1 /* 2 * kexec.c - kexec system call 3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> 4 * 5 * This source code is licensed under the GNU General Public License, 6 * Version 2. See the file COPYING for more details. 7 */ 8 9 #define pr_fmt(fmt) "kexec: " fmt 10 11 #include <linux/capability.h> 12 #include <linux/mm.h> 13 #include <linux/file.h> 14 #include <linux/slab.h> 15 #include <linux/fs.h> 16 #include <linux/kexec.h> 17 #include <linux/mutex.h> 18 #include <linux/list.h> 19 #include <linux/highmem.h> 20 #include <linux/syscalls.h> 21 #include <linux/reboot.h> 22 #include <linux/ioport.h> 23 #include <linux/hardirq.h> 24 #include <linux/elf.h> 25 #include <linux/elfcore.h> 26 #include <linux/utsname.h> 27 #include <linux/numa.h> 28 #include <linux/suspend.h> 29 #include <linux/device.h> 30 #include <linux/freezer.h> 31 #include <linux/pm.h> 32 #include <linux/cpu.h> 33 #include <linux/console.h> 34 #include <linux/vmalloc.h> 35 #include <linux/swap.h> 36 #include <linux/syscore_ops.h> 37 #include <linux/compiler.h> 38 #include <linux/hugetlb.h> 39 40 #include <asm/page.h> 41 #include <asm/uaccess.h> 42 #include <asm/io.h> 43 #include <asm/sections.h> 44 45 #include <crypto/hash.h> 46 #include <crypto/sha.h> 47 48 /* Per cpu memory for storing cpu states in case of system crash. */ 49 note_buf_t __percpu *crash_notes; 50 51 /* vmcoreinfo stuff */ 52 static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; 53 u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; 54 size_t vmcoreinfo_size; 55 size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); 56 57 /* Flag to indicate we are going to kexec a new kernel */ 58 bool kexec_in_progress = false; 59 60 /* 61 * Declare these symbols weak so that if architecture provides a purgatory, 62 * these will be overridden. 63 */ 64 char __weak kexec_purgatory[0]; 65 size_t __weak kexec_purgatory_size = 0; 66 67 #ifdef CONFIG_KEXEC_FILE 68 static int kexec_calculate_store_digests(struct kimage *image); 69 #endif 70 71 /* Location of the reserved area for the crash kernel */ 72 struct resource crashk_res = { 73 .name = "Crash kernel", 74 .start = 0, 75 .end = 0, 76 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 77 }; 78 struct resource crashk_low_res = { 79 .name = "Crash kernel", 80 .start = 0, 81 .end = 0, 82 .flags = IORESOURCE_BUSY | IORESOURCE_MEM 83 }; 84 85 int kexec_should_crash(struct task_struct *p) 86 { 87 /* 88 * If crash_kexec_post_notifiers is enabled, don't run 89 * crash_kexec() here yet, which must be run after panic 90 * notifiers in panic(). 91 */ 92 if (crash_kexec_post_notifiers) 93 return 0; 94 /* 95 * There are 4 panic() calls in do_exit() path, each of which 96 * corresponds to each of these 4 conditions. 97 */ 98 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) 99 return 1; 100 return 0; 101 } 102 103 /* 104 * When kexec transitions to the new kernel there is a one-to-one 105 * mapping between physical and virtual addresses. On processors 106 * where you can disable the MMU this is trivial, and easy. For 107 * others it is still a simple predictable page table to setup. 108 * 109 * In that environment kexec copies the new kernel to its final 110 * resting place. This means I can only support memory whose 111 * physical address can fit in an unsigned long. In particular 112 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. 113 * If the assembly stub has more restrictive requirements 114 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be 115 * defined more restrictively in <asm/kexec.h>. 116 * 117 * The code for the transition from the current kernel to the 118 * the new kernel is placed in the control_code_buffer, whose size 119 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single 120 * page of memory is necessary, but some architectures require more. 121 * Because this memory must be identity mapped in the transition from 122 * virtual to physical addresses it must live in the range 123 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily 124 * modifiable. 125 * 126 * The assembly stub in the control code buffer is passed a linked list 127 * of descriptor pages detailing the source pages of the new kernel, 128 * and the destination addresses of those source pages. As this data 129 * structure is not used in the context of the current OS, it must 130 * be self-contained. 131 * 132 * The code has been made to work with highmem pages and will use a 133 * destination page in its final resting place (if it happens 134 * to allocate it). The end product of this is that most of the 135 * physical address space, and most of RAM can be used. 136 * 137 * Future directions include: 138 * - allocating a page table with the control code buffer identity 139 * mapped, to simplify machine_kexec and make kexec_on_panic more 140 * reliable. 141 */ 142 143 /* 144 * KIMAGE_NO_DEST is an impossible destination address..., for 145 * allocating pages whose destination address we do not care about. 146 */ 147 #define KIMAGE_NO_DEST (-1UL) 148 149 static int kimage_is_destination_range(struct kimage *image, 150 unsigned long start, unsigned long end); 151 static struct page *kimage_alloc_page(struct kimage *image, 152 gfp_t gfp_mask, 153 unsigned long dest); 154 155 static int copy_user_segment_list(struct kimage *image, 156 unsigned long nr_segments, 157 struct kexec_segment __user *segments) 158 { 159 int ret; 160 size_t segment_bytes; 161 162 /* Read in the segments */ 163 image->nr_segments = nr_segments; 164 segment_bytes = nr_segments * sizeof(*segments); 165 ret = copy_from_user(image->segment, segments, segment_bytes); 166 if (ret) 167 ret = -EFAULT; 168 169 return ret; 170 } 171 172 static int sanity_check_segment_list(struct kimage *image) 173 { 174 int result, i; 175 unsigned long nr_segments = image->nr_segments; 176 177 /* 178 * Verify we have good destination addresses. The caller is 179 * responsible for making certain we don't attempt to load 180 * the new image into invalid or reserved areas of RAM. This 181 * just verifies it is an address we can use. 182 * 183 * Since the kernel does everything in page size chunks ensure 184 * the destination addresses are page aligned. Too many 185 * special cases crop of when we don't do this. The most 186 * insidious is getting overlapping destination addresses 187 * simply because addresses are changed to page size 188 * granularity. 189 */ 190 result = -EADDRNOTAVAIL; 191 for (i = 0; i < nr_segments; i++) { 192 unsigned long mstart, mend; 193 194 mstart = image->segment[i].mem; 195 mend = mstart + image->segment[i].memsz; 196 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) 197 return result; 198 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) 199 return result; 200 } 201 202 /* Verify our destination addresses do not overlap. 203 * If we alloed overlapping destination addresses 204 * through very weird things can happen with no 205 * easy explanation as one segment stops on another. 206 */ 207 result = -EINVAL; 208 for (i = 0; i < nr_segments; i++) { 209 unsigned long mstart, mend; 210 unsigned long j; 211 212 mstart = image->segment[i].mem; 213 mend = mstart + image->segment[i].memsz; 214 for (j = 0; j < i; j++) { 215 unsigned long pstart, pend; 216 pstart = image->segment[j].mem; 217 pend = pstart + image->segment[j].memsz; 218 /* Do the segments overlap ? */ 219 if ((mend > pstart) && (mstart < pend)) 220 return result; 221 } 222 } 223 224 /* Ensure our buffer sizes are strictly less than 225 * our memory sizes. This should always be the case, 226 * and it is easier to check up front than to be surprised 227 * later on. 228 */ 229 result = -EINVAL; 230 for (i = 0; i < nr_segments; i++) { 231 if (image->segment[i].bufsz > image->segment[i].memsz) 232 return result; 233 } 234 235 /* 236 * Verify we have good destination addresses. Normally 237 * the caller is responsible for making certain we don't 238 * attempt to load the new image into invalid or reserved 239 * areas of RAM. But crash kernels are preloaded into a 240 * reserved area of ram. We must ensure the addresses 241 * are in the reserved area otherwise preloading the 242 * kernel could corrupt things. 243 */ 244 245 if (image->type == KEXEC_TYPE_CRASH) { 246 result = -EADDRNOTAVAIL; 247 for (i = 0; i < nr_segments; i++) { 248 unsigned long mstart, mend; 249 250 mstart = image->segment[i].mem; 251 mend = mstart + image->segment[i].memsz - 1; 252 /* Ensure we are within the crash kernel limits */ 253 if ((mstart < crashk_res.start) || 254 (mend > crashk_res.end)) 255 return result; 256 } 257 } 258 259 return 0; 260 } 261 262 static struct kimage *do_kimage_alloc_init(void) 263 { 264 struct kimage *image; 265 266 /* Allocate a controlling structure */ 267 image = kzalloc(sizeof(*image), GFP_KERNEL); 268 if (!image) 269 return NULL; 270 271 image->head = 0; 272 image->entry = &image->head; 273 image->last_entry = &image->head; 274 image->control_page = ~0; /* By default this does not apply */ 275 image->type = KEXEC_TYPE_DEFAULT; 276 277 /* Initialize the list of control pages */ 278 INIT_LIST_HEAD(&image->control_pages); 279 280 /* Initialize the list of destination pages */ 281 INIT_LIST_HEAD(&image->dest_pages); 282 283 /* Initialize the list of unusable pages */ 284 INIT_LIST_HEAD(&image->unusable_pages); 285 286 return image; 287 } 288 289 static void kimage_free_page_list(struct list_head *list); 290 291 static int kimage_alloc_init(struct kimage **rimage, unsigned long entry, 292 unsigned long nr_segments, 293 struct kexec_segment __user *segments, 294 unsigned long flags) 295 { 296 int ret; 297 struct kimage *image; 298 bool kexec_on_panic = flags & KEXEC_ON_CRASH; 299 300 if (kexec_on_panic) { 301 /* Verify we have a valid entry point */ 302 if ((entry < crashk_res.start) || (entry > crashk_res.end)) 303 return -EADDRNOTAVAIL; 304 } 305 306 /* Allocate and initialize a controlling structure */ 307 image = do_kimage_alloc_init(); 308 if (!image) 309 return -ENOMEM; 310 311 image->start = entry; 312 313 ret = copy_user_segment_list(image, nr_segments, segments); 314 if (ret) 315 goto out_free_image; 316 317 ret = sanity_check_segment_list(image); 318 if (ret) 319 goto out_free_image; 320 321 /* Enable the special crash kernel control page allocation policy. */ 322 if (kexec_on_panic) { 323 image->control_page = crashk_res.start; 324 image->type = KEXEC_TYPE_CRASH; 325 } 326 327 /* 328 * Find a location for the control code buffer, and add it 329 * the vector of segments so that it's pages will also be 330 * counted as destination pages. 