xref: /linux/kernel/kexec.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * kexec.c - kexec_load system call
3  * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/kexec.h>
15 #include <linux/mutex.h>
16 #include <linux/list.h>
17 #include <linux/syscalls.h>
18 #include <linux/vmalloc.h>
19 #include <linux/slab.h>
20 
21 #include "kexec_internal.h"
22 
23 static int copy_user_segment_list(struct kimage *image,
24 				  unsigned long nr_segments,
25 				  struct kexec_segment __user *segments)
26 {
27 	int ret;
28 	size_t segment_bytes;
29 
30 	/* Read in the segments */
31 	image->nr_segments = nr_segments;
32 	segment_bytes = nr_segments * sizeof(*segments);
33 	ret = copy_from_user(image->segment, segments, segment_bytes);
34 	if (ret)
35 		ret = -EFAULT;
36 
37 	return ret;
38 }
39 
40 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
41 			     unsigned long nr_segments,
42 			     struct kexec_segment __user *segments,
43 			     unsigned long flags)
44 {
45 	int ret;
46 	struct kimage *image;
47 	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
48 
49 	if (kexec_on_panic) {
50 		/* Verify we have a valid entry point */
51 		if ((entry < crashk_res.start) || (entry > crashk_res.end))
52 			return -EADDRNOTAVAIL;
53 	}
54 
55 	/* Allocate and initialize a controlling structure */
56 	image = do_kimage_alloc_init();
57 	if (!image)
58 		return -ENOMEM;
59 
60 	image->start = entry;
61 
62 	ret = copy_user_segment_list(image, nr_segments, segments);
63 	if (ret)
64 		goto out_free_image;
65 
66 	if (kexec_on_panic) {
67 		/* Enable special crash kernel control page alloc policy. */
68 		image->control_page = crashk_res.start;
69 		image->type = KEXEC_TYPE_CRASH;
70 	}
71 
72 	ret = sanity_check_segment_list(image);
73 	if (ret)
74 		goto out_free_image;
75 
76 	/*
77 	 * Find a location for the control code buffer, and add it
78 	 * the vector of segments so that it's pages will also be
79 	 * counted as destination pages.
80 	 */
81 	ret = -ENOMEM;
82 	image->control_code_page = kimage_alloc_control_pages(image,
83 					   get_order(KEXEC_CONTROL_PAGE_SIZE));
84 	if (!image->control_code_page) {
85 		pr_err("Could not allocate control_code_buffer\n");
86 		goto out_free_image;
87 	}
88 
89 	if (!kexec_on_panic) {
90 		image->swap_page = kimage_alloc_control_pages(image, 0);
91 		if (!image->swap_page) {
92 			pr_err("Could not allocate swap buffer\n");
93 			goto out_free_control_pages;
94 		}
95 	}
96 
97 	*rimage = image;
98 	return 0;
99 out_free_control_pages:
100 	kimage_free_page_list(&image->control_pages);
101 out_free_image:
102 	kfree(image);
103 	return ret;
104 }
105 
106 static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
107 		struct kexec_segment __user *segments, unsigned long flags)
108 {
109 	struct kimage **dest_image, *image;
110 	unsigned long i;
111 	int ret;
112 
113 	if (flags & KEXEC_ON_CRASH) {
114 		dest_image = &kexec_crash_image;
115 		if (kexec_crash_image)
116 			arch_kexec_unprotect_crashkres();
117 	} else {
118 		dest_image = &kexec_image;
119 	}
120 
121 	if (nr_segments == 0) {
122 		/* Uninstall image */
123 		kimage_free(xchg(dest_image, NULL));
124 		return 0;
125 	}
126 	if (flags & KEXEC_ON_CRASH) {
127 		/*
128 		 * Loading another kernel to switch to if this one
129 		 * crashes.  Free any current crash dump kernel before
130 		 * we corrupt it.
