xref: /linux/kernel/kcsan/core.c (revision ea8a163e02d6925773129e2dd86e419e491b791d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KCSAN core runtime.
4  *
5  * Copyright (C) 2019, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kcsan: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/moduleparam.h>
18 #include <linux/percpu.h>
19 #include <linux/preempt.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22 
23 #include "encoding.h"
24 #include "kcsan.h"
25 #include "permissive.h"
26 
27 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
28 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
29 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
30 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
31 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
32 
33 #ifdef MODULE_PARAM_PREFIX
34 #undef MODULE_PARAM_PREFIX
35 #endif
36 #define MODULE_PARAM_PREFIX "kcsan."
37 module_param_named(early_enable, kcsan_early_enable, bool, 0);
38 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
39 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
40 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
41 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
42 
43 bool kcsan_enabled;
44 
45 /* Per-CPU kcsan_ctx for interrupts */
46 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
47 	.disable_count		= 0,
48 	.atomic_next		= 0,
49 	.atomic_nest_count	= 0,
50 	.in_flat_atomic		= false,
51 	.access_mask		= 0,
52 	.scoped_accesses	= {LIST_POISON1, NULL},
53 };
54 
55 /*
56  * Helper macros to index into adjacent slots, starting from address slot
57  * itself, followed by the right and left slots.
58  *
59  * The purpose is 2-fold:
60  *
61  *	1. if during insertion the address slot is already occupied, check if
62  *	   any adjacent slots are free;
63  *	2. accesses that straddle a slot boundary due to size that exceeds a
64  *	   slot's range may check adjacent slots if any watchpoint matches.
65  *
66  * Note that accesses with very large size may still miss a watchpoint; however,
67  * given this should be rare, this is a reasonable trade-off to make, since this
68  * will avoid:
69  *
70  *	1. excessive contention between watchpoint checks and setup;
71  *	2. larger number of simultaneous watchpoints without sacrificing
72  *	   performance.
73  *
74  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
75  *
76  *   slot=0:  [ 1,  2,  0]
77  *   slot=9:  [10, 11,  9]
78  *   slot=63: [64, 65, 63]
79  */
80 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
81 
82 /*
83  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
84  * slot (middle) is fine if we assume that races occur rarely. The set of
85  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
86  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
87  */
88 #define SLOT_IDX_FAST(slot, i) (slot + i)
89 
90 /*
91  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
92  * able to safely update and access a watchpoint without introducing locking
93  * overhead, we encode each watchpoint as a single atomic long. The initial
94  * zero-initialized state matches INVALID_WATCHPOINT.
95  *
96  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
97  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
98  */
99 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
100 
101 /*
102  * Instructions to skip watching counter, used in should_watch(). We use a
103  * per-CPU counter to avoid excessive contention.
104  */
105 static DEFINE_PER_CPU(long, kcsan_skip);
106 
107 /* For kcsan_prandom_u32_max(). */
108 static DEFINE_PER_CPU(u32, kcsan_rand_state);
109 
110 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
111 						      size_t size,
112 						      bool expect_write,
113 						      long *encoded_watchpoint)
114 {
115 	const int slot = watchpoint_slot(addr);
116 	const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
117 	atomic_long_t *watchpoint;
118 	unsigned long wp_addr_masked;
119 	size_t wp_size;
120 	bool is_write;
121 	int i;
122 
123 	BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
124 
125 	for (i = 0; i < NUM_SLOTS; ++i) {
126 		watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
127 		*encoded_watchpoint = atomic_long_read(watchpoint);
128 		if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
129 				       &wp_size, &is_write))
130 			continue;
131 
132 		if (expect_write && !is_write)
133 			continue;
134 
135 		/* Check if the watchpoint matches the access. */
136 		if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
137 			return watchpoint;
138 	}
139 
140 	return NULL;
141 }
142 
143 static inline atomic_long_t *
144 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
145 {
146 	const int slot = watchpoint_slot(addr);
147 	const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
148 	atomic_long_t *watchpoint;
149 	int i;
150 
151 	/* Check slot index logic, ensuring we stay within array bounds. */
152 	BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
153 	BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
154 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
155 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
156 
157 	for (i = 0; i < NUM_SLOTS; ++i) {
158 		long expect_val = INVALID_WATCHPOINT;
159 
160 		/* Try to acquire this slot. */
161 		watchpoint = &watchpoints[SLOT_IDX(slot, i)];
162 		if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
163 			return watchpoint;
164 	}
165 
166 	return NULL;
167 }
168 
169 /*
170  * Return true if watchpoint was successfully consumed, false otherwise.
