xref: /linux/kernel/kexec.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * kexec.c - kexec system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #include <linux/capability.h>
10 #include <linux/mm.h>
11 #include <linux/file.h>
12 #include <linux/slab.h>
13 #include <linux/fs.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/highmem.h>
18 #include <linux/syscalls.h>
19 #include <linux/reboot.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
22 #include <linux/elf.h>
23 #include <linux/elfcore.h>
24 #include <generated/utsrelease.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/pm.h>
31 #include <linux/cpu.h>
32 #include <linux/console.h>
33 #include <linux/vmalloc.h>
34 #include <linux/swap.h>
35 #include <linux/syscore_ops.h>
36 
37 #include <asm/page.h>
38 #include <asm/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/system.h>
41 #include <asm/sections.h>
42 
43 /* Per cpu memory for storing cpu states in case of system crash. */
44 note_buf_t __percpu *crash_notes;
45 
46 /* vmcoreinfo stuff */
47 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
48 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
49 size_t vmcoreinfo_size;
50 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
51 
52 /* Location of the reserved area for the crash kernel */
53 struct resource crashk_res = {
54 	.name  = "Crash kernel",
55 	.start = 0,
56 	.end   = 0,
57 	.flags = IORESOURCE_BUSY | IORESOURCE_MEM
58 };
59 
60 int kexec_should_crash(struct task_struct *p)
61 {
62 	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
63 		return 1;
64 	return 0;
65 }
66 
67 /*
68  * When kexec transitions to the new kernel there is a one-to-one
69  * mapping between physical and virtual addresses.  On processors
70  * where you can disable the MMU this is trivial, and easy.  For
71  * others it is still a simple predictable page table to setup.
72  *
73  * In that environment kexec copies the new kernel to its final
74  * resting place.  This means I can only support memory whose
75  * physical address can fit in an unsigned long.  In particular
76  * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
77  * If the assembly stub has more restrictive requirements
78  * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
79  * defined more restrictively in <asm/kexec.h>.
80  *
81  * The code for the transition from the current kernel to the
82  * the new kernel is placed in the control_code_buffer, whose size
83  * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
84  * page of memory is necessary, but some architectures require more.
85  * Because this memory must be identity mapped in the transition from
86  * virtual to physical addresses it must live in the range
87  * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
88  * modifiable.
89  *
90  * The assembly stub in the control code buffer is passed a linked list
91  * of descriptor pages detailing the source pages of the new kernel,
92  * and the destination addresses of those source pages.  As this data
93  * structure is not used in the context of the current OS, it must
94  * be self-contained.
95  *
96  * The code has been made to work with highmem pages and will use a
97  * destination page in its final resting place (if it happens
98  * to allocate it).  The end product of this is that most of the
99  * physical address space, and most of RAM can be used.
100  *
101  * Future directions include:
102  *  - allocating a page table with the control code buffer identity
103  *    mapped, to simplify machine_kexec and make kexec_on_panic more
104  *    reliable.
105  */
106 
107 /*
108  * KIMAGE_NO_DEST is an impossible destination address..., for
109  * allocating pages whose destination address we do not care about.
110  */
111 #define KIMAGE_NO_DEST (-1UL)
112 
113 static int kimage_is_destination_range(struct kimage *image,
114 				       unsigned long start, unsigned long end);
115 static struct page *kimage_alloc_page(struct kimage *image,
116 				       gfp_t gfp_mask,
117 				       unsigned long dest);
118 
119 static int do_kimage_alloc(struct kimage **rimage, unsigned long entry,
120 	                    unsigned long nr_segments,
121                             struct kexec_segment __user *segments)
122 {
123 	size_t segment_bytes;
124 	struct kimage *image;
125 	unsigned long i;
126 	int result;
127 
128 	/* Allocate a controlling structure */
129 	result = -ENOMEM;
130 	image = kzalloc(sizeof(*image), GFP_KERNEL);
131 	if (!image)
132 		goto out;
133 
134 	image->head = 0;
135 	image->entry = &image->head;
136 	image->last_entry = &image->head;
137 	image->control_page = ~0; /* By default this does not apply */
138 	image->start = entry;
139 	image->type = KEXEC_TYPE_DEFAULT;
140 
141 	/* Initialize the list of control pages */
142 	INIT_LIST_HEAD(&image->control_pages);
143 
144 	/* Initialize the list of destination pages */
145 	INIT_LIST_HEAD(&image->dest_pages);
146 
147 	/* Initialize the list of unusable pages */
148 	INIT_LIST_HEAD(&image->unuseable_pages);
149 
150 	/* Read in the segments */
151 	image->nr_segments = nr_segments;
152 	segment_bytes = nr_segments * sizeof(*segments);
153 	result = copy_from_user(image->segment, segments, segment_bytes);
154 	if (result) {
155 		result = -EFAULT;
156 		goto out;
157 	}
158 
159 	/*
160 	 * Verify we have good destination addresses.  The caller is
161 	 * responsible for making certain we don't attempt to load
162 	 * the new image into invalid or reserved areas of RAM.  This
163 	 * just verifies it is an address we can use.
164 	 *
165 	 * Since the kernel does everything in page size chunks ensure
166 	 * the destination addresses are page aligned.  Too many
167 	 * special cases crop of when we don't do this.  The most
168 	 * insidious is getting overlapping destination addresses
169 	 * simply because addresses are changed to page size
170 	 * granularity.
171 	 */
172 	result = -EADDRNOTAVAIL;
173 	for (i = 0; i < nr_segments; i++) {
174 		unsigned long mstart, mend;
175 
176 		mstart = image->segment[i].mem;
177 		mend   = mstart + image->segment[i].memsz;
178 		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
179 			goto out;
180 		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
181 			goto out;
182 	}
183 
184 	/* Verify our destination addresses do not overlap.
185 	 * If we alloed overlapping destination addresses
186 	 * through very weird things can happen with no
187 	 * easy explanation as one segment stops on another.
188 	 */
189 	result = -EINVAL;
190 	for (i = 0; i < nr_segments; i++) {
191 		unsigned long mstart, mend;
192 		unsigned long j;
193 
194 		mstart = image->segment[i].mem;
195 		mend   = mstart + image->segment[i].memsz;
196 		for (j = 0; j < i; j++) {
197 			unsigned long pstart, pend;
198 			pstart = image->segment[j].mem;
199 			pend   = pstart + image->segment[j].memsz;
200 			/* Do the segments overlap ? */
201 			if ((mend > pstart) && (mstart < pend))
202 				goto out;
203 		}
204 	}
205 
206 	/* Ensure our buffer sizes are strictly less than
207 	 * our memory sizes.  This should always be the case,
208 	 * and it is easier to check up front than to be surprised
209 	 * later on.
