1 /* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/capability.h> 12 #include <linux/mm.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/fs.h> 16 #include <linux/kexec.h> 17 #include <linux/mutex.h> 18 #include <linux/list.h> 19 #include <linux/highmem.h> 20 #include <linux/syscalls.h> 21 #include <linux/reboot.h> 22 #include <linux/ioport.h> 23 #include <linux/hardirq.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/utsname.h> 27 #include <linux/numa.h> 28 #include <linux/suspend.h> 29 #include <linux/device.h> 30 #include <linux/freezer.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/console.h> 34 #include <linux/vmalloc.h> 35 #include <linux/swap.h> 36 #include <linux/syscore_ops.h> 37 #include <linux/compiler.h> 38 #include <linux/hugetlb.h> 39 40 #include <asm/page.h> 41 #include <asm/uaccess.h> 42 #include <asm/io.h> 43 #include <asm/sections.h> 44 45 #include <crypto/hash.h> 46 #include <crypto/sha.h> 47 48 /* Per cpu memory for storing cpu states in case of system crash. */ 49 note_buf_t __percpu *crash_notes; 50 51 /* vmcoreinfo stuff */ 52 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 53 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 54 size_t vmcoreinfo_size; 55 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 56 57 /* Flag to indicate we are going to kexec a new kernel */ 58 bool kexec_in_progress = false; 59 60 /* 61 * Declare these symbols weak so that if architecture provides a purgatory, 62 * these will be overridden. 63 */ 64 char __weak kexec_purgatory[0]; 65 size_t __weak kexec_purgatory_size = 0; 66 67 #ifdef CONFIG_KEXEC_FILE 68 static int kexec_calculate_store_digests(struct kimage *image); 69 #endif 70 71 /* Location of the reserved area for the crash kernel */ 72 struct resource crashk_res = { 73 .name = "Crash kernel", 74 .start = 0, 75 .end = 0, 76 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 77 }; 78 struct resource crashk_low_res = { 79 .name = "Crash kernel", 80 .start = 0, 81 .end = 0, 82 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 83 }; 84 85 int kexec_should_crash(struct task_struct *p) 86 { 87 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 88 return 1; 89 return 0; 90 } 91 92 /* 93 * When kexec transitions to the new kernel there is a one-to-one 94 * mapping between physical and virtual addresses. On processors 95 * where you can disable the MMU this is trivial, and easy. For 96 * others it is still a simple predictable page table to setup. 97 * 98 * In that environment kexec copies the new kernel to its final 99 * resting place. This means I can only support memory whose 100 * physical address can fit in an unsigned long. In particular 101 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 102 * If the assembly stub has more restrictive requirements 103 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 104 * defined more restrictively in <asm/kexec.h>. 105 * 106 * The code for the transition from the current kernel to the 107 * the new kernel is placed in the control_code_buffer, whose size 108 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 109 * page of memory is necessary, but some architectures require more. 110 * Because this memory must be identity mapped in the transition from 111 * virtual to physical addresses it must live in the range 112 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 113 * modifiable. 114 * 115 * The assembly stub in the control code buffer is passed a linked list 116 * of descriptor pages detailing the source pages of the new kernel, 117 * and the destination addresses of those source pages. As this data 118 * structure is not used in the context of the current OS, it must 119 * be self-contained. 120 * 121 * The code has been made to work with highmem pages and will use a 122 * destination page in its final resting place (if it happens 123 * to allocate it). The end product of this is that most of the 124 * physical address space, and most of RAM can be used. 125 * 126 * Future directions include: 127 * - allocating a page table with the control code buffer identity 128 * mapped, to simplify machine_kexec and make kexec_on_panic more 129 * reliable. 130 */ 131 132 /* 133 * KIMAGE_NO_DEST is an impossible destination address..., for 134 * allocating pages whose destination address we do not care about. 135 */ 136 #define KIMAGE_NO_DEST (-1UL) 137 138 static int kimage_is_destination_range(struct kimage *image, 139 unsigned long start, unsigned long end); 140 static struct page *kimage_alloc_page(struct kimage *image, 141 gfp_t gfp_mask, 142 unsigned long dest); 143 144 static int copy_user_segment_list(struct kimage *image, 145 unsigned long nr_segments, 146 struct kexec_segment __user *segments) 147 { 148 int ret; 149 size_t segment_bytes; 150 151 /* Read in the segments */ 152 image->nr_segments = nr_segments; 153 segment_bytes = nr_segments * sizeof(*segments); 154 ret = copy_from_user(image->segment, segments, segment_bytes); 155 if (ret) 156 ret = -EFAULT; 157 158 return ret; 159 } 160 161 static int sanity_check_segment_list(struct kimage *image) 162 { 163 int result, i; 164 unsigned long nr_segments = image->nr_segments; 165 166 /* 167 * Verify we have good destination addresses. The caller is 168 * responsible for making certain we don't attempt to load 169 * the new image into invalid or reserved areas of RAM. This 170 * just verifies it is an address we can use. 171 * 172 * Since the kernel does everything in page size chunks ensure 173 * the destination addresses are page aligned. Too many 174 * special cases crop of when we don't do this. The most 175 * insidious is getting overlapping destination addresses 176 * simply because addresses are changed to page size 177 * granularity. 178 */ 179 result = -EADDRNOTAVAIL; 180 for (i = 0; i < nr_segments; i++) { 181 unsigned long mstart, mend; 182 183 mstart = image->segment[i].mem; 184 mend = mstart + image->segment[i].memsz; 185 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 186 return result; 187 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 188 return result; 189 } 190 191 /* Verify our destination addresses do not overlap. 192 * If we alloed overlapping destination addresses 193 * through very weird things can happen with no 194 * easy explanation as one segment stops on another. 195 */ 196 result = -EINVAL; 197 for (i = 0; i < nr_segments; i++) { 198 unsigned long mstart, mend; 199 unsigned long j; 200 201 mstart = image->segment[i].mem; 202 mend = mstart + image->segment[i].memsz; 203 for (j = 0; j < i; j++) { 204 unsigned long pstart, pend; 205 pstart = image->segment[j].mem; 206 pend = pstart + image->segment[j].memsz; 207 /* Do the segments overlap ? */ 208 if ((mend > pstart) && (mstart < pend)) 209 return result; 210 } 211 } 212 213 /* Ensure our buffer sizes are strictly less than 214 * our memory sizes. This should always be the case, 215 * and it is easier to check up front than to be surprised 216 * later on. 217 */ 218 result = -EINVAL; 219 for (i = 0; i < nr_segments; i++) { 220 if (image->segment[i].bufsz > image->segment[i].memsz) 221 return result; 222 } 223 224 /* 225 * Verify we have good destination addresses. Normally 226 * the caller is responsible for making certain we don't 227 * attempt to load the new image into invalid or reserved 228 * areas of RAM. But crash kernels are preloaded into a 229 * reserved area of ram. We must ensure the addresses 230 * are in the reserved area otherwise preloading the 231 * kernel could corrupt things. 232 */ 233 234 if (image->type == KEXEC_TYPE_CRASH) { 235 result = -EADDRNOTAVAIL; 236 for (i = 0; i < nr_segments; i++) { 237 unsigned long mstart, mend; 238 239 mstart = image->segment[i].mem; 240 mend = mstart + image->segment[i].memsz - 1; 241 /* Ensure we are within the crash kernel limits */ 242 if ((mstart < crashk_res.start) || 243 (mend > crashk_res.end)) 244 return result; 245 } 246 } 247 248 return 0; 249 } 250 251 static struct kimage *do_kimage_alloc_init(void) 252 { 253 struct kimage *image; 254 255 /* Allocate a controlling structure */ 256 image = kzalloc(sizeof(*image), GFP_KERNEL); 257 if (!image) 258 return NULL; 259 260 image->head = 0; 261 image->entry = &image->head; 262 image->last_entry = &image->head; 263 image->control_page = ~0; /* By default this does not apply */ 264 image->type = KEXEC_TYPE_DEFAULT; 265 266 /* Initialize the list of control pages */ 267 INIT_LIST_HEAD(&image->control_pages); 268 269 /* Initialize the list of destination pages */ 270 INIT_LIST_HEAD(&image->dest_pages); 271 272 /* Initialize the list of unusable pages */ 273 INIT_LIST_HEAD(&image->unusable_pages); 274 275 return image; 276 } 277 278 static void kimage_free_page_list(struct list_head *list); 279 280 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry, 281 unsigned long nr_segments, 282 struct kexec_segment __user *segments, 283 unsigned long flags) 284 { 285 int ret; 286 struct kimage *image; 287 bool kexec_on_panic = flags & KEXEC_ON_CRASH; 288 289 if (kexec_on_panic) { 290 /* Verify we have a valid entry point */ 291 if ((entry < crashk_res.start) || (entry > crashk_res.end)) 292 return -EADDRNOTAVAIL; 293 } 294 295 /* Allocate and initialize a controlling structure */ 296 image = do_kimage_alloc_init(); 297 if (!image) 298 return -ENOMEM; 299 300 image->start = entry; 301 302 ret = copy_user_segment_list(image, nr_segments, segments); 303 if (ret) 304 goto out_free_image; 305 306 ret = sanity_check_segment_list(image); 307 if (ret) 308 goto out_free_image; 309 310 /* Enable the special crash kernel control page allocation policy. */ 311 if (kexec_on_panic) { 312 image->control_page = crashk_res.start; 313 image->type = KEXEC_TYPE_CRASH; 314 } 315 316 /* 317 * Find a location for the control code buffer, and add it 318 * the vector of segments so that it's pages will also be 319 * counted as destination pages. 