171  *
172  * This may return false if:
173  *
174  *	1. another thread already consumed the watchpoint;
175  *	2. the thread that set up the watchpoint already removed it;
176  *	3. the watchpoint was removed and then re-used.
177  */
178 static __always_inline bool
179 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
180 {
181 	return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
182 }
183 
184 /* Return true if watchpoint was not touched, false if already consumed. */
185 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
186 {
187 	return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
188 }
189 
190 /* Remove the watchpoint -- its slot may be reused after. */
191 static inline void remove_watchpoint(atomic_long_t *watchpoint)
192 {
193 	atomic_long_set(watchpoint, INVALID_WATCHPOINT);
194 }
195 
196 static __always_inline struct kcsan_ctx *get_ctx(void)
197 {
198 	/*
199 	 * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
200 	 * also result in calls that generate warnings in uaccess regions.
201 	 */
202 	return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
203 }
204 
205 static __always_inline void
206 check_access(const volatile void *ptr, size_t size, int type, unsigned long ip);
207 
208 /* Check scoped accesses; never inline because this is a slow-path! */
209 static noinline void kcsan_check_scoped_accesses(void)
210 {
211 	struct kcsan_ctx *ctx = get_ctx();
212 	struct list_head *prev_save = ctx->scoped_accesses.prev;
213 	struct kcsan_scoped_access *scoped_access;
214 
215 	ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
216 	list_for_each_entry(scoped_access, &ctx->scoped_accesses, list) {
217 		check_access(scoped_access->ptr, scoped_access->size,
218 			     scoped_access->type, scoped_access->ip);
219 	}
220 	ctx->scoped_accesses.prev = prev_save;
221 }
222 
223 /* Rules for generic atomic accesses. Called from fast-path. */
224 static __always_inline bool
225 is_atomic(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
226 {
227 	if (type & KCSAN_ACCESS_ATOMIC)
228 		return true;
229 
230 	/*
231 	 * Unless explicitly declared atomic, never consider an assertion access
232 	 * as atomic. This allows using them also in atomic regions, such as
233 	 * seqlocks, without implicitly changing their semantics.
234 	 */
235 	if (type & KCSAN_ACCESS_ASSERT)
236 		return false;
237 
238 	if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
239 	    (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
240 	    !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
241 		return true; /* Assume aligned writes up to word size are atomic. */
242 
243 	if (ctx->atomic_next > 0) {
244 		/*
245 		 * Because we do not have separate contexts for nested
246 		 * interrupts, in case atomic_next is set, we simply assume that
247 		 * the outer interrupt set atomic_next. In the worst case, we
248 		 * will conservatively consider operations as atomic. This is a
249 		 * reasonable trade-off to make, since this case should be
250 		 * extremely rare; however, even if extremely rare, it could
251 		 * lead to false positives otherwise.
252 		 */
253 		if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
254 			--ctx->atomic_next; /* in task, or outer interrupt */
255 		return true;
256 	}
257 
258 	return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
259 }
260 
261 static __always_inline bool
262 should_watch(struct kcsan_ctx *ctx, const volatile void *ptr, size_t size, int type)
263 {
264 	/*
265 	 * Never set up watchpoints when memory operations are atomic.
266 	 *
267 	 * Need to check this first, before kcsan_skip check below: (1) atomics
268 	 * should not count towards skipped instructions, and (2) to actually
269 	 * decrement kcsan_atomic_next for consecutive instruction stream.
270 	 */
271 	if (is_atomic(ctx, ptr, size, type))
272 		return false;
273 
274 	if (this_cpu_dec_return(kcsan_skip) >= 0)
275 		return false;
276 
277 	/*
278 	 * NOTE: If we get here, kcsan_skip must always be reset in slow path
279 	 * via reset_kcsan_skip() to avoid underflow.
280 	 */
281 
282 	/* this operation should be watched */
283 	return true;
284 }
285 
286 /*
287  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
288  * congruential generator, using constants from "Numerical Recipes".