210 	 */
211 	result = -EINVAL;
212 	for (i = 0; i < nr_segments; i++) {
213 		if (image->segment[i].bufsz > image->segment[i].memsz)
214 			goto out;
215 	}
216 
217 	result = 0;
218 out:
219 	if (result == 0)
220 		*rimage = image;
221 	else
222 		kfree(image);
223 
224 	return result;
225 
226 }
227 
228 static int kimage_normal_alloc(struct kimage **rimage, unsigned long entry,
229 				unsigned long nr_segments,
230 				struct kexec_segment __user *segments)
231 {
232 	int result;
233 	struct kimage *image;
234 
235 	/* Allocate and initialize a controlling structure */
236 	image = NULL;
237 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
238 	if (result)
239 		goto out;
240 
241 	*rimage = image;
242 
243 	/*
244 	 * Find a location for the control code buffer, and add it
245 	 * the vector of segments so that it's pages will also be
246 	 * counted as destination pages.
247 	 */
248 	result = -ENOMEM;
249 	image->control_code_page = kimage_alloc_control_pages(image,
250 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
251 	if (!image->control_code_page) {
252 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
253 		goto out;
254 	}
255 
256 	image->swap_page = kimage_alloc_control_pages(image, 0);
257 	if (!image->swap_page) {
258 		printk(KERN_ERR "Could not allocate swap buffer\n");
259 		goto out;
260 	}
261 
262 	result = 0;
263  out:
264 	if (result == 0)
265 		*rimage = image;
266 	else
267 		kfree(image);
268 
269 	return result;
270 }
271 
272 static int kimage_crash_alloc(struct kimage **rimage, unsigned long entry,
273 				unsigned long nr_segments,
274 				struct kexec_segment __user *segments)
275 {
276 	int result;
277 	struct kimage *image;
278 	unsigned long i;
279 
280 	image = NULL;
281 	/* Verify we have a valid entry point */
282 	if ((entry < crashk_res.start) || (entry > crashk_res.end)) {
283 		result = -EADDRNOTAVAIL;
284 		goto out;
285 	}
286 
287 	/* Allocate and initialize a controlling structure */
288 	result = do_kimage_alloc(&image, entry, nr_segments, segments);
289 	if (result)
290 		goto out;
291 
292 	/* Enable the special crash kernel control page
293 	 * allocation policy.
294 	 */
295 	image->control_page = crashk_res.start;
296 	image->type = KEXEC_TYPE_CRASH;
297 
298 	/*
299 	 * Verify we have good destination addresses.  Normally
300 	 * the caller is responsible for making certain we don't
301 	 * attempt to load the new image into invalid or reserved
302 	 * areas of RAM.  But crash kernels are preloaded into a
303 	 * reserved area of ram.  We must ensure the addresses
304 	 * are in the reserved area otherwise preloading the
305 	 * kernel could corrupt things.
306 	 */
307 	result = -EADDRNOTAVAIL;
308 	for (i = 0; i < nr_segments; i++) {
309 		unsigned long mstart, mend;
310 
311 		mstart = image->segment[i].mem;
312 		mend = mstart + image->segment[i].memsz - 1;
313 		/* Ensure we are within the crash kernel limits */
314 		if ((mstart < crashk_res.start) || (mend > crashk_res.end))
315 			goto out;
316 	}
317 
318 	/*
319 	 * Find a location for the control code buffer, and add
320 	 * the vector of segments so that it's pages will also be
321 	 * counted as destination pages.
322 	 */
323 	result = -ENOMEM;
324 	image->control_code_page = kimage_alloc_control_pages(image,
325 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
326 	if (!image->control_code_page) {
327 		printk(KERN_ERR "Could not allocate control_code_buffer\n");
328 		goto out;
329 	}
330 
331 	result = 0;
332 out:
333 	if (result == 0)
334 		*rimage = image;
335 	else
336 		kfree(image);
337 
338 	return result;
339 }
340 
341 static int kimage_is_destination_range(struct kimage *image,
342 					unsigned long start,
343 					unsigned long end)
344 {
345 	unsigned long i;
346 
347 	for (i = 0; i < image->nr_segments; i++) {
348 		unsigned long mstart, mend;
349 
350 		mstart = image->segment[i].mem;
351 		mend = mstart + image->segment[i].memsz;
352 		if ((end > mstart) && (start < mend))
353 			return 1;
354 	}
355 
356 	return 0;
357 }
358 
359 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
360 {
361 	struct page *pages;
362 
363 	pages = alloc_pages(gfp_mask, order);
364 	if (pages) {
365 		unsigned int count, i;
366 		pages->mapping = NULL;
367 		set_page_private(pages, order);
368 		count = 1 << order;
369 		for (i = 0; i < count; i++)
370 			SetPageReserved(pages + i);
371 	}
372 
373 	return pages;
374 }
375 
376 static void kimage_free_pages(struct page *page)
377 {
378 	unsigned int order, count, i;
379 
380 	order = page_private(page);
381 	count = 1 << order;
382 	for (i = 0; i < count; i++)
383 		ClearPageReserved(page + i);
384 	__free_pages(page, order);
385 }
386 
387 static void kimage_free_page_list(struct list_head *list)
388 {
389 	struct list_head *pos, *next;
390 
391 	list_for_each_safe(pos, next, list) {
392 		struct page *page;
393 
394 		page = list_entry(pos, struct page, lru);
395 		list_del(&page->lru);
396 		kimage_free_pages(page);
397 	}
398 }
399 
400 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
401 							unsigned int order)
402 {
403 	/* Control pages are special, they are the intermediaries
404 	 * that are needed while we copy the rest of the pages
405 	 * to their final resting place.  As such they must
406 	 * not conflict with either the destination addresses
407 	 * or memory the kernel is already using.
408 	 *
409 	 * The only case where we really need more than one of
410 	 * these are for architectures where we cannot disable
411 	 * the MMU and must instead generate an identity mapped
412 	 * page table for all of the memory.
413 	 *
414 	 * At worst this runs in O(N) of the image size.
415 	 */
416 	struct list_head extra_pages;
417 	struct page *pages;
418 	unsigned int count;
419 
420 	count = 1 << order;
421 	INIT_LIST_HEAD(&extra_pages);
422 
423 	/* Loop while I can allocate a page and the page allocated
424 	 * is a destination page.