320 */ 321 ret = -ENOMEM; 322 image->control_code_page = kimage_alloc_control_pages(image, 323 get_order(KEXEC_CONTROL_PAGE_SIZE)); 324 if (!image->control_code_page) { 325 pr_err("Could not allocate control_code_buffer\n"); 326 goto out_free_image; 327 } 328 329 if (!kexec_on_panic) { 330 image->swap_page = kimage_alloc_control_pages(image, 0); 331 if (!image->swap_page) { 332 pr_err("Could not allocate swap buffer\n"); 333 goto out_free_control_pages; 334 } 335 } 336 337 *rimage = image; 338 return 0; 339 out_free_control_pages: 340 kimage_free_page_list(&image->control_pages); 341 out_free_image: 342 kfree(image); 343 return ret; 344 } 345 346 #ifdef CONFIG_KEXEC_FILE 347 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len) 348 { 349 struct fd f = fdget(fd); 350 int ret; 351 struct kstat stat; 352 loff_t pos; 353 ssize_t bytes = 0; 354 355 if (!f.file) 356 return -EBADF; 357 358 ret = vfs_getattr(&f.file->f_path, &stat); 359 if (ret) 360 goto out; 361 362 if (stat.size > INT_MAX) { 363 ret = -EFBIG; 364 goto out; 365 } 366 367 /* Don't hand 0 to vmalloc, it whines. */ 368 if (stat.size == 0) { 369 ret = -EINVAL; 370 goto out; 371 } 372 373 *buf = vmalloc(stat.size); 374 if (!*buf) { 375 ret = -ENOMEM; 376 goto out; 377 } 378 379 pos = 0; 380 while (pos < stat.size) { 381 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos, 382 stat.size - pos); 383 if (bytes < 0) { 384 vfree(*buf); 385 ret = bytes; 386 goto out; 387 } 388 389 if (bytes == 0) 390 break; 391 pos += bytes; 392 } 393 394 if (pos != stat.size) { 395 ret = -EBADF; 396 vfree(*buf); 397 goto out; 398 } 399 400 *buf_len = pos; 401 out: 402 fdput(f); 403 return ret; 404 } 405 406 /* Architectures can provide this probe function */ 407 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 408 unsigned long buf_len) 409 { 410 return -ENOEXEC; 411 } 412 413 void * __weak arch_kexec_kernel_image_load(struct kimage *image) 414 { 415 return ERR_PTR(-ENOEXEC); 416 } 417 418 void __weak arch_kimage_file_post_load_cleanup(struct kimage *image) 419 { 420 } 421 422 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, 423 unsigned long buf_len) 424 { 425 return -EKEYREJECTED; 426 } 427 428 /* Apply relocations of type RELA */ 429 int __weak 430 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, 431 unsigned int relsec) 432 { 433 pr_err("RELA relocation unsupported.\n"); 434 return -ENOEXEC; 435 } 436 437 /* Apply relocations of type REL */ 438 int __weak 439 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, 440 unsigned int relsec) 441 { 442 pr_err("REL relocation unsupported.\n"); 443 return -ENOEXEC; 444 } 445 446 /* 447 * Free up memory used by kernel, initrd, and comand line. This is temporary 448 * memory allocation which is not needed any more after these buffers have 449 * been loaded into separate segments and have been copied elsewhere. 450 */ 451 static void kimage_file_post_load_cleanup(struct kimage *image) 452 { 453 struct purgatory_info *pi = &image->purgatory_info; 454 455 vfree(image->kernel_buf); 456 image->kernel_buf = NULL; 457 458 vfree(image->initrd_buf); 459 image->initrd_buf = NULL; 460 461 kfree(image->cmdline_buf); 462 image->cmdline_buf = NULL; 463 464 vfree(pi->purgatory_buf); 465 pi->purgatory_buf = NULL; 466 467 vfree(pi->sechdrs); 468 pi->sechdrs = NULL; 469 470 /* See if architecture has anything to cleanup post load */ 471 arch_kimage_file_post_load_cleanup(image); 472 473 /* 474 * Above call should have called into bootloader to free up 475 * any data stored in kimage->image_loader_data. It should 476 * be ok now to free it up. 477 */ 478 kfree(image->image_loader_data); 479 image->image_loader_data = NULL; 480 } 481 482 /* 483 * In file mode list of segments is prepared by kernel. Copy relevant 484 * data from user space, do error checking, prepare segment list 485 */ 486 static int 487 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 488 const char __user *cmdline_ptr, 489 unsigned long cmdline_len, unsigned flags) 490 { 491 int ret = 0; 492 void *ldata; 493 494 ret = copy_file_from_fd(kernel_fd, &image->kernel_buf, 495 &image->kernel_buf_len); 496 if (ret) 497 return ret; 498 499 /* Call arch image probe handlers */ 500 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 501 image->kernel_buf_len); 502 503 if (ret) 504 goto out; 505 506 #ifdef CONFIG_KEXEC_VERIFY_SIG 507 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, 508 image->kernel_buf_len); 509 if (ret) { 510 pr_debug("kernel signature verification failed.\n"); 511 goto out; 512 } 513 pr_debug("kernel signature verification successful.\n"); 514 #endif 515 /* It is possible that there no initramfs is being loaded */ 516 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 517 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf, 518 &image->initrd_buf_len); 519 if (ret) 520 goto out; 521 } 522 523 if (cmdline_len) { 524 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL); 525 if (!image->cmdline_buf) { 526 ret = -ENOMEM; 527 goto out; 528 } 529 530 ret = copy_from_user(image->cmdline_buf, cmdline_ptr, 531 cmdline_len); 532 if (ret) { 533 ret = -EFAULT; 534 goto out; 535 } 536 537 image->cmdline_buf_len = cmdline_len; 538 539 /* command line should be a string with last byte null */ 540 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 541 ret = -EINVAL; 542 goto out; 543 } 544 } 545 546 /* Call arch image load handlers */ 547 ldata = arch_kexec_kernel_image_load(image); 548 549 if (IS_ERR(ldata)) { 550 ret = PTR_ERR(ldata); 551 goto out; 552 } 553 554 image->image_loader_data = ldata; 555 out: 556 /* In case of error, free up all allocated memory in this function */ 557 if (ret) 558 kimage_file_post_load_cleanup(image); 559 return ret; 560 } 561 562 static int 563 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 564 int initrd_fd, const char __user *cmdline_ptr, 565 unsigned long cmdline_len, unsigned long flags) 566 { 567 int ret; 568 struct kimage *image; 569 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 570 571 image = do_kimage_alloc_init(); 572 if (!image) 573 return -ENOMEM; 574 575 image->file_mode = 1; 576 577 if (kexec_on_panic) { 578 /* Enable special crash kernel control page alloc policy. */ 579 image->control_page = crashk_res.start; 580 image->type = KEXEC_TYPE_CRASH; 581 } 582 583 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 584 cmdline_ptr, cmdline_len, flags); 585 if (ret) 586 goto out_free_image; 587 588 ret = sanity_check_segment_list(image); 589 if (ret) 590 goto out_free_post_load_bufs; 591 592 ret = -ENOMEM; 593 image->control_code_page = kimage_alloc_control_pages(image, 594 get_order(KEXEC_CONTROL_PAGE_SIZE)); 595 if (!image->control_code_page) { 596 pr_err("Could not allocate control_code_buffer\n"); 597 goto out_free_post_load_bufs; 598 } 599 600 if (!kexec_on_panic) { 601 image->swap_page = kimage_alloc_control_pages(image, 0); 602 if (!image->swap_page) { 603 pr_err("Could not allocate swap buffer\n"); 604 goto out_free_control_pages; 605 } 606 } 607 608 *rimage = image; 609 return 0; 610 out_free_control_pages: 611 kimage_free_page_list(&image->control_pages); 612 out_free_post_load_bufs: 613 kimage_file_post_load_cleanup(image); 614 out_free_image: 615 kfree(image); 616 return ret; 617 } 618 #else /* CONFIG_KEXEC_FILE */ 619 static inline void kimage_file_post_load_cleanup(struct kimage *image) { } 620 #endif /* CONFIG_KEXEC_FILE */ 621 622 static int kimage_is_destination_range(struct kimage *image, 623 unsigned long start, 624 unsigned long end) 625 { 626 unsigned long i; 627 628 for (i = 0; i < image->nr_segments; i++) { 629 unsigned long mstart, mend; 630 631 mstart = image->segment[i].mem; 632 mend = mstart + image->segment[i].memsz; 633 if ((end > mstart) && (start < mend)) 634 return 1; 635 } 636 637 return 0; 638 } 639 640 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 641 { 642 struct page *pages; 643 644 pages = alloc_pages(gfp_mask, order); 645 if (pages) { 646 unsigned int count, i; 647 pages->mapping = NULL; 648 set_page_private(pages, order); 649 count = 1 << order; 650 for (i = 0; i < count; i++) 651 SetPageReserved(pages + i); 652 } 653 654 return pages; 655 } 656 657 static void kimage_free_pages(struct page *page) 658 { 659 unsigned int order, count, i; 660 661 order = page_private(page); 662 count = 1 << order; 663 for (i = 0; i < count; i++) 664 ClearPageReserved(page + i); 665 __free_pages(page, order); 666 } 667 668 static void kimage_free_page_list(struct list_head *list) 669 { 670 struct list_head *pos, *next; 671 672 list_for_each_safe(pos, next, list) { 673 struct page *page; 674 675 page = list_entry(pos, struct page, lru); 676 list_del(&page->lru); 677 kimage_free_pages(page); 678 } 679 } 680 681 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 682 unsigned int order) 683 { 684 /* Control pages are special, they are the intermediaries 685 * that are needed while we copy the rest of the pages 686 * to their final resting place. As such they must 687 * not conflict with either the destination addresses 688 * or memory the kernel is already using. 689 * 690 * The only case where we really need more than one of 691 * these are for architectures where we cannot disable 692 * the MMU and must instead generate an identity mapped 693 * page table for all of the memory. 