331 */ 332 ret = -ENOMEM; 333 image->control_code_page = kimage_alloc_control_pages(image, 334 get_order(KEXEC_CONTROL_PAGE_SIZE)); 335 if (!image->control_code_page) { 336 pr_err("Could not allocate control_code_buffer\n"); 337 goto out_free_image; 338 } 339 340 if (!kexec_on_panic) { 341 image->swap_page = kimage_alloc_control_pages(image, 0); 342 if (!image->swap_page) { 343 pr_err("Could not allocate swap buffer\n"); 344 goto out_free_control_pages; 345 } 346 } 347 348 *rimage = image; 349 return 0; 350 out_free_control_pages: 351 kimage_free_page_list(&image->control_pages); 352 out_free_image: 353 kfree(image); 354 return ret; 355 } 356 357 #ifdef CONFIG_KEXEC_FILE 358 static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len) 359 { 360 struct fd f = fdget(fd); 361 int ret; 362 struct kstat stat; 363 loff_t pos; 364 ssize_t bytes = 0; 365 366 if (!f.file) 367 return -EBADF; 368 369 ret = vfs_getattr(&f.file->f_path, &stat); 370 if (ret) 371 goto out; 372 373 if (stat.size > INT_MAX) { 374 ret = -EFBIG; 375 goto out; 376 } 377 378 /* Don't hand 0 to vmalloc, it whines. */ 379 if (stat.size == 0) { 380 ret = -EINVAL; 381 goto out; 382 } 383 384 *buf = vmalloc(stat.size); 385 if (!*buf) { 386 ret = -ENOMEM; 387 goto out; 388 } 389 390 pos = 0; 391 while (pos < stat.size) { 392 bytes = kernel_read(f.file, pos, (char *)(*buf) + pos, 393 stat.size - pos); 394 if (bytes < 0) { 395 vfree(*buf); 396 ret = bytes; 397 goto out; 398 } 399 400 if (bytes == 0) 401 break; 402 pos += bytes; 403 } 404 405 if (pos != stat.size) { 406 ret = -EBADF; 407 vfree(*buf); 408 goto out; 409 } 410 411 *buf_len = pos; 412 out: 413 fdput(f); 414 return ret; 415 } 416 417 /* Architectures can provide this probe function */ 418 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, 419 unsigned long buf_len) 420 { 421 return -ENOEXEC; 422 } 423 424 void * __weak arch_kexec_kernel_image_load(struct kimage *image) 425 { 426 return ERR_PTR(-ENOEXEC); 427 } 428 429 void __weak arch_kimage_file_post_load_cleanup(struct kimage *image) 430 { 431 } 432 433 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, 434 unsigned long buf_len) 435 { 436 return -EKEYREJECTED; 437 } 438 439 /* Apply relocations of type RELA */ 440 int __weak 441 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, 442 unsigned int relsec) 443 { 444 pr_err("RELA relocation unsupported.\n"); 445 return -ENOEXEC; 446 } 447 448 /* Apply relocations of type REL */ 449 int __weak 450 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, 451 unsigned int relsec) 452 { 453 pr_err("REL relocation unsupported.\n"); 454 return -ENOEXEC; 455 } 456 457 /* 458 * Free up memory used by kernel, initrd, and command line. This is temporary 459 * memory allocation which is not needed any more after these buffers have 460 * been loaded into separate segments and have been copied elsewhere. 461 */ 462 static void kimage_file_post_load_cleanup(struct kimage *image) 463 { 464 struct purgatory_info *pi = &image->purgatory_info; 465 466 vfree(image->kernel_buf); 467 image->kernel_buf = NULL; 468 469 vfree(image->initrd_buf); 470 image->initrd_buf = NULL; 471 472 kfree(image->cmdline_buf); 473 image->cmdline_buf = NULL; 474 475 vfree(pi->purgatory_buf); 476 pi->purgatory_buf = NULL; 477 478 vfree(pi->sechdrs); 479 pi->sechdrs = NULL; 480 481 /* See if architecture has anything to cleanup post load */ 482 arch_kimage_file_post_load_cleanup(image); 483 484 /* 485 * Above call should have called into bootloader to free up 486 * any data stored in kimage->image_loader_data. It should 487 * be ok now to free it up. 488 */ 489 kfree(image->image_loader_data); 490 image->image_loader_data = NULL; 491 } 492 493 /* 494 * In file mode list of segments is prepared by kernel. Copy relevant 495 * data from user space, do error checking, prepare segment list 496 */ 497 static int 498 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, 499 const char __user *cmdline_ptr, 500 unsigned long cmdline_len, unsigned flags) 501 { 502 int ret = 0; 503 void *ldata; 504 505 ret = copy_file_from_fd(kernel_fd, &image->kernel_buf, 506 &image->kernel_buf_len); 507 if (ret) 508 return ret; 509 510 /* Call arch image probe handlers */ 511 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, 512 image->kernel_buf_len); 513 514 if (ret) 515 goto out; 516 517 #ifdef CONFIG_KEXEC_VERIFY_SIG 518 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, 519 image->kernel_buf_len); 520 if (ret) { 521 pr_debug("kernel signature verification failed.\n"); 522 goto out; 523 } 524 pr_debug("kernel signature verification successful.\n"); 525 #endif 526 /* It is possible that there no initramfs is being loaded */ 527 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { 528 ret = copy_file_from_fd(initrd_fd, &image->initrd_buf, 529 &image->initrd_buf_len); 530 if (ret) 531 goto out; 532 } 533 534 if (cmdline_len) { 535 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL); 536 if (!image->cmdline_buf) { 537 ret = -ENOMEM; 538 goto out; 539 } 540 541 ret = copy_from_user(image->cmdline_buf, cmdline_ptr, 542 cmdline_len); 543 if (ret) { 544 ret = -EFAULT; 545 goto out; 546 } 547 548 image->cmdline_buf_len = cmdline_len; 549 550 /* command line should be a string with last byte null */ 551 if (image->cmdline_buf[cmdline_len - 1] != '\0') { 552 ret = -EINVAL; 553 goto out; 554 } 555 } 556 557 /* Call arch image load handlers */ 558 ldata = arch_kexec_kernel_image_load(image); 559 560 if (IS_ERR(ldata)) { 561 ret = PTR_ERR(ldata); 562 goto out; 563 } 564 565 image->image_loader_data = ldata; 566 out: 567 /* In case of error, free up all allocated memory in this function */ 568 if (ret) 569 kimage_file_post_load_cleanup(image); 570 return ret; 571 } 572 573 static int 574 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, 575 int initrd_fd, const char __user *cmdline_ptr, 576 unsigned long cmdline_len, unsigned long flags) 577 { 578 int ret; 579 struct kimage *image; 580 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; 581 582 image = do_kimage_alloc_init(); 583 if (!image) 584 return -ENOMEM; 585 586 image->file_mode = 1; 587 588 if (kexec_on_panic) { 589 /* Enable special crash kernel control page alloc policy. */ 590 image->control_page = crashk_res.start; 591 image->type = KEXEC_TYPE_CRASH; 592 } 593 594 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, 595 cmdline_ptr, cmdline_len, flags); 596 if (ret) 597 goto out_free_image; 598 599 ret = sanity_check_segment_list(image); 600 if (ret) 601 goto out_free_post_load_bufs; 602 603 ret = -ENOMEM; 604 image->control_code_page = kimage_alloc_control_pages(image, 605 get_order(KEXEC_CONTROL_PAGE_SIZE)); 606 if (!image->control_code_page) { 607 pr_err("Could not allocate control_code_buffer\n"); 608 goto out_free_post_load_bufs; 609 } 610 611 if (!kexec_on_panic) { 612 image->swap_page = kimage_alloc_control_pages(image, 0); 613 if (!image->swap_page) { 614 pr_err("Could not allocate swap buffer\n"); 615 goto out_free_control_pages; 616 } 617 } 618 619 *rimage = image; 620 return 0; 621 out_free_control_pages: 622 kimage_free_page_list(&image->control_pages); 623 out_free_post_load_bufs: 624 kimage_file_post_load_cleanup(image); 625 out_free_image: 626 kfree(image); 627 return ret; 628 } 629 #else /* CONFIG_KEXEC_FILE */ 630 static inline void kimage_file_post_load_cleanup(struct kimage *image) { } 631 #endif /* CONFIG_KEXEC_FILE */ 632 633 static int kimage_is_destination_range(struct kimage *image, 634 unsigned long start, 635 unsigned long end) 636 { 637 unsigned long i; 638 639 for (i = 0; i < image->nr_segments; i++) { 640 unsigned long mstart, mend; 641 642 mstart = image->segment[i].mem; 643 mend = mstart + image->segment[i].memsz; 644 if ((end > mstart) && (start < mend)) 645 return 1; 646 } 647 648 return 0; 649 } 650 651 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) 652 { 653 struct page *pages; 654 655 pages = alloc_pages(gfp_mask, order); 656 if (pages) { 657 unsigned int count, i; 658 pages->mapping = NULL; 659 set_page_private(pages, order); 660 count = 1 << order; 661 for (i = 0; i < count; i++) 662 SetPageReserved(pages + i); 663 } 664 665 return pages; 666 } 667 668 static void kimage_free_pages(struct page *page) 669 { 670 unsigned int order, count, i; 671 672 order = page_private(page); 673 count = 1 << order; 674 for (i = 0; i < count; i++) 675 ClearPageReserved(page + i); 676 __free_pages(page, order); 677 } 678 679 static void kimage_free_page_list(struct list_head *list) 680 { 681 struct list_head *pos, *next; 682 683 list_for_each_safe(pos, next, list) { 684 struct page *page; 685 686 page = list_entry(pos, struct page, lru); 687 list_del(&page->lru); 688 kimage_free_pages(page); 689 } 690 } 691 692 static struct page *kimage_alloc_normal_control_pages(struct kimage *image, 693 unsigned int order) 694 { 695 /* Control pages are special, they are the intermediaries 696 * that are needed while we copy the rest of the pages 697 * to their final resting place. As such they must 698 * not conflict with either the destination addresses 699 * or memory the kernel is already using. 