425 	 */
426 	do {
427 		unsigned long pfn, epfn, addr, eaddr;
428 
429 		pages = kimage_alloc_pages(GFP_KERNEL, order);
430 		if (!pages)
431 			break;
432 		pfn   = page_to_pfn(pages);
433 		epfn  = pfn + count;
434 		addr  = pfn << PAGE_SHIFT;
435 		eaddr = epfn << PAGE_SHIFT;
436 		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
437 			      kimage_is_destination_range(image, addr, eaddr)) {
438 			list_add(&pages->lru, &extra_pages);
439 			pages = NULL;
440 		}
441 	} while (!pages);
442 
443 	if (pages) {
444 		/* Remember the allocated page... */
445 		list_add(&pages->lru, &image->control_pages);
446 
447 		/* Because the page is already in it's destination
448 		 * location we will never allocate another page at
449 		 * that address.  Therefore kimage_alloc_pages
450 		 * will not return it (again) and we don't need
451 		 * to give it an entry in image->segment[].
452 		 */
453 	}
454 	/* Deal with the destination pages I have inadvertently allocated.
455 	 *
456 	 * Ideally I would convert multi-page allocations into single
457 	 * page allocations, and add everything to image->dest_pages.
458 	 *
459 	 * For now it is simpler to just free the pages.
460 	 */
461 	kimage_free_page_list(&extra_pages);
462 
463 	return pages;
464 }
465 
466 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
467 						      unsigned int order)
468 {
469 	/* Control pages are special, they are the intermediaries
470 	 * that are needed while we copy the rest of the pages
471 	 * to their final resting place.  As such they must
472 	 * not conflict with either the destination addresses
473 	 * or memory the kernel is already using.
474 	 *
475 	 * Control pages are also the only pags we must allocate
476 	 * when loading a crash kernel.  All of the other pages
477 	 * are specified by the segments and we just memcpy
478 	 * into them directly.
479 	 *
480 	 * The only case where we really need more than one of
481 	 * these are for architectures where we cannot disable
482 	 * the MMU and must instead generate an identity mapped
483 	 * page table for all of the memory.
484 	 *
485 	 * Given the low demand this implements a very simple
486 	 * allocator that finds the first hole of the appropriate
487 	 * size in the reserved memory region, and allocates all
488 	 * of the memory up to and including the hole.
489 	 */
490 	unsigned long hole_start, hole_end, size;
491 	struct page *pages;
492 
493 	pages = NULL;
494 	size = (1 << order) << PAGE_SHIFT;
495 	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
496 	hole_end   = hole_start + size - 1;
497 	while (hole_end <= crashk_res.end) {
498 		unsigned long i;
499 
500 		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
501 			break;
502 		if (hole_end > crashk_res.end)
503 			break;
504 		/* See if I overlap any of the segments */
505 		for (i = 0; i < image->nr_segments; i++) {
506 			unsigned long mstart, mend;
507 
508 			mstart = image->segment[i].mem;
509 			mend   = mstart + image->segment[i].memsz - 1;
510 			if ((hole_end >= mstart) && (hole_start <= mend)) {
511 				/* Advance the hole to the end of the segment */
512 				hole_start = (mend + (size - 1)) & ~(size - 1);
513 				hole_end   = hole_start + size - 1;
514 				break;
515 			}
516 		}
517 		/* If I don't overlap any segments I have found my hole! */
518 		if (i == image->nr_segments) {
519 			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
520 			break;
521 		}
522 	}
523 	if (pages)
524 		image->control_page = hole_end;
525 
526 	return pages;
527 }
528 
529 
530 struct page *kimage_alloc_control_pages(struct kimage *image,
531 					 unsigned int order)
532 {
533 	struct page *pages = NULL;
534 
535 	switch (image->type) {
536 	case KEXEC_TYPE_DEFAULT:
537 		pages = kimage_alloc_normal_control_pages(image, order);
538 		break;
539 	case KEXEC_TYPE_CRASH:
540 		pages = kimage_alloc_crash_control_pages(image, order);
541 		break;
542 	}
543 
544 	return pages;
545 }
546 
547 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
548 {
549 	if (*image->entry != 0)
550 		image->entry++;
551 
552 	if (image->entry == image->last_entry) {
553 		kimage_entry_t *ind_page;
554 		struct page *page;
555 
556 		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
557 		if (!page)
558 			return -ENOMEM;
559 
560 		ind_page = page_address(page);
561 		*image->entry = virt_to_phys(ind_page) | IND_INDIRECTION;
562 		image->entry = ind_page;
563 		image->last_entry = ind_page +
564 				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
565 	}
566 	*image->entry = entry;
567 	image->entry++;
568 	*image->entry = 0;
569 
570 	return 0;
571 }
572 
573 static int kimage_set_destination(struct kimage *image,
574 				   unsigned long destination)
575 {
576 	int result;
577 
578 	destination &= PAGE_MASK;
579 	result = kimage_add_entry(image, destination | IND_DESTINATION);
580 	if (result == 0)
581 		image->destination = destination;
582 
583 	return result;
584 }
585 
586 
587 static int kimage_add_page(struct kimage *image, unsigned long page)
588 {
589 	int result;
590 
591 	page &= PAGE_MASK;
592 	result = kimage_add_entry(image, page | IND_SOURCE);
593 	if (result == 0)
594 		image->destination += PAGE_SIZE;
595 
596 	return result;
597 }
598 
599 
600 static void kimage_free_extra_pages(struct kimage *image)
601 {
602 	/* Walk through and free any extra destination pages I may have */
603 	kimage_free_page_list(&image->dest_pages);
604 
605 	/* Walk through and free any unusable pages I have cached */
606 	kimage_free_page_list(&image->unuseable_pages);
607 
608 }
609 static void kimage_terminate(struct kimage *image)
610 {
611 	if (*image->entry != 0)
612 		image->entry++;
613 
614 	*image->entry = IND_DONE;
615 }
616 
617 #define for_each_kimage_entry(image, ptr, entry) \
618 	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
619 		ptr = (entry & IND_INDIRECTION)? \
620 			phys_to_virt((entry & PAGE_MASK)): ptr +1)
621 
622 static void kimage_free_entry(kimage_entry_t entry)
623 {
624 	struct page *page;
625 
626 	page = pfn_to_page(entry >> PAGE_SHIFT);
627 	kimage_free_pages(page);
628 }
629 
630 static void kimage_free(struct kimage *image)
631 {
632 	kimage_entry_t *ptr, entry;
633 	kimage_entry_t ind = 0;
634 
635 	if (!image)
636 		return;
637 
638 	kimage_free_extra_pages(image);
639 	for_each_kimage_entry(image, ptr, entry) {
640 		if (entry & IND_INDIRECTION) {
641 			/* Free the previous indirection page */
642 			if (ind & IND_INDIRECTION)
643 				kimage_free_entry(ind);
644 			/* Save this indirection page until we are
645 			 * done with it.