289  */
290 static u32 kcsan_prandom_u32_max(u32 ep_ro)
291 {
292 	u32 state = this_cpu_read(kcsan_rand_state);
293 
294 	state = 1664525 * state + 1013904223;
295 	this_cpu_write(kcsan_rand_state, state);
296 
297 	return state % ep_ro;
298 }
299 
300 static inline void reset_kcsan_skip(void)
301 {
302 	long skip_count = kcsan_skip_watch -
303 			  (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
304 				   kcsan_prandom_u32_max(kcsan_skip_watch) :
305 				   0);
306 	this_cpu_write(kcsan_skip, skip_count);
307 }
308 
309 static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx)
310 {
311 	return READ_ONCE(kcsan_enabled) && !ctx->disable_count;
312 }
313 
314 /* Introduce delay depending on context and configuration. */
315 static void delay_access(int type)
316 {
317 	unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
318 	/* For certain access types, skew the random delay to be longer. */
319 	unsigned int skew_delay_order =
320 		(type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
321 
322 	delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
323 			       kcsan_prandom_u32_max(delay >> skew_delay_order) :
324 			       0;
325 	udelay(delay);
326 }
327 
328 void kcsan_save_irqtrace(struct task_struct *task)
329 {
330 #ifdef CONFIG_TRACE_IRQFLAGS
331 	task->kcsan_save_irqtrace = task->irqtrace;
332 #endif
333 }
334 
335 void kcsan_restore_irqtrace(struct task_struct *task)
336 {
337 #ifdef CONFIG_TRACE_IRQFLAGS
338 	task->irqtrace = task->kcsan_save_irqtrace;
339 #endif
340 }
341 
342 /*
343  * Pull everything together: check_access() below contains the performance
344  * critical operations; the fast-path (including check_access) functions should
345  * all be inlinable by the instrumentation functions.
346  *
347  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
348  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
349  * be filtered from the stacktrace, as well as give them unique names for the
350  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
351  * since they do not access any user memory, but instrumentation is still
352  * emitted in UACCESS regions.
353  */
354 
355 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
356 					    size_t size,
357 					    int type,
358 					    unsigned long ip,
359 					    atomic_long_t *watchpoint,
360 					    long encoded_watchpoint)
361 {
362 	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
363 	struct kcsan_ctx *ctx = get_ctx();
364 	unsigned long flags;
365 	bool consumed;
366 
367 	/*
368 	 * We know a watchpoint exists. Let's try to keep the race-window
369 	 * between here and finally consuming the watchpoint below as small as
370 	 * possible -- avoid unneccessarily complex code until consumed.
371 	 */
372 
373 	if (!kcsan_is_enabled(ctx))
374 		return;
375 
376 	/*
377 	 * The access_mask check relies on value-change comparison. To avoid
378 	 * reporting a race where e.g. the writer set up the watchpoint, but the
379 	 * reader has access_mask!=0, we have to ignore the found watchpoint.
380 	 */
381 	if (ctx->access_mask)
382 		return;
383 
384 	/*
385 	 * If the other thread does not want to ignore the access, and there was
386 	 * a value change as a result of this thread's operation, we will still
387 	 * generate a report of unknown origin.
388 	 *
389 	 * Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter.
390 	 */
391 	if (!is_assert && kcsan_ignore_address(ptr))
392 		return;
393 
394 	/*
395 	 * Consuming the watchpoint must be guarded by kcsan_is_enabled() to
396 	 * avoid erroneously triggering reports if the context is disabled.
397 	 */
398 	consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
399 
400 	/* keep this after try_consume_watchpoint */
401 	flags = user_access_save();
402 
403 	if (consumed) {
404 		kcsan_save_irqtrace(current);
405 		kcsan_report_set_info(ptr, size, type, ip, watchpoint - watchpoints);
406 		kcsan_restore_irqtrace(current);
407 	} else {
408 		/*
409 		 * The other thread may not print any diagnostics, as it has
410 		 * already removed the watchpoint, or another thread consumed
411 		 * the watchpoint before this thread.
