0) 613 image->entry++; 614 615 *image->entry = IND_DONE; 616 } 617 618 #define for_each_kimage_entry(image, ptr, entry) \ 619 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 620 ptr = (entry & IND_INDIRECTION)? \ 621 phys_to_virt((entry & PAGE_MASK)): ptr +1) 622 623 static void kimage_free_entry(kimage_entry_t entry) 624 { 625 struct page *page; 626 627 page = pfn_to_page(entry >> PAGE_SHIFT); 628 kimage_free_pages(page); 629 } 630 631 static void kimage_free(struct kimage *image) 632 { 633 kimage_entry_t *ptr, entry; 634 kimage_entry_t ind = 0; 635 636 if (!image) 637 return; 638 639 kimage_free_extra_pages(image); 640 for_each_kimage_entry(image, ptr, entry) { 641 if (entry & IND_INDIRECTION) { 642 /* Free the previous indirection page */ 643 if (ind & IND_INDIRECTION) 644 kimage_free_entry(ind); 645 /* Save this indirection page until we are 646 * done with it. 647 */ 648 ind = entry; 649 } 650 else if (entry & IND_SOURCE) 651 kimage_free_entry(entry); 652 } 653 /* Free the final indirection page */ 654 if (ind & IND_INDIRECTION) 655 kimage_free_entry(ind); 656 657 /* Handle any machine specific cleanup */ 658 machine_kexec_cleanup(image); 659 660 /* Free the kexec control pages... */ 661 kimage_free_page_list(&image->control_pages); 662 kfree(image); 663 } 664 665 static kimage_entry_t *kimage_dst_used(struct kimage *image, 666 unsigned long page) 667 { 668 kimage_entry_t *ptr, entry; 669 unsigned long destination = 0; 670 671 for_each_kimage_entry(image, ptr, entry) { 672 if (entry & IND_DESTINATION) 673 destination = entry & PAGE_MASK; 674 else if (entry & IND_SOURCE) { 675 if (page == destination) 676 return ptr; 677 destination += PAGE_SIZE; 678 } 679 } 680 681 return NULL; 682 } 683 684 static struct page *kimage_alloc_page(struct kimage *image, 685 gfp_t gfp_mask, 686 unsigned long destination) 687 { 688 /* 689 * Here we implement safeguards to ensure that a source page 690 * is not copied to its destination page before the data on 691 * the destination page is no longer useful. 692 * 693 * To do this we maintain the invariant that a source page is 694 * either its own destination page, or it is not a 695 * destination page at all. 696 * 697 * That is slightly stronger than required, but the proof 698 * that no problems will not occur is trivial, and the 699 * implementation is simply to verify. 700 * 701 * When allocating all pages normally this algorithm will run 702 * in O(N) time, but in the worst case it will run in O(N^2) 703 * time. If the runtime is a problem the data structures can 704 * be fixed. 705 */ 706 struct page *page; 707 unsigned long addr; 708 709 /* 710 * Walk through the list of destination pages, and see if I 711 * have a match. 712 */ 713 list_for_each_entry(page, &image->dest_pages, lru) { 714 addr = page_to_pfn(page) << PAGE_SHIFT; 715 if (addr == destination) { 716 list_del(&page->lru); 717 return page; 718 } 719 } 720 page = NULL; 721 while (1) { 722 kimage_entry_t *old; 723 724 /* Allocate a page, if we run out of memory give up */ 725 page = kimage_alloc_pages(gfp_mask, 0); 726 if (!page) 727 return NULL; 728 /* If the page cannot be used file it away */ 729 if (page_to_pfn(page) > 730 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 731 list_add(&page->lru, &image->unuseable_pages); 732 continue; 733 } 734 addr = page_to_pfn(page) << PAGE_SHIFT; 735 736 /* If it is the destination page we want use it */ 737 if (addr == destination) 738 break; 739 740 /* If the page is not a destination page use it */ 741 if (!kimage_is_destination_range(image, addr, 742 addr + PAGE_SIZE)) 743 break; 744 745 /* 746 * I know that the page is someones destination page. 747 * See if there is already a source page for this 748 * destination page. And if so swap the source pages. 