646 			 */
647 			ind = entry;
648 		}
649 		else if (entry & IND_SOURCE)
650 			kimage_free_entry(entry);
651 	}
652 	/* Free the final indirection page */
653 	if (ind & IND_INDIRECTION)
654 		kimage_free_entry(ind);
655 
656 	/* Handle any machine specific cleanup */
657 	machine_kexec_cleanup(image);
658 
659 	/* Free the kexec control pages... */
660 	kimage_free_page_list(&image->control_pages);
661 	kfree(image);
662 }
663 
664 static kimage_entry_t *kimage_dst_used(struct kimage *image,
665 					unsigned long page)
666 {
667 	kimage_entry_t *ptr, entry;
668 	unsigned long destination = 0;
669 
670 	for_each_kimage_entry(image, ptr, entry) {
671 		if (entry & IND_DESTINATION)
672 			destination = entry & PAGE_MASK;
673 		else if (entry & IND_SOURCE) {
674 			if (page == destination)
675 				return ptr;
676 			destination += PAGE_SIZE;
677 		}
678 	}
679 
680 	return NULL;
681 }
682 
683 static struct page *kimage_alloc_page(struct kimage *image,
684 					gfp_t gfp_mask,
685 					unsigned long destination)
686 {
687 	/*
688 	 * Here we implement safeguards to ensure that a source page
689 	 * is not copied to its destination page before the data on
690 	 * the destination page is no longer useful.
691 	 *
692 	 * To do this we maintain the invariant that a source page is
693 	 * either its own destination page, or it is not a
694 	 * destination page at all.
695 	 *
696 	 * That is slightly stronger than required, but the proof
697 	 * that no problems will not occur is trivial, and the
698 	 * implementation is simply to verify.
699 	 *
700 	 * When allocating all pages normally this algorithm will run
701 	 * in O(N) time, but in the worst case it will run in O(N^2)
702 	 * time.   If the runtime is a problem the data structures can
703 	 * be fixed.
704 	 */
705 	struct page *page;
706 	unsigned long addr;
707 
708 	/*
709 	 * Walk through the list of destination pages, and see if I
710 	 * have a match.
711 	 */
712 	list_for_each_entry(page, &image->dest_pages, lru) {
713 		addr = page_to_pfn(page) << PAGE_SHIFT;
714 		if (addr == destination) {
715 			list_del(&page->lru);
716 			return page;
717 		}
718 	}
719 	page = NULL;
720 	while (1) {
721 		kimage_entry_t *old;
722 
723 		/* Allocate a page, if we run out of memory give up */
724 		page = kimage_alloc_pages(gfp_mask, 0);
725 		if (!page)
726 			return NULL;
727 		/* If the page cannot be used file it away */
728 		if (page_to_pfn(page) >
729 				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
730 			list_add(&page->lru, &image->unuseable_pages);
731 			continue;
732 		}
733 		addr = page_to_pfn(page) << PAGE_SHIFT;
734 
735 		/* If it is the destination page we want use it */
736 		if (addr == destination)
737 			break;
738 
739 		/* If the page is not a destination page use it */
740 		if (!kimage_is_destination_range(image, addr,
741 						  addr + PAGE_SIZE))
742 			break;
743 
744 		/*
745 		 * I know that the page is someones destination page.
746 		 * See if there is already a source page for this
747 		 * destination page.  And if so swap the source pages.
748 		 */
749 		old = kimage_dst_used(image, addr);
750 		if (old) {
751 			/* If so move it */
752 			unsigned long old_addr;
753 			struct page *old_page;
754 
755 			old_addr = *old & PAGE_MASK;
756 			old_page = pfn_to_page(old_addr >> PAGE_SHIFT);
757 			copy_highpage(page, old_page);
758 			*old = addr | (*old & ~PAGE_MASK);
759 
760 			/* The old page I have found cannot be a
761 			 * destination page, so return it if it's
762 			 * gfp_flags honor the ones passed in.
763 			 */
764 			if (!(gfp_mask & __GFP_HIGHMEM) &&
765 			    PageHighMem(old_page)) {
766 				kimage_free_pages(old_page);
767 				continue;
768 			}
769 			addr = old_addr;
770 			page = old_page;
771 			break;
772 		}
773 		else {
774 			/* Place the page on the destination list I
775 			 * will use it later.
776 			 */
777 			list_add(&page->lru, &image->dest_pages);
778 		}
779 	}
780 
781 	return page;
782 }
783 
784 static int kimage_load_normal_segment(struct kimage *image,
785 					 struct kexec_segment *segment)
786 {
787 	unsigned long maddr;
788 	unsigned long ubytes, mbytes;
789 	int result;
790 	unsigned char __user *buf;
791 
792 	result = 0;
793 	buf = segment->buf;
794 	ubytes = segment->bufsz;
795 	mbytes = segment->memsz;
796 	maddr = segment->mem;
797 
798 	result = kimage_set_destination(image, maddr);
799 	if (result < 0)
800 		goto out;
801 
802 	while (mbytes) {
803 		struct page *page;
804 		char *ptr;
805 		size_t uchunk, mchunk;
806 
807 		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
808 		if (!page) {
809 			result  = -ENOMEM;
810 			goto out;
811 		}
812 		result = kimage_add_page(image, page_to_pfn(page)
813 								<< PAGE_SHIFT);
814 		if (result < 0)
815 			goto out;
816 
817 		ptr = kmap(page);
818 		/* Start with a clear page */
819 		clear_page(ptr);
820 		ptr += maddr & ~PAGE_MASK;
821 		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
822 		if (mchunk > mbytes)
823 			mchunk = mbytes;
824 
825 		uchunk = mchunk;
826 		if (uchunk > ubytes)
827 			uchunk = ubytes;
828 
829 		result = copy_from_user(ptr, buf, uchunk);
830 		kunmap(page);
831 		if (result) {
832 			result = -EFAULT;
833 			goto out;
834 		}
835 		ubytes -= uchunk;
836 		maddr  += mchunk;
837 		buf    += mchunk;
838 		mbytes -= mchunk;
839 	}
840 out:
841 	return result;
842 }
843 
844 static int kimage_load_crash_segment(struct kimage *image,
845 					struct kexec_segment *segment)
846 {
847 	/* For crash dumps kernels we simply copy the data from
848 	 * user space to it's destination.