131 		 */
132 		kimage_free(xchg(&kexec_crash_image, NULL));
133 	}
134 
135 	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
136 	if (ret)
137 		return ret;
138 
139 	if (flags & KEXEC_PRESERVE_CONTEXT)
140 		image->preserve_context = 1;
141 
142 	ret = machine_kexec_prepare(image);
143 	if (ret)
144 		goto out;
145 
146 	for (i = 0; i < nr_segments; i++) {
147 		ret = kimage_load_segment(image, &image->segment[i]);
148 		if (ret)
149 			goto out;
150 	}
151 
152 	kimage_terminate(image);
153 
154 	/* Install the new kernel and uninstall the old */
155 	image = xchg(dest_image, image);
156 
157 out:
158 	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
159 		arch_kexec_protect_crashkres();
160 
161 	kimage_free(image);
162 	return ret;
163 }
164 
165 /*
166  * Exec Kernel system call: for obvious reasons only root may call it.
167  *
168  * This call breaks up into three pieces.
169  * - A generic part which loads the new kernel from the current
170  *   address space, and very carefully places the data in the
171  *   allocated pages.
172  *
173  * - A generic part that interacts with the kernel and tells all of
174  *   the devices to shut down.  Preventing on-going dmas, and placing
175  *   the devices in a consistent state so a later kernel can
176  *   reinitialize them.
177  *
178  * - A machine specific part that includes the syscall number
179  *   and then copies the image to it's final destination.  And
180  *   jumps into the image at entry.
181  *
182  * kexec does not sync, or unmount filesystems so if you need
183  * that to happen you need to do that yourself.
184  */
185 
186 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
187 		struct kexec_segment __user *, segments, unsigned long, flags)
188 {
189 	int result;
190 
191 	/* We only trust the superuser with rebooting the system. */
192 	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
193 		return -EPERM;
194 
195 	/*
196 	 * Verify we have a legal set of flags
197 	 * This leaves us room for future extensions.
198 	 */
199 	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
200 		return -EINVAL;
201 
202 	/* Verify we are on the appropriate architecture */
203 	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
204 		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
205 		return -EINVAL;
206 
207 	/* Put an artificial cap on the number
208 	 * of segments passed to kexec_load.
209 	 */
210 	if (nr_segments > KEXEC_SEGMENT_MAX)
211 		return -EINVAL;
212 
213 	/* Because we write directly to the reserved memory
214 	 * region when loading crash kernels we need a mutex here to
215 	 * prevent multiple crash  kernels from attempting to load
216 	 * simultaneously, and to prevent a crash kernel from loading
217 	 * over the top of a in use crash kernel.
218 	 *
219 	 * KISS: always take the mutex.
220 	 */
221 	if (!mutex_trylock(&kexec_mutex))
222 		return -EBUSY;
223 
224 	result = do_kexec_load(entry, nr_segments, segments, flags);
225 
226 	mutex_unlock(&kexec_mutex);
227 
228 	return result;
229 }
230 
231 #ifdef CONFIG_COMPAT
232 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
233 		       compat_ulong_t, nr_segments,
234 		       struct compat_kexec_segment __user *, segments,
235 		       compat_ulong_t, flags)
236 {
237 	struct compat_kexec_segment in;
238 	struct kexec_segment out, __user *ksegments;
239 	unsigned long i, result;
240 
241 	/* Don't allow clients that don't understand the native
242 	 * architecture to do anything.
243 	 */
244 	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
245 		return -EINVAL;
246 
247 	if (nr_segments > KEXEC_SEGMENT_MAX)
248 		return -EINVAL;
249 
250 	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
251 	for (i = 0; i < nr_segments; i++) {
252 		result = copy_from_user(&in, &segments[i], sizeof(in));
253 		if (result)
254 			return -EFAULT;
255 
256 		out.buf   = compat_ptr(in.buf);
257 		out.bufsz = in.bufsz;
258 		out.mem   = in.mem;
259 		out.memsz = in.memsz;
260 
261 		result = copy_to_user(&ksegments[i], &out, sizeof(out));
262 		if (result)
263 			return -EFAULT;
264 	}
265 
266 	return sys_kexec_load(entry, nr_segments, ksegments, flags);
267 }
268 #endif
269