749 */ 750 old = kimage_dst_used(image, addr); 751 if (old) { 752 /* If so move it */ 753 unsigned long old_addr; 754 struct page *old_page; 755 756 old_addr = *old & PAGE_MASK; 757 old_page = pfn_to_page(old_addr >> PAGE_SHIFT); 758 copy_highpage(page, old_page); 759 *old = addr | (*old & ~PAGE_MASK); 760 761 /* The old page I have found cannot be a 762 * destination page, so return it if it's 763 * gfp_flags honor the ones passed in. 764 */ 765 if (!(gfp_mask & __GFP_HIGHMEM) && 766 PageHighMem(old_page)) { 767 kimage_free_pages(old_page); 768 continue; 769 } 770 addr = old_addr; 771 page = old_page; 772 break; 773 } 774 else { 775 /* Place the page on the destination list I 776 * will use it later. 777 */ 778 list_add(&page->lru, &image->dest_pages); 779 } 780 } 781 782 return page; 783 } 784 785 static int kimage_load_normal_segment(struct kimage *image, 786 struct kexec_segment *segment) 787 { 788 unsigned long maddr; 789 unsigned long ubytes, mbytes; 790 int result; 791 unsigned char __user *buf; 792 793 result = 0; 794 buf = segment->buf; 795 ubytes = segment->bufsz; 796 mbytes = segment->memsz; 797 maddr = segment->mem; 798 799 result = kimage_set_destination(image, maddr); 800 if (result < 0) 801 goto out; 802 803 while (mbytes) { 804 struct page *page; 805 char *ptr; 806 size_t uchunk, mchunk; 807 808 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 809 if (!page) { 810 result = -ENOMEM; 811 goto out; 812 } 813 result = kimage_add_page(image, page_to_pfn(page) 814 << PAGE_SHIFT); 815 if (result < 0) 816 goto out; 817 818 ptr = kmap(page); 819 /* Start with a clear page */ 820 clear_page(ptr); 821 ptr += maddr & ~PAGE_MASK; 822 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); 823 if (mchunk > mbytes) 824 mchunk = mbytes; 825 826 uchunk = mchunk; 827 if (uchunk > ubytes) 828 uchunk = ubytes; 829 830 result = copy_from_user(ptr, buf, uchunk); 831 kunmap(page); 832 if (result) { 833 result = -EFAULT; 834 goto out; 835 } 836 ubytes -= uchunk; 837 maddr += mchunk; 838 buf += mchunk; 839 mbytes -= mchunk; 840 } 841 out: 842 return result; 843 } 844 845 static int kimage_load_crash_segment(struct kimage *image, 846 struct kexec_segment *segment) 847 { 848 /* For crash dumps kernels we simply copy the data from 849 * user space to it's destination. 850 * We do things a page at a time for the sake of kmap. 851 */ 852 unsigned long maddr; 853 unsigned long ubytes, mbytes; 854 int result; 855 unsigned char __user *buf; 856 857 result = 0; 858 buf = segment->buf; 859 ubytes = segment->bufsz; 860 mbytes = segment->memsz; 861 maddr = segment->mem; 862 while (mbytes) { 863 struct page *page; 864 char *ptr; 865 size_t uchunk, mchunk; 866 867 page = pfn_to_page(maddr >> PAGE_SHIFT); 868 if (!page) { 869 result = -ENOMEM; 870 goto out; 871 } 872 ptr = kmap(page); 873 ptr += maddr & ~PAGE_MASK; 874 mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK); 875 if (mchunk > mbytes) 876 mchunk = mbytes; 877 878 uchunk = mchunk; 879 if (uchunk > ubytes) { 880 uchunk = ubytes; 881 /* Zero the trailing part of the page */ 882 memset(ptr + uchunk, 0, mchunk - uchunk); 883 } 884 result = copy_from_user(ptr, buf, uchunk); 885 kexec_flush_icache_page(page); 886 kunmap(page); 887 if (result) { 888 result = -EFAULT; 889 goto out; 890 } 891 ubytes -= uchunk; 892 maddr += mchunk; 893 buf += mchunk; 894 mbytes -= mchunk; 895 } 896 out: 897 return result; 898 } 899 900 static int kimage_load_segment(struct kimage *image, 901 struct kexec_segment *segment) 902 { 903 int result = -ENOMEM; 904 905 switch (image->type) { 906 case KEXEC_TYPE_DEFAULT: 907 result = kimage_load_normal_segment(image, segment); 908 break; 909 case KEXEC_TYPE_CRASH: 910 result = kimage_load_crash_segment(image, segment); 911 break; 912 } 913 914 return result; 915 } 916 917 /* 918 * Exec Kernel system call: for obvious reasons only root may call it. 919 * 920 * This call breaks up into three pieces. 921 * - A generic part which loads the new kernel from the current 922 * address space, and very carefully places the data in the 923 * allocated pages. 924 * 925 * - A generic part that interacts with the kernel and tells all of 926 * the devices to shut down. Preventing on-going dmas, and placing 927 * the devices in a consistent state so a later kernel can 928 * reinitialize them. 929 * 930 * - A machine specific part that includes the syscall number 931 * and the copies the image to it's final destination. And 932 * jumps into the image at entry. 933 * 934 * kexec does not sync, or unmount filesystems so if you need 935 * that to happen you need to do that yourself. 936 */ 937 struct kimage *kexec_image; 938 struct kimage *kexec_crash_image; 939 940 static DEFINE_MUTEX(kexec_mutex); 941 942 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 943 struct kexec_segment __user *, segments, unsigned long, flags) 944 { 945 struct kimage **dest_image, *image; 946 int result; 947 948 /* We only trust the superuser with rebooting the system. */ 949 if (!capable(CAP_SYS_BOOT)) 950 return -EPERM; 951 952 /* 953 * Verify we have a legal set of flags 954 * This leaves us room for future extensions. 955 */ 956 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 957 return -EINVAL; 958 959 /* Verify we are on the appropriate architecture */ 960 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 961 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 962 return -EINVAL; 963 964 /* Put an artificial cap on the number 965 * of segments passed to kexec_load. 966 */ 967 if (nr_segments > KEXEC_SEGMENT_MAX) 968 return -EINVAL; 969 970 image = NULL; 971 result = 0; 972 973 /* Because we write directly to the reserved memory 974 * region when loading crash kernels we need a mutex here to 975 * prevent multiple crash kernels from attempting to load 976 * simultaneously, and to prevent a crash kernel from loading 977 * over the top of a in use crash kernel. 978 * 979 * KISS: always take the mutex. 980 */ 981 if (!mutex_trylock(&kexec_mutex)) 982 return -EBUSY; 983 984 dest_image = &kexec_image; 985 if (flags & KEXEC_ON_CRASH) 986 dest_image = &kexec_crash_image; 987 if (nr_segments > 0) { 988 unsigned long i; 989 990 /* Loading another kernel to reboot into */ 991 if ((flags & KEXEC_ON_CRASH) == 0) 992 result = kimage_normal_alloc(&image, entry, 993 nr_segments, segments); 994 /* Loading another kernel to switch to if this one crashes */ 995 else if (flags & KEXEC_ON_CRASH) { 996 /* Free any current crash dump kernel before 997 * we corrupt it. 998 */ 999 