849 	 * We do things a page at a time for the sake of kmap.
850 	 */
851 	unsigned long maddr;
852 	unsigned long ubytes, mbytes;
853 	int result;
854 	unsigned char __user *buf;
855 
856 	result = 0;
857 	buf = segment->buf;
858 	ubytes = segment->bufsz;
859 	mbytes = segment->memsz;
860 	maddr = segment->mem;
861 	while (mbytes) {
862 		struct page *page;
863 		char *ptr;
864 		size_t uchunk, mchunk;
865 
866 		page = pfn_to_page(maddr >> PAGE_SHIFT);
867 		if (!page) {
868 			result  = -ENOMEM;
869 			goto out;
870 		}
871 		ptr = kmap(page);
872 		ptr += maddr & ~PAGE_MASK;
873 		mchunk = PAGE_SIZE - (maddr & ~PAGE_MASK);
874 		if (mchunk > mbytes)
875 			mchunk = mbytes;
876 
877 		uchunk = mchunk;
878 		if (uchunk > ubytes) {
879 			uchunk = ubytes;
880 			/* Zero the trailing part of the page */
881 			memset(ptr + uchunk, 0, mchunk - uchunk);
882 		}
883 		result = copy_from_user(ptr, buf, uchunk);
884 		kexec_flush_icache_page(page);
885 		kunmap(page);
886 		if (result) {
887 			result = -EFAULT;
888 			goto out;
889 		}
890 		ubytes -= uchunk;
891 		maddr  += mchunk;
892 		buf    += mchunk;
893 		mbytes -= mchunk;
894 	}
895 out:
896 	return result;
897 }
898 
899 static int kimage_load_segment(struct kimage *image,
900 				struct kexec_segment *segment)
901 {
902 	int result = -ENOMEM;
903 
904 	switch (image->type) {
905 	case KEXEC_TYPE_DEFAULT:
906 		result = kimage_load_normal_segment(image, segment);
907 		break;
908 	case KEXEC_TYPE_CRASH:
909 		result = kimage_load_crash_segment(image, segment);
910 		break;
911 	}
912 
913 	return result;
914 }
915 
916 /*
917  * Exec Kernel system call: for obvious reasons only root may call it.
918  *
919  * This call breaks up into three pieces.
920  * - A generic part which loads the new kernel from the current
921  *   address space, and very carefully places the data in the
922  *   allocated pages.
923  *
924  * - A generic part that interacts with the kernel and tells all of
925  *   the devices to shut down.  Preventing on-going dmas, and placing
926  *   the devices in a consistent state so a later kernel can
927  *   reinitialize them.
928  *
929  * - A machine specific part that includes the syscall number
930  *   and the copies the image to it's final destination.  And
931  *   jumps into the image at entry.
932  *
933  * kexec does not sync, or unmount filesystems so if you need
934  * that to happen you need to do that yourself.
935  */
936 struct kimage *kexec_image;
937 struct kimage *kexec_crash_image;
938 
939 static DEFINE_MUTEX(kexec_mutex);
940 
941 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
942 		struct kexec_segment __user *, segments, unsigned long, flags)
943 {
944 	struct kimage **dest_image, *image;
945 	int result;
946 
947 	/* We only trust the superuser with rebooting the system. */
948 	if (!capable(CAP_SYS_BOOT))
949 		return -EPERM;
950 
951 	/*
952 	 * Verify we have a legal set of flags
953 	 * This leaves us room for future extensions.
954 	 */
955 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
956 		return -EINVAL;
957 
958 	/* Verify we are on the appropriate architecture */
959 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
960 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
961 		return -EINVAL;
962 
963 	/* Put an artificial cap on the number
964 	 * of segments passed to kexec_load.
965 	 */
966 	if (nr_segments > KEXEC_SEGMENT_MAX)
967 		return -EINVAL;
968 
969 	image = NULL;
970 	result = 0;
971 
972 	/* Because we write directly to the reserved memory
973 	 * region when loading crash kernels we need a mutex here to
974 	 * prevent multiple crash  kernels from attempting to load
975 	 * simultaneously, and to prevent a crash kernel from loading
976 	 * over the top of a in use crash kernel.
977 	 *
978 	 * KISS: always take the mutex.
979 	 */
980 	if (!mutex_trylock(&kexec_mutex))
981 		return -EBUSY;
982 
983 	dest_image = &kexec_image;
984 	if (flags & KEXEC_ON_CRASH)
985 		dest_image = &kexec_crash_image;
986 	if (nr_segments > 0) {
987 		unsigned long i;
988 
989 		/* Loading another kernel to reboot into */
990 		if ((flags & KEXEC_ON_CRASH) == 0)
991 			result = kimage_normal_alloc(&image, entry,
992 							nr_segments, segments);
993 		/* Loading another kernel to switch to if this one crashes */
994 		else if (flags & KEXEC_ON_CRASH) {
995 			/* Free any current crash dump kernel before
996 			 * we corrupt it.
997 			 */
998 			kimage_free(xchg(&kexec_crash_image, NULL));
999 			result = kimage_crash_alloc(&image, entry,
1000 						     nr_segments, segments);
1001 			crash_map_reserved_pages();
1002 		}
1003 		if (result)
1004 			goto out;
1005 
1006 		if (flags & KEXEC_PRESERVE_CONTEXT)
1007 			image->preserve_context = 1;
1008 		result = machine_kexec_prepare(image);
1009 		if (result)
1010 			goto out;
1011 
1012 		for (i = 0; i < nr_segments; i++) {
1013 			result = kimage_load_segment(image, &image->segment[i]);
1014 			if (result)
1015 				goto out;
1016 		}
1017 		kimage_terminate(image);
1018 		if (flags & KEXEC_ON_CRASH)
1019 			crash_unmap_reserved_pages();
1020 	}
1021 	/* Install the new kernel, and  Uninstall the old */
1022 	image = xchg(dest_image, image);
1023 
1024 out:
1025 	mutex_unlock(&kexec_mutex);
1026 	kimage_free(image);
1027 
1028 	return result;
1029 }
1030 
1031 /*
1032  * Add and remove page tables for crashkernel memory
1033  *
1034  * Provide an empty default implementation here -- architecture
1035  * code may override this
1036  */
1037 void __weak crash_map_reserved_pages(void)
1038 {}
1039 
1040 void __weak crash_unmap_reserved_pages(void)
1041 {}
1042 
1043 #ifdef CONFIG_COMPAT
1044 asmlinkage long compat_sys_kexec_load(unsigned long entry,
1045 				unsigned long nr_segments,
1046 				struct compat_kexec_segment __user *segments,
1047 				unsigned long flags)
1048 {
1049 	struct compat_kexec_segment in;
1050 	struct kexec_segment out, __user *ksegments;
1051 	unsigned long i, result;
1052 
1053 	/* Don't allow clients that don't understand the native
1054 	 * architecture to do anything.