412 		 */
413 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
414 	}
415 
416 	if (is_assert)
417 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
418 	else
419 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
420 
421 	user_access_restore(flags);
422 }
423 
424 static noinline void
425 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type, unsigned long ip)
426 {
427 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
428 	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
429 	atomic_long_t *watchpoint;
430 	u64 old, new, diff;
431 	unsigned long access_mask;
432 	enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
433 	unsigned long ua_flags = user_access_save();
434 	struct kcsan_ctx *ctx = get_ctx();
435 	unsigned long irq_flags = 0;
436 
437 	/*
438 	 * Always reset kcsan_skip counter in slow-path to avoid underflow; see
439 	 * should_watch().
440 	 */
441 	reset_kcsan_skip();
442 
443 	if (!kcsan_is_enabled(ctx))
444 		goto out;
445 
446 	/*
447 	 * Check to-ignore addresses after kcsan_is_enabled(), as we may access
448 	 * memory that is not yet initialized during early boot.
449 	 */
450 	if (!is_assert && kcsan_ignore_address(ptr))
451 		goto out;
452 
453 	if (!check_encodable((unsigned long)ptr, size)) {
454 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
455 		goto out;
456 	}
457 
458 	/*
459 	 * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
460 	 * runtime is entered for every memory access, and potentially useful
461 	 * information is lost if dirtied by KCSAN.
462 	 */
463 	kcsan_save_irqtrace(current);
464 	if (!kcsan_interrupt_watcher)
465 		local_irq_save(irq_flags);
466 
467 	watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
468 	if (watchpoint == NULL) {
469 		/*
470 		 * Out of capacity: the size of 'watchpoints', and the frequency
471 		 * with which should_watch() returns true should be tweaked so
472 		 * that this case happens very rarely.
473 		 */
474 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
475 		goto out_unlock;
476 	}
477 
478 	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
479 	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
480 
481 	/*
482 	 * Read the current value, to later check and infer a race if the data
483 	 * was modified via a non-instrumented access, e.g. from a device.
484 	 */
485 	old = 0;
486 	switch (size) {
487 	case 1:
488 		old = READ_ONCE(*(const u8 *)ptr);
489 		break;
490 	case 2:
491 		old = READ_ONCE(*(const u16 *)ptr);
492 		break;
493 	case 4:
494 		old = READ_ONCE(*(const u32 *)ptr);
495 		break;
496 	case 8:
497 		old = READ_ONCE(*(const u64 *)ptr);
498 		break;
499 	default:
500 		break; /* ignore; we do not diff the values */
501 	}
502 
503 	/*
504 	 * Delay this thread, to increase probability of observing a racy
505 	 * conflicting access.
506 	 */
507 	delay_access(type);
508 
509 	/*
510 	 * Re-read value, and check if it is as expected; if not, we infer a
511 	 * racy access.
512 	 */
513 	access_mask = ctx->access_mask;
514 	new = 0;
515 	switch (size) {
516 	case 1:
517 		new = READ_ONCE(*(const u8 *)ptr);
518 		break;
519 	case 2:
520 		new = READ_ONCE(*(const u16 *)ptr);
521 		break;
522 	case 4:
523 		new = READ_ONCE(*(const u32 *)ptr);
524 		break;
525 	case 8:
526 		new = READ_ONCE(*(const u64 *)ptr);
527 		break;
528 	default:
529 		break; /* ignore; we do not diff the values */
530 	}
531 
532 	diff = old ^ new;
533 	if (access_mask)
534 		diff &= access_mask;
535 
536 	/*
537 	 * Check if we observed a value change.
538 	 *
539 	 * Also check if the data race should be ignored (the rules depend on
540 	 * non-zero diff); if it is to be ignored, the below rules for
541 	 * KCSAN_VALUE_CHANGE_MAYBE apply.
542 	 */
543 	if (diff && !kcsan_ignore_data_race(size, type, old, new, diff))
544 		value_change = KCSAN_VALUE_CHANGE_TRUE;
545 
546 	/* Check if this access raced with another. */
547 	if (!consume_watchpoint(watchpoint)) {
548 		/*
549 		 * Depending on the access type, map a value_change of MAYBE to
550 		 * TRUE (always report) or FALSE (never report).
551 		 */
552 		if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
553 			if (access_mask != 0) {
554 				/*
555 				 * For access with access_mask, we require a
556 				 * value-change, as it is likely that races on
557 				 * ~access_mask bits are expected.