694 * 695 * At worst this runs in O(N) of the image size. 696 */ 697 struct list_head extra_pages; 698 struct page *pages; 699 unsigned int count; 700 701 count = 1 << order; 702 INIT_LIST_HEAD(&extra_pages); 703 704 /* Loop while I can allocate a page and the page allocated 705 * is a destination page. 706 */ 707 do { 708 unsigned long pfn, epfn, addr, eaddr; 709 710 pages = kimage_alloc_pages(GFP_KERNEL, order); 711 if (!pages) 712 break; 713 pfn = page_to_pfn(pages); 714 epfn = pfn + count; 715 addr = pfn << PAGE_SHIFT; 716 eaddr = epfn << PAGE_SHIFT; 717 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 718 kimage_is_destination_range(image, addr, eaddr)) { 719 list_add(&pages->lru, &extra_pages); 720 pages = NULL; 721 } 722 } while (!pages); 723 724 if (pages) { 725 /* Remember the allocated page... */ 726 list_add(&pages->lru, &image->control_pages); 727 728 /* Because the page is already in it's destination 729 * location we will never allocate another page at 730 * that address. Therefore kimage_alloc_pages 731 * will not return it (again) and we don't need 732 * to give it an entry in image->segment[]. 733 */ 734 } 735 /* Deal with the destination pages I have inadvertently allocated. 736 * 737 * Ideally I would convert multi-page allocations into single 738 * page allocations, and add everything to image->dest_pages. 739 * 740 * For now it is simpler to just free the pages. 741 */ 742 kimage_free_page_list(&extra_pages); 743 744 return pages; 745 } 746 747 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 748 unsigned int order) 749 { 750 /* Control pages are special, they are the intermediaries 751 * that are needed while we copy the rest of the pages 752 * to their final resting place. As such they must 753 * not conflict with either the destination addresses 754 * or memory the kernel is already using. 755 * 756 * Control pages are also the only pags we must allocate 757 * when loading a crash kernel. All of the other pages 758 * are specified by the segments and we just memcpy 759 * into them directly. 760 * 761 * The only case where we really need more than one of 762 * these are for architectures where we cannot disable 763 * the MMU and must instead generate an identity mapped 764 * page table for all of the memory. 765 * 766 * Given the low demand this implements a very simple 767 * allocator that finds the first hole of the appropriate 768 * size in the reserved memory region, and allocates all 769 * of the memory up to and including the hole. 770 */ 771 unsigned long hole_start, hole_end, size; 772 struct page *pages; 773 774 pages = NULL; 775 size = (1 << order) << PAGE_SHIFT; 776 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 777 hole_end = hole_start + size - 1; 778 while (hole_end <= crashk_res.end) { 779 unsigned long i; 780 781 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 782 break; 783 /* See if I overlap any of the segments */ 784 for (i = 0; i < image->nr_segments; i++) { 785 unsigned long mstart, mend; 786 787 mstart = image->segment[i].mem; 788 mend = mstart + image->segment[i].memsz - 1; 789 if ((hole_end >= mstart) && (hole_start <= mend)) { 790 /* Advance the hole to the end of the segment */ 791 hole_start = (mend + (size - 1)) & ~(size - 1); 792 hole_end = hole_start + size - 1; 793 break; 794 } 795 } 796 /* If I don't overlap any segments I have found my hole! */ 797 if (i == image->nr_segments) { 798 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 799 break; 800 } 801 } 802 if (pages) 803 image->control_page = hole_end; 804 805 return pages; 806 } 807 808 809 struct page *kimage_alloc_control_pages(struct kimage *image, 810 unsigned int order) 811 { 812 struct page *pages = NULL; 813 814 switch (image->type) { 815 case KEXEC_TYPE_DEFAULT: 816 pages = kimage_alloc_normal_control_pages(image, order); 817 break; 818 case KEXEC_TYPE_CRASH: 819 pages = kimage_alloc_crash_control_pages(image, order); 820 break; 821 } 822 823 return pages; 824 } 825 826 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 827 { 828 if (*image->entry != 0) 829 image->entry++; 830 831 if (image->entry == image->last_entry) { 832 kimage_entry_t *ind_page; 833 struct page *page; 834 835 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 836 if (!page) 837 return -ENOMEM; 838 839 ind_page = page_address(page); 840 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; 841 image->entry = ind_page; 842 image->last_entry = ind_page + 843 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 844 } 845 *image->entry = entry; 846 image->entry++; 847 *image->entry = 0; 848 849 return 0; 850 } 851 852 static int kimage_set_destination(struct kimage *image, 853 unsigned long destination) 854 { 855 int result; 856 857 destination &= PAGE_MASK; 858 result = kimage_add_entry(image, destination | IND_DESTINATION); 859 if (result == 0) 860 image->destination = destination; 861 862 return result; 863 } 864 865 866 static int kimage_add_page(struct kimage *image, unsigned long page) 867 { 868 int result; 869 870 page &= PAGE_MASK; 871 result = kimage_add_entry(image, page | IND_SOURCE); 872 if (result == 0) 873 image->destination += PAGE_SIZE; 874 875 return result; 876 } 877 878 879 static void kimage_free_extra_pages(struct kimage *image) 880 { 881 /* Walk through and free any extra destination pages I may have */ 882 kimage_free_page_list(&image->dest_pages); 883 884 /* Walk through and free any unusable pages I have cached */ 885 kimage_free_page_list(&image->unusable_pages); 886 887 } 888 static void kimage_terminate(struct kimage *image) 889 { 890 if (*image->entry != 0) 891 image->entry++; 892 893 *image->entry = IND_DONE; 894 } 895 896 #define for_each_kimage_entry(image, ptr, entry) \ 897 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 898 ptr = (entry & IND_INDIRECTION) ? \ 899 phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 900 901 static void kimage_free_entry(kimage_entry_t entry) 902 { 903 struct page *page; 904 905 page = pfn_to_page(entry >> PAGE_SHIFT); 906 kimage_free_pages(page); 907 } 908 909 static void kimage_free(struct kimage *image) 910 { 911 kimage_entry_t *ptr, entry; 912 kimage_entry_t ind = 0; 913 914 if (!image) 915 return; 916 917 kimage_free_extra_pages(image); 918 for_each_kimage_entry(image, ptr, entry) { 919 if (entry & IND_INDIRECTION) { 920 /* Free the previous indirection page */ 921 if (ind & IND_INDIRECTION) 922 kimage_free_entry(ind); 923 /* Save this indirection page until we are 924 * done with it. 925 */ 926 ind = entry; 927 } else if (entry & IND_SOURCE) 928 kimage_free_entry(entry); 929 } 930 /* Free the final indirection page */ 931 if (ind & IND_INDIRECTION) 932 kimage_free_entry(ind); 933 934 /* Handle any machine specific cleanup */ 935 machine_kexec_cleanup(image); 936 937 /* Free the kexec control pages... */ 938 kimage_free_page_list(&image->control_pages); 939 940 /* 941 * Free up any temporary buffers allocated. This might hit if 942 * error occurred much later after buffer allocation. 943 */ 944 if (image->file_mode) 945 kimage_file_post_load_cleanup(image); 946 947 kfree(image); 948 } 949 950 static kimage_entry_t *kimage_dst_used(struct kimage *image, 951 unsigned long page) 952 { 953 kimage_entry_t *ptr, entry; 954 unsigned long destination = 0; 955 956 for_each_kimage_entry(image, ptr, entry) { 957 if (entry & IND_DESTINATION) 958 destination = entry & PAGE_MASK; 959 else if (entry & IND_SOURCE) { 960 if (page == destination) 961 return ptr; 962 destination += PAGE_SIZE; 963 } 964 } 965 966 return NULL; 967 } 968 969 static struct page *kimage_alloc_page(struct kimage *image, 970 gfp_t gfp_mask, 971 unsigned long destination) 972 { 973 /* 974 * Here we implement safeguards to ensure that a source page 975 * is not copied to its destination page before the data on 976 * the destination page is no longer useful. 977 * 978 * To do this we maintain the invariant that a source page is 979 * either its own destination page, or it is not a 980 * destination page at all. 981 * 982 * That is slightly stronger than required, but the proof 983 * that no problems will not occur is trivial, and the 984 * implementation is simply to verify. 985 * 986 * When allocating all pages normally this algorithm will run 987 * in O(N) time, but in the worst case it will run in O(N^2) 988 * time. If the runtime is a problem the data structures can 989 * be fixed. 990 */ 991 struct page *page; 992 unsigned long addr; 993 994 /* 995 * Walk through the list of destination pages, and see if I 996 * have a match. 997 */ 998 list_for_each_entry(page, &image->dest_pages, lru) { 999 addr = page_to_pfn(page) << PAGE_SHIFT; 1000 if (addr == destination) { 1001 list_del(&page->lru); 1002 return page; 1003 } 1004 } 1005 page = NULL; 1006 while (1) { 1007 kimage_entry_t *old; 1008 1009 /* Allocate a page, if we run out of memory give up */ 1010 page = kimage_alloc_pages(gfp_mask, 0); 1011 if (!page) 1012 return NULL; 1013 /* If the page cannot be used file it away */ 1014 if (page_to_pfn(page) > 1015 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 1016 list_add(&page->lru, &image->unusable_pages); 1017 continue; 1018 } 1019 addr = page_to_pfn(page) << PAGE_SHIFT; 1020 1021 /* If it is the destination page we want use it */ 1022 if (addr == destination) 1023 break; 1024 1025 /* If the page is not a destination page use it */ 1026 if (!kimage_is_destination_range(image, addr, 1027 addr + PAGE_SIZE)) 1028 break; 1029 1030 /* 1031 * I know that the page is someones destination page. 1032 * See if there is already a source page for this 1033 * destination page. And if so swap the source pages. 