700 * 701 * The only case where we really need more than one of 702 * these are for architectures where we cannot disable 703 * the MMU and must instead generate an identity mapped 704 * page table for all of the memory. 705 * 706 * At worst this runs in O(N) of the image size. 707 */ 708 struct list_head extra_pages; 709 struct page *pages; 710 unsigned int count; 711 712 count = 1 << order; 713 INIT_LIST_HEAD(&extra_pages); 714 715 /* Loop while I can allocate a page and the page allocated 716 * is a destination page. 717 */ 718 do { 719 unsigned long pfn, epfn, addr, eaddr; 720 721 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order); 722 if (!pages) 723 break; 724 pfn = page_to_pfn(pages); 725 epfn = pfn + count; 726 addr = pfn << PAGE_SHIFT; 727 eaddr = epfn << PAGE_SHIFT; 728 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || 729 kimage_is_destination_range(image, addr, eaddr)) { 730 list_add(&pages->lru, &extra_pages); 731 pages = NULL; 732 } 733 } while (!pages); 734 735 if (pages) { 736 /* Remember the allocated page... */ 737 list_add(&pages->lru, &image->control_pages); 738 739 /* Because the page is already in it's destination 740 * location we will never allocate another page at 741 * that address. Therefore kimage_alloc_pages 742 * will not return it (again) and we don't need 743 * to give it an entry in image->segment[]. 744 */ 745 } 746 /* Deal with the destination pages I have inadvertently allocated. 747 * 748 * Ideally I would convert multi-page allocations into single 749 * page allocations, and add everything to image->dest_pages. 750 * 751 * For now it is simpler to just free the pages. 752 */ 753 kimage_free_page_list(&extra_pages); 754 755 return pages; 756 } 757 758 static struct page *kimage_alloc_crash_control_pages(struct kimage *image, 759 unsigned int order) 760 { 761 /* Control pages are special, they are the intermediaries 762 * that are needed while we copy the rest of the pages 763 * to their final resting place. As such they must 764 * not conflict with either the destination addresses 765 * or memory the kernel is already using. 766 * 767 * Control pages are also the only pags we must allocate 768 * when loading a crash kernel. All of the other pages 769 * are specified by the segments and we just memcpy 770 * into them directly. 771 * 772 * The only case where we really need more than one of 773 * these are for architectures where we cannot disable 774 * the MMU and must instead generate an identity mapped 775 * page table for all of the memory. 776 * 777 * Given the low demand this implements a very simple 778 * allocator that finds the first hole of the appropriate 779 * size in the reserved memory region, and allocates all 780 * of the memory up to and including the hole. 781 */ 782 unsigned long hole_start, hole_end, size; 783 struct page *pages; 784 785 pages = NULL; 786 size = (1 << order) << PAGE_SHIFT; 787 hole_start = (image->control_page + (size - 1)) & ~(size - 1); 788 hole_end = hole_start + size - 1; 789 while (hole_end <= crashk_res.end) { 790 unsigned long i; 791 792 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) 793 break; 794 /* See if I overlap any of the segments */ 795 for (i = 0; i < image->nr_segments; i++) { 796 unsigned long mstart, mend; 797 798 mstart = image->segment[i].mem; 799 mend = mstart + image->segment[i].memsz - 1; 800 if ((hole_end >= mstart) && (hole_start <= mend)) { 801 /* Advance the hole to the end of the segment */ 802 hole_start = (mend + (size - 1)) & ~(size - 1); 803 hole_end = hole_start + size - 1; 804 break; 805 } 806 } 807 /* If I don't overlap any segments I have found my hole! */ 808 if (i == image->nr_segments) { 809 pages = pfn_to_page(hole_start >> PAGE_SHIFT); 810 break; 811 } 812 } 813 if (pages) 814 image->control_page = hole_end; 815 816 return pages; 817 } 818 819 820 struct page *kimage_alloc_control_pages(struct kimage *image, 821 unsigned int order) 822 { 823 struct page *pages = NULL; 824 825 switch (image->type) { 826 case KEXEC_TYPE_DEFAULT: 827 pages = kimage_alloc_normal_control_pages(image, order); 828 break; 829 case KEXEC_TYPE_CRASH: 830 pages = kimage_alloc_crash_control_pages(image, order); 831 break; 832 } 833 834 return pages; 835 } 836 837 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) 838 { 839 if (*image->entry != 0) 840 image->entry++; 841 842 if (image->entry == image->last_entry) { 843 kimage_entry_t *ind_page; 844 struct page *page; 845 846 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); 847 if (!page) 848 return -ENOMEM; 849 850 ind_page = page_address(page); 851 *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; 852 image->entry = ind_page; 853 image->last_entry = ind_page + 854 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); 855 } 856 *image->entry = entry; 857 image->entry++; 858 *image->entry = 0; 859 860 return 0; 861 } 862 863 static int kimage_set_destination(struct kimage *image, 864 unsigned long destination) 865 { 866 int result; 867 868 destination &= PAGE_MASK; 869 result = kimage_add_entry(image, destination | IND_DESTINATION); 870 871 return result; 872 } 873 874 875 static int kimage_add_page(struct kimage *image, unsigned long page) 876 { 877 int result; 878 879 page &= PAGE_MASK; 880 result = kimage_add_entry(image, page | IND_SOURCE); 881 882 return result; 883 } 884 885 886 static void kimage_free_extra_pages(struct kimage *image) 887 { 888 /* Walk through and free any extra destination pages I may have */ 889 kimage_free_page_list(&image->dest_pages); 890 891 /* Walk through and free any unusable pages I have cached */ 892 kimage_free_page_list(&image->unusable_pages); 893 894 } 895 static void kimage_terminate(struct kimage *image) 896 { 897 if (*image->entry != 0) 898 image->entry++; 899 900 *image->entry = IND_DONE; 901 } 902 903 #define for_each_kimage_entry(image, ptr, entry) \ 904 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ 905 ptr = (entry & IND_INDIRECTION) ? \ 906 phys_to_virt((entry & PAGE_MASK)) : ptr + 1) 907 908 static void kimage_free_entry(kimage_entry_t entry) 909 { 910 struct page *page; 911 912 page = pfn_to_page(entry >> PAGE_SHIFT); 913 kimage_free_pages(page); 914 } 915 916 static void kimage_free(struct kimage *image) 917 { 918 kimage_entry_t *ptr, entry; 919 kimage_entry_t ind = 0; 920 921 if (!image) 922 return; 923 924 kimage_free_extra_pages(image); 925 for_each_kimage_entry(image, ptr, entry) { 926 if (entry & IND_INDIRECTION) { 927 /* Free the previous indirection page */ 928 if (ind & IND_INDIRECTION) 929 kimage_free_entry(ind); 930 /* Save this indirection page until we are 931 * done with it. 932 */ 933 ind = entry; 934 } else if (entry & IND_SOURCE) 935 kimage_free_entry(entry); 936 } 937 /* Free the final indirection page */ 938 if (ind & IND_INDIRECTION) 939 kimage_free_entry(ind); 940 941 /* Handle any machine specific cleanup */ 942 machine_kexec_cleanup(image); 943 944 /* Free the kexec control pages... */ 945 kimage_free_page_list(&image->control_pages); 946 947 /* 948 * Free up any temporary buffers allocated. This might hit if 949 * error occurred much later after buffer allocation. 950 */ 951 if (image->file_mode) 952 kimage_file_post_load_cleanup(image); 953 954 kfree(image); 955 } 956 957 static kimage_entry_t *kimage_dst_used(struct kimage *image, 958 unsigned long page) 959 { 960 kimage_entry_t *ptr, entry; 961 unsigned long destination = 0; 962 963 for_each_kimage_entry(image, ptr, entry) { 964 if (entry & IND_DESTINATION) 965 destination = entry & PAGE_MASK; 966 else if (entry & IND_SOURCE) { 967 if (page == destination) 968 return ptr; 969 destination += PAGE_SIZE; 970 } 971 } 972 973 return NULL; 974 } 975 976 static struct page *kimage_alloc_page(struct kimage *image, 977 gfp_t gfp_mask, 978 unsigned long destination) 979 { 980 /* 981 * Here we implement safeguards to ensure that a source page 982 * is not copied to its destination page before the data on 983 * the destination page is no longer useful. 984 * 985 * To do this we maintain the invariant that a source page is 986 * either its own destination page, or it is not a 987 * destination page at all. 988 * 989 * That is slightly stronger than required, but the proof 990 * that no problems will not occur is trivial, and the 991 * implementation is simply to verify. 992 * 993 * When allocating all pages normally this algorithm will run 994 * in O(N) time, but in the worst case it will run in O(N^2) 995 * time. If the runtime is a problem the data structures can 996 * be fixed. 997 */ 998 struct page *page; 999 unsigned long addr; 1000 1001 /* 1002 * Walk through the list of destination pages, and see if I 1003 * have a match. 1004 */ 1005 list_for_each_entry(page, &image->dest_pages, lru) { 1006 addr = page_to_pfn(page) << PAGE_SHIFT; 1007 if (addr == destination) { 1008 list_del(&page->lru); 1009 return page; 1010 } 1011 } 1012 page = NULL; 1013 while (1) { 1014 kimage_entry_t *old; 1015 1016 /* Allocate a page, if we run out of memory give up */ 1017 page = kimage_alloc_pages(gfp_mask, 0); 1018 if (!page) 1019 return NULL; 1020 /* If the page cannot be used file it away */ 1021 if (page_to_pfn(page) > 1022 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { 1023 list_add(&page->lru, &image->unusable_pages); 1024 continue; 1025 } 1026 addr = page_to_pfn(page) << PAGE_SHIFT; 1027 1028 /* If it is the destination page we want use it */ 1029 if (addr == destination) 1030 break; 1031 1032 /* If the page is not a destination page use it */ 1033 if (!kimage_is_destination_range(image, addr, 1034 addr + PAGE_SIZE)) 1035 break; 1036 1037 /* 1038 * I know that the page is someones destination page. 1039 * See if there is already a source page for this 1040 * destination page. And if so swap the source pages. 