558 				 */
559 				value_change = KCSAN_VALUE_CHANGE_FALSE;
560 			} else if (size > 8 || is_assert) {
561 				/* Always assume a value-change. */
562 				value_change = KCSAN_VALUE_CHANGE_TRUE;
563 			}
564 		}
565 
566 		/*
567 		 * No need to increment 'data_races' counter, as the racing
568 		 * thread already did.
569 		 *
570 		 * Count 'assert_failures' for each failed ASSERT access,
571 		 * therefore both this thread and the racing thread may
572 		 * increment this counter.
573 		 */
574 		if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
575 			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
576 
577 		kcsan_report_known_origin(ptr, size, type, ip,
578 					  value_change, watchpoint - watchpoints,
579 					  old, new, access_mask);
580 	} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
581 		/* Inferring a race, since the value should not have changed. */
582 
583 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
584 		if (is_assert)
585 			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
586 
587 		if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert) {
588 			kcsan_report_unknown_origin(ptr, size, type, ip,
589 						    old, new, access_mask);
590 		}
591 	}
592 
593 	/*
594 	 * Remove watchpoint; must be after reporting, since the slot may be
595 	 * reused after this point.
596 	 */
597 	remove_watchpoint(watchpoint);
598 	atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
599 out_unlock:
600 	if (!kcsan_interrupt_watcher)
601 		local_irq_restore(irq_flags);
602 	kcsan_restore_irqtrace(current);
603 out:
604 	user_access_restore(ua_flags);
605 }
606 
607 static __always_inline void
608 check_access(const volatile void *ptr, size_t size, int type, unsigned long ip)
609 {
610 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
611 	atomic_long_t *watchpoint;
612 	long encoded_watchpoint;
613 
614 	/*
615 	 * Do nothing for 0 sized check; this comparison will be optimized out
616 	 * for constant sized instrumentation (__tsan_{read,write}N).
617 	 */
618 	if (unlikely(size == 0))
619 		return;
620 
621 	/*
622 	 * Avoid user_access_save in fast-path: find_watchpoint is safe without
623 	 * user_access_save, as the address that ptr points to is only used to
624 	 * check if a watchpoint exists; ptr is never dereferenced.
625 	 */
626 	watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
627 				     &encoded_watchpoint);
628 	/*
629 	 * It is safe to check kcsan_is_enabled() after find_watchpoint in the
630 	 * slow-path, as long as no state changes that cause a race to be
631 	 * detected and reported have occurred until kcsan_is_enabled() is
632 	 * checked.
633 	 */
634 
635 	if (unlikely(watchpoint != NULL))
636 		kcsan_found_watchpoint(ptr, size, type, ip, watchpoint, encoded_watchpoint);
637 	else {
638 		struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
639 
640 		if (unlikely(should_watch(ctx, ptr, size, type)))
641 			kcsan_setup_watchpoint(ptr, size, type, ip);
642 		else if (unlikely(ctx->scoped_accesses.prev))
643 			kcsan_check_scoped_accesses();
644 	}
645 }
646 
647 /* === Public interface ===================================================== */
648 
649 void __init kcsan_init(void)
650 {
651 	int cpu;
652 
653 	BUG_ON(!in_task());
654 
655 	for_each_possible_cpu(cpu)
656 		per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
657 
658 	/*
659 	 * We are in the init task, and no other tasks should be running;
660 	 * WRITE_ONCE without memory barrier is sufficient.
661 	 */
662 	if (kcsan_early_enable) {
663 		pr_info("enabled early\n");
664 		WRITE_ONCE(kcsan_enabled, true);
665 	}
666 
667 	if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) ||
668 	    IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) ||
669 	    IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) ||
670 	    IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {
671 		pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n");
672 	} else {
673 		pr_info("strict mode configured\n");
674 	}
675 }
676 
677 /* === Exported interface =================================================== */
678 
679 void kcsan_disable_current(void)
680 {
681 	++get_ctx()->disable_count;
682 }
683 EXPORT_SYMBOL(kcsan_disable_current);
684 
685 void kcsan_enable_current(void)
686 {
687 	if (get_ctx()->disable_count-- == 0) {
688 		/*
689 		 * Warn if kcsan_enable_current() calls are unbalanced with
690 		 * kcsan_disable_current() calls, which causes disable_count to
691 		 * become negative and should not happen.