1055 	 */
1056 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
1057 		return -EINVAL;
1058 
1059 	if (nr_segments > KEXEC_SEGMENT_MAX)
1060 		return -EINVAL;
1061 
1062 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
1063 	for (i=0; i < nr_segments; i++) {
1064 		result = copy_from_user(&in, &segments[i], sizeof(in));
1065 		if (result)
1066 			return -EFAULT;
1067 
1068 		out.buf   = compat_ptr(in.buf);
1069 		out.bufsz = in.bufsz;
1070 		out.mem   = in.mem;
1071 		out.memsz = in.memsz;
1072 
1073 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
1074 		if (result)
1075 			return -EFAULT;
1076 	}
1077 
1078 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
1079 }
1080 #endif
1081 
1082 void crash_kexec(struct pt_regs *regs)
1083 {
1084 	/* Take the kexec_mutex here to prevent sys_kexec_load
1085 	 * running on one cpu from replacing the crash kernel
1086 	 * we are using after a panic on a different cpu.
1087 	 *
1088 	 * If the crash kernel was not located in a fixed area
1089 	 * of memory the xchg(&kexec_crash_image) would be
1090 	 * sufficient.  But since I reuse the memory...
1091 	 */
1092 	if (mutex_trylock(&kexec_mutex)) {
1093 		if (kexec_crash_image) {
1094 			struct pt_regs fixed_regs;
1095 
1096 			crash_setup_regs(&fixed_regs, regs);
1097 			crash_save_vmcoreinfo();
1098 			machine_crash_shutdown(&fixed_regs);
1099 			machine_kexec(kexec_crash_image);
1100 		}
1101 		mutex_unlock(&kexec_mutex);
1102 	}
1103 }
1104 
1105 size_t crash_get_memory_size(void)
1106 {
1107 	size_t size = 0;
1108 	mutex_lock(&kexec_mutex);
1109 	if (crashk_res.end != crashk_res.start)
1110 		size = resource_size(&crashk_res);
1111 	mutex_unlock(&kexec_mutex);
1112 	return size;
1113 }
1114 
1115 void __weak crash_free_reserved_phys_range(unsigned long begin,
1116 					   unsigned long end)
1117 {
1118 	unsigned long addr;
1119 
1120 	for (addr = begin; addr < end; addr += PAGE_SIZE) {
1121 		ClearPageReserved(pfn_to_page(addr >> PAGE_SHIFT));
1122 		init_page_count(pfn_to_page(addr >> PAGE_SHIFT));
1123 		free_page((unsigned long)__va(addr));
1124 		totalram_pages++;
1125 	}
1126 }
1127 
1128 int crash_shrink_memory(unsigned long new_size)
1129 {
1130 	int ret = 0;
1131 	unsigned long start, end;
1132 	unsigned long old_size;
1133 	struct resource *ram_res;
1134 
1135 	mutex_lock(&kexec_mutex);
1136 
1137 	if (kexec_crash_image) {
1138 		ret = -ENOENT;
1139 		goto unlock;
1140 	}
1141 	start = crashk_res.start;
1142 	end = crashk_res.end;
1143 	old_size = (end == 0) ? 0 : end - start + 1;
1144 	if (new_size >= old_size) {
1145 		ret = (new_size == old_size) ? 0 : -EINVAL;
1146 		goto unlock;
1147 	}
1148 
1149 	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1150 	if (!ram_res) {
1151 		ret = -ENOMEM;
1152 		goto unlock;
1153 	}
1154 
1155 	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1156 	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1157 
1158 	crash_map_reserved_pages();
1159 	crash_free_reserved_phys_range(end, crashk_res.end);
1160 
1161 	if ((start == end) && (crashk_res.parent != NULL))
1162 		release_resource(&crashk_res);
1163 
1164 	ram_res->start = end;
1165 	ram_res->end = crashk_res.end;
1166 	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
1167 	ram_res->name = "System RAM";
1168 
1169 	crashk_res.end = end - 1;
1170 
1171 	insert_resource(&iomem_resource, ram_res);
1172 	crash_unmap_reserved_pages();
1173 
1174 unlock:
1175 	mutex_unlock(&kexec_mutex);
1176 	return ret;
1177 }
1178 
1179 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1180 			    size_t data_len)
1181 {
1182 	struct elf_note note;
1183 
1184 	note.n_namesz = strlen(name) + 1;
1185 	note.n_descsz = data_len;
1186 	note.n_type   = type;
1187 	memcpy(buf, &note, sizeof(note));
1188 	buf += (sizeof(note) + 3)/4;
1189 	memcpy(buf, name, note.n_namesz);
1190 	buf += (note.n_namesz + 3)/4;
1191 	memcpy(buf, data, note.n_descsz);
1192 	buf += (note.n_descsz + 3)/4;
1193 
1194 	return buf;
1195 }
1196 
1197 static void final_note(u32 *buf)
1198 {
1199 	struct elf_note note;
1200 
1201 	note.n_namesz = 0;
1202 	note.n_descsz = 0;
1203 	note.n_type   = 0;
1204 	memcpy(buf, &note, sizeof(note));
1205 }
1206 
1207 void crash_save_cpu(struct pt_regs *regs, int cpu)
1208 {
1209 	struct elf_prstatus prstatus;
1210 	u32 *buf;
1211 
1212 	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1213 		return;
1214 
1215 	/* Using ELF notes here is opportunistic.
1216 	 * I need a well defined structure format
1217 	 * for the data I pass, and I need tags
1218 	 * on the data to indicate what information I have
1219 	 * squirrelled away.  ELF notes happen to provide
1220 	 * all of that, so there is no need to invent something new.