kimage_free(xchg(&kexec_crash_image, NULL)); 1000 result = kimage_crash_alloc(&image, entry, 1001 nr_segments, segments); 1002 crash_map_reserved_pages(); 1003 } 1004 if (result) 1005 goto out; 1006 1007 if (flags & KEXEC_PRESERVE_CONTEXT) 1008 image->preserve_context = 1; 1009 result = machine_kexec_prepare(image); 1010 if (result) 1011 goto out; 1012 1013 for (i = 0; i < nr_segments; i++) { 1014 result = kimage_load_segment(image, &image->segment[i]); 1015 if (result) 1016 goto out; 1017 } 1018 kimage_terminate(image); 1019 if (flags & KEXEC_ON_CRASH) 1020 crash_unmap_reserved_pages(); 1021 } 1022 /* Install the new kernel, and Uninstall the old */ 1023 image = xchg(dest_image, image); 1024 1025 out: 1026 mutex_unlock(&kexec_mutex); 1027 kimage_free(image); 1028 1029 return result; 1030 } 1031 1032 /* 1033 * Add and remove page tables for crashkernel memory 1034 * 1035 * Provide an empty default implementation here -- architecture 1036 * code may override this 1037 */ 1038 void __weak crash_map_reserved_pages(void) 1039 {} 1040 1041 void __weak crash_unmap_reserved_pages(void) 1042 {} 1043 1044 #ifdef CONFIG_COMPAT 1045 asmlinkage long compat_sys_kexec_load(unsigned long entry, 1046 unsigned long nr_segments, 1047 struct compat_kexec_segment __user *segments, 1048 unsigned long flags) 1049 { 1050 struct compat_kexec_segment in; 1051 struct kexec_segment out, __user *ksegments; 1052 unsigned long i, result; 1053 1054 /* Don't allow clients that don't understand the native 1055 * architecture to do anything. 1056 */ 1057 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 1058 return -EINVAL; 1059 1060 if (nr_segments > KEXEC_SEGMENT_MAX) 1061 return -EINVAL; 1062 1063 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 1064 for (i=0; i < nr_segments; i++) { 1065 result = copy_from_user(&in, &segments[i], sizeof(in)); 1066 if (result) 1067 return -EFAULT; 1068 1069 out.buf = compat_ptr(in.buf); 1070 out.bufsz = in.bufsz; 1071 out.mem = in.mem; 1072 out.memsz = in.memsz; 1073 1074 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 1075 if (result) 1076 return -EFAULT; 1077 } 1078 1079 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1080 } 1081 #endif 1082 1083 void crash_kexec(struct pt_regs *regs) 1084 { 1085 /* Take the kexec_mutex here to prevent sys_kexec_load 1086 * running on one cpu from replacing the crash kernel 1087 * we are using after a panic on a different cpu. 1088 * 1089 * If the crash kernel was not located in a fixed area 1090 * of memory the xchg(&kexec_crash_image) would be 1091 * sufficient. But since I reuse the memory... 1092 */ 1093 if (mutex_trylock(&kexec_mutex)) { 1094 if (kexec_crash_image) { 1095 struct pt_regs fixed_regs; 1096 1097 crash_setup_regs(&fixed_regs, regs); 1098 crash_save_vmcoreinfo(); 1099 machine_crash_shutdown(&fixed_regs); 1100 machine_kexec(kexec_crash_image); 1101 } 1102 mutex_unlock(&kexec_mutex); 1103 } 1104 } 1105 1106 size_t crash_get_memory_size(void) 1107 { 1108 size_t size = 0; 1109 mutex_lock(&kexec_mutex); 1110 if (crashk_res.end != crashk_res.start) 1111 size = resource_size(&crashk_res); 1112 mutex_unlock(&kexec_mutex); 1113 return size; 1114 } 1115 1116 void __weak crash_free_reserved_phys_range(unsigned long begin, 1117 unsigned long end) 1118 { 1119 unsigned long addr; 1120 1121 for (addr = begin; addr < end; addr += PAGE_SIZE) { 1122 ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT)); 1123 init_page_count(pfn_to_page(addr >> PAGE_SHIFT)); 1124 free_page((unsigned long)__va(addr)); 1125 totalram_pages++; 1126 } 1127 } 1128 1129 int crash_shrink_memory(unsigned long new_size) 1130 { 1131 int ret = 0; 1132 unsigned long start, end; 1133 unsigned long old_size; 1134 struct resource *ram_res; 1135 1136 mutex_lock(&kexec_mutex); 1137 1138 if (kexec_crash_image) { 1139 ret = -ENOENT; 1140 goto unlock; 1141 } 1142 start = crashk_res.start; 1143 end = crashk_res.end; 1144 old_size = (end == 0) ? 