692 		 */
693 		kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
694 		kcsan_disable_current(); /* disable to generate warning */
695 		WARN(1, "Unbalanced %s()", __func__);
696 		kcsan_enable_current();
697 	}
698 }
699 EXPORT_SYMBOL(kcsan_enable_current);
700 
701 void kcsan_enable_current_nowarn(void)
702 {
703 	if (get_ctx()->disable_count-- == 0)
704 		kcsan_disable_current();
705 }
706 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
707 
708 void kcsan_nestable_atomic_begin(void)
709 {
710 	/*
711 	 * Do *not* check and warn if we are in a flat atomic region: nestable
712 	 * and flat atomic regions are independent from each other.
713 	 * See include/linux/kcsan.h: struct kcsan_ctx comments for more
714 	 * comments.
715 	 */
716 
717 	++get_ctx()->atomic_nest_count;
718 }
719 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
720 
721 void kcsan_nestable_atomic_end(void)
722 {
723 	if (get_ctx()->atomic_nest_count-- == 0) {
724 		/*
725 		 * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
726 		 * kcsan_nestable_atomic_begin() calls, which causes
727 		 * atomic_nest_count to become negative and should not happen.
728 		 */
729 		kcsan_nestable_atomic_begin(); /* restore to 0 */
730 		kcsan_disable_current(); /* disable to generate warning */
731 		WARN(1, "Unbalanced %s()", __func__);
732 		kcsan_enable_current();
733 	}
734 }
735 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
736 
737 void kcsan_flat_atomic_begin(void)
738 {
739 	get_ctx()->in_flat_atomic = true;
740 }
741 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
742 
743 void kcsan_flat_atomic_end(void)
744 {
745 	get_ctx()->in_flat_atomic = false;
746 }
747 EXPORT_SYMBOL(kcsan_flat_atomic_end);
748 
749 void kcsan_atomic_next(int n)
750 {
751 	get_ctx()->atomic_next = n;
752 }
753 EXPORT_SYMBOL(kcsan_atomic_next);
754 
755 void kcsan_set_access_mask(unsigned long mask)
756 {
757 	get_ctx()->access_mask = mask;
758 }
759 EXPORT_SYMBOL(kcsan_set_access_mask);
760 
761 struct kcsan_scoped_access *
762 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
763 			  struct kcsan_scoped_access *sa)
764 {
765 	struct kcsan_ctx *ctx = get_ctx();
766 
767 	check_access(ptr, size, type, _RET_IP_);
768 
769 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
770 
771 	INIT_LIST_HEAD(&sa->list);
772 	sa->ptr = ptr;
773 	sa->size = size;
774 	sa->type = type;
775 	sa->ip = _RET_IP_;
776 
777 	if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
778 		INIT_LIST_HEAD(&ctx->scoped_accesses);
779 	list_add(&sa->list, &ctx->scoped_accesses);
780 
781 	ctx->disable_count--;
782 	return sa;
783 }
784 EXPORT_SYMBOL(kcsan_begin_scoped_access);
785 
786 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
787 {
788 	struct kcsan_ctx *ctx = get_ctx();
789 
790 	if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
791 		return;
792 
793 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
794 
795 	list_del(&sa->list);
796 	if (list_empty(&ctx->scoped_accesses))
797 		/*
798 		 * Ensure we do not enter kcsan_check_scoped_accesses()
799 		 * slow-path if unnecessary, and avoids requiring list_empty()
800 		 * in the fast-path (to avoid a READ_ONCE() and potential
801 		 * uaccess warning).
802 		 */
803 		ctx->scoped_accesses.prev = NULL;
804 
805 	ctx->disable_count--;
806 
807 	check_access(sa->ptr, sa->size, sa->type, sa->ip);
808 }
809 EXPORT_SYMBOL(kcsan_end_scoped_access);
810 
811 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
812 {
813 	check_access(ptr, size, type, _RET_IP_);
814 }
815 EXPORT_SYMBOL(__kcsan_check_access);
816 
817 /*
818  * KCSAN uses the same instrumentation that is emitted by supported compilers
819  * for ThreadSanitizer (TSAN).
820  *
821  * When enabled, the compiler emits instrumentation calls (the functions
822  * prefixed with "__tsan" below) for all loads and stores that it generated;
823  * inline asm is not instrumented.
824  *
825  * Note that, not all supported compiler versions distinguish aligned/unaligned
826  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
827  * version to the generic version, which can handle both.