1221 	 */
1222 	buf = (u32*)per_cpu_ptr(crash_notes, cpu);
1223 	if (!buf)
1224 		return;
1225 	memset(&prstatus, 0, sizeof(prstatus));
1226 	prstatus.pr_pid = current->pid;
1227 	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1228 	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1229 		      	      &prstatus, sizeof(prstatus));
1230 	final_note(buf);
1231 }
1232 
1233 static int __init crash_notes_memory_init(void)
1234 {
1235 	/* Allocate memory for saving cpu registers. */
1236 	crash_notes = alloc_percpu(note_buf_t);
1237 	if (!crash_notes) {
1238 		printk("Kexec: Memory allocation for saving cpu register"
1239 		" states failed\n");
1240 		return -ENOMEM;
1241 	}
1242 	return 0;
1243 }
1244 module_init(crash_notes_memory_init)
1245 
1246 
1247 /*
1248  * parsing the "crashkernel" commandline
1249  *
1250  * this code is intended to be called from architecture specific code
1251  */
1252 
1253 
1254 /*
1255  * This function parses command lines in the format
1256  *
1257  *   crashkernel=ramsize-range:size[,...][@offset]
1258  *
1259  * The function returns 0 on success and -EINVAL on failure.
1260  */
1261 static int __init parse_crashkernel_mem(char 			*cmdline,
1262 					unsigned long long	system_ram,
1263 					unsigned long long	*crash_size,
1264 					unsigned long long	*crash_base)
1265 {
1266 	char *cur = cmdline, *tmp;
1267 
1268 	/* for each entry of the comma-separated list */
1269 	do {
1270 		unsigned long long start, end = ULLONG_MAX, size;
1271 
1272 		/* get the start of the range */
1273 		start = memparse(cur, &tmp);
1274 		if (cur == tmp) {
1275 			pr_warning("crashkernel: Memory value expected\n");
1276 			return -EINVAL;
1277 		}
1278 		cur = tmp;
1279 		if (*cur != '-') {
1280 			pr_warning("crashkernel: '-' expected\n");
1281 			return -EINVAL;
1282 		}
1283 		cur++;
1284 
1285 		/* if no ':' is here, than we read the end */
1286 		if (*cur != ':') {
1287 			end = memparse(cur, &tmp);
1288 			if (cur == tmp) {
1289 				pr_warning("crashkernel: Memory "
1290 						"value expected\n");
1291 				return -EINVAL;
1292 			}
1293 			cur = tmp;
1294 			if (end <= start) {
1295 				pr_warning("crashkernel: end <= start\n");
1296 				return -EINVAL;
1297 			}
1298 		}
1299 
1300 		if (*cur != ':') {
1301 			pr_warning("crashkernel: ':' expected\n");
1302 			return -EINVAL;
1303 		}
1304 		cur++;
1305 
1306 		size = memparse(cur, &tmp);
1307 		if (cur == tmp) {
1308 			pr_warning("Memory value expected\n");
1309 			return -EINVAL;
1310 		}
1311 		cur = tmp;
1312 		if (size >= system_ram) {
1313 			pr_warning("crashkernel: invalid size\n");
1314 			return -EINVAL;
1315 		}
1316 
1317 		/* match ? */
1318 		if (system_ram >= start && system_ram < end) {
1319 			*crash_size = size;
1320 			break;
1321 		}
1322 	} while (*cur++ == ',');
1323 
1324 	if (*crash_size > 0) {
1325 		while (*cur && *cur != ' ' && *cur != '@')
1326 			cur++;
1327 		if (*cur == '@') {
1328 			cur++;
1329 			*crash_base = memparse(cur, &tmp);
1330 			if (cur == tmp) {
1331 				pr_warning("Memory value expected "
1332 						"after '@'\n");
1333 				return -EINVAL;
1334 			}
1335 		}
1336 	}
1337 
1338 	return 0;
1339 }
1340 
1341 /*
1342  * That function parses "simple" (old) crashkernel command lines like
1343  *
1344  * 	crashkernel=size[@offset]
1345  *
1346  * It returns 0 on success and -EINVAL on failure.
1347  */
1348 static int __init parse_crashkernel_simple(char 		*cmdline,
1349 					   unsigned long long 	*crash_size,
1350 					   unsigned long long 	*crash_base)
1351 {
1352 	char *cur = cmdline;
1353 
1354 	*crash_size = memparse(cmdline, &cur);
1355 	if (cmdline == cur) {
1356 		pr_warning("crashkernel: memory value expected\n");
1357 		return -EINVAL;
1358 	}
1359 
1360 	if (*cur == '@')
1361 		*crash_base = memparse(cur+1, &cur);
1362 
1363 	return 0;
1364 }
1365 
1366 /*
1367  * That function is the entry point for command line parsing and should be
1368  * called from the arch-specific code.
1369  */
1370 int __init parse_crashkernel(char 		 *cmdline,
1371 			     unsigned long long system_ram,
1372 			     unsigned long long *crash_size,
1373 			     unsigned long long *crash_base)
1374 {
1375 	char 	*p = cmdline, *ck_cmdline = NULL;
1376 	char	*first_colon, *first_space;
1377 
1378 	BUG_ON(!crash_size || !crash_base);
1379 	*crash_size = 0;
1380 	*crash_base = 0;
1381 
1382 	/* find crashkernel and use the last one if there are more */
1383 	p = strstr(p, "crashkernel=");
1384 	while (p) {
1385 		ck_cmdline = p;
1386 		p = strstr(p+1, "crashkernel=");
1387 	}
1388 
1389 	if (!ck_cmdline)
1390 		return -EINVAL;
1391 
1392 	ck_cmdline += 12; /* strlen("crashkernel=") */
1393 
1394 	/*
1395 	 * if the commandline contains a ':', then that's the extended
1396 	 * syntax -- if not, it must be the classic syntax
1397 	 */
1398 	first_colon = strchr(ck_cmdline, ':');
1399 	first_space = strchr(ck_cmdline, ' ');
1400 	if (first_colon && (!first_space || first_colon < first_space))
1401 		return parse_crashkernel_mem(ck_cmdline, system_ram,
1402 				crash_size, crash_base);
1403 	else
1404 		return parse_crashkernel_simple(ck_cmdline, crash_size,
1405 				crash_base);
1406 
1407 	return 0;
1408 }
1409 
1410 
1411 static void update_vmcoreinfo_note(void)
1412 {
1413 	u32 *buf = vmcoreinfo_note;
1414 
1415 	if (!vmcoreinfo_size)
1416 		return;
1417 	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1418 			      vmcoreinfo_size);
1419 	final_note(buf);
1420 }
1421 
1422 void crash_save_vmcoreinfo(void)
1423 {
1424 	vmcoreinfo_append_str("CRASHTIME=%ld", get_seconds());
1425 	update_vmcoreinfo_note();
1426 }
1427 
1428 void vmcoreinfo_append_str(const char *fmt, ...)