0 : end - start + 1; 1145 if (new_size >= old_size) { 1146 ret = (new_size == old_size) ? 0 : -EINVAL; 1147 goto unlock; 1148 } 1149 1150 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1151 if (!ram_res) { 1152 ret = -ENOMEM; 1153 goto unlock; 1154 } 1155 1156 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1157 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1158 1159 crash_map_reserved_pages(); 1160 crash_free_reserved_phys_range(end, crashk_res.end); 1161 1162 if ((start == end) && (crashk_res.parent != NULL)) 1163 release_resource(&crashk_res); 1164 1165 ram_res->start = end; 1166 ram_res->end = crashk_res.end; 1167 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; 1168 ram_res->name = "System RAM"; 1169 1170 crashk_res.end = end - 1; 1171 1172 insert_resource(&iomem_resource, ram_res); 1173 crash_unmap_reserved_pages(); 1174 1175 unlock: 1176 mutex_unlock(&kexec_mutex); 1177 return ret; 1178 } 1179 1180 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, 1181 size_t data_len) 1182 { 1183 struct elf_note note; 1184 1185 note.n_namesz = strlen(name) + 1; 1186 note.n_descsz = data_len; 1187 note.n_type = type; 1188 memcpy(buf, ¬e, sizeof(note)); 1189 buf += (sizeof(note) + 3)/4; 1190 memcpy(buf, name, note.n_namesz); 1191 buf += (note.n_namesz + 3)/4; 1192 memcpy(buf, data, note.n_descsz); 1193 buf += (note.n_descsz + 3)/4; 1194 1195 return buf; 1196 } 1197 1198 static void final_note(u32 *buf) 1199 { 1200 struct elf_note note; 1201 1202 note.n_namesz = 0; 1203 note.n_descsz = 0; 1204 note.n_type = 0; 1205 memcpy(buf, ¬e, sizeof(note)); 1206 } 1207 1208 void crash_save_cpu(struct pt_regs *regs, int cpu) 1209 { 1210 struct elf_prstatus prstatus; 1211 u32 *buf; 1212 1213 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1214 return; 1215 1216 /* Using ELF notes here is opportunistic. 1217 * I need a well defined structure format 1218 * for the data I pass, and I need tags 1219 * on the data to indicate what information I have 1220 * squirrelled away. ELF notes happen to provide 1221 * all of that, so there is no need to invent something new. 1222 */ 1223 buf = (u32*)per_cpu_ptr(crash_notes, cpu); 1224 if (!buf) 1225 return; 1226 memset(&prstatus, 0, sizeof(prstatus)); 1227 prstatus.pr_pid = current->pid; 1228 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1229 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1230 &prstatus, sizeof(prstatus)); 1231 final_note(buf); 1232 } 1233 1234 static int __init crash_notes_memory_init(void) 1235 { 1236 /* Allocate memory for saving cpu registers. */ 1237 crash_notes = alloc_percpu(note_buf_t); 1238 if (!crash_notes) { 1239 printk("Kexec: Memory allocation for saving cpu register" 1240 " states failed\n"); 1241 return -ENOMEM; 1242 } 1243 return 0; 1244 } 1245 module_init(crash_notes_memory_init) 1246 1247 1248 /* 1249 * parsing the "crashkernel" commandline 1250 * 1251 * this code is intended to be called from architecture specific code 1252 */ 1253 1254 1255 /* 1256 * This function parses command lines in the format 1257 * 1258 * crashkernel=ramsize-range:size[,...][@offset] 1259 * 1260 * The function returns 0 on success and -EINVAL on failure. 