828  */
829 
830 #define DEFINE_TSAN_READ_WRITE(size)                                           \
831 	void __tsan_read##size(void *ptr);                                     \
832 	void __tsan_read##size(void *ptr)                                      \
833 	{                                                                      \
834 		check_access(ptr, size, 0, _RET_IP_);                          \
835 	}                                                                      \
836 	EXPORT_SYMBOL(__tsan_read##size);                                      \
837 	void __tsan_unaligned_read##size(void *ptr)                            \
838 		__alias(__tsan_read##size);                                    \
839 	EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
840 	void __tsan_write##size(void *ptr);                                    \
841 	void __tsan_write##size(void *ptr)                                     \
842 	{                                                                      \
843 		check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);         \
844 	}                                                                      \
845 	EXPORT_SYMBOL(__tsan_write##size);                                     \
846 	void __tsan_unaligned_write##size(void *ptr)                           \
847 		__alias(__tsan_write##size);                                   \
848 	EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
849 	void __tsan_read_write##size(void *ptr);                               \
850 	void __tsan_read_write##size(void *ptr)                                \
851 	{                                                                      \
852 		check_access(ptr, size,                                        \
853 			     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE,       \
854 			     _RET_IP_);                                        \
855 	}                                                                      \
856 	EXPORT_SYMBOL(__tsan_read_write##size);                                \
857 	void __tsan_unaligned_read_write##size(void *ptr)                      \
858 		__alias(__tsan_read_write##size);                              \
859 	EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
860 
861 DEFINE_TSAN_READ_WRITE(1);
862 DEFINE_TSAN_READ_WRITE(2);
863 DEFINE_TSAN_READ_WRITE(4);
864 DEFINE_TSAN_READ_WRITE(8);
865 DEFINE_TSAN_READ_WRITE(16);
866 
867 void __tsan_read_range(void *ptr, size_t size);
868 void __tsan_read_range(void *ptr, size_t size)
869 {
870 	check_access(ptr, size, 0, _RET_IP_);
871 }
872 EXPORT_SYMBOL(__tsan_read_range);
873 
874 void __tsan_write_range(void *ptr, size_t size);
875 void __tsan_write_range(void *ptr, size_t size)
876 {
877 	check_access(ptr, size, KCSAN_ACCESS_WRITE, _RET_IP_);
878 }
879 EXPORT_SYMBOL(__tsan_write_range);
880 
881 /*
882  * Use of explicit volatile is generally disallowed [1], however, volatile is
883  * still used in various concurrent context, whether in low-level
884  * synchronization primitives or for legacy reasons.
885  * [1] https://lwn.net/Articles/233479/
886  *
887  * We only consider volatile accesses atomic if they are aligned and would pass
888  * the size-check of compiletime_assert_rwonce_type().
889  */
890 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
891 	void __tsan_volatile_read##size(void *ptr);                            \
892 	void __tsan_volatile_read##size(void *ptr)                             \
893 	{                                                                      \
894 		const bool is_atomic = size <= sizeof(long long) &&            \
895 				       IS_ALIGNED((unsigned long)ptr, size);   \
896 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
897 			return;                                                \
898 		check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0,   \
899 			     _RET_IP_);                                        \
900 	}                                                                      \
901 	EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
902 	void __tsan_unaligned_volatile_read##size(void *ptr)                   \
903 		__alias(__tsan_volatile_read##size);                           \
904 	EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
905 	void __tsan_volatile_write##size(void *ptr);                           \
906 	void __tsan_volatile_write##size(void *ptr)                            \
907 	{                                                                      \
908 		const bool is_atomic = size <= sizeof(long long) &&            \
909 				       IS_ALIGNED((unsigned long)ptr, size);   \
910 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
911 			return;                                                \
912 		check_access(ptr, size,                                        \
913 			     KCSAN_ACCESS_WRITE |                              \
914 				     (is_atomic ? KCSAN_ACCESS_ATOMIC : 0),    \
915 			     _RET_IP_);                                        \
916 	}                                                                      \
917 	EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
918 	void __tsan_unaligned_volatile_write##size(void *ptr)                  \
919 		__alias(__tsan_volatile_write##size);                          \
920 	EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
921 
922 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
923 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
924 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
925 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
926 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
927 
928 /*
929  * The below are not required by KCSAN, but can still be emitted by the
930  * compiler.