1034 */ 1035 old = kimage_dst_used(image, addr); 1036 if (old) { 1037 /* If so move it */ 1038 unsigned long old_addr; 1039 struct page *old_page; 1040 1041 old_addr = *old & PAGE_MASK; 1042 old_page = pfn_to_page(old_addr >> PAGE_SHIFT); 1043 copy_highpage(page, old_page); 1044 *old = addr | (*old & ~PAGE_MASK); 1045 1046 /* The old page I have found cannot be a 1047 * destination page, so return it if it's 1048 * gfp_flags honor the ones passed in. 1049 */ 1050 if (!(gfp_mask & __GFP_HIGHMEM) && 1051 PageHighMem(old_page)) { 1052 kimage_free_pages(old_page); 1053 continue; 1054 } 1055 addr = old_addr; 1056 page = old_page; 1057 break; 1058 } else { 1059 /* Place the page on the destination list I 1060 * will use it later. 1061 */ 1062 list_add(&page->lru, &image->dest_pages); 1063 } 1064 } 1065 1066 return page; 1067 } 1068 1069 static int kimage_load_normal_segment(struct kimage *image, 1070 struct kexec_segment *segment) 1071 { 1072 unsigned long maddr; 1073 size_t ubytes, mbytes; 1074 int result; 1075 unsigned char __user *buf = NULL; 1076 unsigned char *kbuf = NULL; 1077 1078 result = 0; 1079 if (image->file_mode) 1080 kbuf = segment->kbuf; 1081 else 1082 buf = segment->buf; 1083 ubytes = segment->bufsz; 1084 mbytes = segment->memsz; 1085 maddr = segment->mem; 1086 1087 result = kimage_set_destination(image, maddr); 1088 if (result < 0) 1089 goto out; 1090 1091 while (mbytes) { 1092 struct page *page; 1093 char *ptr; 1094 size_t uchunk, mchunk; 1095 1096 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 1097 if (!page) { 1098 result = -ENOMEM; 1099 goto out; 1100 } 1101 result = kimage_add_page(image, page_to_pfn(page) 1102 << PAGE_SHIFT); 1103 if (result < 0) 1104 goto out; 1105 1106 ptr = kmap(page); 1107 /* Start with a clear page */ 1108 clear_page(ptr); 1109 ptr += maddr & ~PAGE_MASK; 1110 mchunk = min_t(size_t, mbytes, 1111 PAGE_SIZE - (maddr & ~PAGE_MASK)); 1112 uchunk = min(ubytes, mchunk); 1113 1114 /* For file based kexec, source pages are in kernel memory */ 1115 if (image->file_mode) 1116 memcpy(ptr, kbuf, uchunk); 1117 else 1118 result = copy_from_user(ptr, buf, uchunk); 1119 kunmap(page); 1120 if (result) { 1121 result = -EFAULT; 1122 goto out; 1123 } 1124 ubytes -= uchunk; 1125 maddr += mchunk; 1126 if (image->file_mode) 1127 kbuf += mchunk; 1128 else 1129 buf += mchunk; 1130 mbytes -= mchunk; 1131 } 1132 out: 1133 return result; 1134 } 1135 1136 static int kimage_load_crash_segment(struct kimage *image, 1137 struct kexec_segment *segment) 1138 { 1139 /* For crash dumps kernels we simply copy the data from 1140 * user space to it's destination. 1141 * We do things a page at a time for the sake of kmap. 1142 */ 1143 unsigned long maddr; 1144 size_t ubytes, mbytes; 1145 int result; 1146 unsigned char __user *buf = NULL; 1147 unsigned char *kbuf = NULL; 1148 1149 result = 0; 1150 if (image->file_mode) 1151 kbuf = segment->kbuf; 1152 else 1153 buf = segment->buf; 1154 ubytes = segment->bufsz; 1155 mbytes = segment->memsz; 1156 maddr = segment->mem; 1157 while (mbytes) { 1158 struct page *page; 1159 char *ptr; 1160 size_t uchunk, mchunk; 1161 1162 page = pfn_to_page(maddr >> PAGE_SHIFT); 1163 if (!page) { 1164 result = -ENOMEM; 1165 goto out; 1166 } 1167 ptr = kmap(page); 1168 ptr += maddr & ~PAGE_MASK; 1169 mchunk = min_t(size_t, mbytes, 1170 PAGE_SIZE - (maddr & ~PAGE_MASK)); 1171 uchunk = min(ubytes, mchunk); 1172 if (mchunk > uchunk) { 1173 /* Zero the trailing part of the page */ 1174 memset(ptr + uchunk, 0, mchunk - uchunk); 1175 } 1176 1177 /* For file based kexec, source pages are in kernel memory */ 1178 if (image->file_mode) 1179 memcpy(ptr, kbuf, uchunk); 1180 else 1181 result = copy_from_user(ptr, buf, uchunk); 1182 kexec_flush_icache_page(page); 1183 kunmap(page); 1184 if (result) { 1185 result = -EFAULT; 1186 goto out; 1187 } 1188 ubytes -= uchunk; 1189 maddr += mchunk; 1190 if (image->file_mode) 1191 kbuf += mchunk; 1192 else 1193 buf += mchunk; 1194 mbytes -= mchunk; 1195 } 1196 out: 1197 return result; 1198 } 1199 1200 static int kimage_load_segment(struct kimage *image, 1201 struct kexec_segment *segment) 1202 { 1203 int result = -ENOMEM; 1204 1205 switch (image->type) { 1206 case KEXEC_TYPE_DEFAULT: 1207 result = kimage_load_normal_segment(image, segment); 1208 break; 1209 case KEXEC_TYPE_CRASH: 1210 result = kimage_load_crash_segment(image, segment); 1211 break; 1212 } 1213 1214 return result; 1215 } 1216 1217 /* 1218 * Exec Kernel system call: for obvious reasons only root may call it. 1219 * 1220 * This call breaks up into three pieces. 1221 * - A generic part which loads the new kernel from the current 1222 * address space, and very carefully places the data in the 1223 * allocated pages. 1224 * 1225 * - A generic part that interacts with the kernel and tells all of 1226 * the devices to shut down. Preventing on-going dmas, and placing 1227 * the devices in a consistent state so a later kernel can 1228 * reinitialize them. 1229 * 1230 * - A machine specific part that includes the syscall number 1231 * and then copies the image to it's final destination. And 1232 * jumps into the image at entry. 1233 * 1234 * kexec does not sync, or unmount filesystems so if you need 1235 * that to happen you need to do that yourself. 1236 */ 1237 struct kimage *kexec_image; 1238 struct kimage *kexec_crash_image; 1239 int kexec_load_disabled; 1240 1241 static DEFINE_MUTEX(kexec_mutex); 1242 1243 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 1244 struct kexec_segment __user *, segments, unsigned long, flags) 1245 { 1246 struct kimage **dest_image, *image; 1247 int result; 1248 1249 /* We only trust the superuser with rebooting the system. */ 1250 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1251 return -EPERM; 1252 1253 /* 1254 * Verify we have a legal set of flags 1255 * This leaves us room for future extensions. 1256 */ 1257 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 1258 return -EINVAL; 1259 1260 /* Verify we are on the appropriate architecture */ 1261 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 1262 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 1263 return -EINVAL; 1264 1265 /* Put an artificial cap on the number 1266 * of segments passed to kexec_load. 1267 */ 1268 if (nr_segments > KEXEC_SEGMENT_MAX) 1269 return -EINVAL; 1270 1271 image = NULL; 1272 result = 0; 1273 1274 /* Because we write directly to the reserved memory 1275 * region when loading crash kernels we need a mutex here to 1276 * prevent multiple crash kernels from attempting to load 1277 * simultaneously, and to prevent a crash kernel from loading 1278 * over the top of a in use crash kernel. 1279 * 1280 * KISS: always take the mutex. 1281 */ 1282 if (!mutex_trylock(&kexec_mutex)) 1283 return -EBUSY; 1284 1285 dest_image = &kexec_image; 1286 if (flags & KEXEC_ON_CRASH) 1287 dest_image = &kexec_crash_image; 1288 if (nr_segments > 0) { 1289 unsigned long i; 1290 1291 /* Loading another kernel to reboot into */ 1292 if ((flags & KEXEC_ON_CRASH) == 0) 1293 result = kimage_alloc_init(&image, entry, nr_segments, 1294 segments, flags); 1295 /* Loading another kernel to switch to if this one crashes */ 1296 else if (flags & KEXEC_ON_CRASH) { 1297 /* Free any current crash dump kernel before 1298 * we corrupt it. 1299 */ 1300 kimage_free(xchg(&kexec_crash_image, NULL)); 1301 result = kimage_alloc_init(&image, entry, nr_segments, 1302 segments, flags); 1303 crash_map_reserved_pages(); 1304 } 1305 if (result) 1306 goto out; 1307 1308 if (flags & KEXEC_PRESERVE_CONTEXT) 1309 image->preserve_context = 1; 1310 result = machine_kexec_prepare(image); 1311 if (result) 1312 goto out; 1313 1314 for (i = 0; i < nr_segments; i++) { 1315 result = kimage_load_segment(image, &image->segment[i]); 1316 if (result) 1317 goto out; 1318 } 1319 kimage_terminate(image); 1320 if (flags & KEXEC_ON_CRASH) 1321 crash_unmap_reserved_pages(); 1322 } 1323 /* Install the new kernel, and Uninstall the old */ 1324 image = xchg(dest_image, image); 1325 1326 out: 1327 mutex_unlock(&kexec_mutex); 1328 kimage_free(image); 1329 1330 return result; 1331 } 1332 1333 /* 1334 * Add and remove page tables for crashkernel memory 1335 * 1336 * Provide an empty default implementation here -- architecture 1337 * code may override this 1338 */ 1339 void __weak crash_map_reserved_pages(void) 1340 {} 1341 1342 void __weak crash_unmap_reserved_pages(void) 1343 {} 1344 1345 #ifdef CONFIG_COMPAT 1346 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry, 1347 compat_ulong_t, nr_segments, 1348 struct compat_kexec_segment __user *, segments, 1349 compat_ulong_t, flags) 1350 { 1351 struct compat_kexec_segment in; 1352 struct kexec_segment out, __user *ksegments; 1353 unsigned long i, result; 1354 1355 /* Don't allow clients that don't understand the native 1356 * architecture to do anything. 