1261 */ 1262 static int __init parse_crashkernel_mem(char *cmdline, 1263 unsigned long long system_ram, 1264 unsigned long long *crash_size, 1265 unsigned long long *crash_base) 1266 { 1267 char *cur = cmdline, *tmp; 1268 1269 /* for each entry of the comma-separated list */ 1270 do { 1271 unsigned long long start, end = ULLONG_MAX, size; 1272 1273 /* get the start of the range */ 1274 start = memparse(cur, &tmp); 1275 if (cur == tmp) { 1276 pr_warning("crashkernel: Memory value expected\n"); 1277 return -EINVAL; 1278 } 1279 cur = tmp; 1280 if (*cur != '-') { 1281 pr_warning("crashkernel: '-' expected\n"); 1282 return -EINVAL; 1283 } 1284 cur++; 1285 1286 /* if no ':' is here, than we read the end */ 1287 if (*cur != ':') { 1288 end = memparse(cur, &tmp); 1289 if (cur == tmp) { 1290 pr_warning("crashkernel: Memory " 1291 "value expected\n"); 1292 return -EINVAL; 1293 } 1294 cur = tmp; 1295 if (end <= start) { 1296 pr_warning("crashkernel: end <= start\n"); 1297 return -EINVAL; 1298 } 1299 } 1300 1301 if (*cur != ':') { 1302 pr_warning("crashkernel: ':' expected\n"); 1303 return -EINVAL; 1304 } 1305 cur++; 1306 1307 size = memparse(cur, &tmp); 1308 if (cur == tmp) { 1309 pr_warning("Memory value expected\n"); 1310 return -EINVAL; 1311 } 1312 cur = tmp; 1313 if (size >= system_ram) { 1314 pr_warning("crashkernel: invalid size\n"); 1315 return -EINVAL; 1316 } 1317 1318 /* match ? */ 1319 if (system_ram >= start && system_ram < end) { 1320 *crash_size = size; 1321 break; 1322 } 1323 } while (*cur++ == ','); 1324 1325 if (*crash_size > 0) { 1326 while (*cur && *cur != ' ' && *cur != '@') 1327 cur++; 1328 if (*cur == '@') { 1329 cur++; 1330 *crash_base = memparse(cur, &tmp); 1331 if (cur == tmp) { 1332 pr_warning("Memory value expected " 1333 "after '@'\n"); 1334 return -EINVAL; 1335 } 1336 } 1337 } 1338 1339 return 0; 1340 } 1341 1342 /* 1343 * That function parses "simple" (old) crashkernel command lines like 1344 * 1345 * crashkernel=size[@offset] 1346 * 1347 * It returns 0 on success and -EINVAL on failure. 1348 */ 1349 static int __init parse_crashkernel_simple(char *cmdline, 1350 unsigned long long *crash_size, 1351 unsigned long long *crash_base) 1352 { 1353 char *cur = cmdline; 1354 1355 *crash_size = memparse(cmdline, &cur); 1356 if (cmdline == cur) { 1357 pr_warning("crashkernel: memory value expected\n"); 1358 return -EINVAL; 1359 } 1360 1361 if (*cur == '@') 1362 *crash_base = memparse(cur+1, &cur); 1363 else if (*cur != ' ' && *cur != '\0') { 1364 pr_warning("crashkernel: unrecognized char\n"); 1365 return -EINVAL; 1366 } 1367 1368 return 0; 1369 } 1370 1371 /* 1372 * That function is the entry point for command line parsing and should be 1373 * called from the arch-specific code. 1374 */ 1375 static int __init __parse_crashkernel(char *cmdline, 1376 unsigned long long system_ram, 1377 unsigned long long *crash_size, 1378 unsigned long long *crash_base, 1379 const char *name) 1380 { 1381 char *p = cmdline, *ck_cmdline = NULL; 1382 char *first_colon, *first_space; 1383 1384 BUG_ON(!crash_size || !crash_base); 1385 *crash_size = 0; 1386 *crash_base = 0; 1387 1388 /* find crashkernel and use the last one if there are more */ 1389 