931  */
932 void __tsan_func_entry(void *call_pc);
933 void __tsan_func_entry(void *call_pc)
934 {
935 }
936 EXPORT_SYMBOL(__tsan_func_entry);
937 void __tsan_func_exit(void);
938 void __tsan_func_exit(void)
939 {
940 }
941 EXPORT_SYMBOL(__tsan_func_exit);
942 void __tsan_init(void);
943 void __tsan_init(void)
944 {
945 }
946 EXPORT_SYMBOL(__tsan_init);
947 
948 /*
949  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
950  *
951  * Normal kernel code _should not_ be using them directly, but some
952  * architectures may implement some or all atomics using the compilers'
953  * builtins.
954  *
955  * Note: If an architecture decides to fully implement atomics using the
956  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
957  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
958  * atomic-instrumented) is no longer necessary.
959  *
960  * TSAN instrumentation replaces atomic accesses with calls to any of the below
961  * functions, whose job is to also execute the operation itself.
962  */
963 
964 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
965 	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
966 	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
967 	{                                                                                          \
968 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
969 			check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC, _RET_IP_);    \
970 		}                                                                                  \
971 		return __atomic_load_n(ptr, memorder);                                             \
972 	}                                                                                          \
973 	EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
974 	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
975 	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
976 	{                                                                                          \
977 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
978 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
979 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC, _RET_IP_);          \
980 		}                                                                                  \
981 		__atomic_store_n(ptr, v, memorder);                                                \
982 	}                                                                                          \
983 	EXPORT_SYMBOL(__tsan_atomic##bits##_store)
984 
985 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
986 	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
987 	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
988 	{                                                                                          \
989 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
990 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
991 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
992 					     KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
993 		}                                                                                  \
994 		return __atomic_##op##suffix(ptr, v, memorder);                                    \
995 	}                                                                                          \
996 	EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
997 
998 /*
999  * Note: CAS operations are always classified as write, even in case they
1000  * fail. We cannot perform check_access() after a write, as it might lead to
1001  * false positives, in cases such as:
1002  *
1003  *	T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
1004  *
1005  *	T1: if (__atomic_load_n(&p->flag, ...)) {
1006  *		modify *p;
1007  *		p->flag = 0;
1008  *	    }
1009  *
1010  * The only downside is that, if there are 3 threads, with one CAS that
1011  * succeeds, another CAS that fails, and an unmarked racing operation, we may
1012  * point at the wrong CAS as the source of the race. However, if we assume that
1013  * all CAS can succeed in some other execution, the data race is still valid.
1014  */
1015 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
1016 	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1017 							      u##bits val, int mo, int fail_mo);   \
1018 	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1019 							      u##bits val, int mo, int fail_mo)    \
1020 	{                                                                                          \
1021 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1022 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1023 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1024 					     KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1025 		}                                                                                  \
1026 		return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1027 	}                                                                                          \
1028 	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1029 
1030 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1031 	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1032 							   int mo, int fail_mo);                   \
1033 	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1034 							   int mo, int fail_mo)                    \
1035 	{                                                                                          \
1036 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1037 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1038 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1039 					     KCSAN_ACCESS_ATOMIC, _RET_IP_);                       \
1040 		}                                                                                  \
1041 		__atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1042 		return exp;                                                                        \
1043 	}                                                                                          \
1044 	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1045 
1046 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1047 	DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1048 	DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1049 	DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1050 	DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1051 	DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1052 	DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1053 	DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1054 	DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1055 	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1056 	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1057 	DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1058 
1059 DEFINE_TSAN_ATOMIC_OPS(8);
1060 DEFINE_TSAN_ATOMIC_OPS(16);
1061 DEFINE_TSAN_ATOMIC_OPS(32);
1062 DEFINE_TSAN_ATOMIC_OPS(64);
1063 
1064 void __tsan_atomic_thread_fence(int memorder);
1065 void __tsan_atomic_thread_fence(int memorder)
1066 {
1067 	__atomic_thread_fence(memorder);
1068 }
1069 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1070 
1071 void __tsan_atomic_signal_fence(int memorder);
1072 void __tsan_atomic_signal_fence(int memorder) { }
1073 EXPORT_SYMBOL(__tsan_atomic_signal_fence);
1074