1357 */ 1358 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 1359 return -EINVAL; 1360 1361 if (nr_segments > KEXEC_SEGMENT_MAX) 1362 return -EINVAL; 1363 1364 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 1365 for (i = 0; i < nr_segments; i++) { 1366 result = copy_from_user(&in, &segments[i], sizeof(in)); 1367 if (result) 1368 return -EFAULT; 1369 1370 out.buf = compat_ptr(in.buf); 1371 out.bufsz = in.bufsz; 1372 out.mem = in.mem; 1373 out.memsz = in.memsz; 1374 1375 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 1376 if (result) 1377 return -EFAULT; 1378 } 1379 1380 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1381 } 1382 #endif 1383 1384 #ifdef CONFIG_KEXEC_FILE 1385 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 1386 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 1387 unsigned long, flags) 1388 { 1389 int ret = 0, i; 1390 struct kimage **dest_image, *image; 1391 1392 /* We only trust the superuser with rebooting the system. */ 1393 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1394 return -EPERM; 1395 1396 /* Make sure we have a legal set of flags */ 1397 if (flags != (flags & KEXEC_FILE_FLAGS)) 1398 return -EINVAL; 1399 1400 image = NULL; 1401 1402 if (!mutex_trylock(&kexec_mutex)) 1403 return -EBUSY; 1404 1405 dest_image = &kexec_image; 1406 if (flags & KEXEC_FILE_ON_CRASH) 1407 dest_image = &kexec_crash_image; 1408 1409 if (flags & KEXEC_FILE_UNLOAD) 1410 goto exchange; 1411 1412 /* 1413 * In case of crash, new kernel gets loaded in reserved region. It is 1414 * same memory where old crash kernel might be loaded. Free any 1415 * current crash dump kernel before we corrupt it. 1416 */ 1417 if (flags & KEXEC_FILE_ON_CRASH) 1418 kimage_free(xchg(&kexec_crash_image, NULL)); 1419 1420 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 1421 cmdline_len, flags); 1422 if (ret) 1423 goto out; 1424 1425 ret = machine_kexec_prepare(image); 1426 if (ret) 1427 goto out; 1428 1429 ret = kexec_calculate_store_digests(image); 1430 if (ret) 1431 goto out; 1432 1433 for (i = 0; i < image->nr_segments; i++) { 1434 struct kexec_segment *ksegment; 1435 1436 ksegment = &image->segment[i]; 1437 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 1438 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 1439 ksegment->memsz); 1440 1441 ret = kimage_load_segment(image, &image->segment[i]); 1442 if (ret) 1443 goto out; 1444 } 1445 1446 kimage_terminate(image); 1447 1448 /* 1449 * Free up any temporary buffers allocated which are not needed 1450 * after image has been loaded 1451 */ 1452 kimage_file_post_load_cleanup(image); 1453 exchange: 1454 image = xchg(dest_image, image); 1455 out: 1456 mutex_unlock(&kexec_mutex); 1457 kimage_free(image); 1458 return ret; 1459 } 1460 1461 #endif /* CONFIG_KEXEC_FILE */ 1462 1463 void crash_kexec(struct pt_regs *regs) 1464 { 1465 /* Take the kexec_mutex here to prevent sys_kexec_load 1466 * running on one cpu from replacing the crash kernel 1467 * we are using after a panic on a different cpu. 1468 * 1469 * If the crash kernel was not located in a fixed area 1470 * of memory the xchg(&kexec_crash_image) would be 1471 * sufficient. But since I reuse the memory... 1472 */ 1473 if (mutex_trylock(&kexec_mutex)) { 1474 if (kexec_crash_image) { 1475 struct pt_regs fixed_regs; 1476 1477 crash_setup_regs(&fixed_regs, regs); 1478 crash_save_vmcoreinfo(); 1479 machine_crash_shutdown(&fixed_regs); 1480 machine_kexec(kexec_crash_image); 1481 } 1482 mutex_unlock(&kexec_mutex); 1483 } 1484 } 1485 1486 size_t crash_get_memory_size(void) 1487 { 1488 size_t size = 0; 1489 mutex_lock(&kexec_mutex); 1490 if (crashk_res.end != crashk_res.start) 1491 size = resource_size(&crashk_res); 1492 mutex_unlock(&kexec_mutex); 1493 return size; 1494 } 1495 1496 void __weak crash_free_reserved_phys_range(unsigned long begin, 1497 unsigned long end) 1498 { 1499 unsigned long addr; 1500 1501 for (addr = begin; addr < end; addr += PAGE_SIZE) 1502 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); 1503 } 1504 1505 int crash_shrink_memory(unsigned long new_size) 1506 { 1507 int ret = 0; 1508 unsigned long start, end; 1509 unsigned long old_size; 1510 struct resource *ram_res; 1511 1512 mutex_lock(&kexec_mutex); 1513 1514 if (kexec_crash_image) { 1515 ret = -ENOENT; 1516 goto unlock; 1517 } 1518 start = crashk_res.start; 1519 end = crashk_res.end; 1520 old_size = (end == 0) ? 0 : end - start + 1; 1521 if (new_size >= old_size) { 1522 ret = (new_size == old_size) ? 0 : -EINVAL; 1523 goto unlock; 1524 } 1525 1526 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1527 if (!ram_res) { 1528 ret = -ENOMEM; 1529 goto unlock; 1530 } 1531 1532 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1533 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1534 1535 crash_map_reserved_pages(); 1536 crash_free_reserved_phys_range(end, crashk_res.end); 1537 1538 if ((start == end) && (crashk_res.parent != NULL)) 1539 release_resource(&crashk_res); 1540 1541 ram_res->start = end; 1542 ram_res->end = crashk_res.end; 1543 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; 1544 ram_res->name = "System RAM"; 1545 1546 crashk_res.end = end - 1; 1547 1548 insert_resource(&iomem_resource, ram_res); 1549 crash_unmap_reserved_pages(); 1550 1551 unlock: 1552 mutex_unlock(&kexec_mutex); 1553 return ret; 1554 } 1555 1556 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, 1557 size_t data_len) 1558 { 1559 struct elf_note note; 1560 1561 note.n_namesz = strlen(name) + 1; 1562 note.n_descsz = data_len; 1563 note.n_type = type; 1564 memcpy(buf, ¬e, sizeof(note)); 1565 buf += (sizeof(note) + 3)/4; 1566 memcpy(buf, name, note.n_namesz); 1567 buf += (note.n_namesz + 3)/4; 1568 memcpy(buf, data, note.n_descsz); 1569 buf += (note.n_descsz + 3)/4; 1570 1571 return buf; 1572 } 1573 1574 static void final_note(u32 *buf) 1575 { 1576 struct elf_note note; 1577 1578 note.n_namesz = 0; 1579 note.n_descsz = 0; 1580 note.n_type = 0; 1581 memcpy(buf, ¬e, sizeof(note)); 1582 } 1583 1584 void crash_save_cpu(struct pt_regs *regs, int cpu) 1585 { 1586 struct elf_prstatus prstatus; 1587 u32 *buf; 1588 1589 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1590 return; 1591 1592 /* Using ELF notes here is opportunistic. 1593 * I need a well defined structure format 1594 * for the data I pass, and I need tags 1595 * on the data to indicate what information I have 1596 * squirrelled away. ELF notes happen to provide 1597 * all of that, so there is no need to invent something new. 1598 */ 1599 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1600 if (!buf) 1601 return; 1602 memset(&prstatus, 0, sizeof(prstatus)); 1603 prstatus.pr_pid = current->pid; 1604 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1605 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1606 &prstatus, sizeof(prstatus)); 1607 final_note(buf); 1608 } 1609 1610 static int __init crash_notes_memory_init(void) 1611 { 1612 /* Allocate memory for saving cpu registers. */ 1613 crash_notes = alloc_percpu(note_buf_t); 1614 if (!crash_notes) { 1615 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n"); 1616 return -ENOMEM; 1617 } 1618 return 0; 1619 } 1620 subsys_initcall(crash_notes_memory_init); 1621 1622 1623 /* 1624 * parsing the "crashkernel" commandline 1625 * 1626 * this code is intended to be called from architecture specific code 1627 */ 1628 1629 1630 /* 1631 * This function parses command lines in the format 1632 * 1633 * crashkernel=ramsize-range:size[,...][@offset] 1634 * 1635 * The function returns 0 on success and -EINVAL on failure. 1636 */ 1637 static int __init parse_crashkernel_mem(char *cmdline, 1638 unsigned long long system_ram, 1639 unsigned long long *crash_size, 1640 unsigned long long *crash_base) 1641 { 1642 char *cur = cmdline, *tmp; 1643 1644 /* for each entry of the comma-separated list */ 1645 do { 1646 unsigned long long start, end = ULLONG_MAX, size; 1647 1648 /* get the start of the range */ 1649 start = memparse(cur, &tmp); 1650 if (cur == tmp) { 1651 pr_warn("crashkernel: Memory value expected\n"); 1652 return -EINVAL; 1653 } 1654 cur = tmp; 1655 if (*cur != '-') { 1656 pr_warn("crashkernel: '-' expected\n"); 1657 return -EINVAL; 1658 } 1659 cur++; 1660 1661 /* if no ':' is here, than we read the end */ 1662 if (*cur != ':') { 1663 end = memparse(cur, &tmp); 1664 if (cur == tmp) { 1665 pr_warn("crashkernel: Memory value expected\n"); 1666 return -EINVAL; 1667 } 1668 cur = tmp; 1669 if (end <= start) { 1670 pr_warn("crashkernel: end <= start\n"); 1671 return -EINVAL; 1672 } 1673 } 1674 1675 if (*cur != ':') { 1676 pr_warn("crashkernel: ':' expected\n"); 1677 return -EINVAL; 1678 } 1679 cur++; 1680 1681 size = memparse(cur, &tmp); 1682 if (cur == tmp) { 1683 pr_warn("Memory value expected\n"); 1684 return -EINVAL; 1685 } 1686 cur = tmp; 1687 if (size >= system_ram) { 1688 pr_warn("crashkernel: invalid size\n"); 1689 return -EINVAL; 1690 } 1691 1692 /* match ? */ 1693 if (system_ram >= start && system_ram < end) { 1694 *crash_size = size; 1695 break; 1696 } 1697 } while (*cur++ == ','); 1698 1699 if (*crash_size > 0) { 1700 while (*cur && *cur != ' ' && *cur != '@') 1701 cur++; 1702 if (*cur == '@') { 1703 cur++; 1704 *crash_base = memparse(cur, &tmp); 1705 if (cur == tmp) { 1706 pr_warn("Memory value expected after '@'\n"); 1707 return -EINVAL; 1708 } 1709 } 1710 } 1711 1712 return 0; 1713 } 1714 1715 /* 1716 * That function parses "simple" (old) crashkernel command lines like 1717 * 1718 * crashkernel=size[@offset] 1719 * 1720 * It returns 0 on success and -EINVAL on failure. 1721 */ 1722 static int __init parse_crashkernel_simple(char *cmdline, 1723 unsigned long long *crash_size, 1724 unsigned long long *crash_base) 1725 { 1726 char *cur = cmdline; 1727 1728 *crash_size = memparse(cmdline, &cur); 1729 if (cmdline == cur) { 1730 pr_warn("crashkernel: memory value expected\n"); 1731 return -EINVAL; 1732 } 1733 1734 if (*cur == '@') 1735 *crash_base = memparse(cur+1, &cur); 1736 else if (*cur != ' ' && *cur != '\0') { 1737 pr_warn("crashkernel: unrecognized char\n"); 1738 return -EINVAL; 1739 } 1740 1741 return 0; 1742 } 1743 1744 #define SUFFIX_HIGH 0 1745 #define SUFFIX_LOW 1 1746 #define SUFFIX_NULL 2 1747 static __initdata char *suffix_tbl[] = { 1748 [SUFFIX_HIGH] = ",high", 1749 [SUFFIX_LOW] = ",low", 1750 [SUFFIX_NULL] = NULL, 1751 }; 1752 1753 /* 1754 * That function parses "suffix" crashkernel command lines like 1755 * 1756 * crashkernel=size,[high|low] 1757 * 1758 * It returns 0 on success and -EINVAL on failure. 