1429 {
1430 	va_list args;
1431 	char buf[0x50];
1432 	int r;
1433 
1434 	va_start(args, fmt);
1435 	r = vsnprintf(buf, sizeof(buf), fmt, args);
1436 	va_end(args);
1437 
1438 	if (r + vmcoreinfo_size > vmcoreinfo_max_size)
1439 		r = vmcoreinfo_max_size - vmcoreinfo_size;
1440 
1441 	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1442 
1443 	vmcoreinfo_size += r;
1444 }
1445 
1446 /*
1447  * provide an empty default implementation here -- architecture
1448  * code may override this
1449  */
1450 void __attribute__ ((weak)) arch_crash_save_vmcoreinfo(void)
1451 {}
1452 
1453 unsigned long __attribute__ ((weak)) paddr_vmcoreinfo_note(void)
1454 {
1455 	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1456 }
1457 
1458 static int __init crash_save_vmcoreinfo_init(void)
1459 {
1460 	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1461 	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1462 
1463 	VMCOREINFO_SYMBOL(init_uts_ns);
1464 	VMCOREINFO_SYMBOL(node_online_map);
1465 	VMCOREINFO_SYMBOL(swapper_pg_dir);
1466 	VMCOREINFO_SYMBOL(_stext);
1467 	VMCOREINFO_SYMBOL(vmlist);
1468 
1469 #ifndef CONFIG_NEED_MULTIPLE_NODES
1470 	VMCOREINFO_SYMBOL(mem_map);
1471 	VMCOREINFO_SYMBOL(contig_page_data);
1472 #endif
1473 #ifdef CONFIG_SPARSEMEM
1474 	VMCOREINFO_SYMBOL(mem_section);
1475 	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1476 	VMCOREINFO_STRUCT_SIZE(mem_section);
1477 	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1478 #endif
1479 	VMCOREINFO_STRUCT_SIZE(page);
1480 	VMCOREINFO_STRUCT_SIZE(pglist_data);
1481 	VMCOREINFO_STRUCT_SIZE(zone);
1482 	VMCOREINFO_STRUCT_SIZE(free_area);
1483 	VMCOREINFO_STRUCT_SIZE(list_head);
1484 	VMCOREINFO_SIZE(nodemask_t);
1485 	VMCOREINFO_OFFSET(page, flags);
1486 	VMCOREINFO_OFFSET(page, _count);
1487 	VMCOREINFO_OFFSET(page, mapping);
1488 	VMCOREINFO_OFFSET(page, lru);
1489 	VMCOREINFO_OFFSET(pglist_data, node_zones);
1490 	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1491 #ifdef CONFIG_FLAT_NODE_MEM_MAP
1492 	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1493 #endif
1494 	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1495 	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1496 	VMCOREINFO_OFFSET(pglist_data, node_id);
1497 	VMCOREINFO_OFFSET(zone, free_area);
1498 	VMCOREINFO_OFFSET(zone, vm_stat);
1499 	VMCOREINFO_OFFSET(zone, spanned_pages);
1500 	VMCOREINFO_OFFSET(free_area, free_list);
1501 	VMCOREINFO_OFFSET(list_head, next);
1502 	VMCOREINFO_OFFSET(list_head, prev);
1503 	VMCOREINFO_OFFSET(vm_struct, addr);
1504 	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1505 	log_buf_kexec_setup();
1506 	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1507 	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1508 	VMCOREINFO_NUMBER(PG_lru);
1509 	VMCOREINFO_NUMBER(PG_private);
1510 	VMCOREINFO_NUMBER(PG_swapcache);
1511 
1512 	arch_crash_save_vmcoreinfo();
1513 	update_vmcoreinfo_note();
1514 
1515 	return 0;
1516 }
1517 
1518 module_init(crash_save_vmcoreinfo_init)
1519 
1520 /*
1521  * Move into place and start executing a preloaded standalone
1522  * executable.  If nothing was preloaded return an error.
1523  */
1524 int kernel_kexec(void)
1525 {
1526 	int error = 0;
1527 
1528 	if (!mutex_trylock(&kexec_mutex))
1529 		return -EBUSY;
1530 	if (!kexec_image) {
1531 		error = -EINVAL;
1532 		goto Unlock;
1533 	}
1534 
1535 #ifdef CONFIG_KEXEC_JUMP
1536 	if (kexec_image->preserve_context) {
1537 		lock_system_sleep();
1538 		pm_prepare_console();
1539 		error = freeze_processes();
1540 		if (error) {
1541 			error = -EBUSY;
1542 			goto Restore_console;
1543 		}
1544 		suspend_console();
1545 		error = dpm_suspend_start(PMSG_FREEZE);
1546 		if (error)
1547 			goto Resume_console;
1548 		/* At this point, dpm_suspend_start() has been called,
1549 		 * but *not* dpm_suspend_noirq(). We *must* call
1550 		 * dpm_suspend_noirq() now.  Otherwise, drivers for
1551 		 * some devices (e.g. interrupt controllers) become
1552 		 * desynchronized with the actual state of the
1553 		 * hardware at resume time, and evil weirdness ensues.
1554 		 */
1555 		error = dpm_suspend_noirq(PMSG_FREEZE);
1556 		if (error)
1557 			goto Resume_devices;
1558 		error = disable_nonboot_cpus();
1559 		if (error)
1560 			goto Enable_cpus;
1561 		local_irq_disable();
1562 		error = syscore_suspend();
1563 		if (error)
1564 			goto Enable_irqs;
1565 	} else
1566 #endif
1567 	{
1568 		kernel_restart_prepare(NULL);
1569 		printk(KERN_EMERG "Starting new kernel\n");
1570 		machine_shutdown();
1571 	}
1572 
1573 	machine_kexec(kexec_image);
1574 
1575 #ifdef CONFIG_KEXEC_JUMP
1576 	if (kexec_image->preserve_context) {
1577 		syscore_resume();
1578  Enable_irqs:
1579 		local_irq_enable();
1580  Enable_cpus:
1581 		enable_nonboot_cpus();
1582 		dpm_resume_noirq(PMSG_RESTORE);
1583  Resume_devices:
1584 		dpm_resume_end(PMSG_RESTORE);
1585  Resume_console:
1586 		resume_console();
1587 		thaw_processes();
1588  Restore_console:
1589 		pm_restore_console();
1590 		unlock_system_sleep();
1591 	}
1592 #endif
1593 
1594  Unlock:
1595 	mutex_unlock(&kexec_mutex);
1596 	return error;
1597 }
1598