1041 */ 1042 old = kimage_dst_used(image, addr); 1043 if (old) { 1044 /* If so move it */ 1045 unsigned long old_addr; 1046 struct page *old_page; 1047 1048 old_addr = *old & PAGE_MASK; 1049 old_page = pfn_to_page(old_addr >> PAGE_SHIFT); 1050 copy_highpage(page, old_page); 1051 *old = addr | (*old & ~PAGE_MASK); 1052 1053 /* The old page I have found cannot be a 1054 * destination page, so return it if it's 1055 * gfp_flags honor the ones passed in. 1056 */ 1057 if (!(gfp_mask & __GFP_HIGHMEM) && 1058 PageHighMem(old_page)) { 1059 kimage_free_pages(old_page); 1060 continue; 1061 } 1062 addr = old_addr; 1063 page = old_page; 1064 break; 1065 } else { 1066 /* Place the page on the destination list I 1067 * will use it later. 1068 */ 1069 list_add(&page->lru, &image->dest_pages); 1070 } 1071 } 1072 1073 return page; 1074 } 1075 1076 static int kimage_load_normal_segment(struct kimage *image, 1077 struct kexec_segment *segment) 1078 { 1079 unsigned long maddr; 1080 size_t ubytes, mbytes; 1081 int result; 1082 unsigned char __user *buf = NULL; 1083 unsigned char *kbuf = NULL; 1084 1085 result = 0; 1086 if (image->file_mode) 1087 kbuf = segment->kbuf; 1088 else 1089 buf = segment->buf; 1090 ubytes = segment->bufsz; 1091 mbytes = segment->memsz; 1092 maddr = segment->mem; 1093 1094 result = kimage_set_destination(image, maddr); 1095 if (result < 0) 1096 goto out; 1097 1098 while (mbytes) { 1099 struct page *page; 1100 char *ptr; 1101 size_t uchunk, mchunk; 1102 1103 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); 1104 if (!page) { 1105 result = -ENOMEM; 1106 goto out; 1107 } 1108 result = kimage_add_page(image, page_to_pfn(page) 1109 << PAGE_SHIFT); 1110 if (result < 0) 1111 goto out; 1112 1113 ptr = kmap(page); 1114 /* Start with a clear page */ 1115 clear_page(ptr); 1116 ptr += maddr & ~PAGE_MASK; 1117 mchunk = min_t(size_t, mbytes, 1118 PAGE_SIZE - (maddr & ~PAGE_MASK)); 1119 uchunk = min(ubytes, mchunk); 1120 1121 /* For file based kexec, source pages are in kernel memory */ 1122 if (image->file_mode) 1123 memcpy(ptr, kbuf, uchunk); 1124 else 1125 result = copy_from_user(ptr, buf, uchunk); 1126 kunmap(page); 1127 if (result) { 1128 result = -EFAULT; 1129 goto out; 1130 } 1131 ubytes -= uchunk; 1132 maddr += mchunk; 1133 if (image->file_mode) 1134 kbuf += mchunk; 1135 else 1136 buf += mchunk; 1137 mbytes -= mchunk; 1138 } 1139 out: 1140 return result; 1141 } 1142 1143 static int kimage_load_crash_segment(struct kimage *image, 1144 struct kexec_segment *segment) 1145 { 1146 /* For crash dumps kernels we simply copy the data from 1147 * user space to it's destination. 1148 * We do things a page at a time for the sake of kmap. 1149 */ 1150 unsigned long maddr; 1151 size_t ubytes, mbytes; 1152 int result; 1153 unsigned char __user *buf = NULL; 1154 unsigned char *kbuf = NULL; 1155 1156 result = 0; 1157 if (image->file_mode) 1158 kbuf = segment->kbuf; 1159 else 1160 buf = segment->buf; 1161 ubytes = segment->bufsz; 1162 mbytes = segment->memsz; 1163 maddr = segment->mem; 1164 while (mbytes) { 1165 struct page *page; 1166 char *ptr; 1167 size_t uchunk, mchunk; 1168 1169 page = pfn_to_page(maddr >> PAGE_SHIFT); 1170 if (!page) { 1171 result = -ENOMEM; 1172 goto out; 1173 } 1174 ptr = kmap(page); 1175 ptr += maddr & ~PAGE_MASK; 1176 mchunk = min_t(size_t, mbytes, 1177 PAGE_SIZE - (maddr & ~PAGE_MASK)); 1178 uchunk = min(ubytes, mchunk); 1179 if (mchunk > uchunk) { 1180 /* Zero the trailing part of the page */ 1181 memset(ptr + uchunk, 0, mchunk - uchunk); 1182 } 1183 1184 /* For file based kexec, source pages are in kernel memory */ 1185 if (image->file_mode) 1186 memcpy(ptr, kbuf, uchunk); 1187 else 1188 result = copy_from_user(ptr, buf, uchunk); 1189 kexec_flush_icache_page(page); 1190 kunmap(page); 1191 if (result) { 1192 result = -EFAULT; 1193 goto out; 1194 } 1195 ubytes -= uchunk; 1196 maddr += mchunk; 1197 if (image->file_mode) 1198 kbuf += mchunk; 1199 else 1200 buf += mchunk; 1201 mbytes -= mchunk; 1202 } 1203 out: 1204 return result; 1205 } 1206 1207 static int kimage_load_segment(struct kimage *image, 1208 struct kexec_segment *segment) 1209 { 1210 int result = -ENOMEM; 1211 1212 switch (image->type) { 1213 case KEXEC_TYPE_DEFAULT: 1214 result = kimage_load_normal_segment(image, segment); 1215 break; 1216 case KEXEC_TYPE_CRASH: 1217 result = kimage_load_crash_segment(image, segment); 1218 break; 1219 } 1220 1221 return result; 1222 } 1223 1224 /* 1225 * Exec Kernel system call: for obvious reasons only root may call it. 1226 * 1227 * This call breaks up into three pieces. 1228 * - A generic part which loads the new kernel from the current 1229 * address space, and very carefully places the data in the 1230 * allocated pages. 1231 * 1232 * - A generic part that interacts with the kernel and tells all of 1233 * the devices to shut down. Preventing on-going dmas, and placing 1234 * the devices in a consistent state so a later kernel can 1235 * reinitialize them. 1236 * 1237 * - A machine specific part that includes the syscall number 1238 * and then copies the image to it's final destination. And 1239 * jumps into the image at entry. 1240 * 1241 * kexec does not sync, or unmount filesystems so if you need 1242 * that to happen you need to do that yourself. 1243 */ 1244 struct kimage *kexec_image; 1245 struct kimage *kexec_crash_image; 1246 int kexec_load_disabled; 1247 1248 static DEFINE_MUTEX(kexec_mutex); 1249 1250 SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, 1251 struct kexec_segment __user *, segments, unsigned long, flags) 1252 { 1253 struct kimage **dest_image, *image; 1254 int result; 1255 1256 /* We only trust the superuser with rebooting the system. */ 1257 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1258 return -EPERM; 1259 1260 /* 1261 * Verify we have a legal set of flags 1262 * This leaves us room for future extensions. 1263 */ 1264 if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) 1265 return -EINVAL; 1266 1267 /* Verify we are on the appropriate architecture */ 1268 if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && 1269 ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) 1270 return -EINVAL; 1271 1272 /* Put an artificial cap on the number 1273 * of segments passed to kexec_load. 1274 */ 1275 if (nr_segments > KEXEC_SEGMENT_MAX) 1276 return -EINVAL; 1277 1278 image = NULL; 1279 result = 0; 1280 1281 /* Because we write directly to the reserved memory 1282 * region when loading crash kernels we need a mutex here to 1283 * prevent multiple crash kernels from attempting to load 1284 * simultaneously, and to prevent a crash kernel from loading 1285 * over the top of a in use crash kernel. 1286 * 1287 * KISS: always take the mutex. 1288 */ 1289 if (!mutex_trylock(&kexec_mutex)) 1290 return -EBUSY; 1291 1292 dest_image = &kexec_image; 1293 if (flags & KEXEC_ON_CRASH) 1294 dest_image = &kexec_crash_image; 1295 if (nr_segments > 0) { 1296 unsigned long i; 1297 1298 if (flags & KEXEC_ON_CRASH) { 1299 /* 1300 * Loading another kernel to switch to if this one 1301 * crashes. Free any current crash dump kernel before 1302 * we corrupt it. 1303 */ 1304 1305 kimage_free(xchg(&kexec_crash_image, NULL)); 1306 result = kimage_alloc_init(&image, entry, nr_segments, 1307 segments, flags); 1308 crash_map_reserved_pages(); 1309 } else { 1310 /* Loading another kernel to reboot into. */ 1311 1312 result = kimage_alloc_init(&image, entry, nr_segments, 1313 segments, flags); 1314 } 1315 if (result) 1316 goto out; 1317 1318 if (flags & KEXEC_PRESERVE_CONTEXT) 1319 image->preserve_context = 1; 1320 result = machine_kexec_prepare(image); 1321 if (result) 1322 goto out; 1323 1324 for (i = 0; i < nr_segments; i++) { 1325 result = kimage_load_segment(image, &image->segment[i]); 1326 if (result) 1327 goto out; 1328 } 1329 kimage_terminate(image); 1330 if (flags & KEXEC_ON_CRASH) 1331 crash_unmap_reserved_pages(); 1332 } 1333 /* Install the new kernel, and Uninstall the old */ 1334 image = xchg(dest_image, image); 1335 1336 out: 1337 mutex_unlock(&kexec_mutex); 1338 kimage_free(image); 1339 1340 return result; 1341 } 1342 1343 /* 1344 * Add and remove page tables for crashkernel memory 1345 * 1346 * Provide an empty default implementation here -- architecture 1347 * code may override this 1348 */ 1349 void __weak crash_map_reserved_pages(void) 1350 {} 1351 1352 void __weak crash_unmap_reserved_pages(void) 1353 {} 1354 1355 #ifdef CONFIG_COMPAT 1356 COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry, 1357 compat_ulong_t, nr_segments, 1358 struct compat_kexec_segment __user *, segments, 1359 compat_ulong_t, flags) 1360 { 1361 struct compat_kexec_segment in; 1362 struct kexec_segment out, __user *ksegments; 1363 unsigned long i, result; 1364 1365 /* Don't allow clients that don't understand the native 1366 * architecture to do anything. 