p = strstr(p, name); 1390 while (p) { 1391 ck_cmdline = p; 1392 p = strstr(p+1, name); 1393 } 1394 1395 if (!ck_cmdline) 1396 return -EINVAL; 1397 1398 ck_cmdline += strlen(name); 1399 1400 /* 1401 * if the commandline contains a ':', then that's the extended 1402 * syntax -- if not, it must be the classic syntax 1403 */ 1404 first_colon = strchr(ck_cmdline, ':'); 1405 first_space = strchr(ck_cmdline, ' '); 1406 if (first_colon && (!first_space || first_colon < first_space)) 1407 return parse_crashkernel_mem(ck_cmdline, system_ram, 1408 crash_size, crash_base); 1409 else 1410 return parse_crashkernel_simple(ck_cmdline, crash_size, 1411 crash_base); 1412 1413 return 0; 1414 } 1415 1416 int __init parse_crashkernel(char *cmdline, 1417 unsigned long long system_ram, 1418 unsigned long long *crash_size, 1419 unsigned long long *crash_base) 1420 { 1421 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1422 "crashkernel="); 1423 } 1424 1425 int __init parse_crashkernel_low(char *cmdline, 1426 unsigned long long system_ram, 1427 unsigned long long *crash_size, 1428 unsigned long long *crash_base) 1429 { 1430 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1431 "crashkernel_low="); 1432 } 1433 1434 static void update_vmcoreinfo_note(void) 1435 { 1436 u32 *buf = vmcoreinfo_note; 1437 1438 if (!vmcoreinfo_size) 1439 return; 1440 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, 1441 vmcoreinfo_size); 1442 final_note(buf); 1443 } 1444 1445 void crash_save_vmcoreinfo(void) 1446 { 1447 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); 1448 update_vmcoreinfo_note(); 1449 } 1450 1451 void vmcoreinfo_append_str(const char *fmt, ...) 1452 { 1453 va_list args; 1454 char buf[0x50]; 1455 int r; 1456 1457 va_start(args, fmt); 1458 r = vsnprintf(buf, sizeof(buf), fmt, args); 1459 va_end(args); 1460 1461 if (r + vmcoreinfo_size > vmcoreinfo_max_size) 1462 r = vmcoreinfo_max_size - vmcoreinfo_size; 1463 1464 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); 1465 1466 vmcoreinfo_size += r; 1467 } 1468 1469 /* 1470 * provide an empty default implementation here -- architecture 1471 * code may override this 1472 */ 1473 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void) 1474 {} 1475 1476 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void) 1477 { 1478 return __pa((unsigned long)(char *)&vmcoreinfo_note); 1479 } 1480 1481 static int __init crash_save_vmcoreinfo_init(void) 1482 { 1483 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); 1484 VMCOREINFO_PAGESIZE(PAGE_SIZE); 1485 1486 VMCOREINFO_SYMBOL(init_uts_ns); 1487 VMCOREINFO_SYMBOL(node_online_map); 1488 #ifdef CONFIG_MMU 1489 VMCOREINFO_SYMBOL(swapper_pg_dir); 1490 #endif 1491 VMCOREINFO_SYMBOL(_stext); 1492 VMCOREINFO_SYMBOL(vmlist); 1493 1494 #ifndef CONFIG_NEED_MULTIPLE_NODES 1495 VMCOREINFO_SYMBOL(mem_map); 1496 VMCOREINFO_SYMBOL(contig_page_data); 1497 #endif 1498 #ifdef CONFIG_SPARSEMEM 1499 VMCOREINFO_SYMBOL(mem_section); 1500 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); 1501 VMCOREINFO_STRUCT_SIZE(mem_section); 1502 VMCOREINFO_OFFSET(mem_section, section_mem_map); 1503 #endif 1504 VMCOREINFO_STRUCT_SIZE(page); 1505 VMCOREINFO_STRUCT_SIZE(pglist_data); 1506 VMCOREINFO_STRUCT_SIZE(zone); 1507 VMCOREINFO_STRUCT_SIZE(free_area); 1508 VMCOREINFO_STRUCT_SIZE(list_head); 1509 VMCOREINFO_SIZE(nodemask_t); 1510 VMCOREINFO_OFFSET(page, flags); 1511 VMCOREINFO_OFFSET(page, _count); 1512 