1759 */ 1760 static int __init parse_crashkernel_suffix(char *cmdline, 1761 unsigned long long *crash_size, 1762 const char *suffix) 1763 { 1764 char *cur = cmdline; 1765 1766 *crash_size = memparse(cmdline, &cur); 1767 if (cmdline == cur) { 1768 pr_warn("crashkernel: memory value expected\n"); 1769 return -EINVAL; 1770 } 1771 1772 /* check with suffix */ 1773 if (strncmp(cur, suffix, strlen(suffix))) { 1774 pr_warn("crashkernel: unrecognized char\n"); 1775 return -EINVAL; 1776 } 1777 cur += strlen(suffix); 1778 if (*cur != ' ' && *cur != '\0') { 1779 pr_warn("crashkernel: unrecognized char\n"); 1780 return -EINVAL; 1781 } 1782 1783 return 0; 1784 } 1785 1786 static __init char *get_last_crashkernel(char *cmdline, 1787 const char *name, 1788 const char *suffix) 1789 { 1790 char *p = cmdline, *ck_cmdline = NULL; 1791 1792 /* find crashkernel and use the last one if there are more */ 1793 p = strstr(p, name); 1794 while (p) { 1795 char *end_p = strchr(p, ' '); 1796 char *q; 1797 1798 if (!end_p) 1799 end_p = p + strlen(p); 1800 1801 if (!suffix) { 1802 int i; 1803 1804 /* skip the one with any known suffix */ 1805 for (i = 0; suffix_tbl[i]; i++) { 1806 q = end_p - strlen(suffix_tbl[i]); 1807 if (!strncmp(q, suffix_tbl[i], 1808 strlen(suffix_tbl[i]))) 1809 goto next; 1810 } 1811 ck_cmdline = p; 1812 } else { 1813 q = end_p - strlen(suffix); 1814 if (!strncmp(q, suffix, strlen(suffix))) 1815 ck_cmdline = p; 1816 } 1817 next: 1818 p = strstr(p+1, name); 1819 } 1820 1821 if (!ck_cmdline) 1822 return NULL; 1823 1824 return ck_cmdline; 1825 } 1826 1827 static int __init __parse_crashkernel(char *cmdline, 1828 unsigned long long system_ram, 1829 unsigned long long *crash_size, 1830 unsigned long long *crash_base, 1831 const char *name, 1832 const char *suffix) 1833 { 1834 char *first_colon, *first_space; 1835 char *ck_cmdline; 1836 1837 BUG_ON(!crash_size || !crash_base); 1838 *crash_size = 0; 1839 *crash_base = 0; 1840 1841 ck_cmdline = get_last_crashkernel(cmdline, name, suffix); 1842 1843 if (!ck_cmdline) 1844 return -EINVAL; 1845 1846 ck_cmdline += strlen(name); 1847 1848 if (suffix) 1849 return parse_crashkernel_suffix(ck_cmdline, crash_size, 1850 suffix); 1851 /* 1852 * if the commandline contains a ':', then that's the extended 1853 * syntax -- if not, it must be the classic syntax 1854 */ 1855 first_colon = strchr(ck_cmdline, ':'); 1856 first_space = strchr(ck_cmdline, ' '); 1857 if (first_colon && (!first_space || first_colon < first_space)) 1858 return parse_crashkernel_mem(ck_cmdline, system_ram, 1859 crash_size, crash_base); 1860 1861 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); 1862 } 1863 1864 /* 1865 * That function is the entry point for command line parsing and should be 1866 * called from the arch-specific code. 1867 */ 1868 int __init parse_crashkernel(char *cmdline, 1869 unsigned long long system_ram, 1870 unsigned long long *crash_size, 1871 unsigned long long *crash_base) 1872 { 1873 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1874 "crashkernel=", NULL); 1875 } 1876 1877 int __init parse_crashkernel_high(char *cmdline, 1878 unsigned long long system_ram, 1879 unsigned long long *crash_size, 1880 unsigned long long *crash_base) 1881 { 1882 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1883 "crashkernel=", suffix_tbl[SUFFIX_HIGH]); 1884 } 1885 1886 int __init parse_crashkernel_low(char *cmdline, 1887 unsigned long long system_ram, 1888 unsigned long long *crash_size, 1889 unsigned long long *crash_base) 1890 { 1891 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1892 "crashkernel=", suffix_tbl[SUFFIX_LOW]); 1893 } 1894 1895 static void update_vmcoreinfo_note(void) 1896 { 1897 u32 *buf = vmcoreinfo_note; 1898 1899 if (!vmcoreinfo_size) 1900 return; 1901 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, 1902 vmcoreinfo_size); 1903 final_note(buf); 1904 } 1905 1906 void crash_save_vmcoreinfo(void) 1907 { 1908 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); 1909 update_vmcoreinfo_note(); 1910 } 1911 1912 void vmcoreinfo_append_str(const char *fmt, ...) 1913 { 1914 va_list args; 1915 char buf[0x50]; 1916 size_t r; 1917 1918 va_start(args, fmt); 1919 r = vscnprintf(buf, sizeof(buf), fmt, args); 1920 va_end(args); 1921 1922 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); 1923 1924 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); 1925 1926 vmcoreinfo_size += r; 1927 } 1928 1929 /* 1930 * provide an empty default implementation here -- architecture 1931 * code may override this 1932 */ 1933 void __weak arch_crash_save_vmcoreinfo(void) 1934 {} 1935 1936 unsigned long __weak paddr_vmcoreinfo_note(void) 1937 { 1938 return __pa((unsigned long)(char *)&vmcoreinfo_note); 1939 } 1940 1941 static int __init crash_save_vmcoreinfo_init(void) 1942 { 1943 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); 1944 VMCOREINFO_PAGESIZE(PAGE_SIZE); 1945 1946 VMCOREINFO_SYMBOL(init_uts_ns); 1947 VMCOREINFO_SYMBOL(node_online_map); 1948 #ifdef CONFIG_MMU 1949 VMCOREINFO_SYMBOL(swapper_pg_dir); 1950 #endif 1951 VMCOREINFO_SYMBOL(_stext); 1952 VMCOREINFO_SYMBOL(vmap_area_list); 1953 1954 #ifndef CONFIG_NEED_MULTIPLE_NODES 1955 VMCOREINFO_SYMBOL(mem_map); 1956 VMCOREINFO_SYMBOL(contig_page_data); 1957 #endif 1958 #ifdef CONFIG_SPARSEMEM 1959 VMCOREINFO_SYMBOL(mem_section); 1960 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); 1961 VMCOREINFO_STRUCT_SIZE(mem_section); 1962 VMCOREINFO_OFFSET(mem_section, section_mem_map); 1963 #endif 1964 VMCOREINFO_STRUCT_SIZE(page); 1965 VMCOREINFO_STRUCT_SIZE(pglist_data); 1966 VMCOREINFO_STRUCT_SIZE(zone); 1967 VMCOREINFO_STRUCT_SIZE(free_area); 1968 VMCOREINFO_STRUCT_SIZE(list_head); 1969 VMCOREINFO_SIZE(nodemask_t); 1970 VMCOREINFO_OFFSET(page, flags); 1971 VMCOREINFO_OFFSET(page, _count); 1972 VMCOREINFO_OFFSET(page, mapping); 1973 VMCOREINFO_OFFSET(page, lru); 1974 VMCOREINFO_OFFSET(page, _mapcount); 1975 VMCOREINFO_OFFSET(page, private); 1976 VMCOREINFO_OFFSET(pglist_data, node_zones); 1977 VMCOREINFO_OFFSET(pglist_data, nr_zones); 1978 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1979 VMCOREINFO_OFFSET(pglist_data, node_mem_map); 1980 #endif 1981 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); 1982 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); 1983 VMCOREINFO_OFFSET(pglist_data, node_id); 1984 VMCOREINFO_OFFSET(zone, free_area); 1985 VMCOREINFO_OFFSET(zone, vm_stat); 1986 VMCOREINFO_OFFSET(zone, spanned_pages); 1987 VMCOREINFO_OFFSET(free_area, free_list); 1988 VMCOREINFO_OFFSET(list_head, next); 1989 VMCOREINFO_OFFSET(list_head, prev); 1990 VMCOREINFO_OFFSET(vmap_area, va_start); 1991 VMCOREINFO_OFFSET(vmap_area, list); 1992 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); 1993 log_buf_kexec_setup(); 1994 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); 1995 VMCOREINFO_NUMBER(NR_FREE_PAGES); 1996 VMCOREINFO_NUMBER(PG_lru); 1997 VMCOREINFO_NUMBER(PG_private); 1998 VMCOREINFO_NUMBER(PG_swapcache); 1999 VMCOREINFO_NUMBER(PG_slab); 2000 #ifdef CONFIG_MEMORY_FAILURE 2001 VMCOREINFO_NUMBER(PG_hwpoison); 2002 #endif 2003 VMCOREINFO_NUMBER(PG_head_mask); 2004 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); 2005 #ifdef CONFIG_HUGETLBFS 2006 VMCOREINFO_SYMBOL(free_huge_page); 2007 #endif 2008 2009 arch_crash_save_vmcoreinfo(); 2010 update_vmcoreinfo_note(); 2011 2012 return 0; 2013 } 2014 2015 subsys_initcall(crash_save_vmcoreinfo_init); 2016 2017 #ifdef CONFIG_KEXEC_FILE 2018 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 2019 struct kexec_buf *kbuf) 2020 { 2021 struct kimage *image = kbuf->image; 2022 unsigned long temp_start, temp_end; 2023 2024 temp_end = min(end, kbuf->buf_max); 2025 temp_start = temp_end - kbuf->memsz; 2026 2027 do { 2028 /* align down start */ 2029 temp_start = temp_start & (~(kbuf->buf_align - 1)); 2030 2031 if (temp_start < start || temp_start < kbuf->buf_min) 2032 return 0; 2033 2034 temp_end = temp_start + kbuf->memsz - 1; 2035 2036 /* 2037 * Make sure this does not conflict with any of existing 2038 * segments 2039 */ 2040 if (kimage_is_destination_range(image, temp_start, temp_end)) { 2041 temp_start = temp_start - PAGE_SIZE; 2042 continue; 2043 } 2044 2045 /* We found a suitable memory range */ 2046 break; 2047 } while (1); 2048 2049 /* If we are here, we found a suitable memory range */ 2050 kbuf->mem = temp_start; 2051 2052 /* Success, stop navigating through remaining System RAM ranges */ 2053 return 1; 2054 } 2055 2056 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 2057 struct kexec_buf *kbuf) 2058 { 2059 struct kimage *image = kbuf->image; 2060 unsigned long temp_start, temp_end; 2061 2062 temp_start = max(start, kbuf->buf_min); 2063 2064 do { 2065 temp_start = ALIGN(temp_start, kbuf->buf_align); 2066 temp_end = temp_start + kbuf->memsz - 1; 2067 2068 if (temp_end > end || temp_end > kbuf->buf_max) 2069 return 0; 2070 /* 2071 * Make sure this does not conflict with any of existing 2072 * segments 2073 */ 2074 if (kimage_is_destination_range(image, temp_start, temp_end)) { 2075 temp_start = temp_start + PAGE_SIZE; 2076 continue; 2077 } 2078 2079 /* We found a suitable memory range */ 2080 break; 2081 } while (1); 2082 2083 /* If we are here, we found a suitable memory range */ 2084 kbuf->mem = temp_start; 2085 2086 /* Success, stop navigating through remaining System RAM ranges */ 2087 return 1; 2088 } 2089 2090 static int locate_mem_hole_callback(u64 start, u64 end, void *arg) 2091 { 2092 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 2093 unsigned long sz = end - start + 1; 2094 2095 /* Returning 0 will take to next memory range */ 2096 if (sz < kbuf->memsz) 2097 return 0; 2098 2099 if (end < kbuf->buf_min || start > kbuf->buf_max) 2100 return 0; 2101 2102 /* 2103 * Allocate memory top down with-in ram range. Otherwise bottom up 2104 * allocation. 