1367 */ 1368 if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) 1369 return -EINVAL; 1370 1371 if (nr_segments > KEXEC_SEGMENT_MAX) 1372 return -EINVAL; 1373 1374 ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); 1375 for (i = 0; i < nr_segments; i++) { 1376 result = copy_from_user(&in, &segments[i], sizeof(in)); 1377 if (result) 1378 return -EFAULT; 1379 1380 out.buf = compat_ptr(in.buf); 1381 out.bufsz = in.bufsz; 1382 out.mem = in.mem; 1383 out.memsz = in.memsz; 1384 1385 result = copy_to_user(&ksegments[i], &out, sizeof(out)); 1386 if (result) 1387 return -EFAULT; 1388 } 1389 1390 return sys_kexec_load(entry, nr_segments, ksegments, flags); 1391 } 1392 #endif 1393 1394 #ifdef CONFIG_KEXEC_FILE 1395 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, 1396 unsigned long, cmdline_len, const char __user *, cmdline_ptr, 1397 unsigned long, flags) 1398 { 1399 int ret = 0, i; 1400 struct kimage **dest_image, *image; 1401 1402 /* We only trust the superuser with rebooting the system. */ 1403 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) 1404 return -EPERM; 1405 1406 /* Make sure we have a legal set of flags */ 1407 if (flags != (flags & KEXEC_FILE_FLAGS)) 1408 return -EINVAL; 1409 1410 image = NULL; 1411 1412 if (!mutex_trylock(&kexec_mutex)) 1413 return -EBUSY; 1414 1415 dest_image = &kexec_image; 1416 if (flags & KEXEC_FILE_ON_CRASH) 1417 dest_image = &kexec_crash_image; 1418 1419 if (flags & KEXEC_FILE_UNLOAD) 1420 goto exchange; 1421 1422 /* 1423 * In case of crash, new kernel gets loaded in reserved region. It is 1424 * same memory where old crash kernel might be loaded. Free any 1425 * current crash dump kernel before we corrupt it. 1426 */ 1427 if (flags & KEXEC_FILE_ON_CRASH) 1428 kimage_free(xchg(&kexec_crash_image, NULL)); 1429 1430 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, 1431 cmdline_len, flags); 1432 if (ret) 1433 goto out; 1434 1435 ret = machine_kexec_prepare(image); 1436 if (ret) 1437 goto out; 1438 1439 ret = kexec_calculate_store_digests(image); 1440 if (ret) 1441 goto out; 1442 1443 for (i = 0; i < image->nr_segments; i++) { 1444 struct kexec_segment *ksegment; 1445 1446 ksegment = &image->segment[i]; 1447 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", 1448 i, ksegment->buf, ksegment->bufsz, ksegment->mem, 1449 ksegment->memsz); 1450 1451 ret = kimage_load_segment(image, &image->segment[i]); 1452 if (ret) 1453 goto out; 1454 } 1455 1456 kimage_terminate(image); 1457 1458 /* 1459 * Free up any temporary buffers allocated which are not needed 1460 * after image has been loaded 1461 */ 1462 kimage_file_post_load_cleanup(image); 1463 exchange: 1464 image = xchg(dest_image, image); 1465 out: 1466 mutex_unlock(&kexec_mutex); 1467 kimage_free(image); 1468 return ret; 1469 } 1470 1471 #endif /* CONFIG_KEXEC_FILE */ 1472 1473 void crash_kexec(struct pt_regs *regs) 1474 { 1475 /* Take the kexec_mutex here to prevent sys_kexec_load 1476 * running on one cpu from replacing the crash kernel 1477 * we are using after a panic on a different cpu. 1478 * 1479 * If the crash kernel was not located in a fixed area 1480 * of memory the xchg(&kexec_crash_image) would be 1481 * sufficient. But since I reuse the memory... 1482 */ 1483 if (mutex_trylock(&kexec_mutex)) { 1484 if (kexec_crash_image) { 1485 struct pt_regs fixed_regs; 1486 1487 crash_setup_regs(&fixed_regs, regs); 1488 crash_save_vmcoreinfo(); 1489 machine_crash_shutdown(&fixed_regs); 1490 machine_kexec(kexec_crash_image); 1491 } 1492 mutex_unlock(&kexec_mutex); 1493 } 1494 } 1495 1496 size_t crash_get_memory_size(void) 1497 { 1498 size_t size = 0; 1499 mutex_lock(&kexec_mutex); 1500 if (crashk_res.end != crashk_res.start) 1501 size = resource_size(&crashk_res); 1502 mutex_unlock(&kexec_mutex); 1503 return size; 1504 } 1505 1506 void __weak crash_free_reserved_phys_range(unsigned long begin, 1507 unsigned long end) 1508 { 1509 unsigned long addr; 1510 1511 for (addr = begin; addr < end; addr += PAGE_SIZE) 1512 free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); 1513 } 1514 1515 int crash_shrink_memory(unsigned long new_size) 1516 { 1517 int ret = 0; 1518 unsigned long start, end; 1519 unsigned long old_size; 1520 struct resource *ram_res; 1521 1522 mutex_lock(&kexec_mutex); 1523 1524 if (kexec_crash_image) { 1525 ret = -ENOENT; 1526 goto unlock; 1527 } 1528 start = crashk_res.start; 1529 end = crashk_res.end; 1530 old_size = (end == 0) ? 0 : end - start + 1; 1531 if (new_size >= old_size) { 1532 ret = (new_size == old_size) ? 0 : -EINVAL; 1533 goto unlock; 1534 } 1535 1536 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); 1537 if (!ram_res) { 1538 ret = -ENOMEM; 1539 goto unlock; 1540 } 1541 1542 start = roundup(start, KEXEC_CRASH_MEM_ALIGN); 1543 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); 1544 1545 crash_map_reserved_pages(); 1546 crash_free_reserved_phys_range(end, crashk_res.end); 1547 1548 if ((start == end) && (crashk_res.parent != NULL)) 1549 release_resource(&crashk_res); 1550 1551 ram_res->start = end; 1552 ram_res->end = crashk_res.end; 1553 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; 1554 ram_res->name = "System RAM"; 1555 1556 crashk_res.end = end - 1; 1557 1558 insert_resource(&iomem_resource, ram_res); 1559 crash_unmap_reserved_pages(); 1560 1561 unlock: 1562 mutex_unlock(&kexec_mutex); 1563 return ret; 1564 } 1565 1566 static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, 1567 size_t data_len) 1568 { 1569 struct elf_note note; 1570 1571 note.n_namesz = strlen(name) + 1; 1572 note.n_descsz = data_len; 1573 note.n_type = type; 1574 memcpy(buf, ¬e, sizeof(note)); 1575 buf += (sizeof(note) + 3)/4; 1576 memcpy(buf, name, note.n_namesz); 1577 buf += (note.n_namesz + 3)/4; 1578 memcpy(buf, data, note.n_descsz); 1579 buf += (note.n_descsz + 3)/4; 1580 1581 return buf; 1582 } 1583 1584 static void final_note(u32 *buf) 1585 { 1586 struct elf_note note; 1587 1588 note.n_namesz = 0; 1589 note.n_descsz = 0; 1590 note.n_type = 0; 1591 memcpy(buf, ¬e, sizeof(note)); 1592 } 1593 1594 void crash_save_cpu(struct pt_regs *regs, int cpu) 1595 { 1596 struct elf_prstatus prstatus; 1597 u32 *buf; 1598 1599 if ((cpu < 0) || (cpu >= nr_cpu_ids)) 1600 return; 1601 1602 /* Using ELF notes here is opportunistic. 1603 * I need a well defined structure format 1604 * for the data I pass, and I need tags 1605 * on the data to indicate what information I have 1606 * squirrelled away. ELF notes happen to provide 1607 * all of that, so there is no need to invent something new. 1608 */ 1609 buf = (u32 *)per_cpu_ptr(crash_notes, cpu); 1610 if (!buf) 1611 return; 1612 memset(&prstatus, 0, sizeof(prstatus)); 1613 prstatus.pr_pid = current->pid; 1614 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); 1615 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, 1616 &prstatus, sizeof(prstatus)); 1617 final_note(buf); 1618 } 1619 1620 static int __init crash_notes_memory_init(void) 1621 { 1622 /* Allocate memory for saving cpu registers. */ 1623 crash_notes = alloc_percpu(note_buf_t); 1624 if (!crash_notes) { 1625 pr_warn("Kexec: Memory allocation for saving cpu register states failed\n"); 1626 return -ENOMEM; 1627 } 1628 return 0; 1629 } 1630 subsys_initcall(crash_notes_memory_init); 1631 1632 1633 /* 1634 * parsing the "crashkernel" commandline 1635 * 1636 * this code is intended to be called from architecture specific code 1637 */ 1638 1639 1640 /* 1641 * This function parses command lines in the format 1642 * 1643 * crashkernel=ramsize-range:size[,...][@offset] 1644 * 1645 * The function returns 0 on success and -EINVAL on failure. 1646 */ 1647 static int __init parse_crashkernel_mem(char *cmdline, 1648 unsigned long long system_ram, 1649 unsigned long long *crash_size, 1650 unsigned long long *crash_base) 1651 { 1652 char *cur = cmdline, *tmp; 1653 1654 /* for each entry of the comma-separated list */ 1655 do { 1656 unsigned long long start, end = ULLONG_MAX, size; 1657 1658 /* get the start of the range */ 1659 start = memparse(cur, &tmp); 1660 if (cur == tmp) { 1661 pr_warn("crashkernel: Memory value expected\n"); 1662 return -EINVAL; 1663 } 1664 cur = tmp; 1665 if (*cur != '-') { 1666 pr_warn("crashkernel: '-' expected\n"); 1667 return -EINVAL; 1668 } 1669 cur++; 1670 1671 /* if no ':' is here, than we read the end */ 1672 if (*cur != ':') { 1673 end = memparse(cur, &tmp); 1674 if (cur == tmp) { 1675 pr_warn("crashkernel: Memory value expected\n"); 1676 return -EINVAL; 1677 } 1678 cur = tmp; 1679 if (end <= start) { 1680 pr_warn("crashkernel: end <= start\n"); 1681 return -EINVAL; 1682 } 1683 } 1684 1685 if (*cur != ':') { 1686 pr_warn("crashkernel: ':' expected\n"); 1687 return -EINVAL; 1688 } 1689 cur++; 1690 1691 size = memparse(cur, &tmp); 1692 if (cur == tmp) { 1693 pr_warn("Memory value expected\n"); 1694 return -EINVAL; 1695 } 1696 cur = tmp; 1697 if (size >= system_ram) { 1698 pr_warn("crashkernel: invalid size\n"); 1699 return -EINVAL; 1700 } 1701 1702 /* match ? */ 1703 if (system_ram >= start && system_ram < end) { 1704 *crash_size = size; 1705 break; 1706 } 1707 } while (*cur++ == ','); 1708 1709 if (*crash_size > 0) { 1710 while (*cur && *cur != ' ' && *cur != '@') 1711 cur++; 1712 if (*cur == '@') { 1713 cur++; 1714 *crash_base = memparse(cur, &tmp); 1715 if (cur == tmp) { 1716 pr_warn("Memory value expected after '@'\n"); 1717 return -EINVAL; 1718 } 1719 } 1720 } 1721 1722 return 0; 1723 } 1724 1725 /* 1726 * That function parses "simple" (old) crashkernel command lines like 1727 * 1728 * crashkernel=size[@offset] 1729 * 1730 * It returns 0 on success and -EINVAL on failure. 1731 */ 1732 static int __init parse_crashkernel_simple(char *cmdline, 1733 unsigned long long *crash_size, 1734 unsigned long long *crash_base) 1735 { 1736 char *cur = cmdline; 1737 1738 *crash_size = memparse(cmdline, &cur); 1739 if (cmdline == cur) { 1740 pr_warn("crashkernel: memory value expected\n"); 1741 return -EINVAL; 1742 } 1743 1744 if (*cur == '@') 1745 *crash_base = memparse(cur+1, &cur); 1746 else if (*cur != ' ' && *cur != '\0') { 1747 pr_warn("crashkernel: unrecognized char\n"); 1748 return -EINVAL; 1749 } 1750 1751 return 0; 1752 } 1753 1754 #define SUFFIX_HIGH 0 1755 #define SUFFIX_LOW 1 1756 #define SUFFIX_NULL 2 1757 static __initdata char *suffix_tbl[] = { 1758 [SUFFIX_HIGH] = ",high", 1759 [SUFFIX_LOW] = ",low", 1760 [SUFFIX_NULL] = NULL, 1761 }; 1762 1763 /* 1764 * That function parses "suffix" crashkernel command lines like 1765 * 1766 * crashkernel=size,[high|low] 1767 * 1768 * It returns 0 on success and -EINVAL on failure. 