VMCOREINFO_OFFSET(page, mapping); 1513 VMCOREINFO_OFFSET(page, lru); 1514 VMCOREINFO_OFFSET(page, _mapcount); 1515 VMCOREINFO_OFFSET(page, private); 1516 VMCOREINFO_OFFSET(pglist_data, node_zones); 1517 VMCOREINFO_OFFSET(pglist_data, nr_zones); 1518 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1519 VMCOREINFO_OFFSET(pglist_data, node_mem_map); 1520 #endif 1521 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); 1522 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); 1523 VMCOREINFO_OFFSET(pglist_data, node_id); 1524 VMCOREINFO_OFFSET(zone, free_area); 1525 VMCOREINFO_OFFSET(zone, vm_stat); 1526 VMCOREINFO_OFFSET(zone, spanned_pages); 1527 VMCOREINFO_OFFSET(free_area, free_list); 1528 VMCOREINFO_OFFSET(list_head, next); 1529 VMCOREINFO_OFFSET(list_head, prev); 1530 VMCOREINFO_OFFSET(vm_struct, addr); 1531 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); 1532 log_buf_kexec_setup(); 1533 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); 1534 VMCOREINFO_NUMBER(NR_FREE_PAGES); 1535 VMCOREINFO_NUMBER(PG_lru); 1536 VMCOREINFO_NUMBER(PG_private); 1537 VMCOREINFO_NUMBER(PG_swapcache); 1538 VMCOREINFO_NUMBER(PG_slab); 1539 #ifdef CONFIG_MEMORY_FAILURE 1540 VMCOREINFO_NUMBER(PG_hwpoison); 1541 #endif 1542 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); 1543 1544 arch_crash_save_vmcoreinfo(); 1545 update_vmcoreinfo_note(); 1546 1547 return 0; 1548 } 1549 1550 module_init(crash_save_vmcoreinfo_init) 1551 1552 /* 1553 * Move into place and start executing a preloaded standalone 1554 * executable. If nothing was preloaded return an error. 1555 */ 1556 int kernel_kexec(void) 1557 { 1558 int error = 0; 1559 1560 if (!mutex_trylock(&kexec_mutex)) 1561 return -EBUSY; 1562 if (!kexec_image) { 1563 error = -EINVAL; 1564 goto Unlock; 1565 } 1566 1567 #ifdef CONFIG_KEXEC_JUMP 1568 if (kexec_image->preserve_context) { 1569 lock_system_sleep(); 1570 pm_prepare_console(); 1571 error = freeze_processes(); 1572 if (error) { 1573 error = -EBUSY; 1574 goto Restore_console; 1575 } 1576 suspend_console(); 1577 error = dpm_suspend_start(PMSG_FREEZE); 1578 if (error) 1579 goto Resume_console; 1580 /* At this point, dpm_suspend_start() has been called, 1581 * but *not* dpm_suspend_end(). We *must* call 1582 * dpm_suspend_end() now. Otherwise, drivers for 1583 * some devices (e.g. interrupt controllers) become 1584 * desynchronized with the actual state of the 1585 * hardware at resume time, and evil weirdness ensues. 1586 */ 1587 error = dpm_suspend_end(PMSG_FREEZE); 1588 if (error) 1589 goto Resume_devices; 1590 error = disable_nonboot_cpus(); 1591 if (error) 1592 goto Enable_cpus; 1593 local_irq_disable(); 1594 error = syscore_suspend(); 1595 if (error) 1596 goto Enable_irqs; 1597 } else 1598 #endif 1599 { 1600 kernel_restart_prepare(NULL); 1601 printk(KERN_EMERG "Starting new kernel\n"); 1602 machine_shutdown(); 1603 } 1604 1605 machine_kexec(kexec_image); 1606 1607 #ifdef CONFIG_KEXEC_JUMP 1608 if (kexec_image->preserve_context) { 1609 syscore_resume(); 1610 Enable_irqs: 1611 local_irq_enable(); 1612 Enable_cpus: 1613 enable_nonboot_cpus(); 1614 dpm_resume_start(PMSG_RESTORE); 1615 Resume_devices: 1616 dpm_resume_end(PMSG_RESTORE); 1617 Resume_console: 1618 resume_console(); 1619 thaw_processes(); 1620 Restore_console: 1621 pm_restore_console(); 1622 unlock_system_sleep(); 1623 } 1624 #endif 1625 1626 Unlock: 1627 mutex_unlock(&kexec_mutex); 1628 return error; 1629 } 1630