2105 */ 2106 if (kbuf->top_down) 2107 return locate_mem_hole_top_down(start, end, kbuf); 2108 return locate_mem_hole_bottom_up(start, end, kbuf); 2109 } 2110 2111 /* 2112 * Helper function for placing a buffer in a kexec segment. This assumes 2113 * that kexec_mutex is held. 2114 */ 2115 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz, 2116 unsigned long memsz, unsigned long buf_align, 2117 unsigned long buf_min, unsigned long buf_max, 2118 bool top_down, unsigned long *load_addr) 2119 { 2120 2121 struct kexec_segment *ksegment; 2122 struct kexec_buf buf, *kbuf; 2123 int ret; 2124 2125 /* Currently adding segment this way is allowed only in file mode */ 2126 if (!image->file_mode) 2127 return -EINVAL; 2128 2129 if (image->nr_segments >= KEXEC_SEGMENT_MAX) 2130 return -EINVAL; 2131 2132 /* 2133 * Make sure we are not trying to add buffer after allocating 2134 * control pages. All segments need to be placed first before 2135 * any control pages are allocated. As control page allocation 2136 * logic goes through list of segments to make sure there are 2137 * no destination overlaps. 2138 */ 2139 if (!list_empty(&image->control_pages)) { 2140 WARN_ON(1); 2141 return -EINVAL; 2142 } 2143 2144 memset(&buf, 0, sizeof(struct kexec_buf)); 2145 kbuf = &buf; 2146 kbuf->image = image; 2147 kbuf->buffer = buffer; 2148 kbuf->bufsz = bufsz; 2149 2150 kbuf->memsz = ALIGN(memsz, PAGE_SIZE); 2151 kbuf->buf_align = max(buf_align, PAGE_SIZE); 2152 kbuf->buf_min = buf_min; 2153 kbuf->buf_max = buf_max; 2154 kbuf->top_down = top_down; 2155 2156 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 2157 if (image->type == KEXEC_TYPE_CRASH) 2158 ret = walk_iomem_res("Crash kernel", 2159 IORESOURCE_MEM | IORESOURCE_BUSY, 2160 crashk_res.start, crashk_res.end, kbuf, 2161 locate_mem_hole_callback); 2162 else 2163 ret = walk_system_ram_res(0, -1, kbuf, 2164 locate_mem_hole_callback); 2165 if (ret != 1) { 2166 /* A suitable memory range could not be found for buffer */ 2167 return -EADDRNOTAVAIL; 2168 } 2169 2170 /* Found a suitable memory range */ 2171 ksegment = &image->segment[image->nr_segments]; 2172 ksegment->kbuf = kbuf->buffer; 2173 ksegment->bufsz = kbuf->bufsz; 2174 ksegment->mem = kbuf->mem; 2175 ksegment->memsz = kbuf->memsz; 2176 image->nr_segments++; 2177 *load_addr = ksegment->mem; 2178 return 0; 2179 } 2180 2181 /* Calculate and store the digest of segments */ 2182 static int kexec_calculate_store_digests(struct kimage *image) 2183 { 2184 struct crypto_shash *tfm; 2185 struct shash_desc *desc; 2186 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 2187 size_t desc_size, nullsz; 2188 char *digest; 2189 void *zero_buf; 2190 struct kexec_sha_region *sha_regions; 2191 struct purgatory_info *pi = &image->purgatory_info; 2192 2193 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 2194 zero_buf_sz = PAGE_SIZE; 2195 2196 tfm = crypto_alloc_shash("sha256", 0, 0); 2197 if (IS_ERR(tfm)) { 2198 ret = PTR_ERR(tfm); 2199 goto out; 2200 } 2201 2202 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 2203 desc = kzalloc(desc_size, GFP_KERNEL); 2204 if (!desc) { 2205 ret = -ENOMEM; 2206 goto out_free_tfm; 2207 } 2208 2209 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 2210 sha_regions = vzalloc(sha_region_sz); 2211 if (!sha_regions) 2212 goto out_free_desc; 2213 2214 desc->tfm = tfm; 2215 desc->flags = 0; 2216 2217 ret = crypto_shash_init(desc); 2218 if (ret < 0) 2219 goto out_free_sha_regions; 2220 2221 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 2222 if (!digest) { 2223 ret = -ENOMEM; 2224 goto out_free_sha_regions; 2225 } 2226 2227 for (j = i = 0; i < image->nr_segments; i++) { 2228 struct kexec_segment *ksegment; 2229 2230 ksegment = &image->segment[i]; 2231 /* 2232 * Skip purgatory as it will be modified once we put digest 2233 * info in purgatory. 2234 */ 2235 if (ksegment->kbuf == pi->purgatory_buf) 2236 continue; 2237 2238 ret = crypto_shash_update(desc, ksegment->kbuf, 2239 ksegment->bufsz); 2240 if (ret) 2241 break; 2242 2243 /* 2244 * Assume rest of the buffer is filled with zero and 2245 * update digest accordingly. 2246 */ 2247 nullsz = ksegment->memsz - ksegment->bufsz; 2248 while (nullsz) { 2249 unsigned long bytes = nullsz; 2250 2251 if (bytes > zero_buf_sz) 2252 bytes = zero_buf_sz; 2253 ret = crypto_shash_update(desc, zero_buf, bytes); 2254 if (ret) 2255 break; 2256 nullsz -= bytes; 2257 } 2258 2259 if (ret) 2260 break; 2261 2262 sha_regions[j].start = ksegment->mem; 2263 sha_regions[j].len = ksegment->memsz; 2264 j++; 2265 } 2266 2267 if (!ret) { 2268 ret = crypto_shash_final(desc, digest); 2269 if (ret) 2270 goto out_free_digest; 2271 ret = kexec_purgatory_get_set_symbol(image, "sha_regions", 2272 sha_regions, sha_region_sz, 0); 2273 if (ret) 2274 goto out_free_digest; 2275 2276 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest", 2277 digest, SHA256_DIGEST_SIZE, 0); 2278 if (ret) 2279 goto out_free_digest; 2280 } 2281 2282 out_free_digest: 2283 kfree(digest); 2284 out_free_sha_regions: 2285 vfree(sha_regions); 2286 out_free_desc: 2287 kfree(desc); 2288 out_free_tfm: 2289 kfree(tfm); 2290 out: 2291 return ret; 2292 } 2293 2294 /* Actually load purgatory. Lot of code taken from kexec-tools */ 2295 static int __kexec_load_purgatory(struct kimage *image, unsigned long min, 2296 unsigned long max, int top_down) 2297 { 2298 struct purgatory_info *pi = &image->purgatory_info; 2299 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad; 2300 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset; 2301 unsigned char *buf_addr, *src; 2302 int i, ret = 0, entry_sidx = -1; 2303 const Elf_Shdr *sechdrs_c; 2304 Elf_Shdr *sechdrs = NULL; 2305 void *purgatory_buf = NULL; 2306 2307 /* 2308 * sechdrs_c points to section headers in purgatory and are read 2309 * only. No modifications allowed. 2310 */ 2311 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff; 2312 2313 /* 2314 * We can not modify sechdrs_c[] and its fields. It is read only. 2315 * Copy it over to a local copy where one can store some temporary 2316 * data and free it at the end. We need to modify ->sh_addr and 2317 * ->sh_offset fields to keep track of permanent and temporary 2318 * locations of sections. 2319 */ 2320 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 2321 if (!sechdrs) 2322 return -ENOMEM; 2323 2324 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 2325 2326 /* 2327 * We seem to have multiple copies of sections. First copy is which 2328 * is embedded in kernel in read only section. Some of these sections 2329 * will be copied to a temporary buffer and relocated. And these 2330 * sections will finally be copied to their final destination at 2331 * segment load time. 2332 * 2333 * Use ->sh_offset to reflect section address in memory. It will 2334 * point to original read only copy if section is not allocatable. 2335 * Otherwise it will point to temporary copy which will be relocated. 2336 * 2337 * Use ->sh_addr to contain final address of the section where it 2338 * will go during execution time. 2339 */ 2340 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2341 if (sechdrs[i].sh_type == SHT_NOBITS) 2342 continue; 2343 2344 sechdrs[i].sh_offset = (unsigned long)pi->ehdr + 2345 sechdrs[i].sh_offset; 2346 } 2347 2348 /* 2349 * Identify entry point section and make entry relative to section 2350 * start. 2351 */ 2352 entry = pi->ehdr->e_entry; 2353 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2354 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 2355 continue; 2356 2357 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR)) 2358 continue; 2359 2360 /* Make entry section relative */ 2361 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry && 2362 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) > 2363 pi->ehdr->e_entry)) { 2364 entry_sidx = i; 2365 entry -= sechdrs[i].sh_addr; 2366 break; 2367 } 2368 } 2369 2370 /* Determine how much memory is needed to load relocatable object. */ 2371 buf_align = 1; 2372 bss_align = 1; 2373 buf_sz = 0; 2374 bss_sz = 0; 2375 2376 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2377 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 2378 continue; 2379 2380 align = sechdrs[i].sh_addralign; 2381 if (sechdrs[i].sh_type != SHT_NOBITS) { 2382 if (buf_align < align) 2383 buf_align = align; 2384 buf_sz = ALIGN(buf_sz, align); 2385 buf_sz += sechdrs[i].sh_size; 2386 } else { 2387 /* bss section */ 2388 if (bss_align < align) 2389 bss_align = align; 2390 bss_sz = ALIGN(bss_sz, align); 2391 bss_sz += sechdrs[i].sh_size; 2392 } 2393 } 2394 2395 /* Determine the bss padding required to align bss properly */ 2396 bss_pad = 0; 2397 if (buf_sz & (bss_align - 1)) 2398 bss_pad = bss_align - (buf_sz & (bss_align - 1)); 2399 2400 memsz = buf_sz + bss_pad + bss_sz; 2401 2402 /* Allocate buffer for purgatory */ 2403 purgatory_buf = vzalloc(buf_sz); 2404 if (!purgatory_buf) { 2405 ret = -ENOMEM; 2406 goto out; 2407 } 2408 2409 if (buf_align < bss_align) 2410 buf_align = bss_align; 2411 2412 /* Add buffer to segment list */ 2413 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz, 2414 buf_align, min, max, top_down, 2415 &pi->purgatory_load_addr); 2416 if (ret) 2417 goto out; 2418 2419 /* Load SHF_ALLOC sections */ 2420 buf_addr = purgatory_buf; 2421 load_addr = curr_load_addr = pi->purgatory_load_addr; 2422 bss_addr = load_addr + buf_sz + bss_pad; 2423 2424 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2425 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 2426 continue; 2427 2428 align = sechdrs[i].sh_addralign; 2429 if (sechdrs[i].sh_type != SHT_NOBITS) { 2430 curr_load_addr = ALIGN(curr_load_addr, align); 2431 offset = curr_load_addr - load_addr; 2432 /* We already modifed ->sh_offset to keep src addr */ 2433 src = (char *) sechdrs[i].sh_offset; 2434 memcpy(buf_addr + offset, src, sechdrs[i].sh_size); 2435 2436 /* Store load address and source address of section */ 2437 sechdrs[i].sh_addr = curr_load_addr; 2438 2439 /* 2440 * This section got copied to temporary buffer. Update 2441 * ->sh_offset accordingly. 