1769 */ 1770 static int __init parse_crashkernel_suffix(char *cmdline, 1771 unsigned long long *crash_size, 1772 const char *suffix) 1773 { 1774 char *cur = cmdline; 1775 1776 *crash_size = memparse(cmdline, &cur); 1777 if (cmdline == cur) { 1778 pr_warn("crashkernel: memory value expected\n"); 1779 return -EINVAL; 1780 } 1781 1782 /* check with suffix */ 1783 if (strncmp(cur, suffix, strlen(suffix))) { 1784 pr_warn("crashkernel: unrecognized char\n"); 1785 return -EINVAL; 1786 } 1787 cur += strlen(suffix); 1788 if (*cur != ' ' && *cur != '\0') { 1789 pr_warn("crashkernel: unrecognized char\n"); 1790 return -EINVAL; 1791 } 1792 1793 return 0; 1794 } 1795 1796 static __init char *get_last_crashkernel(char *cmdline, 1797 const char *name, 1798 const char *suffix) 1799 { 1800 char *p = cmdline, *ck_cmdline = NULL; 1801 1802 /* find crashkernel and use the last one if there are more */ 1803 p = strstr(p, name); 1804 while (p) { 1805 char *end_p = strchr(p, ' '); 1806 char *q; 1807 1808 if (!end_p) 1809 end_p = p + strlen(p); 1810 1811 if (!suffix) { 1812 int i; 1813 1814 /* skip the one with any known suffix */ 1815 for (i = 0; suffix_tbl[i]; i++) { 1816 q = end_p - strlen(suffix_tbl[i]); 1817 if (!strncmp(q, suffix_tbl[i], 1818 strlen(suffix_tbl[i]))) 1819 goto next; 1820 } 1821 ck_cmdline = p; 1822 } else { 1823 q = end_p - strlen(suffix); 1824 if (!strncmp(q, suffix, strlen(suffix))) 1825 ck_cmdline = p; 1826 } 1827 next: 1828 p = strstr(p+1, name); 1829 } 1830 1831 if (!ck_cmdline) 1832 return NULL; 1833 1834 return ck_cmdline; 1835 } 1836 1837 static int __init __parse_crashkernel(char *cmdline, 1838 unsigned long long system_ram, 1839 unsigned long long *crash_size, 1840 unsigned long long *crash_base, 1841 const char *name, 1842 const char *suffix) 1843 { 1844 char *first_colon, *first_space; 1845 char *ck_cmdline; 1846 1847 BUG_ON(!crash_size || !crash_base); 1848 *crash_size = 0; 1849 *crash_base = 0; 1850 1851 ck_cmdline = get_last_crashkernel(cmdline, name, suffix); 1852 1853 if (!ck_cmdline) 1854 return -EINVAL; 1855 1856 ck_cmdline += strlen(name); 1857 1858 if (suffix) 1859 return parse_crashkernel_suffix(ck_cmdline, crash_size, 1860 suffix); 1861 /* 1862 * if the commandline contains a ':', then that's the extended 1863 * syntax -- if not, it must be the classic syntax 1864 */ 1865 first_colon = strchr(ck_cmdline, ':'); 1866 first_space = strchr(ck_cmdline, ' '); 1867 if (first_colon && (!first_space || first_colon < first_space)) 1868 return parse_crashkernel_mem(ck_cmdline, system_ram, 1869 crash_size, crash_base); 1870 1871 return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); 1872 } 1873 1874 /* 1875 * That function is the entry point for command line parsing and should be 1876 * called from the arch-specific code. 1877 */ 1878 int __init parse_crashkernel(char *cmdline, 1879 unsigned long long system_ram, 1880 unsigned long long *crash_size, 1881 unsigned long long *crash_base) 1882 { 1883 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1884 "crashkernel=", NULL); 1885 } 1886 1887 int __init parse_crashkernel_high(char *cmdline, 1888 unsigned long long system_ram, 1889 unsigned long long *crash_size, 1890 unsigned long long *crash_base) 1891 { 1892 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1893 "crashkernel=", suffix_tbl[SUFFIX_HIGH]); 1894 } 1895 1896 int __init parse_crashkernel_low(char *cmdline, 1897 unsigned long long system_ram, 1898 unsigned long long *crash_size, 1899 unsigned long long *crash_base) 1900 { 1901 return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, 1902 "crashkernel=", suffix_tbl[SUFFIX_LOW]); 1903 } 1904 1905 static void update_vmcoreinfo_note(void) 1906 { 1907 u32 *buf = vmcoreinfo_note; 1908 1909 if (!vmcoreinfo_size) 1910 return; 1911 buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, 1912 vmcoreinfo_size); 1913 final_note(buf); 1914 } 1915 1916 void crash_save_vmcoreinfo(void) 1917 { 1918 vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); 1919 update_vmcoreinfo_note(); 1920 } 1921 1922 void vmcoreinfo_append_str(const char *fmt, ...) 1923 { 1924 va_list args; 1925 char buf[0x50]; 1926 size_t r; 1927 1928 va_start(args, fmt); 1929 r = vscnprintf(buf, sizeof(buf), fmt, args); 1930 va_end(args); 1931 1932 r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); 1933 1934 memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); 1935 1936 vmcoreinfo_size += r; 1937 } 1938 1939 /* 1940 * provide an empty default implementation here -- architecture 1941 * code may override this 1942 */ 1943 void __weak arch_crash_save_vmcoreinfo(void) 1944 {} 1945 1946 unsigned long __weak paddr_vmcoreinfo_note(void) 1947 { 1948 return __pa((unsigned long)(char *)&vmcoreinfo_note); 1949 } 1950 1951 static int __init crash_save_vmcoreinfo_init(void) 1952 { 1953 VMCOREINFO_OSRELEASE(init_uts_ns.name.release); 1954 VMCOREINFO_PAGESIZE(PAGE_SIZE); 1955 1956 VMCOREINFO_SYMBOL(init_uts_ns); 1957 VMCOREINFO_SYMBOL(node_online_map); 1958 #ifdef CONFIG_MMU 1959 VMCOREINFO_SYMBOL(swapper_pg_dir); 1960 #endif 1961 VMCOREINFO_SYMBOL(_stext); 1962 VMCOREINFO_SYMBOL(vmap_area_list); 1963 1964 #ifndef CONFIG_NEED_MULTIPLE_NODES 1965 VMCOREINFO_SYMBOL(mem_map); 1966 VMCOREINFO_SYMBOL(contig_page_data); 1967 #endif 1968 #ifdef CONFIG_SPARSEMEM 1969 VMCOREINFO_SYMBOL(mem_section); 1970 VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); 1971 VMCOREINFO_STRUCT_SIZE(mem_section); 1972 VMCOREINFO_OFFSET(mem_section, section_mem_map); 1973 #endif 1974 VMCOREINFO_STRUCT_SIZE(page); 1975 VMCOREINFO_STRUCT_SIZE(pglist_data); 1976 VMCOREINFO_STRUCT_SIZE(zone); 1977 VMCOREINFO_STRUCT_SIZE(free_area); 1978 VMCOREINFO_STRUCT_SIZE(list_head); 1979 VMCOREINFO_SIZE(nodemask_t); 1980 VMCOREINFO_OFFSET(page, flags); 1981 VMCOREINFO_OFFSET(page, _count); 1982 VMCOREINFO_OFFSET(page, mapping); 1983 VMCOREINFO_OFFSET(page, lru); 1984 VMCOREINFO_OFFSET(page, _mapcount); 1985 VMCOREINFO_OFFSET(page, private); 1986 VMCOREINFO_OFFSET(pglist_data, node_zones); 1987 VMCOREINFO_OFFSET(pglist_data, nr_zones); 1988 #ifdef CONFIG_FLAT_NODE_MEM_MAP 1989 VMCOREINFO_OFFSET(pglist_data, node_mem_map); 1990 #endif 1991 VMCOREINFO_OFFSET(pglist_data, node_start_pfn); 1992 VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); 1993 VMCOREINFO_OFFSET(pglist_data, node_id); 1994 VMCOREINFO_OFFSET(zone, free_area); 1995 VMCOREINFO_OFFSET(zone, vm_stat); 1996 VMCOREINFO_OFFSET(zone, spanned_pages); 1997 VMCOREINFO_OFFSET(free_area, free_list); 1998 VMCOREINFO_OFFSET(list_head, next); 1999 VMCOREINFO_OFFSET(list_head, prev); 2000 VMCOREINFO_OFFSET(vmap_area, va_start); 2001 VMCOREINFO_OFFSET(vmap_area, list); 2002 VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); 2003 log_buf_kexec_setup(); 2004 VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); 2005 VMCOREINFO_NUMBER(NR_FREE_PAGES); 2006 VMCOREINFO_NUMBER(PG_lru); 2007 VMCOREINFO_NUMBER(PG_private); 2008 VMCOREINFO_NUMBER(PG_swapcache); 2009 VMCOREINFO_NUMBER(PG_slab); 2010 #ifdef CONFIG_MEMORY_FAILURE 2011 VMCOREINFO_NUMBER(PG_hwpoison); 2012 #endif 2013 VMCOREINFO_NUMBER(PG_head_mask); 2014 VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); 2015 #ifdef CONFIG_HUGETLBFS 2016 VMCOREINFO_SYMBOL(free_huge_page); 2017 #endif 2018 2019 arch_crash_save_vmcoreinfo(); 2020 update_vmcoreinfo_note(); 2021 2022 return 0; 2023 } 2024 2025 subsys_initcall(crash_save_vmcoreinfo_init); 2026 2027 #ifdef CONFIG_KEXEC_FILE 2028 static int locate_mem_hole_top_down(unsigned long start, unsigned long end, 2029 struct kexec_buf *kbuf) 2030 { 2031 struct kimage *image = kbuf->image; 2032 unsigned long temp_start, temp_end; 2033 2034 temp_end = min(end, kbuf->buf_max); 2035 temp_start = temp_end - kbuf->memsz; 2036 2037 do { 2038 /* align down start */ 2039 temp_start = temp_start & (~(kbuf->buf_align - 1)); 2040 2041 if (temp_start < start || temp_start < kbuf->buf_min) 2042 return 0; 2043 2044 temp_end = temp_start + kbuf->memsz - 1; 2045 2046 /* 2047 * Make sure this does not conflict with any of existing 2048 * segments 2049 */ 2050 if (kimage_is_destination_range(image, temp_start, temp_end)) { 2051 temp_start = temp_start - PAGE_SIZE; 2052 continue; 2053 } 2054 2055 /* We found a suitable memory range */ 2056 break; 2057 } while (1); 2058 2059 /* If we are here, we found a suitable memory range */ 2060 kbuf->mem = temp_start; 2061 2062 /* Success, stop navigating through remaining System RAM ranges */ 2063 return 1; 2064 } 2065 2066 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, 2067 struct kexec_buf *kbuf) 2068 { 2069 struct kimage *image = kbuf->image; 2070 unsigned long temp_start, temp_end; 2071 2072 temp_start = max(start, kbuf->buf_min); 2073 2074 do { 2075 temp_start = ALIGN(temp_start, kbuf->buf_align); 2076 temp_end = temp_start + kbuf->memsz - 1; 2077 2078 if (temp_end > end || temp_end > kbuf->buf_max) 2079 return 0; 2080 /* 2081 * Make sure this does not conflict with any of existing 2082 * segments 2083 */ 2084 if (kimage_is_destination_range(image, temp_start, temp_end)) { 2085 temp_start = temp_start + PAGE_SIZE; 2086 continue; 2087 } 2088 2089 /* We found a suitable memory range */ 2090 break; 2091 } while (1); 2092 2093 /* If we are here, we found a suitable memory range */ 2094 kbuf->mem = temp_start; 2095 2096 /* Success, stop navigating through remaining System RAM ranges */ 2097 return 1; 2098 } 2099 2100 static int locate_mem_hole_callback(u64 start, u64 end, void *arg) 2101 { 2102 struct kexec_buf *kbuf = (struct kexec_buf *)arg; 2103 unsigned long sz = end - start + 1; 2104 2105 /* Returning 0 will take to next memory range */ 2106 if (sz < kbuf->memsz) 2107 return 0; 2108 2109 if (end < kbuf->buf_min || start > kbuf->buf_max) 2110 return 0; 2111 2112 /* 2113 * Allocate memory top down with-in ram range. Otherwise bottom up 2114 * allocation. 2115 */ 2116 if (kbuf->top_down) 2117 return locate_mem_hole_top_down(start, end, kbuf); 2118 return locate_mem_hole_bottom_up(start, end, kbuf); 2119 } 2120 2121 /* 2122 * Helper function for placing a buffer in a kexec segment. This assumes 2123 * that kexec_mutex is held. 2124 */ 2125 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz, 2126 unsigned long memsz, unsigned long buf_align, 2127 unsigned long buf_min, unsigned long buf_max, 2128 bool top_down, unsigned long *load_addr) 2129 { 2130 2131 struct kexec_segment *ksegment; 2132 struct kexec_buf buf, *kbuf; 2133 int ret; 2134 2135 /* Currently adding segment this way is allowed only in file mode */ 2136 if (!image->file_mode) 2137 return -EINVAL; 2138 2139 if (image->nr_segments >= KEXEC_SEGMENT_MAX) 2140 return -EINVAL; 2141 2142 /* 2143 * Make sure we are not trying to add buffer after allocating 2144 * control pages. All segments need to be placed first before 2145 * any control pages are allocated. As control page allocation 2146 * logic goes through list of segments to make sure there are 2147 * no destination overlaps. 2148 */ 2149 if (!list_empty(&image->control_pages)) { 2150 WARN_ON(1); 2151 return -EINVAL; 2152 } 2153 2154 memset(&buf, 0, sizeof(struct kexec_buf)); 2155 kbuf = &buf; 2156 kbuf->image = image; 2157 kbuf->buffer = buffer; 2158 kbuf->bufsz = bufsz; 2159 2160 kbuf->memsz = ALIGN(memsz, PAGE_SIZE); 2161 kbuf->buf_align = max(buf_align, PAGE_SIZE); 2162 kbuf->buf_min = buf_min; 2163 kbuf->buf_max = buf_max; 2164 kbuf->top_down = top_down; 2165 2166 /* Walk the RAM ranges and allocate a suitable range for the buffer */ 2167 if (image->type == KEXEC_TYPE_CRASH) 2168 ret = walk_iomem_res("Crash kernel", 2169 IORESOURCE_MEM | IORESOURCE_BUSY, 2170 crashk_res.start, crashk_res.end, kbuf, 2171 locate_mem_hole_callback); 2172 else 2173 ret = walk_system_ram_res(0, -1, kbuf, 2174 locate_mem_hole_callback); 2175 if (ret != 1) { 2176 /* A suitable memory range could not be found for buffer */ 2177 return -EADDRNOTAVAIL; 2178 } 2179 2180 /* Found a suitable memory range */ 2181 ksegment = &image->segment[image->nr_segments]; 2182 ksegment->kbuf = kbuf->buffer; 2183 ksegment->bufsz = kbuf->bufsz; 2184 ksegment->mem = kbuf->mem; 2185 ksegment->memsz = kbuf->memsz; 2186 image->nr_segments++; 2187 *load_addr = ksegment->mem; 2188 return 0; 2189 } 2190 2191 /* Calculate and store the digest of segments */ 2192 static int kexec_calculate_store_digests(struct kimage *image) 2193 { 2194 struct crypto_shash *tfm; 2195 struct shash_desc *desc; 2196 int ret = 0, i, j, zero_buf_sz, sha_region_sz; 2197 size_t desc_size, nullsz; 2198 char *digest; 2199 void *zero_buf; 2200 struct kexec_sha_region *sha_regions; 2201 struct purgatory_info *pi = &image->purgatory_info; 2202 2203 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); 2204 zero_buf_sz = PAGE_SIZE; 2205 2206 tfm = crypto_alloc_shash("sha256", 0, 0); 2207 if (IS_ERR(tfm)) { 2208 ret = PTR_ERR(tfm); 2209 goto out; 2210 } 2211 2212 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); 2213 desc = kzalloc(desc_size, GFP_KERNEL); 2214 if (!desc) { 2215 ret = -ENOMEM; 2216 goto out_free_tfm; 2217 } 2218 2219 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); 2220 sha_regions = vzalloc(sha_region_sz); 2221 if (!sha_regions) 2222 goto out_free_desc; 2223 2224 desc->tfm = tfm; 2225 desc->flags = 0; 2226 2227 ret = crypto_shash_init(desc); 2228 if (ret < 0) 2229 goto out_free_sha_regions; 2230 2231 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); 2232 if (!digest) { 2233 ret = -ENOMEM; 2234 goto out_free_sha_regions; 2235 } 2236 2237 for (j = i = 0; i < image->nr_segments; i++) { 2238 struct kexec_segment *ksegment; 2239 2240 ksegment = &image->segment[i]; 2241 /* 2242 * Skip purgatory as it will be modified once we put digest 2243 * info in purgatory. 2244 */ 2245 if (ksegment->kbuf == pi->purgatory_buf) 2246 continue; 2247 2248 ret = crypto_shash_update(desc, ksegment->kbuf, 2249 ksegment->bufsz); 2250 if (ret) 2251 break; 2252 2253 /* 2254 * Assume rest of the buffer is filled with zero and 2255 * update digest accordingly. 2256 */ 2257 nullsz = ksegment->memsz - ksegment->bufsz; 2258 while (nullsz) { 2259 unsigned long bytes = nullsz; 2260 2261 if (bytes > zero_buf_sz) 2262 bytes = zero_buf_sz; 2263 ret = crypto_shash_update(desc, zero_buf, bytes); 2264 if (ret) 2265 break; 2266 nullsz -= bytes; 2267 } 2268 2269 if (ret) 2270 break; 2271 2272 sha_regions[j].start = ksegment->mem; 2273 sha_regions[j].len = ksegment->memsz; 2274 j++; 2275 } 2276 2277 if (!ret) { 2278 ret = crypto_shash_final(desc, digest); 2279 if (ret) 2280 goto out_free_digest; 2281 ret = kexec_purgatory_get_set_symbol(image, "sha_regions", 2282 sha_regions, sha_region_sz, 0); 2283 if (ret) 2284 goto out_free_digest; 2285 2286 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest", 2287 digest, SHA256_DIGEST_SIZE, 0); 2288 if (ret) 2289 goto out_free_digest; 2290 } 2291 2292 out_free_digest: 2293 kfree(digest); 2294 out_free_sha_regions: 2295 vfree(sha_regions); 2296 out_free_desc: 2297 kfree(desc); 2298 out_free_tfm: 2299 kfree(tfm); 2300 out: 2301 return ret; 2302 } 2303 2304 /* Actually load purgatory. Lot of code taken from kexec-tools */ 2305 static int __kexec_load_purgatory(struct kimage *image, unsigned long min, 2306 unsigned long max, int top_down) 2307 { 2308 struct purgatory_info *pi = &image->purgatory_info; 2309 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad; 2310 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset; 2311 unsigned char *buf_addr, *src; 2312 int i, ret = 0, entry_sidx = -1; 2313 const Elf_Shdr *sechdrs_c; 2314 Elf_Shdr *sechdrs = NULL; 2315 void *purgatory_buf = NULL; 2316 2317 /* 2318 * sechdrs_c points to section headers in purgatory and are read 2319 * only. No modifications allowed. 2320 */ 2321 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff; 2322 2323 /* 2324 * We can not modify sechdrs_c[] and its fields. It is read only. 2325 * Copy it over to a local copy where one can store some temporary 2326 * data and free it at the end. We need to modify ->sh_addr and 2327 * ->sh_offset fields to keep track of permanent and temporary 2328 * locations of sections. 2329 */ 2330 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 2331 if (!sechdrs) 2332 return -ENOMEM; 2333 2334 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr)); 2335 2336 /* 2337 * We seem to have multiple copies of sections. First copy is which 2338 * is embedded in kernel in read only section. Some of these sections 2339 * will be copied to a temporary buffer and relocated. And these 2340 * sections will finally be copied to their final destination at 2341 * segment load time. 2342 * 2343 * Use ->sh_offset to reflect section address in memory. It will 2344 * point to original read only copy if section is not allocatable. 2345 * Otherwise it will point to temporary copy which will be relocated. 2346 * 2347 * Use ->sh_addr to contain final address of the section where it 2348 * will go during execution time. 2349 */ 2350 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2351 if (sechdrs[i].sh_type == SHT_NOBITS) 2352 continue; 2353 2354 sechdrs[i].sh_offset = (unsigned long)pi->ehdr + 2355 sechdrs[i].sh_offset; 2356 } 2357 2358 /* 2359 * Identify entry point section and make entry relative to section 2360 * start. 2361 */ 2362 entry = pi->ehdr->e_entry; 2363 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2364 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 2365 continue; 2366 2367 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR)) 2368 continue; 2369 2370 /* Make entry section relative */ 2371 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry && 2372 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) > 2373 pi->ehdr->e_entry)) { 2374 entry_sidx = i; 2375 entry -= sechdrs[i].sh_addr; 2376 break; 2377 } 2378 } 2379 2380 /* Determine how much memory is needed to load relocatable object. */ 2381 buf_align = 1; 2382 bss_align = 1; 2383 buf_sz = 0; 2384 bss_sz = 0; 2385 2386 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2387 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 2388 continue; 2389 2390 align = sechdrs[i].sh_addralign; 2391 if (sechdrs[i].sh_type != SHT_NOBITS) { 2392 if (buf_align < align) 2393 buf_align = align; 2394 buf_sz = ALIGN(buf_sz, align); 2395 buf_sz += sechdrs[i].sh_size; 2396 } else { 2397 /* bss section */ 2398 if (bss_align < align) 2399 bss_align = align; 2400 bss_sz = ALIGN(bss_sz, align); 2401 bss_sz += sechdrs[i].sh_size; 2402 } 2403 } 2404 2405 /* Determine the bss padding required to align bss properly */ 2406 bss_pad = 0; 2407 if (buf_sz & (bss_align - 1)) 2408 bss_pad = bss_align - (buf_sz & (bss_align - 1)); 2409 2410 memsz = buf_sz + bss_pad + bss_sz; 2411 2412 /* Allocate buffer for purgatory */ 2413 purgatory_buf = vzalloc(buf_sz); 2414 if (!purgatory_buf) { 2415 ret = -ENOMEM; 2416 goto out; 2417 } 2418 2419 if (buf_align < bss_align) 2420 buf_align = bss_align; 2421 2422 /* Add buffer to segment list */ 2423 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz, 2424 buf_align, min, max, top_down, 2425 &pi->purgatory_load_addr); 2426 if (ret) 2427 goto out; 2428 2429 /* Load SHF_ALLOC sections */ 2430 buf_addr = purgatory_buf; 2431 load_addr = curr_load_addr = pi->purgatory_load_addr; 2432 bss_addr = load_addr + buf_sz + bss_pad; 2433 2434 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2435 if (!