2442 */ 2443 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset); 2444 2445 /* Advance to the next address */ 2446 curr_load_addr += sechdrs[i].sh_size; 2447 } else { 2448 bss_addr = ALIGN(bss_addr, align); 2449 sechdrs[i].sh_addr = bss_addr; 2450 bss_addr += sechdrs[i].sh_size; 2451 } 2452 } 2453 2454 /* Update entry point based on load address of text section */ 2455 if (entry_sidx >= 0) 2456 entry += sechdrs[entry_sidx].sh_addr; 2457 2458 /* Make kernel jump to purgatory after shutdown */ 2459 image->start = entry; 2460 2461 /* Used later to get/set symbol values */ 2462 pi->sechdrs = sechdrs; 2463 2464 /* 2465 * Used later to identify which section is purgatory and skip it 2466 * from checksumming. 2467 */ 2468 pi->purgatory_buf = purgatory_buf; 2469 return ret; 2470 out: 2471 vfree(sechdrs); 2472 vfree(purgatory_buf); 2473 return ret; 2474 } 2475 2476 static int kexec_apply_relocations(struct kimage *image) 2477 { 2478 int i, ret; 2479 struct purgatory_info *pi = &image->purgatory_info; 2480 Elf_Shdr *sechdrs = pi->sechdrs; 2481 2482 /* Apply relocations */ 2483 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2484 Elf_Shdr *section, *symtab; 2485 2486 if (sechdrs[i].sh_type != SHT_RELA && 2487 sechdrs[i].sh_type != SHT_REL) 2488 continue; 2489 2490 /* 2491 * For section of type SHT_RELA/SHT_REL, 2492 * ->sh_link contains section header index of associated 2493 * symbol table. And ->sh_info contains section header 2494 * index of section to which relocations apply. 2495 */ 2496 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum || 2497 sechdrs[i].sh_link >= pi->ehdr->e_shnum) 2498 return -ENOEXEC; 2499 2500 section = &sechdrs[sechdrs[i].sh_info]; 2501 symtab = &sechdrs[sechdrs[i].sh_link]; 2502 2503 if (!(section->sh_flags & SHF_ALLOC)) 2504 continue; 2505 2506 /* 2507 * symtab->sh_link contain section header index of associated 2508 * string table. 2509 */ 2510 if (symtab->sh_link >= pi->ehdr->e_shnum) 2511 /* Invalid section number? */ 2512 continue; 2513 2514 /* 2515 * Respective archicture needs to provide support for applying 2516 * relocations of type SHT_RELA/SHT_REL. 2517 */ 2518 if (sechdrs[i].sh_type == SHT_RELA) 2519 ret = arch_kexec_apply_relocations_add(pi->ehdr, 2520 sechdrs, i); 2521 else if (sechdrs[i].sh_type == SHT_REL) 2522 ret = arch_kexec_apply_relocations(pi->ehdr, 2523 sechdrs, i); 2524 if (ret) 2525 return ret; 2526 } 2527 2528 return 0; 2529 } 2530 2531 /* Load relocatable purgatory object and relocate it appropriately */ 2532 int kexec_load_purgatory(struct kimage *image, unsigned long min, 2533 unsigned long max, int top_down, 2534 unsigned long *load_addr) 2535 { 2536 struct purgatory_info *pi = &image->purgatory_info; 2537 int ret; 2538 2539 if (kexec_purgatory_size <= 0) 2540 return -EINVAL; 2541 2542 if (kexec_purgatory_size < sizeof(Elf_Ehdr)) 2543 return -ENOEXEC; 2544 2545 pi->ehdr = (Elf_Ehdr *)kexec_purgatory; 2546 2547 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0 2548 || pi->ehdr->e_type != ET_REL 2549 || !elf_check_arch(pi->ehdr) 2550 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr)) 2551 return -ENOEXEC; 2552 2553 if (pi->ehdr->e_shoff >= kexec_purgatory_size 2554 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) > 2555 kexec_purgatory_size - pi->ehdr->e_shoff)) 2556 return -ENOEXEC; 2557 2558 ret = __kexec_load_purgatory(image, min, max, top_down); 2559 if (ret) 2560 return ret; 2561 2562 ret = kexec_apply_relocations(image); 2563 if (ret) 2564 goto out; 2565 2566 *load_addr = pi->purgatory_load_addr; 2567 return 0; 2568 out: 2569 vfree(pi->sechdrs); 2570 vfree(pi->purgatory_buf); 2571 return ret; 2572 } 2573 2574 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 2575 const char *name) 2576 { 2577 Elf_Sym *syms; 2578 Elf_Shdr *sechdrs; 2579 Elf_Ehdr *ehdr; 2580 int i, k; 2581 const char *strtab; 2582 2583 if (!pi->sechdrs || !pi->ehdr) 2584 return NULL; 2585 2586 sechdrs = pi->sechdrs; 2587 ehdr = pi->ehdr; 2588 2589 for (i = 0; i < ehdr->e_shnum; i++) { 2590 if (sechdrs[i].sh_type != SHT_SYMTAB) 2591 continue; 2592 2593 if (sechdrs[i].sh_link >= ehdr->e_shnum) 2594 /* Invalid strtab section number */ 2595 continue; 2596 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset; 2597 syms = (Elf_Sym *)sechdrs[i].sh_offset; 2598 2599 /* Go through symbols for a match */ 2600 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 2601 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 2602 continue; 2603 2604 if (strcmp(strtab + syms[k].st_name, name) != 0) 2605 continue; 2606 2607 if (syms[k].st_shndx == SHN_UNDEF || 2608 syms[k].st_shndx >= ehdr->e_shnum) { 2609 pr_debug("Symbol: %s has bad section index %d.\n", 2610 name, syms[k].st_shndx); 2611 return NULL; 2612 } 2613 2614 /* Found the symbol we are looking for */ 2615 return &syms[k]; 2616 } 2617 } 2618 2619 return NULL; 2620 } 2621 2622 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 2623 { 2624 struct purgatory_info *pi = &image->purgatory_info; 2625 Elf_Sym *sym; 2626 Elf_Shdr *sechdr; 2627 2628 sym = kexec_purgatory_find_symbol(pi, name); 2629 if (!sym) 2630 return ERR_PTR(-EINVAL); 2631 2632 sechdr = &pi->sechdrs[sym->st_shndx]; 2633 2634 /* 2635 * Returns the address where symbol will finally be loaded after 2636 * kexec_load_segment() 2637 */ 2638 return (void *)(sechdr->sh_addr + sym->st_value); 2639 } 2640 2641 /* 2642 * Get or set value of a symbol. If "get_value" is true, symbol value is 2643 * returned in buf otherwise symbol value is set based on value in buf. 2644 */ 2645 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 2646 void *buf, unsigned int size, bool get_value) 2647 { 2648 Elf_Sym *sym; 2649 Elf_Shdr *sechdrs; 2650 struct purgatory_info *pi = &image->purgatory_info; 2651 char *sym_buf; 2652 2653 sym = kexec_purgatory_find_symbol(pi, name); 2654 if (!sym) 2655 return -EINVAL; 2656 2657 if (sym->st_size != size) { 2658 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 2659 name, (unsigned long)sym->st_size, size); 2660 return -EINVAL; 2661 } 2662 2663 sechdrs = pi->sechdrs; 2664 2665 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) { 2666 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 2667 get_value ? "get" : "set"); 2668 return -EINVAL; 2669 } 2670 2671 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset + 2672 sym->st_value; 2673 2674 if (get_value) 2675 memcpy((void *)buf, sym_buf, size); 2676 else 2677 memcpy((void *)sym_buf, buf, size); 2678 2679 return 0; 2680 } 2681 #endif /* CONFIG_KEXEC_FILE */ 2682 2683 /* 2684 * Move into place and start executing a preloaded standalone 2685 * executable. If nothing was preloaded return an error. 2686 */ 2687 int kernel_kexec(void) 2688 { 2689 int error = 0; 2690 2691 if (!mutex_trylock(&kexec_mutex)) 2692 return -EBUSY; 2693 if (!kexec_image) { 2694 error = -EINVAL; 2695 goto Unlock; 2696 } 2697 2698 #ifdef CONFIG_KEXEC_JUMP 2699 if (kexec_image->preserve_context) { 2700 lock_system_sleep(); 2701 pm_prepare_console(); 2702 error = freeze_processes(); 2703 if (error) { 2704 error = -EBUSY; 2705 goto Restore_console; 2706 } 2707 suspend_console(); 2708 error = dpm_suspend_start(PMSG_FREEZE); 2709 if (error) 2710 goto Resume_console; 2711 /* At this point, dpm_suspend_start() has been called, 2712 * but *not* dpm_suspend_end(). We *must* call 2713 * dpm_suspend_end() now. Otherwise, drivers for 2714 * some devices (e.g. interrupt controllers) become 2715 * desynchronized with the actual state of the 2716 * hardware at resume time, and evil weirdness ensues. 2717 */ 2718 error = dpm_suspend_end(PMSG_FREEZE); 2719 if (error) 2720 goto Resume_devices; 2721 error = disable_nonboot_cpus(); 2722 if (error) 2723 goto Enable_cpus; 2724 local_irq_disable(); 2725 error = syscore_suspend(); 2726 if (error) 2727 goto Enable_irqs; 2728 } else 2729 #endif 2730 { 2731 kexec_in_progress = true; 2732 kernel_restart_prepare(NULL); 2733 migrate_to_reboot_cpu(); 2734 2735 /* 2736 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 2737 * no further code needs to use CPU hotplug (which is true in 2738 * the reboot case). However, the kexec path depends on using 2739 * CPU hotplug again; so re-enable it here. 2740 */ 2741 cpu_hotplug_enable(); 2742 pr_emerg("Starting new kernel\n"); 2743 machine_shutdown(); 2744 } 2745 2746 machine_kexec(kexec_image); 2747 2748 #ifdef CONFIG_KEXEC_JUMP 2749 if (kexec_image->preserve_context) { 2750 syscore_resume(); 2751 Enable_irqs: 2752 local_irq_enable(); 2753 Enable_cpus: 2754 enable_nonboot_cpus(); 2755 dpm_resume_start(PMSG_RESTORE); 2756 Resume_devices: 2757 dpm_resume_end(PMSG_RESTORE); 2758 Resume_console: 2759 resume_console(); 2760 thaw_processes(); 2761 Restore_console: 2762 pm_restore_console(); 2763 unlock_system_sleep(); 2764 } 2765 #endif 2766 2767 Unlock: 2768 mutex_unlock(&kexec_mutex); 2769 return error; 2770 } 2771