(sechdrs[i].sh_flags & SHF_ALLOC)) 2436 continue; 2437 2438 align = sechdrs[i].sh_addralign; 2439 if (sechdrs[i].sh_type != SHT_NOBITS) { 2440 curr_load_addr = ALIGN(curr_load_addr, align); 2441 offset = curr_load_addr - load_addr; 2442 /* We already modifed ->sh_offset to keep src addr */ 2443 src = (char *) sechdrs[i].sh_offset; 2444 memcpy(buf_addr + offset, src, sechdrs[i].sh_size); 2445 2446 /* Store load address and source address of section */ 2447 sechdrs[i].sh_addr = curr_load_addr; 2448 2449 /* 2450 * This section got copied to temporary buffer. Update 2451 * ->sh_offset accordingly. 2452 */ 2453 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset); 2454 2455 /* Advance to the next address */ 2456 curr_load_addr += sechdrs[i].sh_size; 2457 } else { 2458 bss_addr = ALIGN(bss_addr, align); 2459 sechdrs[i].sh_addr = bss_addr; 2460 bss_addr += sechdrs[i].sh_size; 2461 } 2462 } 2463 2464 /* Update entry point based on load address of text section */ 2465 if (entry_sidx >= 0) 2466 entry += sechdrs[entry_sidx].sh_addr; 2467 2468 /* Make kernel jump to purgatory after shutdown */ 2469 image->start = entry; 2470 2471 /* Used later to get/set symbol values */ 2472 pi->sechdrs = sechdrs; 2473 2474 /* 2475 * Used later to identify which section is purgatory and skip it 2476 * from checksumming. 2477 */ 2478 pi->purgatory_buf = purgatory_buf; 2479 return ret; 2480 out: 2481 vfree(sechdrs); 2482 vfree(purgatory_buf); 2483 return ret; 2484 } 2485 2486 static int kexec_apply_relocations(struct kimage *image) 2487 { 2488 int i, ret; 2489 struct purgatory_info *pi = &image->purgatory_info; 2490 Elf_Shdr *sechdrs = pi->sechdrs; 2491 2492 /* Apply relocations */ 2493 for (i = 0; i < pi->ehdr->e_shnum; i++) { 2494 Elf_Shdr *section, *symtab; 2495 2496 if (sechdrs[i].sh_type != SHT_RELA && 2497 sechdrs[i].sh_type != SHT_REL) 2498 continue; 2499 2500 /* 2501 * For section of type SHT_RELA/SHT_REL, 2502 * ->sh_link contains section header index of associated 2503 * symbol table. And ->sh_info contains section header 2504 * index of section to which relocations apply. 2505 */ 2506 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum || 2507 sechdrs[i].sh_link >= pi->ehdr->e_shnum) 2508 return -ENOEXEC; 2509 2510 section = &sechdrs[sechdrs[i].sh_info]; 2511 symtab = &sechdrs[sechdrs[i].sh_link]; 2512 2513 if (!(section->sh_flags & SHF_ALLOC)) 2514 continue; 2515 2516 /* 2517 * symtab->sh_link contain section header index of associated 2518 * string table. 2519 */ 2520 if (symtab->sh_link >= pi->ehdr->e_shnum) 2521 /* Invalid section number? */ 2522 continue; 2523 2524 /* 2525 * Respective architecture needs to provide support for applying 2526 * relocations of type SHT_RELA/SHT_REL. 2527 */ 2528 if (sechdrs[i].sh_type == SHT_RELA) 2529 ret = arch_kexec_apply_relocations_add(pi->ehdr, 2530 sechdrs, i); 2531 else if (sechdrs[i].sh_type == SHT_REL) 2532 ret = arch_kexec_apply_relocations(pi->ehdr, 2533 sechdrs, i); 2534 if (ret) 2535 return ret; 2536 } 2537 2538 return 0; 2539 } 2540 2541 /* Load relocatable purgatory object and relocate it appropriately */ 2542 int kexec_load_purgatory(struct kimage *image, unsigned long min, 2543 unsigned long max, int top_down, 2544 unsigned long *load_addr) 2545 { 2546 struct purgatory_info *pi = &image->purgatory_info; 2547 int ret; 2548 2549 if (kexec_purgatory_size <= 0) 2550 return -EINVAL; 2551 2552 if (kexec_purgatory_size < sizeof(Elf_Ehdr)) 2553 return -ENOEXEC; 2554 2555 pi->ehdr = (Elf_Ehdr *)kexec_purgatory; 2556 2557 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0 2558 || pi->ehdr->e_type != ET_REL 2559 || !elf_check_arch(pi->ehdr) 2560 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr)) 2561 return -ENOEXEC; 2562 2563 if (pi->ehdr->e_shoff >= kexec_purgatory_size 2564 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) > 2565 kexec_purgatory_size - pi->ehdr->e_shoff)) 2566 return -ENOEXEC; 2567 2568 ret = __kexec_load_purgatory(image, min, max, top_down); 2569 if (ret) 2570 return ret; 2571 2572 ret = kexec_apply_relocations(image); 2573 if (ret) 2574 goto out; 2575 2576 *load_addr = pi->purgatory_load_addr; 2577 return 0; 2578 out: 2579 vfree(pi->sechdrs); 2580 vfree(pi->purgatory_buf); 2581 return ret; 2582 } 2583 2584 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, 2585 const char *name) 2586 { 2587 Elf_Sym *syms; 2588 Elf_Shdr *sechdrs; 2589 Elf_Ehdr *ehdr; 2590 int i, k; 2591 const char *strtab; 2592 2593 if (!pi->sechdrs || !pi->ehdr) 2594 return NULL; 2595 2596 sechdrs = pi->sechdrs; 2597 ehdr = pi->ehdr; 2598 2599 for (i = 0; i < ehdr->e_shnum; i++) { 2600 if (sechdrs[i].sh_type != SHT_SYMTAB) 2601 continue; 2602 2603 if (sechdrs[i].sh_link >= ehdr->e_shnum) 2604 /* Invalid strtab section number */ 2605 continue; 2606 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset; 2607 syms = (Elf_Sym *)sechdrs[i].sh_offset; 2608 2609 /* Go through symbols for a match */ 2610 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { 2611 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) 2612 continue; 2613 2614 if (strcmp(strtab + syms[k].st_name, name) != 0) 2615 continue; 2616 2617 if (syms[k].st_shndx == SHN_UNDEF || 2618 syms[k].st_shndx >= ehdr->e_shnum) { 2619 pr_debug("Symbol: %s has bad section index %d.\n", 2620 name, syms[k].st_shndx); 2621 return NULL; 2622 } 2623 2624 /* Found the symbol we are looking for */ 2625 return &syms[k]; 2626 } 2627 } 2628 2629 return NULL; 2630 } 2631 2632 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) 2633 { 2634 struct purgatory_info *pi = &image->purgatory_info; 2635 Elf_Sym *sym; 2636 Elf_Shdr *sechdr; 2637 2638 sym = kexec_purgatory_find_symbol(pi, name); 2639 if (!sym) 2640 return ERR_PTR(-EINVAL); 2641 2642 sechdr = &pi->sechdrs[sym->st_shndx]; 2643 2644 /* 2645 * Returns the address where symbol will finally be loaded after 2646 * kexec_load_segment() 2647 */ 2648 return (void *)(sechdr->sh_addr + sym->st_value); 2649 } 2650 2651 /* 2652 * Get or set value of a symbol. If "get_value" is true, symbol value is 2653 * returned in buf otherwise symbol value is set based on value in buf. 2654 */ 2655 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, 2656 void *buf, unsigned int size, bool get_value) 2657 { 2658 Elf_Sym *sym; 2659 Elf_Shdr *sechdrs; 2660 struct purgatory_info *pi = &image->purgatory_info; 2661 char *sym_buf; 2662 2663 sym = kexec_purgatory_find_symbol(pi, name); 2664 if (!sym) 2665 return -EINVAL; 2666 2667 if (sym->st_size != size) { 2668 pr_err("symbol %s size mismatch: expected %lu actual %u\n", 2669 name, (unsigned long)sym->st_size, size); 2670 return -EINVAL; 2671 } 2672 2673 sechdrs = pi->sechdrs; 2674 2675 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) { 2676 pr_err("symbol %s is in a bss section. Cannot %s\n", name, 2677 get_value ? "get" : "set"); 2678 return -EINVAL; 2679 } 2680 2681 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset + 2682 sym->st_value; 2683 2684 if (get_value) 2685 memcpy((void *)buf, sym_buf, size); 2686 else 2687 memcpy((void *)sym_buf, buf, size); 2688 2689 return 0; 2690 } 2691 #endif /* CONFIG_KEXEC_FILE */ 2692 2693 /* 2694 * Move into place and start executing a preloaded standalone 2695 * executable. If nothing was preloaded return an error. 2696 */ 2697 int kernel_kexec(void) 2698 { 2699 int error = 0; 2700 2701 if (!mutex_trylock(&kexec_mutex)) 2702 return -EBUSY; 2703 if (!kexec_image) { 2704 error = -EINVAL; 2705 goto Unlock; 2706 } 2707 2708 #ifdef CONFIG_KEXEC_JUMP 2709 if (kexec_image->preserve_context) { 2710 lock_system_sleep(); 2711 pm_prepare_console(); 2712 error = freeze_processes(); 2713 if (error) { 2714 error = -EBUSY; 2715 goto Restore_console; 2716 } 2717 suspend_console(); 2718 error = dpm_suspend_start(PMSG_FREEZE); 2719 if (error) 2720 goto Resume_console; 2721 /* At this point, dpm_suspend_start() has been called, 2722 * but *not* dpm_suspend_end(). We *must* call 2723 * dpm_suspend_end() now. Otherwise, drivers for 2724 * some devices (e.g. interrupt controllers) become 2725 * desynchronized with the actual state of the 2726 * hardware at resume time, and evil weirdness ensues. 2727 */ 2728 error = dpm_suspend_end(PMSG_FREEZE); 2729 if (error) 2730 goto Resume_devices; 2731 error = disable_nonboot_cpus(); 2732 if (error) 2733 goto Enable_cpus; 2734 local_irq_disable(); 2735 error = syscore_suspend(); 2736 if (error) 2737 goto Enable_irqs; 2738 } else 2739 #endif 2740 { 2741 kexec_in_progress = true; 2742 kernel_restart_prepare(NULL); 2743 migrate_to_reboot_cpu(); 2744 2745 /* 2746 * migrate_to_reboot_cpu() disables CPU hotplug assuming that 2747 * no further code needs to use CPU hotplug (which is true in 2748 * the reboot case). However, the kexec path depends on using 2749 * CPU hotplug again; so re-enable it here. 2750 */ 2751 cpu_hotplug_enable(); 2752 pr_emerg("Starting new kernel\n"); 2753 machine_shutdown(); 2754 } 2755 2756 machine_kexec(kexec_image); 2757 2758 #ifdef CONFIG_KEXEC_JUMP 2759 if (kexec_image->preserve_context) { 2760 syscore_resume(); 2761 Enable_irqs: 2762 local_irq_enable(); 2763 Enable_cpus: 2764 enable_nonboot_cpus(); 2765 dpm_resume_start(PMSG_RESTORE); 2766 Resume_devices: 2767 dpm_resume_end(PMSG_RESTORE); 2768 Resume_console: 2769 resume_console(); 2770 thaw_processes(); 2771 Restore_console: 2772 pm_restore_console(); 2773 unlock_system_sleep(); 2774 } 2775 #endif 2776 2777 Unlock: 2778 mutex_unlock(&kexec_mutex); 2779 return error; 2780 } 2781